

Feed the Future Africa Great Lakes Region Coffee Support Program (AGLC) Policy Roundtable Topic: Rewarding Farmer producers of high quality coffee through higher prices May 2016• Kigali, Rwanda

Introduction to the Challenge

AGLC Background

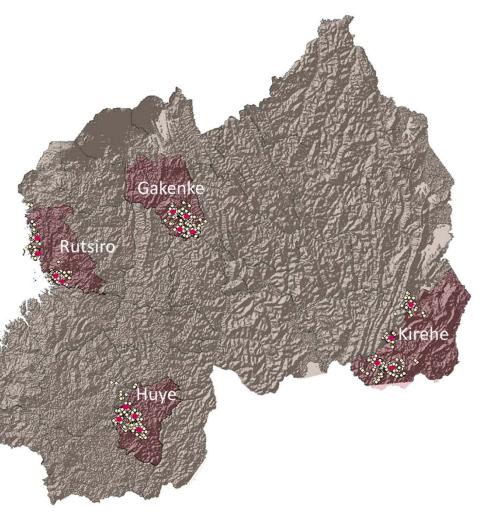
- AGLC is a 3-year USAID-funded initiative that addresses 2 major challenges in the coffee sector in Rwanda (and the Africa Great Lakes region)
 - Reduce antestia bug/potato taste defect (PTD)
 - Raise coffee productivity
- Partners
 - Rwanda: Inst. of Policy Analysis and Research (IPAR) and Univ. of Rwanda (UR)
 - USA: Michigan State University (MSU) and Global Knowledge Initiative (GKI)
 - Numerous public and private sector partners
- Components: applied research policy engagement capacity building

Applied research component

- AGLC draws upon a broad mix of quantitative and qualitative methodologies, including:
 - Coffee farmer/household surveys (and CWS survey)
 - Experimental field/plot level data collection
 - Key Informant Interviews
 - Focus Group Discussions
- Comprehensive coffee sector data base
 - Goal to integrate information from these four data collection activities
 - Provide empirical basis for policy engagement and farmer capacity building

Guiding question:

How might we ensure that producers are rewarded for producing high quality coffee through higher prices?



Methodology

Baseline survey of coffee growers

- Geographically dispersed sample across four coffee growing districts: Rutsiro, Huye, Kirehe and Gakanke.
- 4 CWSs in each District (2 cooperatives, 2 private)
- 64 HHs randomly selected from listings of each of the 16 CWSs
 - $(64 \times 16 = 1,024 \text{ HHs})$

Baseline survey, cont.

- Focus on fully-washed coffee. Sample does not include HHs not on CWS listings
 - Advantage: In depth focus on core of Rwanda's coffee sector strategy (FW)
 - Disadvantage: Ordinary coffee (parchment) producers underrepresented
- Survey instrument includes diversity of topics:
 - coffee growing practices antestia control practices cost of production coffee field size number of trees
 slope location (GPS) cherry production & cherry sales landholding equipment & assets household income barriers to investment in coffee basic household demographics
- Programmed (in *CSPro*) on 7" tablets for data collection
- 10 enumerators (working in 2 teams of 5)

Qualitative Data

• Key informant interviews

- Key coffee sector leaders including public sector representatives, farmer organizations, and private sector stakeholders.
- Focused on challenges identified by stakeholders and provided insights into critical areas of convergence and disagreement among various specialty coffee sector stakeholder groups.

• Focus group discussions

- Held with major coffee stakeholder groups including coffee farmers, washing station managers, coffee exporters, others.
- Groups of 5-7 members of each stakeholder group

Fieldwork

AGLC Baseline survey interview with farmer in Gakenke Focus group discussion with farmers at Buf Café washing station

Overview parameters of sample

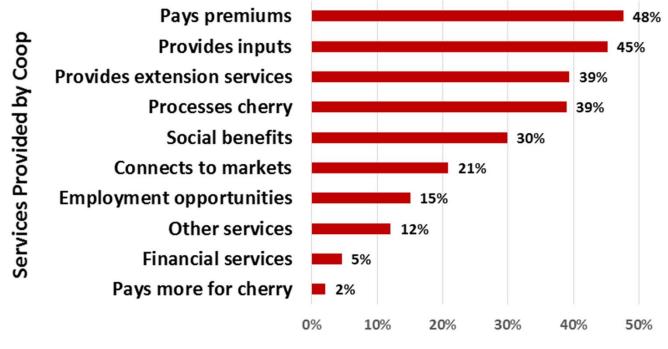
- Head of HH 81.5% Male; 18.5% Female
- Head of HH completed primary school: 38.1%
- Mean age of head of HH: 51 years
- Median number coffee trees on farm: 400
- Head of HH member of cooperative: 55.4%

- Median cherry produced in 2015: 600 Kg
- Mean cherry price received in 2015: 198 RWF
- Median HH cash income: 340,000 RWF
- Share of total cash income from coffee: 44%
- Percent of coffee farmers reporting antestia: 55%

Research Findings

Sub-questions addressed in findings

- What services provided by cooperatives?
- Who receives the premium ?
- Who does provide the premium ?
- What are the key determinants of access to premium?


Premises to challenge

- 1. Long-term success of the sector depends on production of high quality coffee
- 2. Premium are important incentives for high quality coffee production
- 3. Some farmers receive premium and others not while they have contributed to the business success. This brings the notion of equity in the structure of distribution of premium
- 4. Cooperative membership seems to be a condition to receive the premium while not all coffee farmers are cooperative members

Premiums are seen as an important service provided by the cooperatives

Primary Services Provided by Cooperatives Identifed by Coffee Growing Households

Premiums are more often paid by coops than by private CWSs

Percent of Households
Receiving Premiums

Source of Premiums Paid

Premiums		Coop/Private	
received?	Percent	CWS	Percent
Yes	29%	Coop CWS	67%
No	71%	Private CWS	33%
Total	100%	Total	100%
Ν	1,024	Ν	302

Farmers at high elevations are more likely to receive Premiums

Percent of Households Receiving Premiums by Elevation

	Receiv	ed premium	Total	
Elevation (m)	No	Yes		
<= 1500	13.1%	4.0%	10.6%	
1501 - 1650	25.6%	19.8%	24.0%	
1651 - 1750	20.6%	30.0%	23.1%	
1751 - 1850	21.5%	31.1%	24.1%	
1851+	19.2%	15.0%	18.1%	
Total	100.0%	100.0%	100.0%	
Ν	743	273	1016	
χ^2 sig. =0.000			17	

Farmers with 200 or fewer coffee trees are less likely to receive Premiums

Premium Received by Number of Trees on Farm						
	Numb					
	<= 200	201 - 400	401 - 800	801+	Total	
No	80.1%	72.4%	68.4%	72.3%	73.1%	
Yes	19.9%	27.6%	31.6%	27.7%	26.9%	
Total	100.0%	100.0%	100.0%	100.0%	100.0%	
Ν	236	286	256	238	1016	

Ν \bar{X}^2 sig. =0.030

18

Cooperative membership and high elevation provide greater access to premiums, all else equal

Logistic Regression: Premium Received by Selected Household and Ecological Determinants

HH and Ecol

Determinants	В	S.E.	Wald	Sig.	Exp(B)
Age of head of HH	-0.003	0.006	0.317	0.573	0.997
Educ of head of HH	-0.039	0.071	0.301	0.583	0.962
Coop member	1.438	0.173	68.837	0.000	4.211
Active adults in HH	-0.011	0.048	0.057	0.812	0.989
Gender of Head of HH	0.282	0.195	2.088	0.148	1.325
Cherry sales 2015	0.000	0.000	2.000	0.157	1.000
Elevation	0.002	0.000	10.661	0.001	1.002
Constant	-4.741	0.934	25.763	0.000	0.009

ANOVA: Estimated Cost of Production, Gross Margins and Productivity by Premium Received, Adjusted for Gender and Covariates*

Predicted Mean

				Adjusted		
Cost of Production,				for Factors	Adjusted for	
Gross Margins and	Premium			(Gender of	Factors and	
Productivity Measure	Received	NU	nadjusted	HHH)	Covariates*	Sig.
Cost of production	No	721	176	177	176	0.206
(RWF) per KG of cherry	Yes	269	162	161	164	
Gross margin	No	721	115	114	117	0.103
(RWF) per tree	Yes	269	145	147	140	
Gross margin	No	721	1,086	1,080	1,097	0.728
(RWF) per day of labor	Yes	269	1,135	1,152	1,105	
Productivity (KG cherry)	No	721	1.64	1.63	1.64	0.000
per tree	Yes	269	2.09	2.10	2.07	
Productivity (KG cherry)	No	721	10.9	10.9	11.0	0.885
per day of labor	Yes	269	10.8	10.9	10.6	
Covariates: Nbr of trees, Total HH income, Total land owned, Age of HHH, Educ. of HHH and Active adults in HH 20						

Summary and discussion points

Recap of challenge and findings

- Provision of more premium may increase quality coffee production
- Premium increases productivity per coffee tree
- Being in a cooperative is an enabler to receive premium all else equal.
- Farmers in hilly locations above 1601 m asl. have greater likelihood to receive premium because of quality coffee.
- Premium is an incentive to supply coffee to CWS.

Discussion questions

- What can we learn from this data?
- How should we articulate and understand the challenge? What is missing from this picture?
- What sorts of components would be needed in a solution that effectively and equitably provides producers with premiums for quality?
- What policy levers might effectively meet these specified components?

Thank You!

