Cold Cellars for Year-Round Local Food and Farming

John Biernbaum
Department of Horticulture
Michigan State University

Michigan is ready for good ideas, both high and low tech.

Stone and cement construction - described in later years by the Nearings.

Mott Estate, Flint, MI
Former farm of GM founder C.S. Mott

Michigan Root Cellar ~1921 in Leelanau County. Built with stone from the shore of West Grand Traverse Bay and primarily used to store apples. Interior dimensions 15' x 20' and 7' tall with a double door - 3' air lock.

01/01/2003
Cold Cellars for Year-Round Local Food and Farming

January 2009

Side by Side

Two-Story

Desired Learning Outcomes

- Individual and family goals.
- Farm and local food system goals.
- Available educational resources.
- Suitable crops and conditions necessary.
- Methods and costs of construction.
- Sources of funding for cold cellars.
- Needs to be either searched out or discovered through research.

Presentation Outline

See Handout – Seven C’s

1. Concepts
2. Crops
3. Conditions
4. Construction
5. Considerations
6. Containers
7. Combinations

Why Season Extension and Year-round Farming?
localharvest.com – growing number of small farms and CSA’s in MI

Food Processing & Preservation
- Refrigeration and Cooling
- Freezing (energy, flavor, nutrition)
- Canning (Salsa, Tomato based products, etc)
- Dehydration (herbs, cherries, cranberries, blueberries, etc)
- Freeze-drying (more commercial or larger scale?)
- Salting (osmotic conditions limit microorganisms)
- Pickling (vinegar, acidic pH)
- Jams and Jellies (sugar)
- Pasteurizing (heat, impact on nutrition?)
- Fermentation (renewed interest?, improves nutrition?)

- Planning for local food in our cities

Energy & Global Warming
- MSU Forestry class prepared a carbon budget of the Student Organic Farm.
- Carbon from uses including electric, gasoline for tractors, tillers, mowers, trucks for transportation and employee and member miles was 2.4 tons/year.
- Carbon for refrigeration was 200 tons/yr or 98% of the carbon.
- An acre of trees for an offset
Cold Cellars for Year-Round Local Food and Farming

January 2009

John Biernbaum, Michigan State Horticulture

25

26

Root Cellaring Topics

- Growing the right crops for storage.
- Variety selection.
- Scheduling for late harvest.
- Harvesting high quality produce and preparing it for storage.
- Recommended stage of development and harvest methods.
- Pretreatment to insure maturity of squash, onions, potatoes, garlic.
- Specific crop storage recommendations or uses.
- Vegetables
 - Fruits (ethylene considerations)
 - Other, eggs, pickled or fermented foods, mushroom production, root media for transplants,
- Construction
 - Small buried containers
 - Basement root closets
 - Excavated cold cellars
 - Personal experiences
 - Recipes

27

Crops and Conditions

- What Crops?
- How Long?
- What Conditions?
 - Temperature
 - Humidity
 - Ventilation - ethylene

28

Multiple Environments

<table>
<thead>
<tr>
<th>Humidity</th>
<th>Dry</th>
<th>Moist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>(<70% RH)</td>
<td>(80-90% RH)</td>
</tr>
<tr>
<td>Cold Temp (33-40F)</td>
<td>onions, garlic</td>
<td>potatoes, cabbage</td>
</tr>
<tr>
<td>Cool Temp (50-60F)</td>
<td>winter squash, sweet potato</td>
<td>cucumbers, cabbage</td>
</tr>
</tbody>
</table>

Figure 1. Average Storage Duration for Commonly Stored Produce

<table>
<thead>
<tr>
<th>4 of Months</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tomatoes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celery, Leeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beets, Peas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apples, Pumpkins, Squash</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cucumbers, Potatoes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cold Cellars for Year-Round Local Food and Farming

Multiple Environments

<table>
<thead>
<tr>
<th>Humidity</th>
<th>Temperature</th>
<th>Dry (<70% RH)</th>
<th>Moist (80-90% RH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold Temp (33-40F)</td>
<td>onions</td>
<td>garlic</td>
<td>potatoes, cabbage (first choice)</td>
</tr>
<tr>
<td>Cool Temp (50-60F)</td>
<td>winter squash</td>
<td>sweet potato (second choice)</td>
<td>cucumbers, tomato</td>
</tr>
</tbody>
</table>

Example Crop Categories

- Low temp (32F) low humid (<60%)
 - onions and garlic
- Low temp (32F) high humid (90%)
 - carrots, beets, turnips, rutabagas, leeks
- Cold Temp (35-45F) high humid (90%)
 - potato, cabbage,
- Cool temp (50-60F) low humid (<600%
 - winter squash, sweet potato
- Cool temp (50-60F) and high humidity(90%+)
 - Cucumber, summer squash, tomato, pepper, eggplant

Ventilation is important

- Produce is alive and “breathing” – using oxygen and producing carbon dioxide.
- Ventilation is important to bring in fresh air, for cooling and for humidity control.
- When moisture is too high, fresh dry air is brought into the cellar.
- Can be on a timer or managed with a thermostat.
- Outside air temperature must also be taken into consideration.

Construction Options

- Buried direct or in container
- Insulated room in basement or building
- Buried Room or Rooms
 - Would not recommend wood?
 - Stone or block cemented together
 - Formed and poured cement walls
 - Precast sections assembled
 - Precast vaults or culverts

Basement Cold Closet
Cold Cellars for Year-Round Local Food and Farming

January 2009

Michigan Root Cellar ~1921 in Leelanau County. Built with stone from the shore of West Grand Traverse Bay and primarily used to store apples. Interior dimensions 15' x 20' and 7' tall with a double door - 3' air lock.

01/01/2003
Cold Cellars for Year-Round Local Food and Farming

January 2009

John Biernbaum, Michigan State Horticulture

Root Cellar for Cold Storage
New York State, Stone Barns Center

Black Star Farms
Can drive in forklift

Root Cellar for Cold Storage

Root Cellar Started:
A big hole in the ground

Concrete Blocks

Root Cellar Constructed

Steps and Roof
Basic Costs about $3000 total
Hole excavation - $200
Cement for footer - $200
Block $1 each - $600
Block $2 each - $1200
Roof materials - $600
Vents and Elec materials - $100
Cold Cellars for Year-Round Local Food and Farming

Considerations and Containers

- Temperature
 - Rate of cooling in fall
 - Addition of refrigeration?
- Humidity
 - Reduce by ventilation
 - Increase by wetting floor or walls
- Ventilation - Ethylene

MSU-SOF 40F Cooler

Beets in Wood Shavings

Cabbage that got too wet?

Celeriac or Celery Root
Cold Cellars for Year-Round Local Food and Farming

January 2009

1. Potatoes in Bulb Crates
2. Harvesting and Storage Containers
3. Bulk Bins – wood or plastic
4. Second Cooler – Warmer and Dryer
5. Butternut Squash
6. Dehumidifier
Cold Cellars for Year-Round Local Food and Farming

How does it work?

Refrigeration Unit

Refrigeration – How does it work?

Heat Exchanger Outside

Compressors

Heat Exchanger in Cooler

New Frontier: Winter Markets

John Biernbaum, Michigan State Horticulture
Cold Cellars for Year-Round Local Food and Farming

November
Don't fit inside!

THANKSGIVING
HIGHEST SALES!

NOVEMBER 22ND
37 DIFFERENT ITEMS FOR SALE!

NOVEMBER
Another winter market
7 within one hour

Plan for the Future
• Free Barns
• Central Placement
• Slate Roofs
• Root Cellar

Potting Shed Insulated
Attached Greenhouse
Cold Cellars for Year-Round Local Food and Farming

Think Efficiency

ROOT CELLAR 20 FEET BY 30 FEET UNDER BARN
$10,000 refrigeration system—Value paid in one year.
Stores $85,000 in produce Sept to August

ROOT CELLAR
24 tons
Carrots
Potatoes
Beets
Cabbage
Turnips
Radishes
Leeks
Rutabagas
Brussels Sprouts
Celeriac

Combinations
- Foundation for a building above
- Mushrooms
- Fermentation
- Geothermal heat for hoop houses
- Seed germination medium

Presentation Outline
See Handout – Seven C’s
1. Concepts
2. Crops
3. Conditions
4. Construction
5. Considerations
6. Containers
7. Combinations

Integral Agriculture
Friends and Families
Using Facts and Feelings to Faithfully, Physically and Fearlessly Farm
Front-yards, Forests, and Fields For Food, Feed, Fodder, Fiber, Fuel, Flowers, Fertility, Fun, Freedom, Fairness and the Future

John Biernbaum, Michigan State Horticulture