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. FOREWORD
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state commissions with developing innovative solutions to
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helps meet that purpose, since the subject matter presented here
is believed to be of timely interest to regulatory agencies and to
others concerned with gas utility regulation.
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PREFACE

Iﬁ contrast to the case of electric utilities, there has been relatively
little research in recent years on the application of marginal cost pricing
principles to gés utilities, and most gas pricing studies have focused on’tﬁe
marginal cost of gas supply, discarding the marginal’capacity coét aslifreie—r
vant because of an alleged excess capacity. However, several sfate regulafofy
agencies have recently expressed an interest in implementing marginal cost
pricing for gas distribution utilities. For instance, the New York Public ':
Service Commission issued, on September 17, 1979, Opinion No. 79419 étating
that the marginal cost of gas is a relevant considerétion in gas rate ééses,
and requested estimates of the commodity énd caéacity marginal costs atA
~different times, recognizing the effects of contract provisions with éubpliers,
of storage(coSts,'and of plans for transmission, Aistribution and storage.

It is the purpose of this report to present aimodeiing methodology for
the>éalculation of gas marginal costs at the distribution ievel, with par-
ticular emphasis on capacity costs. A partial equiiiﬁrium pricinglmodel,
including the optfmization of supply mix and capacity éxpansidn, the financial
analysis of revenue requirements, and the design of marginal-cost-based rates
that achieve the revenue requirement constraint, is developed‘and applied
with‘data‘characterizing the East Ohio Gas Company. Average and ma:ginal
cost pricing policies are compared in terms of their respective imbacts on
total gas consumption, load factor, new plant investments, and consumers'

- surpluses. The marginal cost pricing policy is shown to significantly
improve the utility's load factor, to require smaller investments in new plant,

and to yield higher surpluses for both gas consumers and the utility.
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I. Introduction

ln contrast to the case of electric utilities, there has been relatively
little research in recent years on the application of marginal cost orlcing
prlnc1ples to gas utilities. While Tzoannos (1977) appears to be the only
author accounting for gas capacity costs in a very simplified pricing model
of the domestic gas system in Great Britain, most gas pricing studies iﬁ tﬁe‘
U.S. (Blaydon et al., 1979; U.S. DeDartment of Energy, 1980) focus on the
marginal cost of gas supply, dlscardlng the marglnal capac1ty cost as 1rre1e-
vant because of an alleged excess capacity. Nevertheless, it seems tﬁat
Comprehenslye marginal cost pricing for gas distrlbotion is gaininé Suoport;
in the U.S. For instance, the New York Public Serviceycommissioo issoed;
on September 17, 1979, Oplnlon No. 79-19 stating that the marglnal cost of
gas is a relevant consideration in gas rate cases,’and requested explanatlons
of calculations and estimates for the commodity and capacity marginal eosts
at differeotrtimes, recognizing the effects of eontract provisionskwith sup-
pliers, or storage costs, and of plans for transmisslon, distribution, anol
storage. The commissioners also stated their awarenese of the possiﬁility'
that marglnal;cost—based rates might provide excess’revenues to the utllities,
and of the need to deal with this issue, should it arise. It ie elso note-
worthy that the effects of marginal cost pricing on the demand for oatural
gas and on changes in capital and operating utility costs constitute an
important issue in the Poblic Utility Regulatory Policies Act of 1978 (Sec;
tion 306——Gas’Utility’Rate Design Proposals). |

It iskthe‘purpose of this paper to present a modeling methodology for

the calculation of gas marginal costs at the distribution level, with



particﬁlar emphasis on capacity costs, and for the evaluation of the impacts
of marginal-cost-based pricing policies in terms of energy conservation,
utility plant requirements, and end-use economic efficiency. The remainder
of the paper is organized as folloﬁs. The major conceptual and ﬁractical
issués involved in’applying marginal cost pricing principles to gasvdistriQJ
bution utilities are analyzed in Section II. A 1iteratﬁr§ réview’of
exiéting gas systems planniﬁg ana pricing models is presented in Section
IT1T. An overview.of the proposed modeling‘methodology is presentéd‘in
Section IV. The detailed structure of the model, as adapted to the East
bhio Gas Company (EOGCx is descfibed in Section V, and the results ofkité
applicaﬁioﬁ are presented in Section VI. Section VII concludes and o;tlinés

areas for further research.

II. Céﬁceptual‘ahd Préctical Issues in Gas Distribution Marginal Cost

Pricing A ‘ . .

The variou; pfoblems involvea in the épﬁlication of marginal cost
pficing tb gas distribﬁtion utilities can best be clarified’when considéring
first the priﬁciples and results of a simple and general theoretical model
of public utility priciﬁg. Consider a utility supplying a commodity iﬁ
amoﬁﬁté Q, énd Q2 during two distinct demand periods of equal dufatioﬁ; T,
(off-peak) and T, (peak). These amounts are charged at prices P; and sz
and the demand funétions Pl(Ql) and P2(Q2) are assumed to be known. The
utility operating costs are noted COI(QI) and COZ(QZ)’ Under the assumptionb
that no réserve margins are necessary; the utility's capacity must be equal
to the peak demand Q,, and the corresponding capacity cost isbnoted cc(Q,) .

The total welfare W for both the utility and its customers is equal to the

sum of the corresponding producers' and consumers' surpluses, with:



Q Q
W(leQz) = é PI(Q)dQ + PQ(Q)dQ - CO)_(Q]_) - COZ(QZ) - CC(Qz) (1)
0

The optimal production/consumption pattern is reached when W is maximized,

i.e., when:

L. P,(Q) - 40, _ g (2)
8Q1 dQl ’
W _p (g, - 402 _doc 3
3Q2 sz dQZ

The derivatives of the operating and capacity costs are precisely the
corresponding marginal costs, and are noted MCO,(Q,), MCOZ(QZ), and MCC(QZ),
Equations (2) and (3) are restated as follows:
P1(Q)) = MCO,(Qy) (4)
P,(Q,) = MCO0,(Q,) + MCC (Q,) (5
Equations (4) and (5), which highlight the close interrelationship between
production, capacity investment and pricing, indicate that the optimal
production/capacity pattern is obtained when (a) the off-peak price is equal
to the off-peak marginal operating cost, and (b) the peak price is equal to
the sum of the peak marginal operating cost and the marginal capacity cost.
Despite the simple and étraightforward characteristics of the above
framework, its application to gas distribution utilities entails several
complications related to (a) the specification of gas demand, (b) the calcu-
lation of marginal costs for a given output pattern, (c) the determination
of the optimal output/capacity/price pattern, and (d) the regulatory con-
straint on the utility's maximum revenue.
First, the demand for gas varies daily, weekly, and seasonally, depend-
ing mainly upon weather variability, with peak requirements during the winter
season for space-heating pu;poses, and slack periods in the summer. The

magnitude of this seasonal swing depends upon the characteristics and mix



of space-heating and other gas usages. The number of relevant demand
periods is therefore larger than in the above example. In addition, this
demand, even in a given period, is stochastic because of the randomness
of temperature, hence the possible need to curtail this demand and to
account for curtailment (or rationing) costs in establishing a pricing
system, Finally, gas demand is highly spatialized as customers are
distributed among the various communities (load centers) of the utility's
service territory. These customers' requirements have spatially differ-
entiated impacts on the cost of the distribution system. In'short, both
the temporal and spatial variability of gas demand must be accounted for
in determining marginal costs of gas distribution.

Second, a gas distribution utility is a highly heterogeneous and
complex production system which cannot be completely characterized by a
few variables and cost functions, as hypothesized in the theoretical
example. For a given demand/output pattern, the determinatibn.of the
least-cost combination of production factors and of the corresponding
marginal costs requires the consideration of all the subsystems making
up the utility, such as its suppliers and its storage, transmission, and
distribution plants, and of the cost trade-offs and interrelationships
among them. A gas distribution utility generally receives most of its
gas from one or more interstate pipelinés,which generally apply a two-part
rate system: a commodity rate, related to the amount of gas actually
taken, and a demand rate, related to the contract demand defined as the
maximum daily deliveries that the transmission pipeline commits itself
to supply to the distributor. The demand rate provides for payment of
the capacity (pipes, compressors, storage, etc.) that the pipeline has

to install to honor the contract. In addition, many contracts also



involve a take-or-pay clause whereby the distributor commits itself to
purchase a minimum quantity of gas or to pay for this minimum quantity if
not ;ctually taken. Other sources of gas supply may be local producers,
natural gas produced by the company itself, and peak-shaving synthetic
natural gas (SNG) plants owned by the company. The determination of the
least—cost supply mix satisfying a given requirement pattern, which must
account for the costs of and constraints bearing on the possible supply.
sources, is further complicated by the possibility, for the distributor,

to develop and operate an underground storage system or to use, at a cost,
the storage fields of other companies (very often its own suppliers)..

More gas than is needed by the end-use customers 1s purchased during the
summer, and the excess gas 1is injected into storage at that time and
withdrawn during the space-heating season, enabling the utility to contract
for less peak demand, and hence to reduce the demand charges. Of course,
storage is a beneficial operation only if storage costs are lesser than

the reduction in demand charges, and the determination of the optimal
trade-off is subject to several supply and storage technological constraints.
The trademoff analysis must further account for the location of the supply
take-off points, where gas is physically received from the suppliers, for
the location of the load centers where gas is injected into the local
distribution networks, for the location of the storage fields, and for

the design of the network of transmission lines that convey gas at high
pressure between these various nodes. The transmission lines may be equip-
ped with compressors, and.the well~known trade-off between pipe diameter,
gas flow, pressure drop, and compression ratio and power must be included
in the analysis. In summary, the utility planner is facing a large number

of decision variables in designing the system that will satisfy, at least



cost, gas requirements specified both geographically and temporally. This -
set of decision variables may vary significantly among utilities, depending
in particular upon whether the future system may be designed without any
constraint or whether the system's expansion is severely constrained by

the characteristics of the existing system (e.g., existing transmission
lines and storage pools, non~renegotiable purchases agreements, etc.).

The decision variables may include the amounts of gas to be purchased from
each supplier at each take-off point during each period, the maximum daily
deliverability of each supplier, the location and diameter of the pipe
links making up the transmission network, the location and power of the"
compressors, the locétion and capacity of the storage fields, the amount
of gas conveyed in éach transmission link during each period, the periodic
storage injections and withdrawals, etc. Several constraints must be -
accounted for, such as minimum and maximum preésures in the pipes and
storage reservoirs, maximum available supplies, maximum pipe and compressor
capacities; maximum Storage deliverability, flow balances at the différeﬁt
nodes of the network, etc. Obviously, the optimal design cannot be
determined intuitively and must be the output of a mathematical program-
ming model minimizing the total system cost subject to several constraints.
This model may be solved exactly or only sub-optimally through some
heuristic procedure, depending upon its structure and the simplifications
made. If the model turns out to be a linear program, then the shadow
prices of the spatiélly and temporally defined requirement constraints

are exactly equal, at the optimum, to the marginal costs associated to
marginal variations 6f these requirements. Such an approach to the

calculation of space~time marginal costs has been applied by Scherer (1976)



to the case of electricity generation, transmission, and pumped storage.
However, when the system cannot be reduced to a linear format, a possible
approach is to solve the model while increasing, alternatively, each
requirement by an increment AD., The resulting cost increment AC leads -
to an approximation of the corresponding marginal cost, with MC = AC/AD.
Obviously, the above marginal costs would encompass supply, storage, and
transmission marginal costs. However, providing for the increments AD
implies also additional distribution capacity costs within the load centers.
Conceptually, then, the internal structure of each load center should alsc
be formalized as a network serving all the individual customers (residen-
tial, commercial, industrial), and the marginal distribution cost corres-
ponding to the marginal variation of the demand of any customer should be
computed through a procedure similar to the one discussed for the lafger
network. Through such a hierarchical analysis, the total margingi cost |
corresponding to any marginal variation in demand could be éalculated.
Whether such a comprehensive model is practically feésible or’whether
simplifyiﬁg assumptions are necessary will be determined, in part, tﬁrough
the review of the literature on gas utility models presented in Séctién |
IIT. | |

’Tﬁird, in order‘to determine the optimal welfare solution it is
necessary to interface the spacé—time demand functions with the marginal
costs calculation procedure outlined previously, aﬁd to devise an iterative
-scheme until the quantities demanded are exactly equal to the optimal
‘levels of‘optputs. Such a scheme is conceptually equivalent to solving
equations (3) and (4). However, it is possible that no convergence is

obtained because of peak shifting. Indeed, it may happen that consumers,



reacting to the new peak and off-peak prices, shift their demands in such
a way that the former off-peak period becomes the new peak one. In such
a case the original prices would no longer be equal to the marginal costs
corresponding to the new demand pattern.

Finally, it is necessary to make sure that the utility's revenues
generated through marginal cost pricing do not exceed the maximum allowed
revenues as determined through traditional rate base regulation. This
revenue constraint may require an adjustment of the pricing system, and

the implications of this adjustment must also be analyzed.

ITI. Review of the Literature

In order to aséess the prospects for developing an operational model
of gas distribution marginal cost pricing that accounts for the factors
analyzed in the previous section, it is first necessary to review the
literatufe on gas systems models. These models can be classified
according to several criteria. A first criterion is whether the model
characterizes the whole industry or the individual cémpany. In the
latter casé,Aa second criterion is whether the model focuses on engineer-
ing system design, resource allocation, shortage management, or pricing.
A third criterion is the extent of spatial and temporal disaggregation
of the model.

Industry-wide market simulation models of gas supply and demand
have been developed by MacAvoy and Pindyck (1973) and by Murphy et al.
(1981), among others. The latter incorporated a gas submodel in the
Project Independence Evaluation System (PIES). The purpose of both

modeling efforts was to assess the impacts of Federal policies related



to gas pricing at the wellhead (deregulation) and at the transmission-
distribution levels (incremental versus average cost priciﬁg). In these
studies, individual companies are aggregated regionally, and are, at
best, represented by regional markup equations, with no cost analyses

or modeling at the firm level. The PIES modeling approach uses a linear
program to optimize energy supplies and identifies the relevant dual
variables as price inputs té écg;ometrically estimated demand functions.
An iterative procedure is applied until market equilibrium is reached.

Optimization models dealing with the design of tranémission pipelines
make up for a significant share of the literature on gas systems planning
models. These models generally focus on selecting the locations and
diameters of pipeline segments, and the numbers, locations, and capacities
of compressor stations, that minimize capital and operating costs
subject to flow and supply/delivery constraints. They use such techniques
as dynamic programming (Wong and Larson, 1968), non-linear programming
(Flanigan, 1972, Edgar et al., 1978), or heuristic procedures (Rothfarb
et al., 1970). A multi-period extension of such pipeline models, including
the simultaneous determination of optimal production rates for supply
reservoirs, and optimal flows for storage reservoirs, has been developed
by Heideman (1972), using both linear and non-linear programming.

At the distribution level, gas systems planning models may be clas-—
sified as (1) short-term operating policy models, (2) long-term operating
and investment policy models, and (3) shortage management models. Slater
et al, (1978) have developed a spatialized and very detailed model of a
distribution utility, based on daily simulation of individual storage
fields, compressors, regulator valves, and pipeline links. This model

provides for pressure calculations node by node, and produces a gas balance



sheet typical of those published daily by gas distributors. It is to help
the gas dispatcher in testing alternative flow routing policies, but is
inapﬁropriate for dealing with longer-term decisions. All the longer-

term policy models that were reviewed feature the company in an aggregate;
non-spatialized fashion. Levary and Dean (1980) developed a deterministic
linear program to optimize storage and purchases decisions, elther minimizing
costs or minimizing shortages. 'Storage investment decisions and optimal
supply contracts selection are incorporated in the chance-constrained
programming model developed by Guldmann (1983). This model accounts
explicitly for service reliability effects related to weather randomness.
Long-term market expansion policies are evaluated in terms of financial,
adequacy of service, and economic efficiency criteria by Guldmann and
Czamanski (1980) with a simulation model based on economic, engineering,
accounting, and regulatory relationships. Although this model was not
developed to test alternative pricing policies, it includes an average cost
pricing module linked to market share and gas demand equations. Finally,
gas shortage management models have been developed by O'keill et al. (1979)
at the regional, multi~firm level, and by Guldmann (198la) at the utility
level. These models determine the optimal allocation of the available gas
when a deficit between supply and demand develops.

Besides the Guldmann/Czamanski's (1980) model, all the above models do
not involve any pricing considerations. Gas requirements are given
exogenously, and the problem is to optimize some criterion subject to the
satisfaction of these requirements. Tzoannos (1977) is apparently the only
author to account simultaneously for pricing and production/investment deci-

sions in a very simple model of the domestic gas market in Great Britain.
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His problem is to determine the four seasonal production/consumption

levels and the seasonal production capacity that maximize a welfare function
similar to equation (l) subject to four seasonal capacity constraints.
Linear gas demand functions are estimated for each quarter and used in
conjunction with linear energy and capacity cost functions, leading to the
formulation of a quadratic program. The results indicate a substantial
improvement in capacity utilization and a net gain in welfare (with some
transfer of surplus from producers to consumers) under the optimal

(i.e., peak-load) pricing policy as compared to the actual policy. The
major shortcomings of this model are (1) the assumption of a homogeneous
production system, (2) the very high level of temporal and spatial aggrega-
tion, and (3) the absence of seasonal storage options. The model designed
by ICF, Incorporated, for the U.S. Department of Energy (1980) appears to

bé the only other endeavor to empirically estimate gas marginal costs at
the distribution level. It was developed within the framework of the
Natural Gas Rate Design Study conducted by the U.S. Departmeﬁt of Energy
under mandate of Section 306 of the Public Utility Regulatory Policies Act
of 1978. An overview of the approach can alsé be found in Blaydon 55 §l.
(1979). This is a year-by-year simulation model designed to find equilib-
rium points in supply and demand and to assess quantitatively the impacts
of alternative rate structure. It involves an energy supply cost minimiza-
tion submodel which yields, as a by-product, the marginal costs of supply
for eagh of the five segments of the load duration curve. A pricing policy
based on these marginal costs has been considered. However, marginal
capacity costs have been discarded because of alleged excess capacity, and
so were the other operating marginal costs under the assumption that sﬁch

costs are fixed over a large range of supply volumes. No plant expansion
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is considered besides adding (1) new customer plant, taken as proportional
to the number of new customers, and probably including such items as
services, meters, and local mains, and (2) replacement plant taken as a
fraction of the depreciated plant. Storage capacity development is not
considered as an option, and seasonal storage space is used at a fee. 1In
addition, the load duration curve approach sorts loads independently

of their chronological occurrence, thus distorting the timing of

demand and, in turn, adversely affecting storage, supply and allocation
decisions. Nevertheless, the ICF model, despitefihe above shortcomings,
constitutes a contribution to the field, in particular with respect to its
treatment of gas market sharing, cost allocation to rate classes, and

rate design.

IV. Overview of the Gas Marginal Cost Pricing Model

Thé previous review suggests the following components of a comprehensive
analysis of gas distribution marginal cost pricing: (1) a gas system bptim—
ization analysis of.all the relevant trade-offs between supply mix énd
productibn, storage, transmission, and distribution plants capacity expan-
sion, accounting for both the temporal and spatial dimensions, and yielding
the marginal costs of any given pattern of gas demand; and (2) a market
equilibrium analysis, where demand and supply would be interfaced; and demand
woﬁld depend dpon prices based upon marginal costs.

What are the practical prospects for developing a complete gas distri-
bution system optimizétion model? While the available literature Suggests
some approaches to the simultaneous optimization of supply, storage, and

transmission, no model could be found that optimizes the design and operation
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of a distribution network in an urban area (i.e., ayload center). It is
thus unlikely that the distribution plant could be optimized simultaneously
with the other components of the system. 1In addition, the review of the
optimization models Indicates that the solution of a model accounting for
all the poséible decision variables is, given the state of the art in
mathematical programming, close to impossible, due to the highly combinatoé—
ial and non-linear character of the system, and that suboptimal heuristic
solution;procedures would be necessary.

In view of .the above-mentioned problems, a simplified, aggregated and
non-spatialized optimization submodel has been developed to calculate the
marginal supply, storage, and transmission costs. This submodel is cast -
into a linear programming format and yields monthly ﬁarginal costs, that 
are complemented by the marginél costs of the other, non-optimizedvsystem
components within the framework of an integrating market equilibrium
simulation model. The aﬁproach can be characterized as staﬁic, as the
analysis applies to a horizon year for which all the relevant forecasts
are assumed available. A general flow diagram of the model is prééented
in Figure 1. It consists of three major, interlinked blocks:k (1) Exogen-
ous Data and Assumptions (EDA), (2) Average Cost Pricing Policy (ACPP),
and (3) Marginal Cost Pricing Policy (MCPP). |

The EDA block includes: (1) mafket-related parameters sucﬁ as sectoral
market growth rates, base and space-heating load coefficients, and price
elasticities of monthly gas demands; (2) supply-related parameters such- as
maximum supplies and rates for the different possible supplierSj and (3)
utility-related parameters such as operating and capacity unit costs, maxi-
mum capaclty expansions, the allowed rate of return, and other financial

parameters (tax rates, etc.).
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EXOGENOUS DATA AND ASSUMPTIONS

AVERAGE COST PRICING POLICY

Iteration 1
IT=1

A 4

Monthly Sectoral
Loads Calculation

No

Evaluation
of ACPP

MARGINAL COST PRICING POLICY

Iteration 1

Marginal -
Cost-Based
Rates

r‘ Loads Calculation

Test of Demand - \{Yes
Supply Equilibriw

Supply, Operating
and Capacity Costs
Minimization

4

\

New Distribution
Plant Calculation

3

Financial
Analysis

New Rate =
Average Cost

{Next Iteration
IT=1IT+1

SR |

Total
Marginal
Costs
Calculation

IT=1

A

Monthly Sectoral

3

Tests of Demand ~

Supply Equilibrium Yes

and
Revenue Requirement,
Achievement

r No

Evaluation
of MCPP

Supply, Operating
and Capacity Costs
Minimization

\

New Distribution
Plant Calculation

\

Financial
Analysis

Marginal-Cost~Based

Rates Adjusted for

Revenue Requirement
Achievement

Y

 Next Iteration
IT=IT+1

L 1

End of
Analysi

Figure 1 Structure of the Gas Marginal Cost Pricing Model
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The above data and assumptions are first used in the ACPP block, where
the monthly loads of the residential, comme;cial, and industrial sectors are
~ calculated while using an initial exogenous value of the gas rate applied
uniformly to all sectors and in all months. These loads are then inputs
to the utility supply, operating and capacity costs minimization submodel,
which determines the optimal trade-off between supply mix and own-production,
storage and transmission operations and capacity expansion decisionms, gubject
to satisfying the above-mentioned loads and various utility-related tech-
nological constraints, and which yieldsvshgdow pri;es for the monthly load
constraints. These marginal costs are complemented by other marginal costs
such as the distribution marginal costs computed in the next step, tpgether
with the total new distribution plant. The total new plant (production,
storage, transmission, distribution) is then calculated in the financial‘
analysis submodel, which closely replicates the computations typically made
in the context of rate cases. The utility's rate base is first’calculated,
and then so is the revenue from gas sales necessary to provide the allowed
rate of return on this rate base. This revenue, divided by the total annual
gas load, yilelds the necessary average volumetric rate. This rate is used
as the new rate for the calculation of the monthly sectoral loads in the
next iteration. This iterative procedure ends when the difference between_
the demands of two consecutive iterations does not exceed an exogenously
prescribed small value. Note that, by virtue of the method of computing the
average rate, the revenue requirement objective is necessarily;achieved at
the end, The equilibrium average cost pricing policy is then evaluated with
respect to several criteria, such as (1) total annual gas requirements, (2)
peak monthly load, (3) load factor, (4) new plant investments, and (5) sectoral
and'total consumers surpluses. This evaluation is to provide benchmarks for

the assessment of marginal cost pricing policies.
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The total monthly marginal costs corresponding to the ACPP equilibrium
are then computed and used to design monthly rates either equal to these
marginal costs or based on them, according to adjustment procedures discussed
later on. These rates are then inputs to the first iteration of the MCPP
block, which consists in the repetition of a calculation cycle similar to
that of the ACPP block, the major difference being that rates are now based
on marginal costs and are no longer equated to the average cost. Therefore,
the revenue requirement constraint is very unlikely to be achieved, and an
additional rate adjustment mechanism is considered, based on the difference
between the revenue requirement goal and the actual revenue. New rates are
computed at the end of each cycle and are used to compute the monthly
sectoral loads at the beginning of the next cycle. If the new loads are
equal to the loads computed in the previous iteration and if the revenue
requirement objective is achieved, the iterative procedure is términated,
and the final pricing, output and investment pattern is evaluated with
respect to the same criteria as used in the ACPP analysis.

There are significant variations in the structure of gas distribution
utilities in terms of their supply mix (number of suppliers, maximum supplies,
rate structure, take-or-pay clauses, etc.), their own gas production and
storage system (or the storage space they are able to rent), and the extension
of their transmission system. It is therefore difficult to characterize such
diverse companies by a set of prototypical or synthetic utilities, and it is
thus necessary to adapt the abqve—outlined modeling methodology, and in
particular its cost minimization submodel, to the specific features of the
utility considered. The remainder of this paper describes the application of

the model to the East Ohio Gas Company (EOGC), which serves the northeastern

16



part of Ohio, including the cities of Cleveland, Akron, Canton, Warren, and
Youngstown. It is one of the largest gas distribution utilities in Ohio,
with 908,758 residential customers, 52,867 commercial customers, and 1,108
industrial customers in 1977, the base year for which most of the data have
been prepared. The raw data have been drawn from the Annual Reports (1970-
1977) of the EOGC to the Public Utilities Commission of Ohio (PUCO) or have
been obtained directly froﬁ the company's management.

The EOGC is a complex and rather 'complete" utility, in that it has
nearly all the,functions a gas distribution utility can display, in particular
a diversified supply mix, and natural gas production, storage, and trans-
mission systems. Hence taking the EOGC model as benchmark and starting point,
the application of the methodology to a simpler utility would involve (1) .
the scaling down of the EOGC model by deleting its components irrelevant to

the simpler utility, and (2) the preparation of new iﬁput data.

V. Structure of the Gas Marginal Cost Pricing Model

5.1. The Monthly Load Submodel

Gés end-users are customarily grouped into three sectors--residential,
commercial, and industrial-—and monthly gas demand (load) functions are
developed for each sector, accounting fof market size, weather pattern, and
gas prices. The general formulation of the load function for month m, DGm,
is assumed to be: |

DG = NxF(DD )*G(P) (6)

P= (Plyeeee; PyeescP )

where DDm is the number of heating degree~days during month m, Pm the price

charged for gas during that month, and N the number of sectoral customers.
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Such a formulation is consistent with the results of several energy demand
(Nelson, 1975) and gas demand (Berndt and Watkins, 1977; Neri, 1980)
econometric analxses. The specification of these load functions for the
EOGC is the outcome of a synthesis based on (1) a review of previous
research on gas demand modeling, and (2) EOGC load data analyses.

There is very little research available on the relationship between
gas demand ahd price at the intra-annual (i.e., seasonal, monthly, etc.)
level, and the bulk of existing studies focuses on the determinants of
total annual demand, both in the short and long terms, with the exception
of Neri (1980) who developed seasonal demand functions for the residential
sector, using a cross-section of 1108 households and applying a log~
linear specification. His results imply a unit elasticity for heating
degree-déys in winter, suggesting that the weather component in Equation
(6) 1s linear in degree-days. As could be expected, Neri found the
degree~day variable insignificant in summer. Testing alternative sets
of explanatory variables, Neri obtained short-term elasticity estimates
with respect to the marginal price of gas ranging from -.18 to -.30 during
the winter season, and from -.18 to -.23 during the summer season. The
wide ranges of elasticity estimates obtained with annual demand analyses
are underscored in the comprehensive review of 25 different studies
presented in the final report (Appendix C - pp. 68) of the Natural Gas
Rate Design Study (U.S. Department of Energy, 1980). The ranges and mean

values of these elasticity estimates are reported in Table 1.
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Table 1 Summary of Short-Run and Long-Run Elasticity Estimates

v Short Run Long Run
Sector
Range Mean Range Mean
Residential 0 to -0.633 -0.240 0 to -2.20 . -0.88
Commercial ~0.274 to -0.380 - =0.317 - =0.741 to -1.45 -1.12
Industrial -0.070 to -0.170 -0.116 -0.44 to -1.98  -1.17

Source: Natural Gas Rate Design Study - U.S. Department of Energy (1980)

What should then be the specification of the price component G(P) in.
Equation (6)? A first issue is whether long-term or short-term adjustments
in demand should be considered.  Although the present study refers to a long-
term planning horizon, long-term adjustments in gas demand in response to
pricé changes (i.e., adjustments in the stock of gas appliances, energy
conservation investments, etc.) are, to a large extent, irrelevant to the
purposes of the study. Indeed, long-term adjustments are mainly induced by
the average level of gas prices and its comparison with the prices of alterna-
tive energy sources and the costs of conservation measures. Because of the
revenue constraint included in the model, the equivalent average price under
any marginal cost pricing policy will be close to the uniform rate implemented
under the average cost pricing policy. Hence, the loﬁg-term’market adjustments
are likely to be similar under both pricing approaches, and can be viewed as
‘captured by the market size parameter N in Equation (6).1 While it is
clear that only short-term adjustments in demand should be considered for

the residential and commercial sectors, the short-term elasticities indicated

! 1¢ is quite possible that some long-term adjustments may be specifically
induced by a time~differentiated pricing policy. particularly if it involves
large price differentials, Unfortunately, empirical studies on this subject
do not exist to the best of our knowledge, and their future availability will
depend upon observing market behavior under such new pricing policies.
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in Table 1 for the industrial sector probably underestimate short-term,
temporary fuel switching possibilities in many industrial activities
where boilers may easily be equipped with different types of burners. Such
multi-fuel burning capabilities have been developed by many industries to
reduce the impact of temporary or chronic gas curtailments.

It is assumed that demands are independent across periods, which is
probably realiétic with monthly periods, but would no longer be so ﬁith
much shorter ones (e.g., an hour), and that the demand functions are of the
conistant-price~elasticity form, which is consistent with the results of most
previous studies. The elasticities of the commercial and industrial sectors
are assumed to be the same throughout the year. A value of -0.32 is selected
for the commercial sector, close to the mean value indicated in Table 1.

In order to account for short-term industrial fuel substitution, the mean

of the short-run and long-run average industrial elasticities indicated in
Table 1 has been selected, with a value of -0.64. 1In the case of the
residential sector, the elasticities were taken equal to =0,20 during the
summer season (May through October) and to -0.24 during the winter season
(November through April). These values have been selected as the mid-points
of the seasonal elasticity intervals delineated by Neri (1980). It is,
however, clear that there is much uncertainty about all these elasticity
estimates, calling for additional empirical research as well as sensitivity
analyses.

The weather-related component of Equation 6, F(DDm), was obtained by
regressing the observed 1972 sectoral monthly loads on the corresponding
monthly numbers of heating degree-days. The year 1972 was selected because
it was the most recent one (as from 1977, the base year of the analysis)

without significant curtailments of the industrial cﬁstomers, whose actual
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usage then closely approximated their potential demand. The resulting
regression equations, with R? coefficients equal to 0.989 for the residential
and commercial sectors, and to 0.920 for the industrial sector, were adjusted

for the change in the numbers of customers from 1972 to 1977, with:

DGR; = 908,758 * (3.5895 + 0.02679 DDm) (MCF) (7
DGO; = 52,867 * (29.2937 + 0.17584 * DDm) (MCF) : (8)
DGI; = 1,108 * (8357.3596 + 2.92857 * DDm) (MCF) 9

where (a) DGR;; DGc;, and DGI; are the residential; coﬁmercial,kand indust-
rial loads during month m of the base year (1977), (b) the first component
of each equation is‘the base year number of customers, and (c) the second
component of eacﬁ equétion is the monthly load per customer expressed as a
linear function of the monthly number of’degree-days, with the first coeffi-
cient representing the base load, independent of weather, and the second one
the space-heating load per customer. For an average annual number of 6258
degree—~days, the residential, coﬁmercial, and industrial base loads corres-
pond to 20.5%, 24.2%, and 84.5% of the total sectoral loads, respectively.

The values of DGR;, DGC& and DGI; are estimated at the 30-year average

as presented in Table 2. Monthly

3

values of the monthly degree-days DDm
demands are therefore treated as deterministic variables.
Actually, weather randomness is reflected in the stochastic character

which are independent and normally distributed

of the variables DDm’

(Guldmann, 1981). While the integration of stochastic demands and reli-
ability comnsiderations into the present methodology would clearly be desir-
able, such an endeavor calls for additional research. As a fifst step, the
use of an average demand pattern should provide the general gas pricing

policy assessment aimed at in the present study.
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Table 2 Average Monthly Numbers of Heating Degree-~Days

Month Diﬁ;zf_ Month Diﬁ;:f_ Month Dii;i?—
January 1207.7  May 248.2 September 120.5
February 1046.3 June 50.5 October 371.6
March 892.5 July 11.0 November 712.6
April 506.6 August 18.9 December 1071.6

In order to formulate the monthly sectoral load functions DGR ;, DGC ,

and DGIm for the planning year, it is necessary to integrate market growth,

weather, and price effects, with:

0.20 (May - October)
0.24 (November —+ April)

P,
(1 + RR) * DGR® * (=2)

DGR _
L\

(MCF) (10)

o , |
(1 + RMC) * DGC? * (i,-z) (MCF) | B GNY

DGC

B . Pp -0.64 ' -
DGIm A(l + RMI) * DGIm * (;Z) (MCF) (12)

where RMR, RMC, and RMI are the residential, commercial, and industrial

sector growth rates between the base year and the planning year, énd PA a

scaling factor taken equal to the average cost entailed by the demand pattern

[+] [} ]
{ber’, DGC?, DGL®

m=1-> 12},

5.2. The Supply, Operating, and Capacity Costs Minimization Submodel

5.2.1. Overview of the submodel

The decision variables of the costs minimization submodel include (1) the
pipelines, well-head, and field-line monthly purchases, (2) the maximum
deliveriés‘ contracted witﬁ the pipelines, (3) the capacity expansion of the
natural gas production plant and the monthly levels of gas prdduced, (4) the

capacity expansion of the storage plant and the monthly storage deliveries
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and withdrawals, and (5) the capacity expansion of the transmission plant.
The submodel, formulated as a linear program, minimizes the sum of purchases,
production investment and operation, storage investment and operation, and
transmission investment costs, subject to several constraints related td (L
maximum monthly and annual purchases, (2) maximum production and storage
capacity expansions, (3) maximum monthly storage deliveries and withdrawals,
(4) monthly and annual productién rates, (5) maximum monthly transmission
flows, and (6) the satisfaction of the monthly gas requirements of the end-
use customers.

5.2.2 Gas supply modeling

Hiéforically, the EOGC has purchased, on the average, about 907 of its
annual supply from two interstate pipeline companies: Consolidated Gas
Supply Corporation (75%) and Panhandle Eastern Pipeline Company (lSZ); The
¥émainder was obtained from well-head and field-line putchases/from local
Ohio producers. These four sources of supply are the only ones considered -
in the present model.

The monthly purchases from Consolidated and Panhandle are noted SUle'
and SUPZIn ‘for month m, respectively. In order to keep up with seasonal
definitions and contraints, the year is defined as the period spreading from
April 1 to Maréh él (with months numbered accordingly). It is assumed that
there are limits, SUP1T and SUP2T, to the total annual supplies purchasable
from Consolidated and Panhandle, respectively. Hence the constraints:

12 : : ‘
£ SUPL_ £ SUPILT (13)
m=1 "

12

£ SUP2_ < SUP2T (14)
m
m=1
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The rate structure of Consolidated includes a commodity charge, CCl, related
to the amount actually purchased, a demand charge, DCl, related to the maximum
contracted daily purchase DAYMX1l, and a winter requirement charge, WRC,
related to total winter gas purchases (from November 1 to March 31). The

rate structure of Panhandle, in addition to a commodity charge, CC2, and a
demand charge, DC2, includes a take-or-pay clause stating that the minimum
monthly bill must include a minimum commodity charge based upon 75% use of

the demand contract DAYMX2. The demand contracts DAYMX1 and DAYMX2 are
decision variables. Assuming that the monthly purchases SUle and SUP2m are
uniformly spread over the month, the following maximum monthly purchase

constraints must hold for each month m (where Nm is the number of days in

month m) 2
SUP1 - N_ DAYMX1 £ 0 (15)
- m m
SUP2_ - N_ DAYMX2 < 0 (16)

The take-or-pay clause of Panhandle makes it necessary to introduce a new
monthly variable, SUPVm, equal to the highest of (1) the actual monthly supply
SUPZm and (2) 75% of the monthly equivalent of the dailly demand contract,

The following monthly constraints ensure the endogenous determination of

SUPV_: .
m
- >
SUPVm SUPZm 20 (17
SUPVm -~ 0.75 % Nm % DAYMX2 2 0 (18)

The total annual cost of supply from Consolidated, CTS1, includes commodity,

winter requirement, and demand costs, with:

12 12
CTSl1 = [T CCl = SUle] + 12 % [ WRC * SUle] + 12 % DCL % DAYMX1 (19)
m=1 m=8
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The total annual cost of supply from Panhandle, CIS2, includes commodity
and demand costs with:
12
CTS2 = [L CC2 =% SUPVm] + 12 % DC2 * DAYMX2 ‘ - (20)
m=1

In order to minimize operating costs and maximize the utilization of
their‘production capacity, natural gas producers generally sell gas at a
constant rate and impose heavy penélties (similar to the take-~or-pay cléuses)
on unsteady purchasers, It is therefore assumed that monthly well-head
and field-line purchases, respectively SUPWH and SUPFL, are constant
thfoughout the year and limited by maximum production capacities SUPWHT and
SUPFLT. Hence the constraints:

SUPWH < SUPWHT (21)

SUPFL = SUPFLT : (22)
If CWH and CFL are the average unit costs of well-head and field-line
| purchases, thé corresponding total annual cost is:

CTWF = 12 % [CWH * SUPWH + CFL * SUPFL] | (23)

The pipeline rates ana unit costs used in the model are those in effect
in 1977, with: CCl = 1202.4; DC1 = 980,0; WRC = 8.075; CCZ = 1009.2; DC2 =
1860.0; CWH = 787.0; CFL = 1481.0 ($/MMCF).

5.2.3. Gas production modeling

The decision variables related to the EOGC natural gas production system

include: (1) the monthly production levels PR.m and (2) the monthly production

s
capa;ity expansion DPRO, Several constraints bear on these production variables.
First, it is assumed that the EOGC is constrained to supply a share of }0% of
the new gas demand DDGT with its own-produced gas. Such a constraint was
actually imposed by the Public Utilities Commission of Ohio (PUCO) in 1978,

when the EOGC applied for a relief order from the then existing moratorium

on new hook-ups. It follows that:
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12
L PR_ 2 0.1 * DDGT (24)
m
m=1
If PROC is the monthly production capacity before expansion, the constraints

on actual monthly productions are:

PRm - DPRO = PROC (25)

Finally, the expansion of productive capacity is limited by the availability
of recoverable gas deposits. If the maximum additional production éapacity
is DPROM, it follows that:

DPRO < DPROM | (26)

If CIP is the annualized production capacity unit cost and COMP the
production operating unit cost, the total annual production cost is:

12 '

CTP = CIP # DPRO + L COMP * PR (27)

m=1 " :

The existing monthly production capacity PROC was estimated by dividing
by 12 the 1975 historical maximum annual production, with: PROC = 11,372/12 =
947.67 MMCF/month. The unit costs CIP and COMP were estimated for 1977. The
total production operating cost in 1977 amounted to $5,711,000, and the
quantity of gas produced to 6200 MMCF, hence: COMP = 5,711,000/6200 = 921,129
$/MMCF. The 1977 historical (or book) value of the production plant amounted
to $73,299,000. In view of the fact that the production plant hés been
stafted recently, it was assumed that its 1977 replacement value would be
v equal to 1.5 times its historical value, or $109,948,500. The replacement
cost éer unit of monthly production capacity (PROC) is then equal to 116,020.22
$/(MMCF/month). The corresponding annualized figure was computed while
assuming (1) and investment lifetime of 30 years, and (2) an interest rate of
12%. The énnuity factor turns out to be equal to 0.1241, hence: CIP =

116,020.22 % 0.1241 = 14,398.11 $/(MMCF/month).
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5.2.4 Gas storage modeling

The EOGC storage system is modeled as in Guldmann (1983), to which the
reader is referred for more details. Hence, only a summary is presented
here.

The maximum monthly storage injections or withdrawals depend upon the
amount of gas stored, i.e., the reservoir pressure. These maximum flows are
estimated as linear functions of the storage saturation rate, RSTORm, a proxy
for storage pressure defined as:

RSTOR_ = GSTOR_/STC (28)
m m

where'GSTORm is the amount of gas in storage at the beginning of month m,
and STC is the certified storage capacity (i.e., the reservoir capacity for
a standard gas pressure). It has been observed, historically, that RSTORm
is comprised between a minimum and a maximum saturation rate;Rmin (=.77)
and Rmax (=1.18). 1If GINSTm and GOUSTm are the actual injections and

withdrawals during month m, then it follows that:

GINST S A, % RSTOR + B, (29)
m m .

GOUST < A, * RSTOR + B, , (30)

R 2 RSTOR_ < R (31)

min m max

If GSTOR; is the non-withdrawable gas necessary to establish minimum pressure
conditions, it follows that:
- m-1
RSTORm = [GSTORO + I (GINST“ - GOUSTU)]/STC (32)
u=1 '
The coefficients Al’ By, Az, B, in Equations (29) and (30) are assumed to be
linear functions of the total storage capacity, STC, which is defined as the

sum of (1) the existing EOGC storage capacity STCO (= 147,594.1 MMCF in 1977),

and (2) the additional storage capacity DSTC. For instance:
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Ay = (STCO + DSTC) * A, ~ | (33)

Constraints (29)-(31) are then rewritten as follows:

m-1 :
- - - <
GINST_ ~ Ayq * §—§GINST“ GOUST ) = (Ajq * R, + Byg) * DSIC <
Ay * Rojo + Byo) * STCO : maximum injection (34)
m-1 v
GOUSTp - Ay, * i_l(GINSTu - GOUST ) = (Ayq * Ry, + Byg) % DSTC <
(Azo* Rmin + Bzo) % STCO : maximum withdrawal (35)
m
- - — < - °
, )1:1=1(GINSTu GOUSTu) (Rmax Rmin) * DSTC = (Rmax Rmin) % STCO:
Maximum saturation rate , - (36)
m : . ‘
) (GINSTU - GOUSTH) 2 0 : minimum saturation rate (37
p=1 F )

with: A,, = -0.07766852; B,, = 0.14043129; A,, = 0.15244512; B,, = -0.06656770.
In addition to the monthly storage operations constraints, there is a limit
DSTCM to the additional storage capacity, determined by the local availability
of natural underground reservoirs (depleted gas deposits or aquifers), hence the
constraint:

DSTC = DSTCM (38)

The annualized capital cost of new storage per unit of capacity, CIST,
has been taken equal to 50 $/MMCF, a figure consistent with the Federal
Power Commission National Gas Survey (1975) average estimate of 57.0 $/MMCF.
The EOGC 1977 average.storage operation and maintenance cost per unit of
storage flow has been selected, with: CS = 33,23 $/MMCF. The total storage
investment and operation and maintenance cost, CTS, is finally:

12

CTS = CIST % DSTC + CS * I (GINSTm + GOUSTm) (39)
m=1
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5.2.5 Gas transmission modeling

The EOGC transmission mains convey gas from the points of conﬁécﬁio;
with the suppliers to the distribution networks of the various communities
served by the company. Many important tranémiSsion mains do so while
passing through the EOGC storage system, as illustrated iﬁ Figure 2.
Abstracting from the spatial’complexities of the system's network, the
transmission system is decomposed into two éomponents: @D Tl, conveying
gas from the suppliers to the storége areas and to the énd—use customers,
and (2) Tz; conveying gas from the storagé areas and the suppliers to the
end-use customers., This simplification of the system is illustfated in

Figure 3. Clearly, then, the capacity of T, is determined by the peak

1

purchases, while the capacity of T, is determined by the peak sales to the

2
end-use customers, Thekpeak monthly sales are exogenous to the‘costs mini-
mization submodel, and only vary when rates are iteratively readjusted.
On the other side, the peak monthly purchases are endogenously determined
in the costs minimization submodel and may be reduced by increasing the
available storage capacity. Obviously, there is a cost trade-off between
the additional transmission and storage capacities,which must be accounted
for.

Although it ié possible that somé excess capacity exists in the
_ transmission component TZ’ no data w;re availableito agsess ggé extent of
this excess capacity, which was assumed negligiblef VTﬁS“existing capacity .
of compbnent TZ was tﬁerefore éssumed‘to be equal fo the 30-year avefége
January load of the existing customers, as computea with Equations (7)-(9),
with PT20 = 58,620.25 MMCF/month. The peak daily purchases haye taken place

on February 1, 1971, when the balance between sales and storage withdrawal/
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injection was at a maximum 1770.1 MMCF. This figure would correspond to

a monthly purchase rate of 54,873.1 MMCF. In the following, the existing
monthly capacity of T, is assumed to be: PT,;, = 55,000 MMCF. The expansion

of component T2 is analyzed in Section 5.3. Here, the only decision variable

is the additional. transmission capacity DPT, for component Tl' The augmented
capacity is the upper limit to monthly transmission flows, hence the coﬁstraints:

SUPL_ + SUP2_ + SUPWH + SUPFL + PR_ - DPT, < PTy, (40)
m m m

The 1977 historical (or book) wvalue of the transmiséion plant amounted
to $102,837,912, In view of the age of the system, it waé assumea that the
1977”replacement’value of this plant would be equal to 2.5 times its hisﬁérical
vaiue, or $257,094,785. In addition, it was assumed that (1) componént T,
represents 46% of this investment and component Té the remainder, (2) thé>‘
lifgtime of a transmission investment is 30 years,kand (3) the discounﬁkrate
is 12%. The anﬁualized unit expansion costs of the transﬁission compoﬁénts
T, and T, are then computed as follows: “

CIPT, = (0.4 x 0.1241 x 257,094,785) /55,000 = 232.0397 $/(MMCF/month)

[}

CIPT, (0.6 x 0.1241 x 257,094,785)/58,620.25 = 326.5642 $/(MMCF/month)
Cost calculations related to component T, are described in the distribution
plant submodel section. In the case of component Tls the annualized trans-

mission capacity expansion cost is:

CIPT, = CIPT, * DPT, (41)

The transmission operating costs are considered later, together with the
distribution and other operating costs, and are taken proportional to the

end-use sales.
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5.2.6, Gas balance modeling

The loads computed in the monthly load submodel must always be
satisfied, hence the monthly supply-demand equality constraints:

SUP1_ + SUP2_ + SUPWH + SUPFL + PR_ - GINST_ + GOUST_ = DGT_ (42)
m m m m m m

with:

DGT = DGR_ + DGC_ + DGI (43)
m m m m

The shadow prices of constraints (42) are noted MCm, They are precisely
équal to the marginal costs incurred by an increase of one unit of demand
during any month m. Note, however, that these marginal costs refer only to
the costs considered in the linear program (supply, production operations
and inﬁéstment, storage operations and investment, and transmission invest-
ment). Therefore, they do not constitute the total marginal costs relevant
to marginal cost pricing policy, and will be complemEntedAby other invest-

ment and operations marginal costs later.

5.3. The New Distribution Plant Submodel

The procedure for determining the additional capacity of the transmission
component T; necessary to accommodate the peak monthly purchases is endogenous
to the cost minimization submodel and was described in Section 5.2.5.
Procedures are proposed here to determine the additional capacities for
(1) the transmission component T,, and (2) the distribution system, which must
both be able to accommodate the peak monthly end-use load. Common inputs
to these procedures are (1) the peak load month mp, and (2) the corresponding
load DGTmp’ as determined in the monthly load submodel.

In the case of the transmission component T,, if the peak load DGT

is smaller than the existing transmission capacity PT,, (= 58,620.25 MMCF/
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month), then there is no need for expanding component T,, and the correspond-
ing marginal capacity cost, CMPT,, and present value of the additional plant,
NPT, , are both equal to zero. In the other case, it follows that:
CIPT, = 326.5642 $/MMCF during month m ~ -
CMPT, = P (44)
: 0 during all the other months : o By

and

NPT, = CIPT, * (DGTmP ~ PT,,) /CRF | (45)

where CRF is the annuity factor (= 0.1241).

It is assumed that the expansion of the end-use load, as measufed‘by the
growth rates RMR, RMC, and RMI, is due to the hook-up of new customers.
The impact of these connections on the distribution system is twofold.
First, costs directly relatedxto the provision of gas service to these new
customers are incurred, including local main extensions, services, meters,’
and land rights costs. The magnitude of such investments is mainly a
function.of the number of customers, and much less so of their loads, hence’
these costs are usually referred to as customer costs. Second, in addition
to the previous localized costs, the attachment of new loads may require
expanding the capacity of some major trunk mains through which most of the
community load is conveyed. A major issue, still debated in the regulatory
community, is the sharing of total distribution costs among capacity and
customer costs. The approach selected here is based on the results of
econome;rié analyses of distribution plant costs at the community level,
where these costs ére explained by such variables as sales, numbers of
customers, population density, etc. These analyses were applied fo data
obtained from six aifferent distribution utilities, including the EOGC, and

are presented in Guldmann (1981b, 1982). 1In the case of the EOGC, the
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results imply that 83.3% of the total additional distribution plant costs
are customer-related, and 16.7% are capacity-expansion-related. These shares
are used in the present analysis as follows. The historical value of the
EOGC distribution plant amounted to $372,284,403 in 1977. On the basis of
data provided by EOGC management, the 1977 replacement value of this plant
was taken equal to 2.5 times its historical value, or $930,711,000. The
customer-related component is valued at 83.3% of the previous figure, or
$775,282,260, and the capacity-related component at $155,428,740. The
magnitude of the latter value is related to the peak monthly load of the

1977 existing customers PD0 (= 58,620.25 MMCF), hence the annualized capacity
expansion unit cost CIPD; is computed as follows: CIPD, = (0.1241 *
155,428,740) /58,620.25 = 329.045 $/(MMCF/month). If the peak load DGTmp

is smaller than the existing distribution capacity PD,, then there is no
need for increasing the capacity of the distribution system, and the corre-
sponding marginal capacity cost, CMPD,, and present value of the additional

capacity, NPD,, are both equal to zero. In the other case, it follows that:

CIPD, = 329.045 $/MMCF during the month m,
CMPD, = (46)
0 during all the other months :
and
NPD, = CIPD, * (DGTmp - PD,) /CRF 47

It obviously costs more to connect a huge industrial customer than to
connect a residential one, and customer costs must be related ﬁo customers
sizes as measured by their annual loads. In the absence of more data, it is
assumed that these costs are proportional to customer size, hence that the
unit customer cost per MCF is the same for all the end-use sectors. The total

annual load of the 1977 existing customers, as computed with Equations (7)-(9),
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is equal to 399,692.49 MMCF. The average customer cost per MCF, CIPD, - assumed
equal to the marginal customer cost CMPD,, is computed as follows: CIPD, =
(0:1241 % 775,282,260)/399,692.49 = 240,.7164 $/MMCF. The present-value of the

customer-related additional distribution plant, NPDZ, is then computed as

follows:
12 12 12
NPD, = [RMR * (I DGR;) + RMC * (X DGC;) + RMI * (I DGII‘;)] * CIPDZ/CRF
m=1 m=1 m=1

(48)

where DGR;, DGC>  and DGI; are computed with Equations (7)-(9).

5.4. The Financial Analysis Submodel

This submodel very much replicates the main calculations that are
typically performed prior to regular rate case proceedings, which téke pléce
wﬁen ﬁhe utility requests a change in iﬁs retail prices in order to be abié

.té achieve the rate of return on the net value of its plant in service (of-rate
base), as éllo&ed by the state regulatory authorities. Several equafions |
used in this analysis have been developed in Guldmann and Czamanski (1980),

to whichjthe readér is referred for more details.

vThe first part of the analysis consists in determining the net plant in
service (rate base) and the depreciation expense.v It is assumed that.ﬁhe
whole new plant is put in service in the same single period (i.e., within
a year's time), and that the market growth takes place in a similar way.‘%bf
course, this is an approximation of reality, wherein the growth in both plant
and market takes place progressively. However, such an approximation is
acceptable in view of the purpose of the model, i.e., a general evaluation
of marginal cost pricing policy. The total cost CT minimized in the costsv

minimization submodel includes both operating and annualized investment costs,
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noted OMC; and PIS,, respectively. The investment costs include the production,
storage and transmission capacity costs, with:

PIS; = CIP * DPRO + CIST * DSTC + CIPT; * DPT, ) - (49)

The present value of this plant is then:

NEWPIS; = PIS,/CRF (50)

The operating costs are, of.course, equal to:

OMC, = CT - PIS1 (51)

The next step is to compute the present value of the total new plant, NEWPIS,
including the transmission component T, and the distribution system, with:

NEWPIS = NEWPIS, + NPT, + NPD, + NPD, (52)

The calculations of (1) the total plant in service, sum of the initialplant in
service (= $617,338,511), of the replacement plant, and of the new plant, (2)
the debreciation expense DEPEXP, (3) the accumulated provision for depreciation
TAPD, and (4) the nét piant in service or rate base, NETPIS, are the same as
those described ianuldmann and Czamanski (1980).

The second part of the analysis consists in determining tﬁe revenue from
gas sales, X, which enables the utility to earn the allowed rate of return on
its rafe base. It is assumed that tﬁis rate of return is'equal to 12.06%

(1978 value prescribed by the Public Utilities Commission okahio). The
allowed operating income, AOPINC, is then:

AOPINC = 0.1206 * NETPIS (53)
The actual operating expenses of the utility, ACOPEX, are the sum of the
operating and depreciation expenses. The operating expenses include:

(a) the operating costs OMC,, determined in the costs minimization submodel and
(b) the other operating costs OMC ,, not considered previously and assumed

proportional to total gas sales (i.e., transmission and distribution operations,
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customer services, and administration costs), with a unit cost COM, determined
with 1977 data and equal to 209.48495 $/MMCF. If DGIT is the total annual
load, then:

OMC, = 209.48495 * DGIT ' (54)

It follows that:

ACOPEX = OMC, + OMC, + DEPEXP ' - (55)

The total operating revenués, TOPREV, are the sum of the revenues from gas
sales, XE, and of other revenues derived from the transportation of gas of
others.and from non-utility operations such as building rentals. These
other revenues are empirically related to the total plant in service, TOTPIS.
The total operating revenues are then:

- TOPREV = XE + 0.005263 * TOTPIS - (56)
In order to determine the net operating income NOPINC, it is necessary to
account for several taxes such as federal income, revenue, property, and
payroll taxes, and for-deduétions related to liberalized depreciation,
interest charges, and investment tax credits. Tﬁese calculations are
described in detail in Guldmann and Czamanski (1980). The net operating
incoﬁe NOPINC is then expressed as a linear function of the unknown X, and
the fundamental revenue requirement equation

NOPINC(XE) = AOPINC ' (57)
is solved to yield the necessary revenues from gas sales, XE. The corresponding

average volumetric rate is then:

—

P = XE/DGTT (58)
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5.5.  The Pricing Submodel

The calculation of the average rate P used in thé ACPP block has been
described in the previous section. The focus is now on the calculation,
for each month m, of the total marginal costs TMCm incurred by a marginal
increase of month m total load DGTm, and on the determination of monthly
rates based on these marginal costs.

The total marginal cost TMCm is the sum of (1) the marginal cost MCm
as determined by the cost minimization submodel (see Section 5.2), (2) the
marginal capacity costs for the transmission component TZ’ CMPTZ, and the -

distribution system, CMPD. and CMPD2 (see Section 5.3), and (3) the other

1

operating marginal costs, COM, (see Section 5.4). Although the best way to

2
deal with the distribution plant customer marginal cost would be to design

a separate customer charge specifically aimed at recovering these customer-
related costs, such a two-part tariff cannot be handled by the proposed-
demand functions. Therefore, the marginal cuétomer cost CMPD2 (= 240.7164
$/MMCF) is considered- as applying to all the 12 months. This should lead

to a substantial recovery of the corresponding total costs. The operating
marginal cost COM2 (=209.48495 §/MMCF) is also effective each month.

However, as suggested in Equations (44) and (46), the marginal capacity costs

CMPT2 (=326.5642 $/MMCF) and CMPDl (=329.045 $/MMCF) only apply to the peak-

load month mp. It follows that:

P (59)

MC_+ CMPD, + COM, + CMPT_, + CMPD, if m = m
™C = m 2 2 2 1
m

MC_ + CMPD, + COM, if m#mp
According to the theoretical framework presented in Section II, monthly
prices should be equated to marginal costs, with:
P, = TMC_ (60)

m
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Such a pricing pattern is optimal only if the monthly loads resulting from such
prices generate the same marginal costs TMC,. However, the magnitude of the
peak marginal costs and the price elasticity of the corresponding peak load
function may lead to the formation of a new peak, which may in turn cease to

be peak when charged the peak marginal costs. This 1s the well-known shifting-
peak>case, wherein capacity cannot be justified by the demand in any period
alone. 1In such a case, Steiner (1957) has shown that capacity must be justified
by theAcombined demands in two or more periods, with prices determined in such
‘a way that ﬁhe demands in these periods are equal,’while still higher than those
in the 6ther periods. These equal demand periods are those in which the peak-
shifting relationships apply, while a firm peak p?evails between this subgroup
of periods and all the others. The peak marginal capacity costs are spread
over the peak-shifting periods so as to lead to equal demands, and hence to a
full recovery of these costs. To illustrate in a general fashion the above dis-
cussion, assume that the monthly periods are divided in two groups: Mj, the set
of months where the peak-shifting relationship pfevails, and My, the set of all

the other months. The optimal set of prices should verify the following

conditions.
P =TMC me M, (61)
P =3I TMC (62)
meM, M meM m
1 1
DGT (Pm) = DGT_ Vme My (63)

where DGTO is the Peak demand effective in all the peak periods. A more

complete discussion of the above pricing rules is presented in Appendix B,

in connection with the analysis of the model output presented in Section 6.3.
Whether prices have been determined under firm or shifting peak con-

ditions, they may not achieve the revenue requirements objective. 1In such

a case, Baumol and Bradford (1970) have shown that the second-best alternative
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is to set the price of each product sold by the utility so that its per-—
centage deviation from marginal cost is inversely proportionate to the
product's price elasticity of demand. If all the elasticities are equal,
the prices should simply be set proportional to marginal costs. In the
present case, the products can be identified with the twelve monthly gas
loads. As the monthly elasticities of the commercial and industrial sectors
are constant throughout the year and those of the residential sector vary
lictle, a proportional adjustment of the marginal costs is an acceptable
approximation of the inverse elasticity rule. The final adjustment factor
is determined iteratively by comparing, at the end of each cycle of the MCPP
block, the gas sales revenues XE that would be necessary to earn the allowed
operating income with the actual gas sales revenues XA based on the prices
applied at the beginning of the cycle. The revenue deficit (or surplus) is

defined as:

DF = XA - XE (64)

and the price adjustment factor is then:
ADJ = XE/XA (65)

5.6. The Evaluation Submodel

Several criteria may be used to compare the relative merits of average
cost and marginal cost pricing policies (ACPP and MCPP). Although they are
not independent one from the other, these criteria may be grouped into four
categories related to: (1) energy cbnservation, (2) capacity utilization,
(3) financial impact, and (4) end-use efficiency.

?he iﬁpact of a pricing policy on energy conservation is best measured
by the total annual gas load DGTT induced by this policy. The extent of

capacity utilization is measured by the load factor, equal to the ratio of
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the average to the peak daily loads. As a proxy consistent with the tem-
poral disaggregation of the model, a load factor based on the monthly peak
load is, computed, with:

LF = DGIT/(12 * DGTy ) (66)
P

‘An important financial criterion is the capital requirement for new plant,
as measured by NEWPIS (see Section 5.4.). Finally, the end-use efficiency-
of a pricing policy is measured by consumers' surpluses computed for each
month and each sector separately. Consider the typical demand curve P(D)
in Figure 4. The consumer's surplus CSO at price PO is measured by- the

shaded area SO, or:

DO
€S, = J P(D)dD - PyD, (67)

Figure 4 Typical Demand Curve and Consumer's Surplus

In the present study, the monthly demand functions tb be used to compute the
consumer's surpluses have a constant price elasticity [see Equations (lO)—(lZ)],
hence the price Pmax corresponding to a zero demand tends toward infinity,

leading to an infinite surplus, which is unrealistic. Actually, the demand
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functions are of the constant-elasticity type only over a range of prices,
which extends neither to zero nor to infinity. In other words, there 1s a
finite price Pmax where the demand falls to zero. However, neither Pmax nor
the form of the demand function in the vicinity of Pmax can be ascertained.
Total consumers' surpluses for each pricing policy thus cannot be determined.
However, for the purpose of comparing average and marginal cost pricing
policies, the difference in consumer's surplus between the two policies can
be estimated and used to assess their relative merits. If (Pl’Dl) and

(PZ’DZ) are the equilibrium prices/quantities, for a given month and sector,

of the ACPP and MCPP, respectively, then the above difference is computed as:

D 68
2
ACS (P ~»F = -+ - D

If P2< Pl’ then ACS(Pi+P2) >0, and the MCPP leads to a greater end-use
efficiency than does the ACPP. The reverse holds true if Plk'Pz. The

surplus differentials ACS are then summed up over all the twelve months as
well as over the three sectors, providing sectoral and globalvasseSSmeﬁts

of relative end-use efficiencies.

VI. Application of the Gas Marginal Cost Pricing Model

6.1 Assumptions

The reference price PA [see Equations ((10)-12) ]Was determined as the
average uniform price providing the revenues required by the‘existing cus-
tomers' loads, as computed with Equations (7)-(9). The maximum supplies
were selected to reflect the 1977 supply conditions, with: SUPIT =
300,000 MMCF, SUP2T = 60,000 MMCF, SUPWHT = 1000 MMCF, and SUPFLT = 2500 MMCF.
No production or storage capacity investment expansions were allowed in the
model. No new transmission or distribution investments turned out to be
necessary, and, for an annual total load of 399,692 MMCF, the average price

turned out to be: PA = 1783.580 $/MMCF.
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The model was then applied under the assumption of a 50% growth in the
numbers of residential, commercial, and industrial customers (i.e., RMR =
RMC = RMI = 0.5).v The assumed maximum annual supplies from Consolidated
and Panhandle reflect the current supply shares of these two companies,
with: SUPLIT = 600,000 MMCF, and SUP2T = 100,000 MMCF. The assumptions with
respect to maximum well-head and field-line purchases also reflect the
current supply ratio for these two sources, with: SUPWHT = 2000 MMCF/month,
and SUPFLT = 5000 MMCF/month. Finally, the maximum incremental production
and storage capacities were set as follows: DPROM = 3000 MMCF/month, and

DSTCM = 100,000 MMCF.

6.2. Equilibrium Average Cost Pricing Policy

The average cost pricing iterative précedure reached the equilibrium
price Py = 1745.180 $/MMCF in five iterations, given an error bound of
0.001 MMCF applied to each monthly load and an initial price set equal to
Pp. The uniqueness of this equilibrium price is demonstrated in Appendix A.

The equilibrium monthly sectoral load are presented in Table 3. The
residential, commercial, and industrial sectors make up for 47.75%, 19.18%Z,
and 33.07% of the total annual load of 604,561 MMCF. The January load
(88,598 MMCF) emerges as a strong peak, clearly dominating the December
(81,019 MMCF) and February (79,610 MMCF) loads. All the other months'
loads are significantly smaller than these three months' loads.

The optimal supply pattern corresponding to these equilibrium loads is
presented in Table 4. The maximum amounts of gas available from Panhandle
and from local well-head producers are exhausted in priority. Panhandle
supplies are purchased in such a way that the take-or-pay clause (75% of
the contract demand) need not be implemented. Well-head gas is purchased

in priority because of its low cost (787 $/MMCF), whereas field-line gas
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Table 3 Equilibrium Monthly Loads (MMCF) with Market Growth
Rates Equal to 507 - Average Cost Pricing Policy

Residential Commercial Industrial Total
Month Load Load Load Load
April 23,517 9,453 16,585 49,555
May 14,018 5,824 15,310 35,152
June 6,767 3,048 14,334 © 24,149
July 5,318 2,494 14,139 21,951
August 5,608 2,605 14,178 22,390
September 9,334 4,031 14,679 28,045
October 18,545 7,557 15,919 42,020
November 31,079 12,345 17,602 61,027
December 44,259 17,386 19,374 81,019
January 49,255 19,297 20,046 . 88,598
February 43,330 17,031 19,249 79,610
March 37,684 14,871 18,490 71,045
Total 288,714 115,942 199,905 604,561

Table 4 Optimal Supply Pattern (MMCF) - Average Cost Pricing Policy

Consolidated Panhandle Well-Head Production Storage
Month SUP1 sup2 SUPWH . PR Flow#
April 54,498 7,317 2,000 1,679 -15,940
May 32,257 - 7,317 2,000 1,679 - 8,101
June 31,248 7,317 2,000 1,679 -18,095
July 27,644 7,317 2,000 1,679 ~-16,690
August 26,788 7,317 2,000 1,679 -15,394
September 31,247 7,317 2,000 1,679 ~  ~14,198
October 44,120 7,317 2,000 1,679 -13,095
November 19,534 9,756 2,000 1,679 +28,057
December 47,150 9,756 2,000 1,679 +20,433
January 54,498 9,756 2,000 1,679 +20,665
February 48,660 9,756 2,000 1,679 +17,514
March ; 42,765 9,756 2,000 - 1,679 +14,844
Total 460,409 100,000 24,000 20,152 0

*The sign (~) points to deliveries to storage, and the sign (+) to withdrawals
from storage
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is never purchased because of its high cost (1481 $/MMCF). Production is

not a cost-attractive alternative because of the high cost of production
capacity, which is expanded by 731.671 MMCF/month, or just enough to pro-
vide for the minimum production requirement (i.e., 10% of the total demand
increment equal to 201,520 MMCF). As could be expected, the expanded produc~
tion capacity is always fully used. The balances of monthly requirements are
provided by Consolidated and by the storage system. Additional storage
capacity is developed up to the maximum expansion (100,000 MMCF), and this
expanded capacity is fully used (101,513 MMCF of total annual deliveries/
withdrawals, with a maximum saturation rate equal to 1.18 at the end of
October). Total monthly gas purchases reach a January peak of 67,934 MMCF,
calling for an expansion of the transmission system T; to accommodate an
additional monthly flow of 12,934 MMCF.

The total cost CT minimized in the linear program amounts to $766,472,519,
including (1) the operating costs OMC; = $747,936,756, and (2) the annualized
investment costs PIS; = $18,535,763 (for the production, storage, and trans-
mission capacities expansions). The operating costs OMC; include the total
cbmmodity charges (85.393% of CT), the total demand charges (3.7347 of CT),
Consolidated’'s total winter requirement charges (2.6887% of CT), and the
storage O&M costs (0.880% of CT).

The transmission component Ty, and the distribution system capacities
must be expanded from 58,620 MMCF/month to 88,598 MMCF/month, implying total
plant investments equal to NPT, = $78,885,808 and NPD; = $79,485,056. The
customer-related additional distribution plant is equal to NPDp = $387,640,832,

The total new plant amounts to NEWPIS = $695,373,056. This value is
input to the financial analysis submodel, leading to the revenue requirement

from gas sales X = $1,055,068,272, and to the equilibrium price Pg = 1745.180
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$/MMCF. The values of the evaluation criteria are presented in Section 6.5,
together with those related to the equilibrium marginal cost pricing policy.

6.3. Search for the Optimal Marginal Cost Pricing Pattern

The MCPP‘iterative procedure has been first applied while starting with
the marginal costs generated by the ACPP equilibrium demand pattern and allo-
cating the marginal capacity distribution costs (CMPTp + CMPDy) to the peak
monthly load exclusively. This approach generates a cyclical, non-convergent

demand pattern,-as shown in Table 5. The peak January load in Case A leads

Table 5 Peak-shifting Pattern Under Peak Month Marginal Cost Allocation

Case A Case B Case C

MC TMC MC ™C MC TMC
. Load* m m Load m m Load m m
Month (MMCF)  ($/MMCF) ($/MMCF) (MMCF) (5/MMCF) ($/MMCF) (MMCF) ($/MMCF) ($/MMCF)
- April 49,555 1,202.4 1,652.6 50,619 1,202.4 1,652.6 50,619 1,202.4 1,652.6
May 35,152 1,202.4 1,652.6 35,952 1,202.4 1,652.6 35,952 1,202.4 1,652.6
June 24,149 1,202.4 1,652.6 24,786 1,202.4 1,652.6 24,786 1,202.4 1,652.6
July 21,951 1,202.4 1,652.6 22,555 1,202.4 1,652.6 22,555 1,202.4 1,652.6
 August 22,390 1,202.4 1,652.6 23,001 1,202.4 1,652.6 23,001 1,202.4 1,652.6
September 28,045 1,202.4 1,652.6 28,739 1,202.4 1,652.6 28,739 1,202.4 1,652.6
October 42,020 1,202.4 1,652.6 42,922 1,202.4 1,652.6 42,922 1,202.4 1,652.6
November 61,027 1,299.3 1,749.5 60,971 1,299.3 1,749.5 60,971 1,299.3 1,749.5
December 81,019 1,299.3 1,749.5 80,948 1,299.3 2,405.1 72,449 1,299.3 1,749.5
January 88,598 1,923.3 3,029.1 73,410 1,299.3 1,749.5 88,522 1,923.3 3,029.1
February 79,610 1,299.3 1,749.5 79,540 1,923.3 2,373.5 71,492 1,299.3 1,749.5
March 71,045 1,299.3 1,749.5 70,982 1,299.3 3 1,749.5

1,749.5 70,982 1,299.

* ACPP equilibrium load.

to a peak January marginal cost, which leads to a depressed January load in Case
B (73,410 MMCF). The resulting marginal cost pattern involves two peaks, one
in December and one in February, leading to the renewed dominance of the January
peak in Case C. The load pattern in Case C generates marginal costs identical
to those in,Case A, hence the cycle.

The nature of the peak-shifting cycle can be further analyzed by consider-

ing the L.P. cost minimization dual inequality:
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MC <CCl + & *12*%WRC + VS1 + V1X_+ VTRAN (69)
m m m ™

where (1) 5m = 1 for the months of November through March, S, = 0 otherwise;
(2) VS1 is the shadow price of the constraint on total annual supplies from
Consolidated [see Equation (13)]; 3) Vle is the shadow price of the maxi-
mum purchase constraint for month m from Consolidated [see Equation (15)];

and VTRANm is the shadow price of the transmission flow constraint fqr month
m [see Equation (405]. Inequality (69) is actually always an equality because
the supply variable SUPI& to which it is associated is always positive. The
total annual supply from Consolidated is never exhausted, hence VSl is always

equal to zero. In addition, the following dual constraints always hold:

12

£ viX = (12/30)DCl = 392 ($/MMCF) (70)
m=1 m

12

I VIRAN = CIPT, = 232.04 ($/MMCF) (71)
m=1 m 1

The total monthly trénsmission flow is the sum of the monthly purchases and
EOGC oWn—production. As the pattern of purchases from Panhandle and wellhead
producers does not vary (these are high priority Sources); and as gas is pro-
duced by the EOGC at a constant monthly level, it is clear that the maximum
monthly purchases from Consolidated and the maximum monthly transmission
flows are taking place at the same time. If the peak transmission month is

unique, then:

MC
m

1202.4 + dm*96.9 + ?m*sza.o (72)

where Y, 1 if m is the peak transmission month, Yo = 0 otherwise. The

other operating and customer marginal costs (COM2 + CMPD, = 450.2 $/MMCF)
apply in each month. If Bm = 1 for the peak load month and Bm = 0 in the

other months, the total marginal cost function TMCm [see Equation (59)]

can be written as:

1,652.6 + Y,%624.0 + B,*450.2 (m=1~7)
™C = (73)

1,749.5 + Y5%624.0 + Bp*450.2 (m=8+12)
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Equation (73) fully explains the pattern of marginal costs observed in
Table 5: in Cases A and C, both peak marginal costs are assigned to January
(i.e., Y10 = BlO = 1), whereas in Case B the peak transmissidn/purchase
marginal cost is assigned to February (i.e., Y¥j; = 1) and the peak distri-
bution marginal cost is assigned to December (i.e., 89 = 1),

Thekload patterns resulting from the pricing patterns implied by
Equation (60) and (73) were calculated for all the feasible combinations of
values of the parameters B, and Y. As could be expected, none Qf these
load patterns lead to marginal costs (TMCm) equal to the initial prices.
Therefore, in order to obtain a sustainable marginal-cost-based pricing
pattern, it is necessary to spread the peak marginal capacity costs over
several months, leading to equal peak loads for these months. Two inter-
related issues then arise: (1) over how many and which months should these
marginal capacity costs be spread, and (2) should both marginal costs or
only the distribution-related one be spread over these months? The selection
. of the appropriate pricing rule is analyzed in detail in Appehdix B. From
a practical viewpoint, we have considered the following a priori feasible
apéortionments over the three highest loads winter months (December, January,
and February): (1) allocate both marginal costs to any combination of two out
of these three months; (2) allocate both marginal costs to the three months;
(3) allocate the marginal distribution capacity cost to any combination of
two out of the three months, and allocate the marginal transmission/purchase
cost ﬁholly to the third month; (4) allocéte the marginal distribution
capacity cost to the three months, and the transmission/purchase one to any
of the remaining nine months, alternatively. The prices to be applied in
the equal peak load months under the above possible allocations were deter—
mined by solving a set of non-linear equations with Newton's method [see, for

instance, Ortega and Rheinboldt (1970), pp. 1811. Assuming there are
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n (j=l»n) such peak months, and denoting Pj the price in month j and x the

equal peak load, the set of equations to be solved is:

. DG - = 1=1-
DGR;(Py) + DCC,(P,) +DEL(R) - x =0  (3=1+n) (74)
n - .
ﬂ:LPj = n%1749.5 + 450.2 + 0%624.0 (75)
J=

where o¢=1 if the peak trausmission/purchase marginal cost is apportioned over
these peak load monthé, and &=0 otherwise. The results show that the only
acceptable pricing pattern involves the apportionment of both marginal
capacity costs over the three winter months. This pricing pattern and the
corresponding loads, presented in Table 6, were then iteratively adjusted to
satisfy the revenue requirement constraint, while, of course, maintaining
the equality of the peak months loads.

6.4, Equilibrium Marginal-Cost-Based Pricing Policy

Starting from the pricing pattern obtained as described in the previous
section, the equilibrium pricing pattern satisfying the revenue requirement
constraint was determined in four iteratiomns. Both the initial and final
price/load patterns are présented in Table 6. The initial pattern leads to
gas sales revenues XA = $1,112,202,721 for a corresponding maximum allowed
revenue XE = $1,026,770,608, and therefore to an excess‘revenue of $85,432,113
for the utility. To correct for this difference, monthly prices are adjusted
downward by a multiplier equal to 0.92194 (this multiplier applies to the
sum of the December, January, and February prices). As a consequence, the
maximum monthly load increases from 77,144 MCF to 79,346 MMCF (or by 2.85%)

The optimal supply pattern corresponding to the equilibrium is presented
in Table 7. As in the case of the equilibrium ACPP policy (see Table 4),
the supplies available from Panhandle and local producers are exhausted in

priority, gas is produced by the EOGC at the minimum feasible level, and
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Table 6 Initial and Equilibrium Price/Load Patterns in the Case of
the Marginal-Cost-Based Pricing Policy

Initial Pattern Final Equilibrium Pattern
Price Total Load Price Residential Commercial Industrial Total Load
Month ($/MMCF) (MMCF) ($/MMCF) Load (MMCF) Load (MMCF) Load (MMCF) (MMCF)

April 1,652.6 50,619 1,523.6 24,296 9,872 18,091 52,259
May 1,652.6 35,952  1,523.6 14,404 6,083 16,700 - 37,187
June 1,652.6 24,786 1,523.6 6,953 3,184 15,635 25,772
July 1,652.6 22,555 1,523.6 5,464 2,604 15,423 23,491
August  1,652.6 23,001 1,523.6 5,762 2,720 15,465 23,947
September 1,652.6 28,739  1,523.6 9,591 4,210 16,012 29,841
October 1,652.6 42,922 1,523.6 19,055 7,893 17,365 44,312
November 1,749.5 60,971 1,612.9 31,673 12,660 18,512 62,846
December 2,006.7 77,144 1,851.8 43,634 17,059 18,653 79,346
January 2,613.4 77,144  2,405.2 45,606 17,415 16,325 79,346
February 1,908.0 77,144 1,761.7 43,232 16,980 19,134 79,346
March 1,749.5 70,982 1,612.9 38,403 15,251 19,446 73,101

Table 7 Optimal Supply Pattern (MMCF) - Marginal Cost Pricing Policy

Consolidated Panhandle Wellhead Production  Storage

Month SUP1 SupP2 SUPWH PR Flow

April 48,379 7,317 2,000 . 1,697 - 7,133
May 45,582 7,317 2,000 1,697 -19,409
June 30,353 7,317 2,000 1,697 ~15,595
July 29,168 7,317 2,000 1,697 -16,690
August 28,327 7,317 2,000 1,697 -15,394
September ' 32,998 7,317 2,000 1,697 -14,198
October 46,393 7,317 2,000 1,697 -13,095
November 25,284 9,576 2,000 1,697 +24,108
December 41,512 9,576 2,000 1,697 +24,382
January 45,228 9,576 2,000 1,697 +20,665
February 48,379 9,576 2,000 1,697 +17,514
March 44,803 9,576 2,000 1,697 +14,844
Total 466,406 100,000 24,000 20,359 0
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Consolidated is, together with the storage system, the marginal supplier.

It is important to note that, although the purchases from Consolidated

peak at the same level in April and February, the April peak is insensitive
to an increase in the load in April or any other month [the shadow price

of constraint (15) for April is equal to zero]. Indeed, an increase in
demand in April would be supplied by injecting less gas in storage during
that month, and increasing injections in later months. The peak February
purchases take place during the peak demand period, and hence is directly a
function of this peak demand (= 79,346 MMCF). This confirms the appropriate-
ness of the selected allocation rule. The storage system is developed up to
the maximum capacity, and is fully used, as in the case of the ACPP policy.
The other characteristics of the MCPP equilibrium are presented in the next

section, when compared with those of the ACPP equilibrium.

6.5. Comparative Evaluation of the Average and Marginal Costs Pricing Policies

The values of various criteria measuring the performances of both pricing
policies are presented in Table éj These criteria are regrouped into four
categories related to end-use load, supply, investment and finances, and con-
sumer's and prpducer's surpluses.

The load-related criteria indicate very slight decreases in total annual
residential and commercial sales when shifting from the ACPP to the MCPP.
These decreases are compensated by a 3.437% increase in annual industrial sales,
leading to an overall totél annual sales increase of 6,205 MMCF (or 1.03%).
The industrial sales shift is due to the fact that the reduction in the winter
months sales is more than compensated by increased demands during the summer
months, because of both high summer loads and the longer duration of the |
summer season. However, the peak month sales decrease significantly by

9,252 MMCF (or -10.447%) when shifting from the ACPP to the MCPP.
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Table 8 Evaluation Criteria for the Average and Marginal Cost Pricing Policies

Average Cost Marginal Cost
Pricing Policy Pricing Policy

(ACPP) (MCPP)
Load-Related Criteria
Annual Residential Sales (MMCF) 288,714 288,073
Annual Commercial Sales (MMCF) 115,942 115,932
Annual Industrial Sales (MMCF) 199,905 206,761
Total Annual Sales (MMCF) 604,561 610,766
Peak Sales Month January December~February
Peak Sales (MMCF) 88,598 79,346
Load Factor (%) 56.86 64.15
Supply-Related Criteria
Consolidated Daily Demand (MMCF) 1,816.60 1,612.62
Panhandle Daily Demand (MMCF) 325.20 325.20
Production Capacity Expansion (MMCF) 731.67 748.90
Storage Capacity Expansion (MMCF) 100,000 100,000
Transmission T, Capacity
Expansion (MMCF) 12,934 6,831
Total Commodity Charges ($) 654,516,021 661,727,337
Total Demand Charges ($§) ’ 28,621,784 26,222,978
Total Winter Requirement Charges ($) 20,601,715 19,884,519
Investment and Financial Criteria
Investment in Transmission Tj ($) 24,182,837 12,773,122
Investment in Transmission T) ($) 78,885,808 54,538,480
Investment in Distribution Dy (§) 79,485,056 54,952,784
Total New Investment ($) 695,373,056 637,083,136
Rate Base ($) 1,078,017,020 1,021,140,990
Revenue Requirement ($) 1,055,068,272 1,057,587,049
Surplus Differentials ($)
Residential Market 0 -8,768,365
Commercial Market 0 -2,617,883
Industrial Market 0 +14,971,521
Total Market 0 3,585,273
Total Producer's and
Consumer's Surplus 0 +7,746,252
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Correlatively, the monthly load factor increases from 56.86% to 64.15%, with
a net gain of 7.29%.

Some of the supply-related criteria reflect the above-mentioned changes
in end-use loads. The Consolidated daily demand decreases from 1,861.60
MMCF to 1,612.62 MMCF, leading to a $2,398,806 decrease in total demand
charges. Likewise, the reduced winter gas requirements lead to a decrease
in the total winter requirement charges. The decreased peak purchases
naturally lead to a decreased incremental capacity for transmission component
T;. Howéver, these cost decreases are slightly more than compensated by the
increase in the total commodity charges due to the increased total annual
sales.

The decreases in peak purchases and end-use loads are further reflected
by the decreases in the present (i.e., not annualized) values of the invest—'
ments in new transmission and distribution systems, leading to a decrease of
$58,289,920 (or -8.38%) in the total new investment plant (which includes a
non~varying éustomer—related distribution plant valued at $387,640,832), and
therefore to a decrease in the rate base. However, the resulting decrease
in the allowed operating income is compensated by the increase in.the total
commodity charges, leading to a very slight increase of $2,518,777 (or 0.24%)
in the revenue requirement.

Finally, the analysis of the surplus differential [see Equation (68)]
shows an overall increase in consumer's surplus of $3,585,273 per year when
shifting from the ACPP to the MCPP. However, this increase is the balance of
a significant increase in the industrial surplus and significant and slight
decreases in the residential and commercial surpluses, respectively. The
industrial shift is due to the fact that the reduction in surplus during the
winter months due to higher prices is much more than compensated by an in-

crease in surplus during the summer months due to lower prices. Such a
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compensation effect does not take place for the residential and commercial
sectors because of their low load factors and hence their significantly
lower summer months loads. Finally, the total producer's and consumer's
surplus differential was computed by adding to the consumer's surplus differen-—
tial the difference between gas sales revenues and operating and new invest-
ment costs (XE - OMCy; - 0.1241 * NEWPIS). This differential represents, in
fact, the increase in the total welfare function that the MCPP aims at
maximizing. The overall welfare increases by $7,746,252, and the sharing of
this increase between consumers and producer is 46.28%/53.72%, respectively.
In summary, besides a very slight increase (1.03%) in total annual gas
requirements, which may be considered as negative from an overall energy
conservation viewpoint, all the other criteria point to the superiority of
the MCPP as compared to the ACPP., This superiority is particularly
characterized by lesser new plant requirements, better use of capacity, and
higher surpluses for both consumers and producers. However, the net increase
in consumers' surpluses is achieved at the expense of the residential and

commercial customers and to the benefit of the industrial customers.

VII. Conclusions .

A marginal cost pricing model for gas distribution utilities has been
develdped, involving the optimization of gas supply, storage, and transmis-—
sion, and the search for marginal-cost-based equilibrium prices satisfying
the revenue requirement regulatory constraint. This model has been calibratéd
with data characterizing the East Ohio Gas Company. Its appliéation under a
given set of assumptions and constraints clearly points out khe superiority
of the marginal cost pricing policy (MCPP) as compared to the average cost
pricing policy.

Several extensions of this study can be suggested. First, the model could

be applied under drastically different assumptions related to supplies, unit
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costs, demand elasticities, etc. Such sensitivity analyses could help deter-
mine under what ranges of conditions the MCPP is significantly superior to the
ACPP. Second, the structure of the model itself could be improved and expanded.
For instance, a spatialized representation of the utility system might lead to
the calculation of location-specific marginal costs, but at the cost of a
considerably increased computational complexity. Also, probabilistic considera-
tions could be introduced into the model, with explicit linkage between serﬁice
reliability and marginal-cost-based prices. Finally, more realistic; écono—
metrically-estimated cost functions reflecting scale effects couldvbe used
instead of the simple linear functions applied in this study, with the drawback,
however, of introducting non-linearities into the model. Research is currently

undertaken on several of these issues and will be reported elsewhere in the

near future.
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Appendix A

Uniqueness of the Average Cost Pricing Policy Equilibrium Price

The equilibrium price P, produced by the ACPP iterative proeedure is a

solution of the revenue requiremeﬁt equation
XA(P) = XE(P) : E (AL

where XA(P) represents the actual gas sales revenues induced by gas price P,
and XE(P) the révenues required to develop and operate a gas system providing
the loads generated by P. TFor the equilibrium price P, to be unique, a
necessary and sufficient condition is that Equation (A.i) has oﬁly one
solution.

The function XA(P) can be written as

12

XA(P) = L [P*DGR, (P) + P*DGC_ (P) + P*DGI_(P)] o (A.2)

where DGR (P), DGC,(P) and DGI (P) are defined by Equations (10)-(12). As all
these demand functions are price-inelastic, it f?llOWS that XA(P) is a con-
tinuously increasing function of P. A synthesis of the financial‘analysis
submodel leads to the following formulation of XE(P):

XE(P) = 1.0432%0MC (P) + 1.0745%0MC, (P) + 0.4629%DIS (P)

+ 0.4629*%PIS, (P) + Constant (A.3)
where OMCy(P), OMCZ(P) and PISl(P) are defined by Equations (51), (54), and
(49), respectively, and DIS(P) represents the sum of (1) the new transmission
plant T, [NPTZ - Equation(&S)]and (2) the new distribution plant NPDj [Equation
(472. The function OMC,(P) is proportional to the the total annual demand, and
therefore is continuously decreasing with P. The function DIS(P) is contin-
uously increasing with the peak monthly load. With uniform pricing, the

dominance of January as the peak month is maintained at any price level, and
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therefore DIS(P) 1is continuously decreasing with P. The analysis of the
functions OMCl(P) and PISl(P) is more complex, due to possible discontinuities.

The total cost
CT(P) = OMCl(P) + PISl(P) (A.4)

minimized in the L.P. submodel is a continuous and decreasing function of P
(although not continuously differentiable). However, while their sum is con-
tinuous, the functions OMC;(P) and PIS;(P) may not be so. Indeed a lumpy
trade~off between capital and operating costs may take place at some‘price
P,, with cost changes AOMCl gnd APIS;. Because of the necessary contiﬁuity

of CT(P) at Po’ it follows that

AOMC; = - APIS; (A.5)
The change in XE(P) at P, is then equal to:

AXE = (-1.0432 + 0.4629) APIS; = -0.5803 APIS; o (AL6)

- Two cases can then be considered: Case A, with APIS¢< 0, and Case B, with
APISl> 0. Besides the above-mentioned possible discontinuities, the functions
OMC; (P) and PIS;(P) are continuously decreasing with P, hence the possible

forms of the function XE(P) depicted in Figure 5 for Cases A and B.

Revenues

Figure 5 Revenue Functions Configurations
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In Case A, depending upon the location of the curve XA(P), there might be two

or one solutions. In Case B, there might be one or no solution at all. . In-

the present empirical application, a limited sensitivity analysis over the .
price interval [1745.18 - 1815.18] clearly shows that the solution P, = 1745.18
corresponds to point M, in Case A, and hence that‘this equilibrium price is
unique. Indeed, PIS, decréases coﬁtinuously with‘? within‘the above interVél,
wiﬁh a value of $17,895,320 at P = 1815.18. This decrease is related to the
decreases in production and transmission capacities, while stofage capacity
remaiﬁs at its feasible maximum. As an upper bound case, ASsuﬁe thét‘a ébﬁal
discantingity takes place at P = 1815.18, with APIS; = -$17,895,320. fhe'
required revenue would then increase by AXE = $10,384,654. However,.at'

P = 1815.18, the difference (XA - XE) is equal to ($1,080,928,200 - $1,040,119,326)
= $40,862,874, hence the impossibility for the two curves XA and XE to intersect

at any other price but P..
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Appendix B
Pricing Rules in the Peak-Shifting Case

The pricing rules developed initially by Steiner (1957) are extended by
the explicit consideration of both peak purchaseé and end-use loads costs in
the usual welfére function. Assume that there are n periods (i = 1-+n), and
that the end-use load in period i is Xi' Let Pi(Xi) be the demand function
associated to this load. An analysis of the model structure and output shows
that the total cost to be considered includes the following four separable

components.

n
Cl = ? CO*Xi (B.1)
i=1
C2 = C2(X1,X2,....,Xi,....,1_§n) © (B.2)
C3 = Cp* Y(Xl,Xz,....,Xi;....,XII) ' | (B.3)
C4 = CD * max (Xi) (B.4)

Cq includes all the costs that are proportional to sales, i.e., the. other
operating costs OMCy and the customer-related distribution plant costs CMPD,.
C, represents all the costs minimized in the L.P. submodel, at the exclusion
of the peak purchase/transmission costs represented by C3, where Y is the peak
purchase/transmission flow and Cp the corresponding unit cost (= 624.0 $/MMCF).
Finally, C, represents the peak distribution costs, with Cp as the correspond-
ing unit cost (= 450.2 $/MMCF). The objective is to maximize the following

welfare function:

S

FXpyeeeXien X)) = B, (x)dx = (C +C,+Co+C (B.5)

I

™~ .3
O
o

{1 4)

-

Assume that the optimal solution vector X = (ii,...;ii,.;.,ik) involves the
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equality of m loads, and that the X's

have been renumbered in such a way that

X =Xp=e X > X 0 2> X (B.6)
Let us then replace the variables (Xl’XZ""’Xm) by a unique variable XO in the
function F. We obtain a new function
m Xo n Xi
G(X ,X ,1evea X)) =1 P, (x)dx + I - .
(X sX 2 T i [ B G0 Tomt1 £ Py (0)dx - mC X (B.7)
5
Y CX, - C2[¥1(Xo)"""Xm(Xo)’Xm+l"""Xf]’
—-C * ‘ ‘ : ' - C_*
cp Y[xl(xo),....,xm(xo),xm+l,....,xn] Cp*X

same conditions hold for the optima of F and G. At the optimal solution

The
(io’§§+l"""§g)’ the derivatives of G are equal to zero. It follows that:
3G m — m oC X,
L i—=37 P.(X)-mC -3 __‘fx__1
X 1X  4=11 © i=1 3X, 93X |X
i o
9
-I;C _’(?:{___.ii_.__c =0 (B.8)
i=1 P BXi 0X X D
aC
oG = 2 Y
9 . = - -l - 2| = i B.
ox, X - PP -G ez Gzt 0 Gem (B.9)
1 1 1
Note that by definition
BXi
-é.-x-—= 1 (1 = l+m) (B.lO)
(8]
and
m X,
g 8Y L T oy (B.11)
i=1 98X, 90X 3X
i o o

Two cases can then be considered:

(a) The peak purchase/transmission flow takes place during the peak load

period and varies directly with this uniform peak.

and the pricing rule is:
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Pi(xi) = CO +

2
9X,
i

= |5 (i >m)

X

(B.12)

(B.13)

(b) The peak purchase/transmission flow does not take place during the peak

load period and is directly related to the end-use load in month

j e[ml,n]. Then aY/ax0(§)= 0 and BY/BXj(X) = 1, and the pricing rule

is:

m 2
=mC +: Tzt C
o {=1 %% D
3C2
+ 35X 1 #3, i>m)
1
aC
2
+35<‘j‘3z+cp
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(B.15)
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