
DATABASE APPROACH TO APPLICATION PROGRAM INTEGRATION
FOR STATE COMMISSION USE

by

Jeffrey Shih
Computer Specialist

The National Regulatory Research Institute
2130 Neil Avenue

Columbus, Ohio 43210

October 1985

This report was prepared by The National Regulatory Research Institute
(NRRI) with funding provided by participating member commissions of the
National Association of Regulatory Utility Commissioners (NARUC). The
views and opinions of the authors do not necessarily state or reflect the
views, opinions, or policies of the NRRI, the NARUC, or NARUC member
comndssions.

TABLE OF CONTENTS

Section

1.

2.

3.

4.

5.

INTRODUCTION .. • •, ., ., ., • ., 1

THE DATABASE • • • .. • 3

The Database Approach to Applications Integration • .. • ... 3
The Database Management System (DBMS) .. • .. • • • • • • •• 7

APPLICATION PROGRAMS •

Application Program Interface • • • •
Library of Application Programs • • ..

..

..

A SAMPLE APPLICATION CD .. iI iI iI iI

11

12
14

15

The Construction of a Database. • • • • • • CD • • CD ... 16
The Implementation of Application Programs. • 27
The Operation of the Integrated System. • • • • •• 28

CONCLUSION • CD 30

APPENDIX • • .. • .. • 32

i1

FOREWORD

Many of our commission clients consider the development of "tools
and techniques" as among the most useful products of NRRI's efforts.
This report is offered in that light.

It describes a procedure NRRI developed for use on microcomuters
to solve the problem of computer software with data that cannot be
easily interchanged between two or more programs for lack of a
consistent mechanism for transferring them. The thrust of the
integration procedures shown here is the combining of data management
and data analysis within a single framework.

I commend it to your attention and use.

iii

Douglas N. Jones
Director
November 1985
Columbus, Ohio

1. INTRODUCTION

This report describes a procedure for integrating application pro­

grams. This procedure is developed by The National Regulatory Research

Institute (NRRI) for use by state commissions on microcomputers. A problem

that generally exists among users of computer software is that data cannot

be interchanged between two or more programs due to the lack of a consis­

tent mechanism for transferring them. This creates many instances where a

large amount of data will have to be re-entered before it can be used. For

example, suppose a set of future-year electric loads is calculated by an

electric load forecasting program that has no graphics capability. This

set of loads may consist of hundreds of values. If the hourly load shapes

were desired then a separate program capable of generating these graphs

would be needed. These hundreds of data would have to be entered all by

hand to this graphics program if the format of the data file containing

these loads does not match that specified by the program. It is apparent

that the inability to manage and use data in an organized fashion imposes

tremendous burdens on the users. Duplicate data entry becomes a must and

may also create potential problems because of errors associated with

re-entering the data and the need to maintain multiple sets of data files.

State commissions process a large amount of information during the course

of rate-making proceedings and therefore this problem could be very

significant. While commercially available database management software

would fulfill the data management role, they fall short of addressing the

issue of data analysis.

The main purpose of the integration procedure described here is to

help solve this problem by combining data management and data analysis

within a single framework to enhance state commissions' problem-solving and

decision-making capabilities. This arrangement provides a work environment

in which one can view and/or change program inputs, run individual pro­

grams, and analyze program outputs in a systematic and consistent manner.

While working in this environment, one can switch back and forth among

various application programs and between programs and data quiCkly and

efficiently. This is especially useful in situations where either the

1

solution to a particular problem requires the use of several independent

programs or an evaluation of alternatives calls for a "what-if" type of

sensitivity analysis. This procedure is applicable to all utility sectors,

and an example application was developed by the NRRI for use in the

electric utility sector.. It should be noted that the term "integration"

refers to the framework for implementing the concept of combining the

capabilities of individual programs in a systematic manner; it is not

intended to imply that application programs are simply united in an

all-in-one program structure.

The integration scheme described here is based on the database

approach to data processing system development.. The next section of this

report contains a description of this database approach. Briefly, this

approach calls for the construction of a database containing a set of

logically coherent information about a well-defined subject. With this

method, it is assured that each piece of data contained in the database

carries the same meaning for all who use it. It is then possible for the

same data item to be shared by different programs for different purposes;

that is, data can, in effect, be interchanged among various application

programs. This is the most important step towards integration. Once the

database is set up and its structure defined, the next step is to provide a

facility for application programs--data analysis tools--to access the

database. This facility, also known as the application program interface,

enables an application program to move data in and out of the database

regardless of the program's logic and modeling algorithms.

According to this integration procedure, a typical integrated system

will have three components. They are:

(1) a database which contains both the application programs'
input and output, and a database manager which is a program
that performs all operations necessary to maintain the
database;

(2) a library of application programs that perform the computa­
tions needed to transform program input to program output,
and an application program manager which is a program that
maintains this program library; and

(3) a control program which serves as the user interface to the
integrated system.

2

Figure 1 shows a diagram of those components of a typical integrated

system.

The organization of the report is as follows. Section 2 describes the

database (data management) component of an integrated system. Included are

discussions on the database approach to applications integration and the

database management system that manages the database. Section 3 deals with

the data analysis component of the integrated system and contains a de­

scription of the application program interface facility. Section 4 details

a sample application of this integration procedure. Three of NRRI's micro­

computer programs are used in this demonstration. They are an electric

load analysis program (LOAD), an electric production cost simulation

program (PROC), and an electric cost-of-service program (COST). Section 5

contains some concluding remarks regarding the usefulness of this integra­

tion procedure.

20 THE DATABASE

This section has two parts. In the first subsection, a description of

what a database is and of how it can be applied toward applications inte­

gration is given. The second part of this section deals with the software

that is used to manage databases--the database management system.

The Database Approach to Applications Integration

A database is a shared resource containing information about some

subject. It mayor may not be computerized. Normally data are organized

into three basic units: files, records, and fields. Each file contains a

number of records. Each record in turn is a grouping of several items of

information that go together. Each such separate item of information in a

record is called a field. An example of a nonautomated database is the

card catalogs in a library. The catalog itself is the file, which contains

a card (record) for each book in the library. Each card includes several

fields of specific information, such as the title of the book, the author's

3

APPLICATION
PROGRAM
MANAGER

Program 111

Program 112

I
! I
ij I

~

DATA ANALYSIS
CONPONENT

USER

-.~ ••• -, ••• <- " ... , ••• - 1

USER INTERFACEJ

l
DATABASE
MANAGER

Database

DATA MANAGEMENT
COMPONENT

Figure 1. Components of a typical integrated system

4

name, and the subject matter of the book. Several such card catalogs

(title catalog, author catalog, and subject catalog, for instance) comprise

the database. In this example each card appears three times, once each in

the title, author, and subject catalogs~ In a computerized database,

however, only one copy of each card is kept on disk.

A computerized database is often v~ewed as one or more rectangular

tables of rows and columns. The library card catalog, if stored elec­

tronically, would look like the following:

TITLE AUTHOR SUBJECT

1. Managing Databases M. Gorman Database
2. Power Systems Engineering U. G. Knight Power Systems

and Mathematics
3. Reliability and Risk N. J. McCormick Reliability

Analysis

This table has three rows (records). Each row gives information about a

book. The table also has three columns (fields). Each column contains

information about one property (attribute) of the entity represented by a

row. Each record is assigned a record number and each field has a name

(column heading)@ The software employed to manage the database should

enable one to search for a book by anyone of the three fields, thus

eliminating the need for duplicate copies of each card.

Having described what a database is, the remainder of this subsection

provides a discussion of how the database concept can be applied toward

applications integration. The traditional approach to data processing

system development has as its cornerstone the programs. That is, systems

are created of programs that read and update data, perform computations,

and print results. Fundamentally these programs are written on the basis

of output needs. The output is finalized first and input specifications

are defined next, then the program is written to transform input to output.

Very often the data are stored in formats that are most efficient for the

data processing required of the program. Consequently all data semantics-­

which are rules for meaning, validity, and usage--are defined in terms of

5

the program logic. It is obvious that data and program are definitely

interdependent as each is merely an extension of the other. One may say

that the data is "welded" to a specific program and as such is not likely

to be useful for other programs.

Still one could argue that applications integration is attainable by

means of an all-in-one product that each analysis function is but part of

the whole. The data interchange problem is indeed addressed by this method

since an internal, standard mechanism for transferring data is required in

order for the product to function. The user, however, must stay within the

boundaries of the built-in function. This could be quite difficult as the

need to handle ad hoc situations eventually will go beyond the provided

facilities. Furthermore, the closed architecture exhibited by such a

system presents an additional roadblock as reprogramming is always needed

to add new analysis functions.

With the database approach, however, data is no longer an extension of

a program. It is rather a set of logically coherent information about a

well-defined subject. Records have well-defined meaning within the context

of the database and fields have well-defined meaning within the context of

the record definition. In short, each piece of data carries the same

meaning for all who use it. In contrast to the traditional approach where

data is application program dependent, the same data item could be used by

different programs for different purposes. Data can, in effect, be inter­

changed among various application programs. The software employed to

manage the database, rather than individual application programs, is now

responsible for the codification of and the adherence to data semantics.

It is clear that the database approach to data processing system develop­

ment provides an ideal framework for implementing applications integration.

An integrated system developed using this database method has an open

architecture. New data analysis programs can always be added to handle ad

hoc situations. In addition, a high level of consistency in handling data

from various sources can be attained with this approach because data

semantics are defined at the database level, not the end-use level. This

benefit is of great significance if the domain of applications integration

covers different functional divisions within an organization.

6

The Database Management System (DBMS)

A database management system (DBMS) is a software tool employed to

manage computerized databases. It is a program or set of programs that

provides a framework for creating, editing, and maintaining collections of

data for use by different application programs. A DBMS is often thought to

be simply a means to store and organize data. A common metaphor used is

that of an electronic filing cabinet. Filing, however, is only one aspect

of a DBMS's functions. It must also be able to present the data upon

demand in a variety of formats and from a variety of viewpoints. That is,

it must have a query facility for making individual requests for

information from the database and a reporting facility for producing

formatted listing of selected data.

For the purpose of storing and organizing data in the database com­

ponent of the current study, the NRRI developed a computer program named

DBMGR. DBMGR permits one to create, access, and update database files that

have the same format and structure as those of a commerical product--dBASE

III from Ashton-Tate. dBASE III is a fully-featured relational database

management system that runs on an IBM PC or PC/XT. A relational database

is one in which no implicit relationship (such as parent/child) exists

between the files. Instead, the files are related by having a field in one

file that is the same as a field in another file. In other words, rela­

tional databases rely on identical fields to relate items in one table to

those in another. A DBMS that manages databases using this relational

model is called a relational DBMS.

Functionally DBMGR is a subset of dBASE III in that one can access and

modify the same database interchangeably with either program, but that the

query and reporting facilities available from dBASE III are absent in

DBMGR. Users who are familiar with the dBASE III program should find that

DBMGR closely resembles dBASE III in terms of user interfaces, such as

similar screen displays and consistent keyboard definitions in the editing

mode. The remainder of this section contains a description of the data

structure supported by the DMBGR program and its operations. The discus­

sion holds true for dBASE III as welle

7

Like dBASE III and most DBMSs that run on microcomputers, DBMGR

organizes data into two-dimensional tables of rows and columns. Each row

is a record and is assigned a record number. Each column is a field and

has a distinct name, called field name, up to ten characters long.

The following illustration gives a conceptual view of such a table.

Record 1
Record 2
Record 3

Field 1
NAME

Field 2 Field 3
ADDRESS PHONE-NO

In this example, NAME is the field name of the first column; ADDRESS, that

of the second column; and so forth.

All items in a column (field) are of the same data type. A data type

is a high level representation of data as seen by the user, which has a

corresponding internal binary form understood by the computer. Data types

allow one to write programs using data representations with which he is

most compatible. These high level representations are maintained inter­

nally in a binary format processed by the computer. Four data types are

provided by DB~1GR: Character, Date, Logical, and Numeric. The following is

a brief discussion of these data types.

Character data type--It is used to store any printable character
that can be entered from the keyboard. It is often convenient to
use the character data type for numbers such as telephone numbers
and zip codes which will not be used in calculations. The maximum
size of a character data type is 254.

Date data type--It is used to store dates in the mm/dd/yy format.
The size of a date data type is always 8.

Logical data type--It is used to keep track of things like
paid/unpaid, male/female, and similar items that can only be one
of two things. A logical data type is always 1 byte long.

Numeric data type--It is used to represent integers or decimal
quantities that will undergo computations. The size of a numeric

8

data type is the number of digits it can hold (the decimal point,
if any, counts as one digit).

DBMGR uses these data types as the building blocks to construct data­

base file structures matching the body of data that they are intended to

respresent. Below is an example structure of a database file containing

shipping information of, say, a mail-order company.

Structure for database example.d bf
Number of data records 30
Date of last update 08/08/85

Field Field name Type Width Dec
1 SHIP-TO Character 20 0
2 DATE-SHIP Date 8 0
3 PRODUCT Character 30 0
4 QUANTITY Numeric 5 0
5 AMOUNT-DUE Numeric 7 2
6 INV-PAID Logic 1 0

Total 72

This display shows the file name, the number of records in the file, when

the file was last updated, and specifications of all the fields of a

record. For each field these specifications are the name of the field

(Field name), its data type (Type), size of the field (Width), and decimal

places, if any, of the field (Dec). Each record in this example database

file has six pieces of information indicating the customer receiving the

shipment, date the shipment was made, what was shipped and how much, total

amount due from the customer, and the payment status, respectively.

There are six options in the DBMGR that would enable one to create,

access, and update database files. They are APPEND, BROWSE, CREATE,

DISPLAY, EDIT, and USE. The CREATE option allows one to build a file

structure similar to the one shown above. While in the CREATE mode, one

can interactively enter appropriate information regarding the field name,

data type, and so forth. DBMGR has a built-in facility to check the

validity of the information entered from the keyboard. For example, if one

enters a field name that has already been assigned to a previous field

definition, DBMGR would display the "duplicate field name" message and

would prompt the user for a different field name instead.

9

The APPEND option is used to add new data records to an existing

database file. A data entry form will be displayed by the program for one

to fill in appropriate information for each added record. This entry form

is generated according to the structure of the database file under consid-

erationo Using the same example given above for the mail-order company,

the entry form would look like the following illustration. The database

Record No.

SHIP-TO
DATE-SHIP
PRODUCT
QUANTITY
AMOUNT-DUE
INV-PAID

31 File name: example.dbf

/ /

file name and the record number are shown at the top of the entry form.

Field names are listed on the left-hand side of the form, with

corresponding blank spaces on the right-hand side. The size of blank

spaces is determined by the width of each field specified in the file

structure. Note that two slashes "/" are used for Date data type to

conform to the mm/dd/yy format. Note also the presence of a decimal point

for field AMOUNT-DUE, which represents a decimal quantity (see the example

file structure given above).

The program will check each user input to verify its validity. For

example, if one enters a string of characters whereas the field is of a

Numeric data type, this invalid entry will be rejected by the DBMGR

program. As another example, if one enters 08/40/84 or 15/02/85 for a Date

data field, similar action will be taken by the program to block such an

erroneous entry.

10

BROWSE option is used to display the content of the entire database

file under consideration. While in mode, field names are listed

across the top of the display screen, with individual records displayed in

the remainder of the screen. DBMGR allows one to use various cursor

movement keys in the numeric keypad area of the keyboard to move through

the entire file. For example, pressing the PgDn key will bring into view

the next set of records that the display screen could not hold previously.

EDIT option is used to provide the user with a full screen editing

environment for data update purposes. Like the BROWSE option, one can use

cursor movement keys to move through the entire file in order to locate the

appropriate record and field desired for data update. The same built-in

facilities for data validity checking described under the APPEND option

also apply here. Any invalid information entered while in this EDIT mode

will be identified and rejected for re-entry. Upon completion and leaving

the EDIT mode, all changes made will be permanently saved on disk. The USE

option is used for one to gain access to a particular database file.

Unlike dBASE III which permits ten database files to be accessed all at one

time, DBMGR uses one file at a time. When this option is invoked, the

user's only input requested is the name of the database file to be accessed

by the program.

Altogether, these six options provided by DBMGR permi t one ,to store

and organize data in a database. Files in the database have the same

format and structure as those of dBASE III, and as such one can substitute

dBASE III for DBMGR for more sophisticated operations such as making ad hoc

queries into the database.

3. APPLICATION PROGRAMS

The first part of this section details an interface facility that

allows application programs to access the database component of an

integrated system described in the preceding section. A utility program

named APMGR that manages the collection of application programs using this

interface facility for input/output preparations is described in the second

part of this section.

11

Application Program Interface

An application is some instance when one or more database files are

used for some intended data analysis. An application requires the presence

of a program which controls the computer--it provides instructions for

necessary operations such as input, output, and computations. This pro­

gram, called an application program, is generally written hy a program

developer in a high-level programming language such as Fortran or BASIC.

An access facility must be provided in order for an application program to

use data in the database. This access facility, known as the application

program interface, makes the internal structure of the database known to

application programs. This capability of moving data between database

files and application programs is crucial in implementing the integration

procedure.

The interface described here allows application programs to access

database files created by DBMGR (and dBASE III). It consists of several

routines that provide the necessary input/output operations for an appli­

cation program to use data in the database. These routines are based on

the internal structure of the database described below.

Each database file stored internally by the DBMGR program is composed

of a file header and data area. The file header is a block of data which

contains complete information about the file structure. The data area

holds the actual content of all records in the file. The layout of the

file header is described first.

The first 32 bytes (character) of the file header contain the general

information about the database file under consideration, such as how many

records it contains and the date it was last updated. Specifically these

32 bytes of data convey the following meanings:

Byte Content

o A hexadecimal number indicating the file type. It is always
03 in this study.

1 A hexadecimal number representing the last two digits of the
year when the file was last updated.

2 A hexadecimal number representing the month when the file
was last updated.

12

Byte

3

4

5

6

7

8

9

10

11

12-31

Content

A hexadecimal number representing the day when the file was
last updated.

The first byte of a 4-byte hexadecimal number representing
the total number of records in the file.

The second byte of a 4-byte hexadecimal number reprsenting
the total number of records in the file.

The third byte of a 4-byte hexadecimal number representing
the total number of records in the file.

The fourth byte of a 4-byte hexadecimal number representing
the total number of records in the file.

The first byte of a 2-byte hexadecimal number representing
the location (offset) of the data area.

The second byte of a 2-byte hexadecimal number representing
the location (offset) of the date area.

The first byte of a 2-byte hexadecimal number representing
the length of the record.

The second byte of a 2-byte hexadecimal number representing
the length of the record.

Unused bytes filled with hexadecimal number 00 (zero-filled).

With this block of data and some necessary conversion from the hexadecimal

to the decimal numbering system, information such as the record length is

readily known to an application program. For example, suppose byte 10 and

byte 11 contain 7D and 00, respectively, then the record length can be

determined as:

2nd byte

record length

1st byte

Ox16 3 + Ox162 + 7x16 1 + 13x160
0+0 + 112 + 13
125 decimal,

noting that hexadecimal D is equal to 13 decimal.

The remaining portion of the file header contains information about

data fields that constitute the database file under consideration. Each

field definition uses 32 bytes in the file header, as described below.

13

Byte

0-9

10
11

12-15
16

17

18-31

Content

Field name expressed in ASCII (American Standard Code for
Information Interchange) characters. The maximum length
of a field name is 10 characters; any field name of less
than 10 characters long is left justified and zero-filled.

A hexadecimal number (00) used as a separator.
Field data type expressed in ASCII, it is one of the four

types supported: C (Character), D (Date), L (Logic), and
N (Numeric).

Unused bytes.
A one-byte hexadecimal number representing the size of the

field.
A one-byte hexadecimal number representing the number of

decimal places of a decimal quantity.
Unused bytes.

This 32-byte pattern repeats for each and every field defined in the

database file.

The remainder of the database file is the data area. Hexadecimal

constants OD and lA mark the beginning and the end of this data area,

respectively. All data records are stored in between these two markers,

following the layout described below.

1. Each data record is preceded by a hexadecimal constant 20 (a
space) and there is no record terminator.

2. Data fields are packed with no field separators.
3. Data types are stored in ASCII format. The Date data types

are stored in an 8-byte, YYYYMMDD format, such as 19850831 for
August 31, 1985.

The appendix to this report contains several routines that are written

according to these file structure specifications. These routines are

provided so that one can custom-tailor application programs for his own

applications integration.

Library of Application Programs

Recall that the database approach to the applications integration

provides an assurance that the same data item can be shared by different

14

programs for different purposes. This assurance is valid only in situa­

tions where all data semantics are defined at the database level, not at

the program level. Consequently an application program of which the input

ana output operations conform to the specifications laid out by the

database is said to be suitable for implementation in the integration

environment described in this report. This requirement is necessary in

order to employ the database approach to integration.

Application programs that are written following this approach are

collectively maintained in a program library through a computer program.

This utility program, named APMGR, is developed by the NRRI for this study.

APMGR creates and maintains a list of programs that are suitable for imple­

mentation in this integration environment. With the aid of this program,

new programs can be added to and out-dated programs can be deleted from

this library of application programs. This library of programs forms the

data analysis part of the integrated system. In addition to its library

maintenance duty, APMGR also allows one to run any of the programs

contained in the library without having to go back to the operating system.

One can therefore switch back and forth among various application programs

as needed quickly and efficiently.

4. A SAMPLE APPLICATION

This section describes a sample application of the integration pro­

cedure. Three of NRRI's microcomputer programs are used. They are an

electric load analysis program (LOAD), an electric production cost simula­

tion program (PROC), and an electric cost-of-service program (COST). The

first part of this section deals with the first step of the integration

procedure--the construction of a database. The second subsection contains

a discussion of the implementation of the application program interface-­

the second step of the integration procedure. The last part of this

section describes the operation of this integrated system.

15

The Construction of a Database

The first step of this integration procedure calls for the construc­

tion of a database. This database is to contain both the application

programs' input and outpute For the purpose of demonstrating a sample

application, a database is set up to hold information about an electric

utility system. Specifically, this sample database contains data on the

utility's load profile, the generating units, and costs of providing

services to its customers. This database is included here only as example

material and is not intended to be an actual representation of an electric

utility company. It is used to illustrate the applications integration

procedure described in this report. This sample database is composed of

nine database files. They are described below.

Database File: PLANT.DBF

This database file contains generating unit data of a hypothetical

electric utility. The structure for this database file is displayed in

figure 2.

The definition of individual data fields is given below.

Field 1

Field 2

Field 3

A unique generating unit identification code number.

The unique name of the generating unit of up to ten
characters long. It may contain letters A through Z,
numbers 0 through 9, and special symbols.

The primary fuel used by the unit for generation. It
can be one of the following: coal, nuclear, oi12 (for
No.2 oil), oi16 (for No.6 oil), gas (for natural
gas), and gasoline.

Field 4 -- Numerical codes are assigned to units to identify
their expected duty cycle. The commitment order is
controlled by this code assigned to units. Operating
type 1 refers to base load units, types 2 through 4
refer to intermediate load units with type 2 loaded
first and type 4 last, and type 5 refers to peaking
units.

16

Structure for database: PLANT.DBF
Number of data records: 0
Date of last update 07/01/85
Field Field name Type Width Dec

1 UNIT CODE Character 3
2 UNIT NAME Character 10
3 FUEL TYPE Character 4
4 OP TYPE Character 1
5 FOR Numeric 6 2
6 FUEL COST Numeric 7 2
7 VAR OM Numeric 5 2
8 FIX OM Numeric 6 2
9 HEAT CONT Numeric 6 2

10 S02 EMISON Numeric 5 2
11 NOX EMISON Numeric 5 2
12 MAINTENANC Numeric 6 2
13 CAP LVL1 Numeric 7 2
14 CAP LVL2 Numeric 7 2
15 CAP-LVL3 Numeric 7 2
16 CAP-LVL4 Numeric 7 2
17 HR LVL1 Numeric 8 2
18 HR-LVL2 Numeric 8 2
19 HR-LVL3 Numeric 8 2
20 HR-LVL4 Numeric 8 2

Tota1 125

Figure 2. Structure for database file PLANT.DBF

17

Field 5

Field 6

Field 7

Field 8

Unit forced outage rate in per cent@

Unit fuel cost in t/MBtu.

Unit variable operation and maintenance cost in $/MWh.

Unit fixed operation and maintenance cost in $ per
year per unit.

Field 9 -- Fuel heat content in MBtu/ton for solid fuels or
MBtu/bbl for liquid fuels@

Field 10

Field 11

Field 12

Field 13

Unit S02 emissions in lbs per MBtu of fuel burn.

Unit NOx emissions in lbs per MBtu of fuel burn.

Unit scheduled maintenance in days.

The heat rate curve of each unit is represented at a
maximum of four capacity levels: MWl, MW2, MW3, and
MW4. Each unit can be brought on line in a maximum of
four blocks of capacity:" MWl, MW2-MWl, MW3-MW2, and
MW4-MW3. Unit capacity (in MW) at MWI level is
reported in this field.

Field 14 -- Unit capacity value in MW at the second level. If a
unit is to be loaded to its full capacity in one step,
then the capacity value reported here should be the
same value as reported in field 13.

Field 15 Unit capacity value in MW at the third capacity level.

Field 16 -- The maximum dependable capacity of the unit in MW.

Field 17 Unit heat rate value at the first capacity level in
Btu/kWh.

Field 18 -- Unit heat rate value at the second capacity level in
Btu/kWh.

Field 19 -- Unit heat rate value at the third capacity level in
Btu/kWh.

Field 20 -- Unit heat rate value at the maximum capacity level in
Btu/kWh.

18

Database File: LOADeDBF

This database file contains data on the utility's hourly load. Figure

3 displays the file structure. The first field contains day type identifi­

cation information. A day type means either (1) a calendar day such as May

1, 1984; or (2) a representative day if you aggregate' the days that exhibit

similar hourly load patterns to form a fictitious day as their representa­

tive, such as "typical weekday" and "typical weekend day,," This latter

approach is usually used to reduce the computer memory requirement and to

ease the computational burden when hourly production simulation is desired"

The information contained in this field could be "Weekday" for a typical

weekday or "1/28/83" for a particular calendar day.. The second field

contains the total number of days in a given day type under consideration.

For example, if one chooses to use two representative day types to repre­

sent a weekly load cycle: a typical "weekday" and a typical "weekendday";

then he would have five days under the "weekday" and two days under the

"weekendday." The number for a calendar day should always be one (1).

Other fields of the file contain the load values in MW. For instance,

field 12 contains the load at the 10th hour of a day ..

Database File: AVELOAD:DBF

This database file is used to contain the average hourly load calcu­

lated by the LOAD program. The structure for this file is the same as that

described for LOAD.DBF (see figure 3).

Database File: OpeOST~DBF

This database file is used to contain individual generating unit

operating and cost characteristics for a given time step of analysis, as a

result of simulations performed by the PROe program. The structure for

this file is shown in the top part of figure 4. The individual data fields

, defined in this file have the following meaning.

19

Structure for database: LOAD .. DBF
Number of data records: a
Date of last upda te 07/01/85
Field Field name Type Width Dec

1 TYPE ID Character 10
2 FREQ Numeric 3
3 HRI Numeric 5
4 HR2 Numeric 5
5 HR3 Numeric 5
6 HR4 Numeric 5
7 HR5 Numeric 5
8 HR6 Numeric 5
9 HR7 Numeric 5

10 HR8 Numeric 5
11 HR9 Numeric 5
12 HRIO Numeric 5
13 HRII Numeric 5
14 HRI2 Numeric 5
15 HR13 Numeric 5
16 HR14 Numeric 5
17 HR15 Numeric 5
18 HR16 Numeric 5
19 HR17 Numeric 5
20 HR18 Numeric 5
21 HR19 Numeric 5
22 HR20 Numeric 5
23 HRZI Numeric 5
24 HR22 Numeric .5
25 HR23 Numeric 5
26 HR24 Numeric 5

Total 134

Figure 3.. Structure for database file LOAD .. DBF

20

Structure for database: OPCOST .DBF
Number of data records: 0
Date of last update 07/01/85
Field Field name Type Width Dec

1 UNIT CODE Character 3
2 PERIOD NO Character 2
3 EL ENERGY Numeric 8
4 TH OUTPUT Numeric 6
5 CAP FACTOR Numeric 5 1
6 S02 Numeric 6
7 NOx Numeric 6
8 FUEL COST Numeric 6
9 OM COST Numeric 6

10 OTHER COST Numeric 6
11 TOTAL-COST Numeric 8
12 AVE COST Numeric 6 2

Total 69

Structure for database: SUMMARY.DBF
Number of data records: 3
Date of last update 07/01/85
Field Field name Type Width Dec

1 PERIOD NO Character 2
2 HOURS Numeric 5
3 TOTAL CAP Numeric 8
4 PEAK LOAD Numeric 6
5 MIN LOAD Numeric 6
6 TOTAL ENY Numeric 8
7 TOTAL GEN Numeric 8
8 UNSERV ENY Numeric 8
9 S02 Numeric 8

10 NOx Numeric 8
11 FUEL COST Numeric 8
12 OM COST Numeric 8
13 OTHER COST Numeric 8
14 TOTAL COST Numeric 8
15 AVE COST Numeric 6 2
16 LOLP Numeric 7 4

Total 113

Figure 4. Structures for database files OPCOST.DBF and SUMMARY.DBF

21

Field 1 A unique generating unit identification code number.
This is the same field in file PLANT.DBF (see
figure 2). One can therefore join these two database
files identical field.

Field 2 -- The n-th time step of production Simulation, where n
is between 00 and 12. Currently the PROC program
allows a maximum of 12 time steps of analysis to be
specified by the user. A "01" in this field indicates
the first time step of analysis, a "02" for the second
time step, and so forth. A "00" is used to represent
the entire study period, ieee, the summary over
individual time steps.

Field 3 Unit electric energy generation in MWh.

Field 4 Unit thermal energy output in billion Btu.

Field 5 Unit capacity factor in per cent

Field 6 S02 emissions in tons.

Field 7 NOx emissions in tons e

Field 8 Unit fuel cost in thousands of dollars.

Field 9 Unit operations and maintenance cost in thousands of
dollars.

Field 10 -- Unit cost in "Other" category in thousands of dollars.
It can be used to represent costs associated with
pollution control devices, for example.

Field 11 -- Unit total cost in thousands of dollars. It is the
sum over fields 8 through 10.

Field 12 -- Unit average cost of producing electricity in
mill/kWh.

Database File: SUMMARY.DBF

This database file is used to contain production simulation results

relevant to the generating system as a whole. The bottom part of figure 4

shows the structure for this file

fields is given below.

The definition of individual data

22

Field 1 -- The n-th time s of simulation. This is the same
field defined in the ous file--OPCOST.DBF.

Field 2 Total number of hours in this time step of analysis.

Field 3 Total capacity in MW.

Field 4 Peak demand in MW

Field 5 Minimum demand in MW.

Field 6 Total electric energy (GWh) demanded of the generating
system.

Field 7 -- Total electric energy generation (GWh) delivered by
the generating system.

Field 8

Field 9

Field 10

Field 11

Field 12

Field 13

Field 14

Unserved energy in GWh.

S02 emitted by the generating system in tons.

NOx emitted by the generating system in tons.

Fuel cost in thousands of dollars.

Operations and maintenance cost in thousands of
dollars ..

Other cost in thousands of dollars.

Total cost in thousands of dollars. It is the sum
over fields 11 through 13.

Field 15 -- Average cost of producing electricity, in mill/kWh,
for the generating system as a whole.

Field 16 -- The lost-of-load probability of the generating system.

Database File: CUSTOMER.DBF

This database file contains data on the characteristics of the

utility's classes of service.. The structure for this database file is

shown in the top of f first field contains a customer

class identification code. The same identification code will be used in

another database file (see CLS-ROR.DBF at the end of this subsection) so

23

Structure for database
Number of
Date

Field
1
2

5
6

8
9

10
1

12
13
1 '-I.
15
16
1
18

Total

Field name
CUSTO}! ID
CLASS

COINC
NONCO
HONl

CUSTOMER .. DBF
o

1

Character
Character
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric

Structure for database: ACCOUNTl .. DBF
Number of data records: 0
Date of last 07/01/85

Field

2

Sf.:
Number
Date of las

1

3
4

CAT NO

da

CAT NO

Type
Character
Character

ACCOUNT2 .. DBF
o
07/01/85

Character
Character
Character
Numeric
Character

Width
2

30
10
15
10
10
10
10
10
10
10
10
10
10
10
10
10
10

198

Width
3

50
54

Width
3
6

40
10
30
90

Dec

Dec

Dec

for database files CUSTOMER.DBF,
, and ACCOUNT2.DBF

24

that these two files can be linked together by the DBMS. The second field

contains a unique name of the service class under consideration. Field 3

represents the total number of customers in a given class of service and

field 4 contains information about the energy consumptions, in MWh, by this

customer class. Field 5 contains data on class coincident peak demand

measured in MW and the class noncoincident peak demand in MW is reported in

field 6. Fields 7 through 18 represent twelve class monthly peaks measured

in MW, respectively.

Database File: ACCOUNTl.DBF

This database file contains descriptions of the various items of

utility plant in service and operations and maintenance expenses. Some

examples are steam production plant, transmission plant, depreciation

reserve, and steam operation expense. The structure fo~ this file is

displayed in the middle part of figure 5. This file contains only two data

fields. The first field is an item category identification code and the

description of this item is contained in the second field. The category

identification code is used to provide a link between this database file

and another database file named ACCOUNT2.DBF (see the next file descrip­

tion).

Database File: ACCOUNT2.DBF

This database file contains data on the various items of utility plant

in service and operations and maintenance expenses. The bottom part of

figure 5 shows the structure for this file. The first field is an item

category identification code. This is the same field defined in the

ACCOUNTl.DBF. The second field contains the account number for the item

under consideration. The descriptive title and the dollar value of this

account are represented in fields 3 and 4, respectively. The last field

contains the allocation keyword used by the COST program to spread the cost

among customer classes.

25

Database File: CLS-ROR.DBF

This database file is used to contain the summary cost allocation

results produced by the COST program. Figure 6 shows the structure for

this file. The first field is a customer class identification code. This

is the same field defined in the CUSTOMER.DBF file. Information about the

characteristics of a particular class of service contained in the

CUSTOMER.DBF file can be made available to this file through this common

data field. Operating revenues and operating expenses as allocated to

various classes of service are contained in fields 2 and 3, respectively.

Class net operating income is contained in the next data field. Class

allocation of utility rate base is represented in field 6, and class rate

of return is contained in the last field of this file.

Altogether, these nine database files in this example database repre­

sent data about an electric utility. These files serve as inputs to, as

well as outputs from, the three application programs mentioned earlier.

The structures for these files described above were constructed using the

Structure for database: CLS-ROR. DBF
Number of data records: 0
Date of last update 07/01/85

Field Field name Type Width Dec
1 CUSTOM ID Character 2
2 TOT OP REV Numeric 9
3 TOT OP EXP Numeric 9
4 NET-OPINC Numeric 8
5 RATE BASE Numeric 9
6 RT OF RTN NUmeric 5 2

Total 43

Figure 6. Structure for database file CLS-ROR.DBF

26

DBMGR program. The body of data can be entered according to these struc­

tures using either DBMGR or dBASE III program. Once the database is

constructed, the next step is to implement the application program inter­

face such that the data contained in the database can be used directly in

application programs. This is discussed next.

The Implementation of Application Programs

A sample database has been constructed for this demonstration. The

next step is to implement application programs to form an integrated

system. For the purpose of demonstration, this integrated system is

intended to perform analyses in the following areas: utility load,

electricity production cost simulations, and class cost of service. Three

existing microcomputer programs available from the NRRI could provide these

intended functions. These three programs are an electric load analysis

program (LOAD), an electric production cost simulation program (PROC), and

an electric cost-of-service program (COST). They are therefore adapted for

this sample application of the integration procedure.

Recall that an application program is suitable for implementation in

the integrated system if its input/output is prepared using the program

interface facility described in the previous section. None of the three

programs uses this interface facility so some modifications are needed.

Note that no such modifications would be required if one is to write new

application programs, provided that the program interface facility is used

for input/output operations.

Tne modifications are in some sense very localized since they are

needed only in the input and some selected output portions of a program.

For each of the three programs mentioned above, the input routine was first

identified. This input function was then replaced by the interface facil­

ity's reading routine. A listing of this routine can be found in the

appendix. As for output preparations, the interface facility's writing

routine was used in places where output data are expected to be written to

the sample database. Original program output routines such as writing to

27

the display screen or to a printer are not affected. The appendix also

contains a listing of the writing routine provided by the interface

facility. After these modifications were made, programs were ready to

become part of the integrated system. The APMGR program described earlier

was used to add these programs to the application program library. This

sample integrated system is now functional. A schematic of this system is

depicted in figure 7 in which the database file usage is also shown.

The Operation of the Integrated System

As can be seen in figure 7, the two major components--the database and

application programs--of the integrated system are coordinated by a program

named AI. This program serves solely as the user interface to the inte­

grated system. Upon invoking this program, one is provided with three

options: (1) to access the database, (2) to access application programs,

and (3) to end the operation of the integrated system. The first two

options are described below.

Choosing option number one will invoke the DBMS program, and one will

be given more options regarding operations on the database. As mentioned

earlier, the database holds both the application programs' input and

output. At this point the DBMS has the control over the integrated system,

and all the functions provided by the DBMS are accessible to the user. One

can, for example, edit data contained in one database file which serves as

input to a particular application program; or he can view/analyze data in

another file containing output from another application program. The user

can exit this database component anytime as is desired; and when he does

that, the system control is returned to the user interface (the AI pro­

gram), and once again he can choose any of the three options mentioned

above.

Choosing option number two will invoke the APMGR program--the program

that manages the library of application programs. The integrated system is

now under the control of the APMGR program. All the programs contained in

this program library can be run through APMGR by simply picking out the

program name. When an application program, say PROC, starts running, the

28

AI
(User Interface)

APMGR DBMGR
(or dBASE III)

PROC

LOAD

CUSTOMER

Figure 7. Schematic of the sample integrated system

29

control of the system is assumed by this particular program. Depending on

the design of the program, one or more database files may be used as

program input and some other database files may be called upon to store

program output. Whichever is the case the user is still working in this

integrated environment@ When the program finishes execution, the control

of the integrated system is returned to the APMGR program. At this point

one can either start running another application program, say the LOAD

program, or return to the user interface and invoke the DBMS to analyze the

program output.

Some observations can be made about this arrangement of applications

integration--combined data management and data analysis. First, it

provides a work environment in which one can view and/or change program

inputs, run individual programs, and analyze program outputs in a

coordinated manner, all within the framework of this integrated system.

Second, one can switch back and forth among various application programs

quickly and efficiently. This is especially useful in situations where a

particular analysis requires the use of several independent programs.

Furthermore, one can also switch back and forth between the database

component and the library of application programs. This feature is very

valuable because one can access necessary data and programs in a way that

follows his train of thought without many interruptions. This is

especially true when one is doing a sensitivity analysis that calls for

running a program, changing some data items, and running the program again.

Lastly, one can take advantage of some of the more advanced features of the

DBMS to present the data contained in the database in a variety of formats

and from a variety of v~ewpointso For example, with the aid of the DBMS

one can almost instantly obtain a listing of those generating units for

which the capacity factor exceeds 50 per cent and of which the average

running cost is leSS than 36 mills/kWh.

5. CONCLUSION

A procedure for integrating the capabilities of individual application

programs is described and demonstrated in this report. This integration

30

procedure is based on the database approach to data processing system

development Some benefits that this offers are

highlighted below.

* This should enhance state commissions' problem-
solving and decision-making capabilities. It is applicable to
all sectors, and an example integrated system of three
NRRI microcomputer programs was established following this
procedure for use in the electric utility sector.

* This integration arrangement--combined data management and data
analysis--provides for a work environment in which one can view
and/or change program input, run individual programs, and
analyze program output in a systematic and consistent manner.
This means increased productivity.

* Under this integration arrangement, one can switch back and
forth among various application programs quickly and
efficiently; this is especially useful in situations where a
particular analysis requires the use of several independent
programs.

* One can also switch back and forth between the database and
application programs, meaning that he can access necessary data
and programs in a way that follows his train of thought without
many interruptions.

* A high level of consistency in handling data from various
sources can be attained because of the data semantics and vali­
dation rules imposed upon the database by the DBMS. This could
be very significant if the domain of applications integration
covers different functional divisions of an organization.
The integrated system derived from this procedure has an open

* architecture. New application programs can always be added to
the system to handle ad hoc situations, as long as the program
interface facility is used for input/output preparations.

The presence of a DBMS provides one with added flexibility in
* presenting data in a variety of formats and from a variety of

viewpoints

In summa ry the procedure described in this report should

be of particular use to end users, regulators and utilities alike, who rely

on computer programs for problem solving and decision making.

31

APPENDIX

This appendix contains listings of the application program interface

routines. These routines are written based on the internal database file

structure described in section 2 of this report. They are provided so that

one can custom-tailor his own application programs for use in an integrated

system.

32

1000 '
1010 'iff This is a reading routine of the program interface
1020 'fil facility. It is based on the internal database file
1030 'if* structure described in section 2 of the report.
1040 'til On input, one needs to supply the database file
1050 'ffi nale (CFILE).
1060 'fff On output,
1070 'lfl YEARI: last 2 digits of the year when file was last updated
1080 'tfl MONTH!: the lonth when file was last updated
1090 'Iff DAYI : ths day when file was last updated
1100 't*f RLENGI: record length
1110 'ffi ADDRII: offset of the data area
1120 'tfl NOFLD!: nUiber of data fields in the file
1130 'Iff NOREC : total number of records in the file
1140 'til CFLD!i,j): field name (j=l) & field data type (j=2) for the
1150 'tlf ith field, l(=i{=NOFLDl
1160 'iti KSIZE(i,j): field width (j=l) ~ decimal places {j=2} for the
1170 '**1 ith field, l<=i<=NOFLDI
1180 't*f CDATA(i,j}: content of the jth field of the ith record
1190 't** l<=i<=NOREC, l<=j(=NOFlDI
1200 '111 lines 1240 - 1770 deal with the file header and
1210 'III lines 17BO - 1990 deal Nith the data area.
1220 '
1230 '
1240 OPEN CFllE AS 41 LEN=32
1250 FIELD 1,1 AS 51$,1 AS 52$,1 A5 53$,1 AS 54$,1 AS S5$,1 AS S6$,1 AS S7$,1 AS S8$,1 AS S9$,1 AS .S10$,1 AS S11$,1 AS S12$
1260 CODE!=1
1270 GET 1,1
1280 '

'get the first 32 bytes of the file header'

1290 'Iii Parse file header ***'
1300 '
1310 TVPE%=ASC(SlS) 'dBASE III file type,3-->dbf'
1320 YEAR7.=A5C(S2$) 'last two digits of the year'
1330 MONTHI=ASC(S3$} 'month'
1340 DAY%=ASC(S4t) 'day'
1350 '
1360 'III File record length. It is stored in two bytes,'
1370 'Iii high byte in S12$, low byte in 511$
1380 '
1390 NI=ASC(512$)
1400 RLEN6!=2561(Ni. MOD 16)+409bl(NX\lb)+ASCISl1$}
1410 '
1420 'ifi Address of the 1st record (2 bytes),
1430 '1** high byte in 510$, low byte in 59$
1440 '
1450 NI=ASC(S10$)
1460 ADDR1%=256f(NI MOD 16)+4096f(NZ\16)+ASC(S9$)
1470 '
1480 'itf No. of fields defined in the dBASE file'
1490 '
1500 NOFLDI=(ADDR1Z-2)/32 - 1
1510 '
1520 'iii No. of records contained in the dBASE file, ,
1530 'ffi it is stored in 4 bytes (55$ - S8$)

33

1540 '
1550 NOREC=O!
1560 N%=ASC(SS$): IF N%=O THEN 1580
1570 NOREC=NOREC+16A 71IN%\16)+16A bf(N% HOD 16)
1580 N%=ASC(S7$): IF N%=O THEN 1600
1590 NOREC=NOREC+16 A5tIN%\16)+65536!I(NZ MOD 16)
1600 N%=ASC(S6$): IF N%=O THEN 1620
1610 NOREC=NOREC+409bt(N%\lb)+25bl(Ni. MOD 16)
1620 NOREC=NOREC+ASC(S5$)
1630 I

1640 'ttt Process field name, field type,field width, and '
1650 'ttt decimal places for each defined data field;
1660 'ttl starting at the 2nd 32 bytes block in the file •
1670 'ttf header with every 32-byte pattern repeated for •
1680 , If 1 each data field
1690 '
1700 FIELD 1,10 AS 51$,1 AS NUL1$,1 AS 52$,4 AS NUL2i,1 AS S3$,1 AS 54$
1710 FOR 1=1 TO NOFLDI
1720 CODE%=CODE%+1: SET 1,CODEI
1730 CFLD(I,l)=Sl$ 'field name'
1740 CFLD(I,21=S2$ 'field type: C,N,L,D,M'
1750 KSIZE(I,1)=ASC(S3$) 'field width'
1760 KSIZE(I,2)=ASC(S4$} 'decimal places'
1770 NEXT I
1790 '

1790 '1** Beginning of data area. Get every 32 bytes frot the 110
1800 'If I buffer; parse and assign them to proper (record,field)
1810 'til pair in the CDATA (record,field) array of string
1820 'i*f variables
1830 '
1840 RD1=1:FD%=1:CODE7.=NOFLD7.+2:P11=O:P2I=3
1850 GET 1,CODEi.: FIELD 1,32 AS Al$
18bO Pl%=P2I+l: P3%=KSIZE(FDI,1): P2!=P2I+P31.
1870 IF P27.)32 THEN 1930
1880 CDATA(RD%,FDI.)=CDATA!RDZ,FDI)+MID$(Al$,PlZ,P31)
1890 FDi.=FDI.+l: IF FD!(=NOFLDI THEN 1860
1900 'Iff next record ***'
1910 RDZ=RD1+1: IF RDl}NOREC THEN 1990
1920 FDZ=1: P27.=P2I+l: GOTO 1860
1930 IF (32-Pl%)(O THEN Pll=Pl1-32: 60TO 1960
1940 P3i.=33-Pli.: Pil=i
1950 CDATA(RDZ,FDI)=CDATA!RDI.,FDI)+RI6HT$(Al$,P3I}
1960 CODEi.=CODE!+l: GET 1,CODEZ 'get next 32 bytes'
1970 P31=KSIZEIFD!,1)-LEN(CDATAIRDI,FDl)}: P2Z=P3Z+PIZ-1
1980 60TO 1870
1990 CLOSE 11

34

2000 '
2010 '
2020 '~I* This is a writing routine of the program interface
2030 'ff* facility. It is based on the internal database file
2040 'fft structure described in section 2 of the report.
2050 'ttJ On input, one needs to supply the following information
2060 'Iff (CFILE): database file name
2070 'ftt RLEN6Z = record length
2030 'I*f ADDRII: offset of the data area
2090 'Iff NOFLD%: nutber of data fields in the file
2100 'Ilf NOREC : total nuaber of records in the file
2110 'ttl CFLD(i,j): field name (j=l) & field data type (j=2) for the
2120 'fit ith field, l<=i(=NOFLDZ
2130 'fff KSIZE(i,j): field width (j=l) & decimal places (j=2) for the
2140 'If I ith field, l<=i<=NOFLDX
2150 'ttl CDATA(i,j): content of the jth field of the ith record
2160 'III l(=i(=NOREC, l<=j(=NOFLDI
2170 'It I Lines 2210 - 2690 deal with the file header and
2180 'ttl lines 2700 - 3120 deal with the data area.
2190 '
2200 '
2210 TVPEI=3
2220 OPEN CFILE AS 12 lEN=32: CODE!=1
2230 FIELD 2,1 AS 51$,1 AS 52i,1 AS 53$,1 AS 54$,1 AS 55$,1 AS S6$,1 AS S7S,1 AS 58$,1 AS 59$,1 AS S10f,

1 AS 511i,1 AS 512$,20 AS NULi
2240 RSET Sl$=CHR$(TVPEZ) 'file type'
2250 V$=DATE$
2260 RSET S2$=CHR$(VAL(RIGHT$(V$,2}}} 'year'
2270 RSET S3$=CHR$(VAL(LEFT$(V$,2») 'month'
2280 RSET S4$=CHR$(VAL(KID$(V$,4,2}» 'day'
2290 't** no. of record to be stored in 4 bytes'
2300 IF NOREC)65535! THEN 2370
2310 L%=NOREC MOD 256 'only needs 2 bytes (55$,56$) ,
2320 RSET S5$=CHR$(L!}
2330 LI=NOREC\256
2340 RSET Sb$=CHR$(LZ)
2350 RSET S7$=CHR$(0)
2360 RSET S8i=CHR$(O): GOTO 2480
2370 NI=NOREC/65536! 'needs all 4 bytes
2380 LI=NDREC-65536!fN! 'for s5$ & sb$ (=65535)'
2390 Ll%=LI MOD 256
2400 RSET S5$=CHR$(Ll7.)
2410 Ll%=L!\25b
2420 RSET Sb$=CHR$(Lli.)
2430 lI=(NOREC-L!)/65536~ 'for 57$ & sS$ ()=65536)'
2440 Ll%=L% MOD 256
2450 RSET S7$=CHR$(Ll!)
2460 L1I=L!\256
2470 RSET S8$=CHR$(L1I)
2480 LI=ADDRl7. MOD 256
2490 RSET S9$=CHR$(L%) 'address of 1st record'
2500 L7.=ADDRli.\256
2510 RSET S10$=CHR$(L!)
2520 LI=RLEN6! MOD 256
2530 RSET S11$=CHR$(LI) 'record length '

35

2540 LZ=RLEN6I\256
2550 RSET S12$=CHR${LI)
2560 'ifi set dUmmy string NULS flf'

2570 NUL$=5TRINSS{20,O)
2580 PUT 2,CODEI 'write the file header'
2590 'fll write field block ffi'

2600 FIELD 2,10 AS Sli,l AS NUL1$,l AS 52$,4 AS NUL2S,1 AS S3$,1 AS S4$
2610 FOR 1=1 TO NOFLDI
2620 J=LEN(CFLD(I,l»: Vl$=CFLO(1,1)+STRINS$(10-J,O)
2630 LSET Sl$=Vl$ 'field nale'
2640 LSET S2$=CFLD(I,2) 'field type: C,H,L,D,H'
2650 LSET S3$=CHRt(KSIZE(I,1}} 'field ~idth'
2660 LSET S4S=CHRS(KSIZE(I,2» 'decimal places'
2670 LSET NULU=CHR$(O}: LSET NUL2$=STRINS$(4,0)
2680 CODEZ=CODEI+l: PUT 2,CODEl
2690 NEXT I
2700 '
2710 'III Beginning of data. Assign each data record (CDATA) to
2720 'fff string variable CB; then write to 110 buffer in 32
2730 'Iff bytes increment.
2740 '
2750 RDI=1: CODEi.=CODEi.+l: KK=2: FIELD 2,32 AS A1$
2760 IF RDZ)NOREC THEN LSET Ali=CHR$(13)+CHR$(O)+CHR$(2b): SOTO 3120
2770 CB=CHR$(13)+CHR$(O)+CHR$(32): IF RLENSI(32 THEN 2920
2780 '
2790 'fff record length }= 32
2800 I

2810 FOR 1=1 TO NOFLDZ: CB=CB+CDATA(RDZ,I}: NEXT I: 11=1: K=RLENSl+KK
2820 LSET Al$=MID${CB,Il,32): PUT 2,CODE!: CODEI=CODEZ+l
2830 K=K-32: IF K}=32 THEN 11=11+32: SOTO 2820
2840 IF K}O THEN 2870
2850 RD!=RD7.+1: IF RDZ}NOREC THEN LSET Al$=CHR$(26): SOTO 3120
2860 CB=CHR$(32): KK=O: SOTO 2810
1870 Vl$=RIGHT$(CB,K):RDZ=RD1.+1:IF RDX>NOREC THEN 3110
2880 CB=CHR$(32): FOR 1=1 TO NOFLDI: CB=CB+CDATA(RDI,I): NEXT I
2890 Vl$=Vl$+LEFT$(CB,32-K): LSET Al$=Vl$: PUT 2,CODEI
2900 CODE!=CODE!+1: K=RLEN67.-32+K: 11=1: CB=RISHT$(CB,K)
2910 IF K}=32 THEN 2820 ELSE 2840
2920 '
2930 '**1 record length < 32
2940 ·
2950 K=RLEN6!+2: KK=32
2960 FOR 1=1 TO NOFLDI: CB=CB+CDATAtRDI,I): NEXT I
2970 IF K(32 THEN 3020
2980 LSET Al$=LEFT$(CB,32): PUT 2,CODE7.: CODEI=CODEI+l
2990 IF K=32 THEN CB=uU ELSE CB=RIGHT$(CB,K-32)
3000 RD!=RD!+l: IF RD7.)NOREC THEN Vl$=CB: 60TD 3110
3010 CB=CB+CHR$(32): K=K-32+RLEN6I: 60TO 2960
3020 Vl$=CB: KK=KK-K: K=RLEN61
3030 RD!=RD!+l: IF RDl)NOREC THEN 3100

36

3040 CB=CHR$(32): FOR 1=1 TO NOFLDI: CB=CB+CDATA(RD%~I): NEXT I
3050 IF KK}K THEN Vl$=Vl$+CB: KK=KK-K: GOTO 3030
3060 IF KK(K THEN 30BO
3070 Vl$=Vl$tCB:LSET Al$=Vl$:PUT 2,CODE%:CODE%=CODE%+1:KK=32:Vl$=oH:GOTO 3030
3080 Vl$=Vl$tLEFT$(CB,KK): LSET Al$=Vl$: PUT 2,CODE%: CODEi.=CODE%+l
3090 Vl$=RIGHT$(CB,K-KK): KK=32-K+KK: SOTO 3030
3100 IF KK=32 THEN LSET Al$=CHR$(26): GOTO 3120
3110 lSET Al$=Vl$+CHR$(2b}
3120 PUT 2,CODE1: CLOSE i2

