# Great Lakes Malt & Hops Conference

Hop Pellets Val Peacock Hop Quality Group

## Type 90 Pellets



# Objectives when making Hop Pellets

- 1. No heat abuse of hops, hop powder or pellets during processing.
- 2. Produce pellets with alpha and oil uniformity to suit the customer.
- 3. Minimal amount of fines (<2.5% thru 20 mesh screen) in the packaged pellets.
- 4. Make sure the pellets are sent out in an airtight package. QA program needed to monitor this!

# Type 90 Pellets

 Supposedly, 90 refers to the % yield. 100 pd of hops yields 90 lb of pellets. A few % water and some non-hop material (+ stem) lost. Typical yield is 96% not 90%.

• Alpha recovery typically 98%

#### Type 90 Process





#### **Bale Breaker Platform**



## Bale Breaker Fingers



#### Heavy Material Separator



#### **Heavy Material Removed**



#### Hammer Mill



#### Hammer Mill Screen



#### **Mixing Tank**

#### Conical Mixers give best uniformity

Some plants use horizontal ribbon blenders

- Or may mix pellets



### Inside Conical Powder Blender



# Pellet Uniformity

- Conical mixer best. Ribbon not so good.
- One German plant mixes pellets instead of powder.
- Some plants mix raw hops as only source of mixing, others do this to supplement mix.
- Combination of ribbon blender and pellet mixing good also.
- Bigger blender = better uniformity



## Pellet Press

- Compresses hop powder through a metal die hole (6mm?) to form a solid pellet.
- Temperature control (below 55°C) important.
- Parameters to use are:
  die diameter feed rate
  die path length die geometry
  die alloy die roller clearance

#### Plate Die

Cylindrical roller rolls at the same speed at outer & inner portion of the die, must skip on outer portion causing friction.



# Ring Die Configuration Rollers don't skip, less friction



## Ring Die



## Inside a Ring Press



## The Pellet Process

- Compression heats up the Powder & melts the α & β-acids. As the pellet cools, these act as a glue to hold the pellet together. (Don't want it too cold!)
- Die diameter and path length are best tools to regulate temperature (<55°C)</li>
- When press starts up, die is cold more friction = scorched pellets. The first 50 -100 lb should be discarded.

#### Breakout Pellets

When pellets are no longer scorched or glassy, start to collect product.



**Properly Made Pellets** Green with no glassy or shiny surface. Warm Cookie consistency. Hops lose  $\approx 2\%$ water in process. 0.75% in hammer mill & 1.25% in pellet press.

![](_page_23_Picture_1.jpeg)

# Monitoring Pellet Temperature

• Can be monitored with an IR temperature sensor or gun.

 Or hold fresh pellets in your hand. If it is painful, they are too hot!

Pain threshold is  $\approx 55^{\circ}$  C.

• Pellets should be quickly cooled with air in pellet cooler.

## **Mechanical Parameters in Pelleting**

- 6 mm (1/4 inch) is a fairly widespread standard diameter. Compression & temp. controlled by changing path length. Going larger diameter for troublesome hops ok, as long as enough compression to control bulk density. 460-560g/Liter a good spec.
- No advantage in going smaller diameter, just makes it more difficult to control process.
   Why do people do this????

# Cooling Die with Liq. Nitrogen

- Some vendors do this to regulate pellet temp.
- Often because they make small diameter pellets resulting in more friction.
- If mechanical parameters are set correctly, a waste of \$\$ and energy.
- If mechanical parameters are NOT set correctly – makes this harder to detect.
- May cause problems with pellets holding together because too cold to melt alpha.

## Pellet Cooler

![](_page_27_Picture_1.jpeg)

# Pellet Cooling & "Bricks"

- Warm pellets are sticky. If packed warm, especially if vacuum packed, they often clump together so much they require a hammer to break up.
- Will NOT happen with a good vendor. Insist on cooling pellets below 25° C within 10 minutes to avoid oxidation before packing, and must be below 25° C when packed.

#### Fines Recovery and Recycle

Cooled pellets are sieved – fines are returned to pellet mill, pellets sent to holding bin.

![](_page_29_Picture_2.jpeg)

# Surge Bins & Pellet Blending

 After cooling & sieving, pellets are either sent to a surge bin to await packaging, or sent to a mixing facility for blending (unusual!)

# Pellet Packaging

- Packed in a Mylar bag with a foil Oxygen barrier. Absolutely necessary because lupulin glands are all broken and contents VERY susceptible to oxygen.
- Check oxygen permeability specs of bag.
  Want <0.005 cc/100 sq. in. per 24 hr @ 73° F</li>

## **Pellet Foil Filling Operation**

![](_page_32_Picture_1.jpeg)

# Storage of Hop Pellets

- Vendors recommend storage at refrigerated temperatures and say good for 2 years.
- If stored < 25° F, essentially stops all alpha loss! Pellets good for 5 years < 25° F if used in kettle. At least 3 years if used for dryhopping.
- If opened, or foil compromised, store below -20° F long-term, or < 40° F up to 2 weeks, or</li>
   < 25° F up to 5 weeks.</li>

# Shipping Hop Pellets

- Temp. & time VERY IMPORTANT BEWARE!
- At > 90° F for more than a few hours, pellet foils may begin to fill with internally generated CO2 and possibly burst. Happens at a lesser rate down to 75° F. Disaster when this happens!
- DO NOT ship non-temp. controlled containers across the equator! Control temperature in shipping.

### **Ballooned Pellet Foils**

![](_page_35_Picture_1.jpeg)

# Ballooning????

- Warm pellets generate CO2 which may burst the foil. Undamaged foils contract when cooled and damage hidden until opened.
- Acetone & many other "solvent-type" chemicals also generated.
- Color changes as well as aroma changes even if foil NOT compromised.
- NOT a micro-biological problem not understood!

### Vacuum Pack vs. Soft Pack

#### Susceptible to mechanical

damage

![](_page_37_Picture_3.jpeg)

#### Damage harder to detect

![](_page_37_Picture_5.jpeg)

# Vacuum (Hard) Pack vs. Soft Pack

- Vacuum pack more susceptible to mechanical damage during shipping. But damage may be obvious – if it isn't really ballooning!
- With soft pack, foil partially back filled with CO<sub>2</sub> or N<sub>2</sub> after evacuation of air.
- Soft pack not damaged as easily but how can you tell? Hold under water – no bubbles?
- Or put in vacuum chamber with CO<sub>2</sub> detector.

# Packaging Quality Control

- Even a pinhole air leak in the foil bag will ruin the product before it is used by the brewer.
- The better vendors test about every 50<sup>th</sup> foil produced on the packaging line to assure there are no problems.
- Some have elaborate machines to test foils.
- At least a simple routine test is needed:

## Simple Foil Test Procedure

- Take filled foil and pierce foil with a needle attached to an air pump. Inflate the foil as much as possible. Pull out needle and quickly seal hole with duct tape.
- Submerge foil under water and look for air leaks. Pay special attention to seams you have made.

## Hop Pellet Summary

- Maintain temperature 40-55° C in pellet press.
- Cool pellets quickly and pack reasonably quickly.
- Have a QC program to assure foils are sealed correctly.
- Take special care when shipping pellets in warm weather or across the equator.