

15th Africa Fine Coffee Conference (AFCA) Feed the Future Africa Great Lakes Coffee Program (AGLC) Topic: Control of Antestia/PTD and Improving Coffee Productivity in Burundi and Rwanda

February 17, 2017• Addis Ababa, Ethiopia

Outline of presentation

- 1. AGLC approach to challenge
- 2. Guiding questions
- 3. Background
- 4. Coffee overview
- 5. Preliminary studies by University of Rwanda and Roger family company as GKI-Link
- 6. AGLC methodology
- 7. Preliminary results
- 8. Conclusion
- 9. Acknowledgement

AGLC- Introduction to the Challenge And Background

Conceptual Framework for Burundi and Rwanda Coffee Productivity, Cyclicity and Potato Taste Defect

AGLC Background

- AGLC is a 3-year USAID-funded initiative that addresses 2 major challenges in the coffee sector in Rwanda and Burundi
 - Reduce antestia bug/potato taste defect (PTD)
 - Raise coffee productivity
- Partners
 - Rwanda: Univ. of Rwanda (UR) and Inst. of Policy Analysis and Research (IPAR)
 - Burundi: University of Ngozi, Polytechnic Univ. of Gitega
 - USA: Michigan State University (MSU) and Global Knowledge Initiative (GKI)
- Components: applied research policy engagement
 capacity building

Applied research component

- 02150016 AGLC draws upon a broad mix of quantitat and qualitative methodologies, including
 - Experimental field/plot level data collection
 - Coffee farmer/household surveys (and CWS) survey)
 - Key Informant Interviews
 - Focus Group Discussions
- Comprehensive coffee sector data base
 - Goal to integrate information from these four data collection activities
 - Provide empirical basis for policy engagement and farmer capacity building

<u>R</u><u>GITEGA</u>

Agronomic questions being addressed in <u>on-going</u> experimental plots

- 1. What can we learn about antestia and how it attacks coffee if we study it scientifically?
- 2. Which types of pest control are most effective against the antestia pest?
- 3. Can organic methods of pest control be as effective as chemical methods in controlling antestia? Is a combination approach more effective than either on it's own?
- Antestia damage ≠ potato taste defect every time. Which treatments result in the lowest incidents of PTD? Requires cupping.
- 5. What are the impacts of different pest control treatments on plant growth and productivity?

Capacity-building questions being addressed in the experimental plots

- 1. How can we implement experimental plots in ways that improve capacity of the farmers who own them and their neighbors?
- 2. How can we implement experimental plots in ways that build-up the next generation of extension workers with deep coffee knowledge?

Household survey

The household and field survey (n=2024) part of the project addresses PTD issues and productivity via large coffee farmer field and household surveys. Important questions related to PTD are discussed in the analysis.

See "Determinants of Farmer Investments" and "Estimating Cost of Production" papers available as handouts.

Mid-line survey (n=1024) completed in January 2017 for Rwanda, currently underway in Burundi.

Rwandan coffee Background

21st Century Rwandan Coffee Industry New Policy 1998

- 1. Government of Rwanda targeted coffee as a priority sector
- 2. Liberalized coffee sector
- 3. Cooperatives promotion and support
- 4. Emphasis was placed on quality
- 5. Private sector participation encouraged
- 6. Cupping laboratories built
- 7. Cooperative and private promoted
- 8. Involve development partners

Quality in all links along the Coffee value chain

1. Cherry picking and selection

MICHIGAN STATE UNIVERSITY OF

- 2. Floatation for sorting and grading
- 3. Clean water use
- 4. Parchment sorting and grading
- 5. Precise fermentation
- 6. Linear sun drying
- 7. Lot creation
- 8. Lot quality control
- 9. Regional cupping laboratory
- 10. Market link and buyers contacts

Quality in all links along the Coffee value chain

accelerated climb m quality? are carefully handled in field after picking

Cherries are then rushed to wet processing centers on specially designed 'coffee bikes' controlled at the washing station upon arrival

Pulping and density grading in clean water r.followed by further density grading in channels 4-6 hours later it is sun dried on raised beds in a linear fashion, never allowing moisture levels to increase

After washing, wet parchment is 'rested' in the shade where it is hand sorted for defective beans ach day's harvest from each production zone precision quality contratife four on FE numbers

roviding cherries to a processing center constitutes e lot and remains separate throughout the process

LoTno: 12/04 GRTABA TSpeate: A1 Date d.entree: 04/14/07

aboratories by pr

Café de Maraba

Each sample is cupped by a team of highly trained cuppers

Rwandan cupper skills are constantly updated and synchronized with those of industry experts and buyers

Challenges to coffee production (from NAEB)

- Poor soil fertility
- ✤ Lack of knowledge of farmers on good coffee husbandry
- ♦ Old coffee trees (24 % of the total number) which are not productive.
- Pests and diseases pressure.
 - ♦ main insect pests being:
 - ♦ antestia, (Antestiospsis sp.)
 - ♦ Main diseases are:
 - ♦ Coffee leaf rust (CLR) and
 - Coffee berry Disease (CBD)

Challenges to coffee production (from NAEB)

Antestia spread in all the coffee growing zones

Feeds on berries and green shoots

- □ It is thought to be linked with the potato taste
- Can cause loss up to 30% if not controlled and affect the quality of coffee as well

>Training of farmer : eg FFS

Pilot study at University of Rwanda in partnership with Roger Family Company/San Fransisco bay

Daily behaviour

Daily distribution in the tree

Distribution in the fields

Pilot study at University of Rwanda in partnership with RFC

Presence of egg parasitoids

Parasitized and un parasitized antestia bug eggs

Unparasitised Appears white

Parasitized Appears black

Presence of egg parasitoids in 2013 and 2014

and.

Coffee	Number	Number	Number	Level
plantati	of eggs	of eggs	of eggs	of
on	collecte	parasiti	not	natural
manage	d	zed	parasiti	control
ment	52	(wasps)	zed	at egg
	223/3	No.	(wasps)	stage in
	ST. M	The second	Star Mar	(%)
	Since	-		
Before	496	230	266	46
pruning	and			
(2013)		and the second		
After				
pruning	1234	619	615	50
(2014)				

entomopathogenic fung

 Presence of entomopathogenic fungi at different growth stages
Infection rate in antestia bugs increased with development stage
>eggs (40%),

nymphs (60%)

*****adults (73.3%)

Entomopathogenic fungi:

Metarhizium anisopliae showed a great percentage of occurrence in all growth stages :

≻Eggs(28%),

≻nymphs (28%)

➤adults (42.85%)

This implies that *M.anisopliae* has more potential than other entomopathogenic fungi. Especially for adult control

AGLC- Study Plots Methodology

128 agronomic study plots

- 16 coffee washing stations in each country selected.
- 4 farmers' plots (minimum 200 trees) selected from each washing station.
- 2 countries x 16 washing stations x 4 plots/ws = 128 study plots

Field work

Year 1: Field/Farmer selection Field set-up Hire/train enumerators Soil samples

Challenging roads and places

Field-Farmer Selection

Burundi

Rwanda

Protocol

Insecticide Treatments

Plot 1	Plot 2	Plot 3	Plot 4	Plot 5
Confidor (Rwanda)	Pyrethrum EWC [ORGANIC}	Confidor (or equivalent) + Pyrethrum	IPM (EWC spot-spray)	Control (no treatment)
Equivalent, ARFIC		EWC		
recommende d for Burundi		Application: 1 blanket		
		spray		
Application:	Application:	Confidor, 1	Application:	
2 blanket	2 blanket	blanket spray	Spot spray	
sprays per	sprays per	EWC later in	weekly	
season	season	season		

Field Set-up

Plot

#						
#	b		b	b	b	b
	b	b	b	b	b	b
	n			n		b
1	1 n			n		b
•	n			n		b
	n		n	n	n	b
	b		b	b	b	b
	b	b	b	b	b	b
\mathbf{O}	2 n			n		b
2	n			n		b
	n			n		b
	n		n	n	n	b
	b		b	b	b	b
	b	b	b	b	b	b
2	3 n			n		b
3	n			n		b
-	n			n		b
	n		n	n	n	b
	b		b	b	b	b
	b		b	b	b	b
	4 n			n		b
4	n			n		b
T	n			n		b
	n		n	n	n	b
	b		b	b	b	b
	b		b	b	b	b
_	5 n			n		b
5	n			n		b
	n			n		b
	n		n	n	n	b
	b		b	b	b	b
	b	b	b	b	b	b

Field set-up

Painted tree trunks.

Enumerator Training

Soil Samples

Field work – Year 1 & 2

- Soil analysis (challenges)
- Antestia knock-down and counts
- Tree growth and vigour
- Cupping

Soil analysis at University of Ngozi, Burundi

Antestia knock-down and count

In the

morning

1. Spray EWC

Wait 10 minutes.

2. shake

3. Count bugs

4. Record

Tree growth and vigour

	Location				B :	border				
					M:	Middle				
						no	A∨erage			
		Plant Nbr		NoSt		branches	fruits/branc		r(scal	
Plot Nbr	Treatments	(net plot)	(cm)	em	Branches	with fruits	h	e 1-3)		ocation
1	Confidor	1							\sim	
1	Confidor	2								
1	Confidor	3								

- 1 vigorous: green leaves, dense canopy
- 2 medium : not dark green, sufficient light penetration
- 3 Stressed: not green, poor canopy formation, light penetration

Cupping to assess incidence of PTD Potato Taste

			UNIVERSIT	E POLYTECH	NIQUE DE GI	TEGA					- / • • -		
			ΡΟΤΑΤΟ Τ	ASTE RESEA	СН					,Ye	s/No		
			COFFEE AI	NALYSIS RES	ULTS				×				
SAMPLE CODE				ENT COFFE PECT	GREEN COFFEE ASPECT.AGRONOM C DEFECT			ΡΟΤΑΤΟ ΤΑSTE		OTHER DEFECTS		SCORE	
			FW	OTHER	DAMAGED	BLACK	SOUR	YES/no	NO	SOUR	FERMENTED	PHENOLIC	
225	CH 1	P1E1	A1		1	0	0	0	0	0	0	0	80
226	CH 1	P2E1	A1		1	0	0	0	0	0	0	0	80
227	CH 1	P3E1	A1		1	0	0	0	0	0	0	0	82
228	CH 1	P4E1	A1		1	0	0	0	0	0	0	0	83
229	CH 1	P5E1	A1		1	0	0	1	. 0	0	0	0	70
230	CH 1	P1E2	A1		1	0	0	0	0	0	0	0	79
231	CH 1	P2E2	A1		1	0	1	0	0	1	1	0	78
232	CH 1	P3E2	A1		1	0	0	0	0	0	0	0	84
233	CH 1	P4E2	A1		1	0	0	0	0	0	0	0	83
234	CH 1	P5E2	A1		1	0	0	0	0	0	0	0	79
235	CH 2	P1E1	A1		1	0	0	0	0	0	0	0	80
236	CH 2	P2E1	A1		1	0	1	0	0	1	1	0	78
237	CH 2	P3E1	A1		1	0	0	0	0	0	0	0) 79
238	CH2	P4E1	A1		1	0	0	1	. 0	0	0	0	70

Initial **Research Findings** from Experimental Fields

Progress update - no conclusions yet

- Antestia incidents high in dark, bushy canopy. "Pruning on its own can reduce antestia by half. "~ Dr. Dick Walyaro, RAB.
- Organic and domestically available pyrethrum of high interest. Cost issues. Testing "spot" vs. "blanket" application.
- Expect soil analysis to show lack of potassium in Rwanda, which reduces sweetness in the cup.¹ Distribution of fertilizer issue.
- Fly crop issues.
 - ¹ Malliavin Nzamurambaho: San Francisco Bay Coffee

Early results.

Treatment 1 has highest incidence of antestia <u>and</u> highest yield.

Ngoz	i + Kayanza, Burundi	Year 1 Quarter 4 Update				
		Avg. # of Antestia bugs	Yield – KG cherry/tree			
1 a	Treat 1 (Confidor):	0.9	1.98			
1b	Treat 2 (Pyrethrum):	0.4	1.73			
1 c	Treat 3 (Confidor+):	0.7	1.50			
1d	Treat 4 (IPM – Pyrethrum+):	0.5	1.47			
1 e	Treat 5. Control:	0.0	1.64			

Expecting 2017 study plot data

More precise estimates of % yield reduction due to antestia damage. (We typically use 30%, is it accurate?)

Correlation between antestia presence and PTD in the cup.

Disaggregation of antestia and PTD incidence by geography, type of input use, plant and soil characteristics.

Better understanding of antestia habits and lifecycle.

Capacity building

Farmers

Future Extensionists

Research Findings from Household & Field Surveys

Input Application Rates

Fertilizer Application Rates per Month

Percent of Farmers Applying Fertilizers per Month

Pesticide Application Rates per Month

Percent of Farmers Applying Pesticides per Month

Reasons for Not Using Inputs

Reasons for Not Using Fertilizer (for HH not using fertilizer)

Reasons for Not Using Pesticide (for HH not using pesticides)

Antestia and PTD: Do Farmers Know What They Are?

Antestia and PTD: How do farmers identify antestia?

How Antestia Affects Coffee Trees

55

Antestia and PTD: How do farmers identify PTD?

Description of PTD by Farmers

PTD

Antestia in Farms

Percent of Coffee Farmers Observing Antestia in their Coffee

Antestia in Farms

Number of Antestia Bugs per Tree

Antestia Control

95% of farmers in Burundi and 76% of farmers in Rwanda who have had Antestia in their coffee trees reported having taken some form of Antestia control

Percent of Coffee Farmer Using Selected Methods for Antestia Control (Among those taking control measures)

Acknowledgement

- USAID for support and funding this research in both Rwanda and Burundi. The AGLC is funded by Feed the Future-USAID, without it we could not be having the important data we are getting
- Government of Rwanda and Burundi for support and enabling environment
- Coffee farmers in both Rwanda and Burundi for their willingness to work with the AGLC project
- Coffee stakeholders in Rwanda and Burundi for the willingness to help us in many ways

Thank you for Listening

