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EXECUTIVE SUMMARY 

Decisions regarding electric utility resource expansion take into 
account uncertainties associated with several parameters. Examples of the 
parameters are the demand projection, fuel prices, interest rate, 
penetration and effectiveness of demand-side management programs, and the 
price or availability of purchased energy. The analysts are aided by 
several computer models to analyze the effect of uncertainties. One popular 
method of analysis uses decision trees. 

In decision tree analysis and several other variants of it, one 
associates a subjectively chosen probability for the parameters that form 
the input to resource expansion models. For instance, one may associate a 
probability of 0.5 for the demand growth at an average rate of 2.5 percent 
per year while the probabilities associated with growths of 3 percent and 2 
percent might be 0.3 and 0.2. The probabilities reflect the user's 
assessment of the uncertainty associated with the input parameters to the model. 

The solution obtained from such models (the output) is the probability 
distribution of financial, economic, and technical aspects. Examples of 
some output quantities are rates, total costs, number of decisions, and cost 
of DSM programs. In contrast with the subjectively chosen probabilities 
that represent the uncertainties regarding the input, the probability 
distribution of the outcome of a chosen objective is used to quantify risk. 
The goal would be to minimize the expectation (mean) or the standard 
deviation of a chosen objective. Therefore, a comparison of risks of 
various alternative plans aids in the selection of a preferred plan. For 
instance, if the chosen objective is total cost, the mean total cost and its 
standard deviation are used to measure risk. For normal distributions, this 
means that there is a 50 percent probability that the cost will be above or 
below its mean value, an 84 percent probability that the cost will be higher 
than the mean minus one standard deviation, and a 16 percent probability 
that it will be higher than the mean plus one standard deviation. One might 
choose an option that has the lowest mean cost or, alternatively, a plan 
with a higher mean but with a larger standard deviation. The risks of the 
two choices, would, of course, be different. Other objectives such as 
excess capacity, disallowed costs, rates, and borrowing requirements can be 
used as a measure of risk towards the selection of a preferred plan. 

The work performed covers three major areas. The first identifies some 
misconceptions in the literature on the subject of least cost planning. 
Misconceptions regarding the definition of a "least cost plan", the 
existence of a global optimum solution, the ability to identify all feasible 
alternatives versus local optimal solutions, and the specification of the 
resource plan in a static context are elaborated upon. Certain difficulties 
and complexities in the planning process are discussed and suggestions to 
resolve them are proposed. Another concern in this area of analysis arises 
from the fact that the modelers have developed increasingly complex models 
to account for the uncertainties associated with the large number of input 
parameters. 
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Such models, lucid as they may seem to their creators, have become more 
and more opaque to regulators and decision makers. Therefore, our attempt 
is made to identify the more important parameters that influence the 
outcome. Also with a view to reduce the burden of examination of all the 
parameters in the input data of such models, certain internal consistency 
checks for the data have been suggested. Consistency checks, certainly, are 
utility-specific. Establishment of such checks would simplify the task of a 
particular utility and its regulators during a rate hearing. 

The goal of the second area of investigation was that of establishing a 
sensitivity ranking of different uncertainties as they impinge on risk. A 
decision tree analysis model called MIDAS (Multi-Objective Integrated 
Decision Analysis System) developed for the Electric Power Research 
Institute (EPRI) was used to perform some of the studies. To minimize the 
computational effort, a simplified model based on the principles of MIDAS, 
called SM_ARTS (Simple Multi-Attribute Risk Tradeoff System), was developed 
by the authors to perform several studies. This simplification allowed the 
consideration of more input parameters without an increase in computation 
time or data preparation burden. 

Three illustrative utilities resembling the utilities in the northeast, 
midwest, and western regions of the country, are used in the analysis. The 
study addressed three aspects of planning in this area of investigation. 
The first is the impact of different objectives on the choice of plans. The 
second is an analysis of risk attitudes on planning. The third is the 
ranking of uncertainties by their importance. 

Three objectives are used in the decision tree analysis: mi~~m~ze 
expected present worth of cost ("cost"), minimize expected levelized rates 
("rates"), and minimize expected disallowed capacity cost ("dis. cost"). 
The objectives are compared two at a time. To clarify this further, the 
minimized total costs objective ("cost") was compared with the "rates" 
objective. It was found that the latter objective could increase the total 
cost. Similarly, the comparison of "cost" objective with "dis. cost" 
objective indicated that the latter could increase total costs. In essence, 
the objectives of "cost" and I1 rates 11 was found to be incompatible. Another 
conflict was that the policy of disallowing the recovery of "excessll 
capacity costs might in certain circumstances increase the total costs and 
actually encourage inefficiency. 

The report outlines a sensitivity analysis of the major parameters. 
The variations of purchased power costs, fuel cost, and demand as they 
impinge on rates and total cost are shown. The effect of the variations of 
the above parameters on the number of decisions that change is shown. The 
effect of risk-neutral and risk-averse attitudes on the objective are also 
shown. For the three utilities studied, it was found that risk attitudes do 
not influence the decisions to a great degree. 

Ranking uncertainties based on their relative importance depends on 
whether the concern is with financial ratemaking problems or with resource 
planning. The former concern addresses the variance of system costs and 
rates that result from a variance in the values of input parameters. From 
this point of view, fuel price uncertainties were found to influence the 
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rates more than the demand uncertainties. But from the perspective of long­
range planning, it was found that the demand uncertainties mattered the most 
regarding decisions in capacity planning and DSM programs. In other words, 
for the utilities studied, only demand uncertainties influenced decision 
strategies while fuel price uncertainties influenced the rates. 

Strictly speaking, the above conclusions are applicable only to the 
utilities studied. However, since the utilities resemble a cross-section of 
the nation, it is believed that the results will have general applicability 
but with certain confirmatory checks for specific utilities. 

The third area of investigation addresses the relative risks of 
consumer classes. In planning activity, the risk to investors and consumers 
is generally examined with the consumers viewed as a whole. In this third 
area, the risks (in terms of the objective of revenue requirement) to 
industrial, residential, and commercial classes are examined separately. 
For example, the risks of higher incurred costs by the residential and 
commercial classes were shown to increase with increasing uncertainty for 
industrial demand. A simple ratemaking procedure along with the MIDAS model 
is used. The shape of the probability distribution of revenue requirement 
for each class of customer is compared. 

The study found some anomalies in the relative risks of consumer 
classes. The anomalies were more pronounced when the demand growth 
projections for each customer class were represented separately with more 
uncertainty in the projection of one class. It is not our intent to suggest 
that the risks of the classes be the same or similar. Rather, the risks to 
each class should be examined to address the question of equity in the 
distribution of risk to classes of customers. Therefore, the examination of 
ratemaking alternatives is intertwined with the planning process. The 
results of our study indicate that it is preferable to model the loads of 
each customer class individually (rather than the total system load) and to 
evaluate and compare the risks of the customer classes separately. 
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FOREWORD 

Electric utility capacity expansion plans take into account several 
factors--engineering, economic, financial, and social. Demand projections, 
fuel prices, interest rates, technologies, and penetration of demand-side 
management are a few of the vast number of parameters considered in such 
plans. There are, of course, uncertainties associated with the parameters, 
e.g., volatility of fuel prices, variability of interest rates, and the 
realized demand growth. The uncertainties associated with the input 
parameters to a plan result in uncertain outcomes. 

One method of analyzing uncertainties is to associate a subjectively 
chosen probability value to the different values of input parameters. Then 
a tree or a path depicting the various decisions to be taken and the various 
chance events can be constructed. Such a procedure is termed "decision tree 
analysis." Three illustrative utilities, each resembling utilities in the 
northeast, midwest and western region of the country have been used in the 
analysis. 

In order to do the analysis in the limited time available, a simplified 
model called Simple Multi-Attribute Risk Tradeoff System (SMARTS) was 
developed by the authors. This model was based on the MIDAS model which was 
readily available from the Electric Power Research Institute. This 
simplification allowed the consideration of more input parameters without an 
increase in computation time or data preparation burden. 
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CHAPTER 1 

INTRODUCTION 

There is a considerable amount of interest in the principles of 

planning electric utility resources. Of late, least-cost planning (LCP) , 

value-based planning (VBP) , and integrated resource based-planning (IRP) are 

proposed for resource planning of electric utility systems. LCP, VBP and 

IRP have been defined by several authors accentuating different aspects of 

the planning process. 

In each of the above planning philosophies, the utilities take into 

account demand-side management (DSM) options along with resource expansion 

evenhandedly in planning for future resources and loads. Copious literature 

exists on planning philosophies addressing issues of economics, engineering, 

risks, conservation, and demand-side management. This report addresses the 

issues of uncertainties and risks in electrical utility planning. Methods 

of accounting for them in planning practice are identified and examined. 

Uncertainties cannot be made to disappear. As an example of a major 

uncertainty, consider the demand projection based on a load forecast. No 

forecast can assert with certainty that a specific demand will occur at a 

given future date. In that sense, all forecasts are wrong. Despite this, 

there is a need for a forecast arising from the necessity to agree on a 

scenario for which the utility should plan. In other words, forecasts by 

their very nature are tools to seek a consensus among parties regarding a 

future course of action. 

The reaction of planners and modelers in the complex environment of 

uncertainty has been to develop larger and more complex models to account 

for various uncertainties. One way of using such models is to make a 

sensitivity analysis by running the model several times under different 

assumed conditions. Another variant is to make a scenario analysis in which 

some selected scenarios are studied. Yet another type of approach is where 

one assigns subjective probabilities for the outcome of a set of 

uncertainties. We call this last category "probabilistic models. II 
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In probabilistic models, subjectively chosen probabilities are 

associated with the outcomes of events. For instance, one can associate a 

probability of 50 percent for the price of oil at $25 a barrel in 1992 and a 

25 percent probability for the price to be at $15 or $35 a barrel. 

Consensus should be sought among the parties (the utility and its 

regulators) regarding the probability values chosen. 

In an idealized situation, no uncertainty exists and the analysis can 

be made by selecting single values for the parameters to be accounted for in 

the planning process. When the values of the parameters are unclear or 

uncertain in engineering economic analysis, a probability measure is usually 

associated with the representation of the different possible values of the 

parameters. In associating probabilities for outcomes, they are implicitly 

assumed to be Bayesian. That is, the parameters are looked upon as random 

variables having prior distributions obeying certain laws. The prior 

distributions are used to reflect one's belief about the possible values 

they can assume in the future by assuming a posterior or future 

distribution. However, it would be incorrect to extrapolate the previous 

trends and behaviors of certain parameters in the planning process into a 

posterior probability distribution since the prior outcomes may not obey any 

physical laws. In probabilistic models, such subjective projection of prior 

probability distributions into the future is a common recourse due to the 

lack of better techniques. Therefore, the subjective selection of 

probabilities must have fthe consensus of all the parties involved. 

Another important matter is the distinction between uncertainty and 

risk. Often, these terms are used interchangeably. Uncertainty is 

associated with the unknown outcome of events when one ascribes subjectively 

chosen probabilities to the outcomes in an event. Risk is a measure of the 

effect of outcomes in an event. It is the probability of an ensuing outcome 

multiplied by its consequence. One may choose any objective for the measure 

of outcome. Examples of objectives are total cost, reliability, and capital 

disallowed from rate base. In that sense, the above definition of risk 

represents the expected value of a chosen objective. A more sophisticated 

measure of risk could be the variance of the objective. This distinction 

between the uncertainty associated with the input parameters in an analysis 

and the consequences of the ensuing result (risk) is important. 
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To continue the clarification of the difference between uncertainty and 

risk, consider an expansion plan which results in a certain total revenue 

requirement (RR) (if certain events happen) with a probability of 0.15. If 

other events were to occur, the total RR may be higher. In utility resource 

plans, RR and rates are frequently used as objectives. Therefore, in the 

following discussion on uncertainties, these two objectives are considered. 

The risk associated with the other events is now measured in dollars, namely 

the increase or decrease in RR. Therefore, it is clear that the risk or the 

penalty is measured in dollars and is not uncertain. However, the 

probability associated with the outcome of higher RRs compared with the 

lower RR represents the uncertainty associated with a high RR. 

In our analysis, the probability distribution of a certain objective-­

for example, total or class revenue requirements--is used as a proxy to 

risk. A comparison of the distribution over different ranges of RR or a 

comparison of the variances is used to represent risk. 

Returning to the subject of models, the use of complex models in 

seeking consensus has spawned lengthy debates. Considerable time could be 

spent arguing about the validity of the input data, be it the probabilities, 

price, or any other parameter. Moreover, with the increasing complexity of 

the models and the amount of information that can be produced by digital 

computers, the models and their workings have become increasingly opaque to 

regulators. 

This report, therefore, does not attempt to proffer any new 

mathematical methods. Furthermore, it was not our intent to undertake an 

exercise in least cost planning to identify the optimal decision. Instead, 

we restricted our purpose to the examination of certain concepts to show the 

types of studies that could be conducted by the utilities and regulatory 

commissions. We have chosen the model, Multiobjective Integrated Decision 

Analysis System (MIDAS)30, to examine certain aspects. There is more than 

one piece of computer software which accepts input probability values for 

chance variables and produces a probability distribution of selected 

objectives or outputs. MIDAS is one such software and was available from 

Electric Power Research Institute (EPRI) with relative ease: hence, our 

choice of MIDAS. 
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MIDAS is a software program that uses multi-objective decision 

analysis, with the user selecting the input of subjective probabilities for 

the outcomes of different chance variables. The program also considers 

decision variables in addition to chance variables. The details of MIDAS 

can be found in the user's manual obtainable from EPRI. 

The logic of examination is the following. Believing that the state 

commissions' time would be better spent in examining the more critical input 

parameters to the planning models rather than all the parameters, our intent 

was to examine the impact of more important sources of uncertainty upon 

planning decisions and the resulting uncertainties and risks in rates and 

revenue requirements. Such a study enables us to rank the major input 

variables in terms of their impact on rates and revenue requirements. The 

advantages of establishing such a ranking are obvious. Certainly, such a 

ranking could vary from state to state. 

Most of the above analysis was conducted using a simplified program 

called Simple Multi-Attribute Risk Tradeoff System (SMARTS) based on the 

principles of MIDAS which we developed for this study. In spite of demand­

side management and conservation measures there could be a need for new 

capacity in the future. Therefore, any proposed method of planning should 

be defensible under circumstances of high load growth as well as under low 

load growth, not just under the low load growth being experienced now. The 

object, therefore, is to examine a general and comprehensive framework for 

discussion and decision making in the presence of uncertainties. The 

examination of MIDAS in this light was to propose certain sensitivity 

analysis and consistency checks for data. 

In addition to the above, the data input to planning models should be 

internally consistent. For example, one might argue that the cost of 

capital and rate of inflation should have a positive correlation. One might 

also hold that interest rates have a positive correlation to the escalation 

of oil prices. Therefore, it was recognized that some form of internal 

consistency checks for the data should be examined. 

Additionally, the relative risks to the consumer classes were examined. 

The questions that were addressed were: Is the risk associated with a 

certain planning process the same for industrial, commercial, and 

residential customers? Should the risk for the three parties be the same? 
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How should the risk be measured? The succeeding chapters outline the 

* investigations. 

Scope of Report 

The report is organized in the following manner. Chapter 2 examines 

several issues and misconceptions in electric utility resource planning. In 

addition, certain checks for the internal consistency of input data also 

have been suggested. Chapter 3 outlines the decision tree analysis 

framework for three illustrative utilities using the MIDAS model. A 

simplified version of the model, (SMARTS) was developed to facilitate this 

study. Chapter 4 shows the results of the study of the three utility 

systems. Chapter 5 draws upon the results of chapter 4 in examining the 

ranking of certain major uncertainties. Chapter 6 addresses the issue of 

relative risks of consumer classes. 

*The above areas of investigations were identified by the project leader, 
Dr. Narayan S. Rau and were carried out under his general direction. The 
decision tree analysis to study the effect of objectives and the relative 
importance of objectives was carried out by Dr. Benjamin Hobbs and Mr. 
Pravin Maheshwari of Case Western Reserve University (Chapters 3-5). The 
development of SMARTS, a simplified computer model for analyzing decision 
trees, was a contribution of Dr. Hobbs. The discussion regarding the search 
for optimal solutions was contributed by Dr. Daniel Duann of NRRI (Chapter 
2). Mr. Mahashwari and Dr. Duann collaborated on the examination of 
internal consistency checks. The investigation of risk evaluation among 
classes of customers using the MIDAS model and decision trees was undertaken 
by Mr. Mohammad Harunuzzaman with the assistance of Mr. Youssef Hegazy, both 
of NRRI (Chapter 6). 
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CHAPTER 2 

SEARCH, OPTIMALITY, AND CONSISTENCY IN UTILITY RESOURCE PLANNING 

This chapter examines several issues that have been generally ignored 

in the discussion of utility resource planning. Specifically, the proper 

roles of alternatives-searching, flexibility, and internal consistency in 

utility resource planning are explored. Some solutions to overcome the 

difficulties associated with these issues are suggested. 

In discussions of utility resource planning, especially "least-cost 

planning,tI substantial efforts have been devoted to the definition of an 

optimal plan, the objective and content of such a plan, and the regulatory 

framework for implementing the planning process. These are important 

issues. However, these issues do not constitute the whole sphere of utility 

resource planning (or least-cost planning). Other important issues are 

involved and tend to be taken for granted. For example, the practical and 

conceptual difficulties in searching for and identifying all available 

options in utility resource planning are rarely discussed. The search for 

an optimal plan is often viewed as a routine planning exercise; that is, 

once the meaning of an optimal plan is found, the preparation and 

identification of the optimal plan can be assured. In the following 

sections, it is suggested that the search and preparation of an optimal plan 

are not trivial exercises. The difficulty and cost associated with the 

search for alternatives can significantly change the meaning of an "optimal" 

plan and the approach taken to prepare a utility resource plan. 

This chapter first outlines some common misconceptions about planning. 

Second, it presents the difficulties of traditional utility resource 

planning in the framework of these misconceptions. Third, additional 

complexities of implementing least-cost planning are identified. In view of 

the difficulties and misconceptions identified, suggestions for their 

resolution in a complex planning exercise are put forth. Finally, we 

discuss the general approach of assuring internal consistency in utility 

resource planning. 
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Some Misconceptions of Planning 

A plan can be defined as a summary of proposed future actions. An 

electric utility resource plan can be defined as the actions expected to be 

taken by a utility in meeting its customers' future demand with reasonable 

costs and acceptable service reliability. A "least-cost plan" may be viewed 

as a variation of the traditional utility resource plan that places special 
I 

emphasis on serving its customers at "least-cost". 

There are considerable debates on the meaning of "least-cost".
2

,3 Some 

argue that "least-cost" means minimizing electricity rates facing 

ratepayers. Others advocate minimizing the customers' monthly electricity 

bills. Still others assert that the utility's total revenue requirement 

needs to be minimized to achieve IIleast-cost". Some also argue that the 

entire social cost of providing energy service, including some externalities 

associated with energy production and consumption, should be minimized. 

There is some validity for each of these arguments. 

Another point of contention is the regulatory framework or 

institutional arrangement in implementing utility least-cost planning.
l

,4,S 

Should the utility alone be responsible for preparing the least-cost plan or 

should regulators actively participate? What degree of detail should a 

least-cost plan have? Who bears the responsibility for any adverse 

consequences of a "least-cost" plan? Debates on the meaning of least-cost 

planning and the regulatory framework for its implementation are important. 

A concern now may be that these two issues can dominate the discussion on 

utility resource planning, or least-cost planning, and result in certain 

misconceptions being created or left unchallenged. 

The emphasis of the current debates on least-cost planning illustrates 

hidden assumptions or misconceptions about the planning process. Some 

regulators and utility planners may be aware of these planning 

misconceptions, but they are not being given the attention they deserve. 

The first misconception is that a well-defined and clearly-stated planning 

problem can always be specified as an optimization problem to be solved. In 

using least-cost planning as an example, it is perceived that knowing the 

objective of a least-cost plan means the search for a least-cost plan can be 

defined and analyzed. However, no matter how precise or comprehensive the 

objective of a planning problem may be, it may not always be specifiable in 
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1 1 d f ' d '1' k' f 6 a c ear y e ~ne opt~ma ~ty-see ~ng orm, Planners still need to specify 

the constraints to be met, to identify all alternatives available, and to 

project the effects of chosen alternatives on the objective function. 

The second misconception about planning is that the solution to a well­

defined planning problem can always be characterized and identified.
6 

For 

example, even though a utility resource probleIll is sometimes defined as a 

mathematical programming problem where objective functions, decision 

variables, and constraints are clearly spelled out, there is no assurance 

that an optimal solution always exists and is identifiable. In other words, 

there may be no feasible solution. 

The third misconception is that the activities of identifying all 

feasible alternatives, finding the solutions, and verifying them can always 
6 

be accomplished within a reasonable time and at a reasonable cost. Studies 

indicate that the human cognition process and the computational capability 

of decision support systems constrain the size and complexity of a planning, 

t ' . bl h b solved. 7 ,42 system opera ~on, or contract~ng prq em t at can e 

Specifically, even some relatively IIsimple ll problems can be extremely time­

consuming to solve, or prove unsolvable despite the advanced computer 

systems and planning tools currently available. For example, in considering 

a broad-brush new-town planning problem where the planners need to locate 

ten activities in one of ten possible zones and connect them with fifteen 
14 

out of thirty possible highway links, a total of 5 X 10 plans might be 

considered. 
6 

The fourth misconception is the assumption that there are no local 

optimal solutions in addition to the overall optimum. The existence of 

local optimums is primarily due to the specific nature of a utility resource 

planning problem such as economies of scale or externalities. As discussed 

before, there are limitations to the identification and search for all 

possible alternatives. The existence of a local optimum can be a serious 

problem. A solution that is optimal over only a narrow range of 

alternatives can be mistakenly identified as the overall optimal solution. 

The fifth misconception is the assumption of the validity of specifying 

a resource plan in a static context. This is an especially acute problem 

when we consider that most utility resource plans cover a long timeframe. 

As a result, a plan that is optimal initially may have only a limited 

usefulness in guiding a utility's future actions in a constantly changing 
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environment. In other words, an "optimal" plan lacking the possibility of 

flexible future actions may be less useful than an initially "suboptimal" 

plan with considerable flexibility. While there is general agreement that 

flexibility should be built into plans, its value is difficult to quantify, 

leaving it ignored in many planning exercises. 

It should be noted that the preceding discussion of the misconceptions 

regarding planning is not a repudiation of existing planning methods, 

current utility resource planning activities, or the significant advances 

that have been achieved in the past. It merely points out that the 

implementation of planning activities can sometimes be more difficult than 

just the conceptual formulation of a planning problem. Although it may be 

attractive to expand the sphere of a planning problem to make it more 

comprehensive conceptually, there is no guarantee that this approach is 

always feasible or that a better plan can always be developed. Therefore, 

in applying the above arguments to utility resource planning, regulators, 

utilities, and ratepayers need to recognize that utility resource planning 

is a costly and time-consuming process. The benefits of expanding such 

activities must be weighed against the costs of doing so. Recognizing and 

addressing these misconceptions can enhance the validity and usefulness of 

utility resource planning in general, and least-cost planning in particular. 

Some Difficulties in Traditional Utility Resource Planning 

In this section, we discuss three issues in traditional utility 

resource planning in terms of these planning misconceptions. The first 

example is the economic dispatch of generating units in a utility system. 

The order of economic dispatch is generally determined in terms of operating 

cost. It is also assumed that the marginal operating costs for all 

generating units are increasing or remain constant over the whole range of 

electricity generation. Under this specification, the economic dispatch of 

generating units becomes a routine exercise: generating units are dispatched 

in the order of increasing marginal operating cost. The overall system 

optimum is reached when the marginal operating cost is equalized across all 

. . 8,9 1 h h generatlng unlts. Severa tec niques ave been developed to implement 

this optimization principle. 
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It is possible that the heat rate (fuel used/electricity generated) of 

specific generating units may not be constant or increasing continuously. 

This consideration as well as the possibility of scale economies in fuel 

purchases may entail a decreasing marginal operating cost for certain 

generating units over a certain range of electricity generation. Under this 

circumstance, the solution to the economic dispatch problem becomes more 

complicated; even unattainable, in some cases. The equalization of marginal 

costs across different generating units does not lead to overall 

optimization. The issue of suboptimization arises, and an optimal rule in 

guiding the economic dispatch of generating units might not be available. 

Even though some decomposition techniques have been suggested to solve the 

suboptimization problem in general, some additional concerns need to be 

. h h . 10 addressed in us~ng t ese tec n~ques. 

The second example is the joint production problem associated with 

electricity generation. If the monetary values of the joint products (such 

as electricity and steam) are independently determined and remain constant 

over the whole range of electricity generation, joint production does not 

change the formulation and solution of the resource planning problem. The 

monetary value of the secondary product can be added directly to the primary 

product. The problem of finding the optimal amount of electricity 

generation can be solved readily. However, some secondary products do not 

necessarily have constant market values, so their values cannot be added 

directly to the primary product. It appears that, up to now, no systematic 

way exists of finding and assuring the optimal solution under this 

circumstance. 

The third example is that the mere use of a typical utility resource 

planning models currently available does not assure the search for, and 

identification of, all possible alternatives. The planning models--such as 

the MIDAS discussed in this report--usually only indicate the financial and 

engineering consequences of specific alternatives deterministically or 

probabilistically. It is still up to the utility planners to search for, 

identify, and specify all feasible alternatives. This may not be a serious 

problem if only a small number of alternatives is available. With limited 

alternatives, the utility planner can devise a system to identify or examine 

the more obvious alternatives. Examination of those more obvious 

alternatives, even without a systematic reduction of infeasible 

11 



alternatives, may do a reasonably good job of identifying an optimal plan, 

provided that all alternatives are of similar natures. However, this 

approach can be risky and haphazard if a large number of alternatives with 

quite distinct natures exists (such as building a new power plant and 

retrofitting lighting fixtures). 

These three examples indicate that searching for alternatives and 

finding optimal solutions are not routine exercises. Actually, substantial 

efforts are needed, and there is no assurance that all planning problems, no 

matter how well defined, can be solved or bear useful results. 

Nevertheless, these inadequacies, as identified above, in traditional 

utility resource planning, in most instances, do not severely compromise the 

process of identifying the· best alternative available. The resulting 

utility resource plan may not always be optimal in the strictest sense. 

Often, however, it can be characterized as a "satisfactoryll solution when 

the costs and benefits of further refining the resource planning process are 

considered. 

Additional Complexities in Least-Cost Planning 

Least-cost planning, as currently envisioned, appears to be much more 

complex than traditional utility resource planning. The additional 

complexity of least-cost planning is fundamentally different from the 

planning inadequacies encountered in traditional utility resource planning. 

These complexities, if left unaddressed, can materially affect the utility 

resource plan. 

The Sources of Complexity 

The additional complexities of least-cost planning are derived from two 

factors. First, least-cost planning emphasizes the inclusion of non­

traditional alternatives such as conservation and load management programs. 

The development of demand-side options has gone hand-in-hand with the 

emergence of the concept of least-cost planning. Demand-side options 

include, among other things, the implementation of time-of-use electricity 

rates, utility control of customer appliances, promotion of energy-efficient 

appliances and lighting, and building weatherization. Demand-side options 
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can be usefully included in utility resource planning and playa role in 

meeting future electricity demand. Utility involvement in the development 

of demand-side options is justified in certain circumstances. However, 

additional refinements in the methodologies and practices of incorporating 

demand-side options into the utility planning process are still needed. 

Complex issues are involved in evaluating the cost-effectiveness of demand­

side options, in formulating the proper role of the utility, and in treating 

the cost of demand-side options. Additionally, the inclusion of demand-side 

options can significantly increase the scope of utility resource planning. 

Second, there is a strong tendency to expand the role of a utility 

resource plan by having a wider sphere of objectives. For instance, a 

least-cost plan is evaluated not only in terms of its effects on ratepayers 

within the utility's service territory, but in terms of regional or national 

impacts such as employment, economic development, and environmental 
5 

concerns. A least-cost plan is required to incorporate not only 

ratepayers' decisions on electricity usage, but their use of other forms of 

energy and possibly their non-energy related decisions.l,S 

These are admirable goals of utility resource planning, but they may 

also induce some undesirable effects. The uninhibited expansion of the 

objectives of a least-cost plan may be self-defeating. The consideration of 

other social goals may inhibit the performance of the utility in meeting its 

primary objective--supplying electric energy with reasonable quality at 

reasonable costs. An electric utility is primarily a business entity rather 

than a social institution. The issues of economic development and promoting 

employment, for example, are probably better dealt with by state departments 

of development or local chambers of commerce. 

The Complexities 

The combination of incorporating many nontraditional alternatives and 

expanding its objective has greatly changed the nature of utility resource 

planning. The complexity of a utility least-cost plan as compared to 

traditional utility resource planning is reflected in three areas. First, a 

broad range of new demand and supply options is incorporated into the 

planning process. Under the least-cost planning paradigm, an electric 

utility can no longer be content with just building power plants or 
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purchasing power from outside sources to meet future electricity demand. 

Alternative power supplied by nonutility power producers also need to be 

considered. Conservation and load management programs sponsored by the 

utility or nonutility entities cannot be ignored. 

Second, an electric utility may be required to coordinate with 

neighboring utilities in preparing and implementing statewide or regionwide 

least-cost plans. This is in sharp contrast with traditional utility 

resource planning that is generally confined to a utility system or to a 

loosely cooperative effort among utilities. The degree of coordination and 

integration is much higher in the least-cost planning process--at least in 

terms of statutory requirements--than in traditional resource planning. 

Unfortunately, the implementation of least-cost planning itself typically 

does not provide additional incentives or political mechanisms to promote 

closer coordination among neighboring utilities. Electric utilities have 

different objectives, di.fferent supply and demand characteristics, and may 

be subject to regulation from different regulatory agencies. Even though 

statutory requirements on coordination and cooperation can be specific and 

monitoring mechanisms can be instituted, it still would be difficult to 

achieve closer cooperation without providing economic incentives to the 

utilities. 

Third, the definition of "cost" is broadened so that it not only 

includes the cost incurred by the utility, but also the cost incurred by the 

ratepayers. Specifically, the utility's least-cost plan as currently 

contemplated requires the utility to consider not only ratepayers' total 

electricity bills but also the total cost of ratepayers' energy usage. The 

inclusion of the total cost of energy usage presents great challenges to the 

utilities. A utility either has no reliable information about ratepayers' 

energy consumption patterns and no means to control them, or can do so only 

with substantial efforts and expenses. 

The Consequences 

Two undesirable side-effects are associated with the increasing 

complexity and scope of a utility least-cost plan. First, the plan may 

become too complex and too comprehensive so that the costs of preparing and 

searching for alternatives become prohibitively expensive or the planning 

14 



problem becomes unsolvable. Then, even though the utility may have a more 

elegant and ambitious resource planning process, it may not necessarily 

produce a better resource plan to serve its customers. 

Second, the regulators, the utility, and the ratepayers may have a hard 

time understanding a highly complex resource planning problem and 

communicating with one another about its merits and weaknesses. The 

development of sophisticated mathematical models to include a larger number 

of variables, while making the planning process lucid to the modeler, has, 

perhaps, made the process more opaque to regulators and ratepayers. It is 

becoming increasingly difficult to resolve disputes among different parties 

and to reach a consensus about a utility resource plan. The cost and time 

delay experienced in planning and building new generation capacity under 

existing regulations are likely to be substantial. 

Suggestions for Resolving Complexities 

This discussion of the additional complexities and consequences of a 

utility least-cost plan is not intended to question or verify the validity 

of least-cost planning. It merely points out the difficulties and 

complexities in the development and implementation of a utility least-cost 

plan. A least-cost plan process, as currently envisioned, simply may be 

unworkable. In this section, several suggestions are provided which 

represent necessary refinements for a utility least-cost planning process. 

The definition of "cost" in least-cost planning should be narrowed 

rather than broadened. As indicated before, broadening the definition, 

though attractive in theory, has undesirable side--effects that can impede 

the primary function of an electric utility--providing electric service with 

reasonable quality at reasonable cost. Least-cost planning is not a panacea 

for all the problems facing electric utilities; it is but a new approach to 

utility resource planning. A poorly prepared least-cost plan, no matter how 

broadly it defines the concept of least-cost or how many policy goals it 

includes, does not lead to least-cost electric service for the ratepayers. 

The key in least-cost planning is not, therefore, how comprehensive the plan 

is, but if the concept of cost is appropriate to the purpose of the utility 

resource plan, and if the specification of the planning problem is clearly 

defined and solvable. 
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The difficulty and cost of preparing and searching for alternatives 

needs to be explicitly recognized in least-cost planning. Considerable 

amounts of time and effort are usually expended in presenting feasible 

alternatives and in identifying the "optimal solution." The effort needed 

in preparing and searching for all feasible alternatives generally is 

positively related to the size and complexity of the planning problem. If 

the task of searching for an alternative is given proper attention, utility 

planners and regulators will recognize that they need to reach a balance 

between a complex, though more realistic, resource planning process and a 

simplified, but more tractable one. Some decisions have to be made 

concerning the degrees of detail and comprehensiveness in the planning 

process. After all, the resources that can be devoted to utility least-cost 

planning are not unlimited. 

The value of flexibility in a least-cost plan needs to be considered. 

Since a utility least-cost plan typically covers a long period of time, 

substantial changes in the outside environment are likely. As a result, an 

initial optimal plan may bear little resemblance to the actual plan that 

evolves. Consequently, value is associated with flexibility in planning. 

But its quantification is difficult because utility planners rarely know in 

advance the range of future events and their likelihood of materialization. 

For example, utility planners do not know how many unexpected load 

changes will occur or the availability of outside power. Without this 

knowledge, it is difficult to assign a value to preserving the option of 

future outside power purchase. Nevertheless, maintaining flexibility with 

respect to future action does have value, and it needs to be considered. In 

this chapter, we do not propose specific evaluation mechanisms to measure 

the benefit of flexibility. We only emphasize that to view a least-cost 

plan as a unique action plan over an extended period of time without giving 

proper consideration to preserving flexibility may be unrealistic. 

Finally, internal consistency checks can be applied in a least-cost 

plan to reduce the size and complexity of a planning problem. Such checks 

can reduce the numbers of objectives, constraints, decision instruments, or 

assumptions used in least-cost planning. Through internal consistency 

checks, regulators and ratepayers would examine only the more important 

variables and the internal consistency in the values attributed to them, 

rather than examining the details of all of them. (The issue of the more 
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important variables in terms of their sensitivities is addressed in 

chapter 5.) The following section is a discussion of the general approach 

of considering internal consistency in a typical electric utility planning 

process. 

Internal Consistency in Least-Cost Planning 

The primary reason for considering the issue of internal consistency is 

to make a better utility resource plan within cost and time constraints. 

The use of internal consistency may reduce the size and complexity of the 

planning problem and make it manageable. Internal consistency of the data 

also reduces the efforts and costs associated with searching for all 

feasible alternatives. More importantly, checks for the internal 

consistency of data improve communication between regulators, ratepayers, 

and the utility. The task of preparing a utility resource plan becomes more 

accessible to all parties involved if the size and complexity of the 

resource planning problem can be reduced. Improved communication among the 

parties can enhance the formation of a common understanding about the best 

alternative in meeting future electricity demand. But there is a downside 

to the use of internal consistency checks. To reduce the complexity and 

size of the planning problem, some simplification is needed. If improperly 

done, the planning problem may be unrealistically simplified to meet 

internal consistency requirements. The solution derived may become 

irrelevant to the least-cost planning problem. 

The importance of certain types of data varies from utility to utility 

based on their historical configurations and location. Therefore, it would 

be unwise to suggest a universal set of data and an internal consistency 

check between them. However, as an example, a list of some primary factors 

that may be considered in a typical utility resource is provided in table 

2-1. The relative importance of these factor, based on our judgments, is 

also indicated. Such ranking of the important factors of utility planning 

helps to set the priority of analyses conducted in following chapters. 

Understandably, some utilities may view different factors in the table as 

more or less important. 

The correlations among the factors listed in table 2-1 are presented in 

a correlation matrix in figure 2-1. The rows and columns correspond to the 
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TABLE 2-1 

FACTORS OF UTILITY RESOURCE PLANNING 

Factors 

Supply-side factors 
1. Fuel availability 
2. Fuel cost 
3. Capital cost 
4. Power plant lead time 
5. Technological developments in 

generation technology 
6. Cogeneration 
7. Power sales to other markets 
8. Power cost and availability from 

other utilities 
9. Cost of power from other sources 

Dem~nd-side factors 
10. Annual rate of load growth 
11. Number of customers by class 
12. Customer response to demand-side 

management programs (DSMs) 
13. Cost of DSMs 
14. Effectiveness of DSMs 
15. Conservation investment life 

2 
16. "Free rider" issue 
17. Price elasticity 

Regulatory factors 
18. Policies regarding bearing of risks 
19. Environmental regulations 
20. Rate-setting policies 
21. Cost-recovery policies for demand-side 

programs 

General economic factors 
22. Inflation rate 

1* less important 
-.'0'( important 
*** very important 

Importance! 

* 
*** 

* 

* 

*,,(* 
* 

** 
** 

* 
* 

*** 
** 
* 
* 

2This refers to the case that certain customers will adopt demand-side 
options even without utility promotion and subsidy. So the effects of these 
customer actions need to be excluded in measuring the benefits of DSMs. 
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Supply-side 
Uncertainties 

Demand-side 
Uncertainties 

Regulatory/planning 
Uncertainties 

1 2 3 4 5 6 7 8 9\10 11 12 13 14 15 16 17118 19 20 21 22 

1 ++ +/- ++ ++\ 
2 +/- --I 
3 ++ +1 -
4 ++1 
5 I 
6 ++ 1-- + ++ 
7 1++ + 
8 --1-- ++ 
9 1++ ++ 

-----------------------------1------------------------
10 1 ++ ++ 
11 1 + ++ + 
12 1 

13 I 
14 I ++ ++ 
15 I 
16 I 
17 I 
-----------------------------1------------------------
18 I 
19 1 

20 I 
21 I 
22 I 

I 
I 
I 
++ 

I 
I 
I 
I 

1 2 3 4 5 6 7 8 9110 11 12 13 14 15 16 17118 

+ 

+/-

19 20 

+/-

+/-

++ 
++ 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

++ 13 
14 

+/-15 
16 
17 

+/-18 
19 

+/-20 
+/-21 

22 
21 22 

KEY: + a positive correlation (++ signifies a strong correlation). 
a negative correlation (-- signifies a strong negative 
correlation). 

+/- negative or positive correlation, depending on utility's 
circumstances, or one or more qualitative variables involved 
(which are not measured). 

Fig. 2-1. Correlation matrix for uncertainties in least-cost planning 
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factors listed in table 2-1. The correlation matrix for just the 

"important" and livery important ll factors is given in figure 2-2. 

Clearly, the factors of utility resource planning and the correlations 

among them identified here are highly simplified and subjective. They 

probably reflect the general condition facing a typical electric utility. 

Individual utilities may exhibit unique correlations among the different 

factors of utility resource planning. Once the correlation matrix is 

identified, the next step is to specify the quantitative relationship among 

the various factors. A range of the possible values of each factor may be 

established. 

Here we use the annual rate of load growth as an example to illustrate 

the procedure of an internal consistency check. According to the 

correlation matrix representing very important factors (figure 2-2), the 

annual load growth is positively correlated to the cost of demand-side 

management options, and negatively correlated with a customer's acceptance 

of demand-side programs and the effectiveness of such programs. It should 

be noted that the correlation matrix only reflects the important 

relationship among factors. It does not necessarily reflect any causal 

relationship among factors. For example, it is inappropriate to interpret 

from the correlation matrix that higher annual load growth can cause higher 

cost of demand-side management. In this instance, the internal consistency 

check shows that the probability of a higher load growth associated with an 

extremely low cost of demand-side management option is low. The utility 

planners can choose not to consider such a scenario, or to restrict the 

values assigned to the cost of demand-side management. In either instance, 

the complexity and size of the utility resource planning problem can be 

reduced. In the general move toward simplifying the planning process, 

commissions and utilities may want to consider establishing internal 

consistency matrices and agree on certain parameters for investigation 

during the planning process. 
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Fig. 2-2. 

Sources of Uncertainty 

Supply side Demand side Regulatory 

2 3 6 8 9 110 12 13 14 15 18 19 
212 
3 + I - 3 
6 1 - - 6 
8 1 - - 8 
9 1++ 9 

------------------1--------------- ---------

10 1 ++ 10 
12 1 ++ 12 
13 1 13 
14 1 ++ 14 
15 1 15 
------------------1---------------1---------
18 1 I 18 
19 1 I 19 

2 3 6 8 9 110 12 13 14 15 118 19 

Correlation matrix, "important" and "very important" 
uncertainties 
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CHAPTER 3 

DECISION TREE ANALYSIS OF RISKS: MODELS AND ASSUMPTIONS 

Risk and uncertainty are important in utility planning for several 

reasons. Uncertainties mean .that a unique 1I1east-cost" plan cannot be 

defined, since a plan which results in the lowest costs under some 
16 

circumstances is likely to perform poorly under others. We saw in chapter 

2 that the existence of a truly optimal plan is doubtful. The search is 

instead for a "robust plan" that will do well under a range of possible 

outcomes, although is not necessarily the best under any of them. A 

planning process that ignores or underestimates uncertainty may yield 

"brittle" plans that perform disappointingly under circumstances other than 

the narrow ones considered during its development. 

Another reason that risk is important is because it makes financial 

planning difficult and may prevent utilities from recovering all of their 

costs. Third, uncertainties in the price of electricity are costly to 

consumers who must make capital investments based on a forecast of electric 

rates. 

In this and the following chapters, the importance of risk in utility 

planning is studied for three hypothetical utilities. In particular, the 

following questions are addressed: 

* What is the impact upon costs and rates of risk-averse 
decision making by utilities? 

* What is the effect of demand and supply uncertainties 
upon optimal utility plans, the worth of information, 
and the variance of rates and total electricity 
production costs? 

'k What is the cost of disregarding these uncertainties? 

These questions are answered by applying the methodology of decision 

analysis to three hypothetical utilities. 

In the next section, a brief review of the methodology of decision tree 

analysis is given. In the remainder of this chapter, the MIDAS and SMARTS 
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models are summarized, along with the data assumptions used in the analysis. 

Three "base cases" are defined: one for a model utility that depends upon 

oil-fired generation and power imports, one for a utility with generation 

capacity that is primarily coal fired, and one for a utility experiencing 

high growth rates and uses both coal and natural gas. The first utility 

resembles the conditions in the northeastern United States. The second 

model is typical of midwestern utilities. The third case is based on 

conditions in the southwestern United States. Assumptions concerning supply 

costs, demand, and uncertainties are described for each. Three different 

objectives are considered in each case: minimize revenue requirements, 

minimize electric rates~ and minimize disallowed capacity costs. The effect 

of different levels of risk aversion is modeled using utility functions to 

show how risks can be lowered at the expense of expected performance. The 

analysis answering the questions posed above is presented in chapters 4 

and 5. 

Solving Decision Trees 

In decision analysis, decision trees are created to explicitly layout 

the options available and the uncertainties faced. Such trees can be used 

to (1) determine an optimal strategy which optimizes the expected value of 

some objective, (2) calculate the value of obtaining information which 

reduces uncertainties, and (3) assess the effects of different sources of 
.. d .. 17 uncertalntles upon eClSlons. 

As an example, figure 3-1 represents the decision tree which is used in 

the analysis of chapters 4 and 5. Uncertainties are portrayed using "chance 

nodes" (round nodes), with possible events shown as distinct paths, each 

having a subjectively chosen probability associated with it. Decision 

options are represented as paths from a "decision node" (a rectangle in 

figure 3-1), When solving a tree, the decision maker must choose one of 

those paths for each decision node. As an example of a decision node, 

figure 3-1 shows that in year four (stage 6) the decision maker can choose 

to start construction of a new plant with one or two units, to delay a plant 

whose construction was started in year zero, or to continue construction of 

a 'plant. In the same year, there is a chance node which shows that demand 

growth for years four to thirty can be low (with probability 0.25), medium 
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(with probability 0.5), or high (with probability 0.25). A particular path 

from the starting node on the left to a terminal node on the right 

represents one possible sequence of decisions and outcomes. The terminal 

nodes are represented by filled circles. There are 2,598 terminal nodes. 

Hence, only a portion of the tree can be shown in figure 3-1. Other paths 

to the terminal nodes would be obtained by completing the decision tree 

along the dotted line paths shown. 

A solution to a decision tree consists of identifying an optimal 

strategy and its expected performance. Such a strategy defines the optimal 

decision for each decision node that can be reached. For example, a simple 

strategy of choice in decision nodes might be: 

Start construction of a coal-fired unit in year zero, implement 
a demand management program in years one to four. If the 
demand growth in years one to four is over 1 percent per year, 
delay construction in year four. If, instead, demand growth is 
over 3 percent per year, then start construction of a second 
unit in year four. Continue the DSM program in years five to 
thirty only if demand growth exceeds 1 percent per year. 

Decision tree-based models have been recommended as an appropriate 

f l ' , . , 'I' 1 . 18,19,20 B 1 means 0 ana yZlng uncertalntles In utl lty p annlng. e ow, two 

such models are used to evaluate risks in utility planning. The first is 

MIDAS, a utility planning tool developed under sponsorship of the Electric 

Power Research Institute. The second is SMARTS, which is a simplified 

version of MIDAS developed specifically for this project by the team. Most 

of the analyses are performed using SMARTS because of its flexibility. 

MIDAS, which requires more effort to calibrate and run, is applied to a few 

cases to check the results of SMARTS. 
, 15 20 

Ford and Gelnzer ' published two comprehensive analyses of risks in 

utility planning using what may be viewed as a simple decision-tree 

approach. They focused on the Bonneville Power Authority system. In one 

study, they defined a simple tree in which the first node was a decision 

node in which the utility chose either to make a high level of investment in 

demand-side programs or no additional investment.
20 

Four sets of chance 

nodes were then defined, which modeled uncertainties in demand growth, 

cancellation of nuclear units under construction, the market for aluminum, 

and the market for secondary power. This tree can be viewed as an "open 

loopt! planning process in which all decisions must be made before any of the 
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uncertainties can be resolved. A more realistic analysis, such as that 

represented in figure 3-1, allows for "closed loop" decision making in which 

utilities can modify their initial decisions as time passes and 

uncertainties are resolved. 

Before presenting models used in the analysis, the choice of optimal 

plans in decision tree analysis is explained using an illustration. 

An Example 

We can introduce the fundamentals of decision tree analysis with the 

help of a simple example. Figure 3-2 is a decision tree representation of a 

capacity expansion problem in which the decision maker must first pick 

option A or option B (which might represent alternative generation 

technologies). Proceeding from left to right, we see that after the choice 

is made, that the demand growth can either be low, medium, or high. The 

probability of each growth rate is shown in parentheses. The outcomes 

(present worth of power supply cost) are shown next to the terminal nodes. 

For example, if option A is chosen and demand growth is high, the present 

worth of costs will be two billion dollars. 

To determine the optimal strategy, the decision tree is "folded back." 

This procedure starts at the terminal nodes and moves backwards through the 

stages of the decision tree. It assumes that the decision maker is trying 

to optimize the expected value of the outcome of a desired objective. The 

desired objective in this example is the present worth of costs. The 

expected value of a variable X--designated E(X)--is defined as the sum of 

the possible outcomes, each weighted by its probability. Hence, E(X) is the 

probability weighted average. In the illustration of figure 3-2, the 

expected value of costs for the upper chance node is 0.25 x 0.9 + 0.5 x 1.6 

+ 0.25 x 2 billion or 1.525 billion dollars. For the lower chance node, the 

corresponding value is 1.575 billion dollars. 

Folding back proceeds as follows. At each chance node, the expected 

value (mean) of the outcomes is calculated. At each decision node, the best 

option is chosen. The procedure works its way backwards through the tree 

until the calculations for the first node on the left are completed. The 

result is an optimal strategy (defined by the decisions made at each 

decision node) and an expected value for the performance of that strategy. 
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Present worth of COllllt" 

$ 0.9 x 10 9 

$ 1.8 x 10 9 

$ 2 x 10 9 

$ 1.4 x 10 9 

$ 1.9 x 10 9 

Expected Value" 
1.525 x 10 9 

SDV· 
0.398 x 109 

Expected Value-
1.575 x 10 9 

SDV· 
0.378 x 109 

Figure 3-2. Example of decision tree for choosing 
optimal strategy under risk (Option A is chosen). 
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Applying this procedure to figure 3-2, the calculations are as follows. 

First, the expected outcomes are calculated for the chance nodes in the last 

stage of the tree. Recall that the performance of option A is $1.525xl0
9 

and of option B $1.575xl0
9

. Having finished the calculations for that 

stage, the procedure moves back to the previous stage, which is the decision 

node. At this point, option A is chosen because its expected cost is better 

(lower). Since the first node on the left has been encountered, the 

procedure is finished and the optimal strategy (choose A) and its expected 

performance ($1.525xl0
9

) has been determined. 

Model Overview 

In both MIDAS and SMARTS, uncertainties are represented as chance nodes 

in a decision tree and decision alternatives are portrayed as decision 

nodes. In addition, both models can automatically add generation capacity 

as needed after a specified year without having to represent explicitly 

those decisions with decision nodes. 

It is not possible to include a realistic amount of detail about all 

aspects of utility planning in a single model. MIDAS treats technical 

aspects such as pricing and production costing in a detailed and rigorous 

manner. But because of the model's relative size and slow execution time, 

it can only include a limited number of uncertainties and decision options. 

It includes submodels which perform load analysis, capacity planning, 

production costing, financial projections, and rate calculations. As an 

example of the detail incorporated in MIDAS, production costing can be 

accomplished using probabilistic simulation while accounting for unit 

maintenance schedules, monthly load duration curves, energy-limited plants, 

and pumped storage. MIDAS output includes detailed reports on the results 

of all these submodels. It also calculates and provides several useful 

pieces of information, including (1) the optimal strategy and the expected 

value of the objective function, (2) the expected value of perfect 

information, and (3) probability distributions for the objective under 

alternative strategies. 

MIDAS requires many hours for data preparation and program execution. 

For example, a l44-terminal-node problem took forty hours to execute on a 
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IBM PC-XT with a math-coprocessor, while data preparation took several rnan­

weeks. Therefore, for practical purposes, the number of terminal nodes on a 

MIDAS decision tree is limited to one or two hundred. For this reason, 

SMARTS was developed so that more extensive analyses could be undertaken. 

SMARTS uses a number of simplifications to reduce model size and 

computational time. The simplifications permit the modelling of many more 

uncertainties and options. To make this possible, SMARTS must use simple 

production costing, financial, and demand models, while still capturing the 

essential elements of the planning process. These two models complement 

each other. MIDAS yields realistic and very detailed solutions for a few 

cases. They provide a benchmark for the SMARTS simulations. Meanwhile, 

SMARTS flexibility allows analysis of a wider range of options and 

uncertainties. The important simplifications in SMARTS are: 

* The production costing submodel uses a trapezoidal annual 
load duration curve whose dimensions are based on the peak 
and average demand values provided by the user. 

* The production costing submodel uses a derating procedure to 
include forced outages and maintenance. 

* Only one aggregate customer class is considered. 

* Revenue requirements are calculated as the sum of capital 
charges, fixed operating costs, and variable production costs 
ignoring the detailed structures of these. 

* Capital charges are of two types: a fixed fraction of capital 
investment in distribution, transmission, general, and pre 
year-zero generation plant; and a capital recovery factor 
multiplied by the post year-zero investment in power plants. 

* The total capital investment in distribution, transmission, 
general, and pre year-zero generation plant is assumed to 
grow by a fixed percentage each year. 

* The fixed fraction by which that investment is multiplied 
accounts for depreciation, income taxes, interest, and return 
to stockholders. 

* Fixed operating costs, excluding those associated with post 
year-zero plants, are assumed to grow by a fixed percentage 
each year. 

* All calculations are performed in constant dollars. 
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* Unlike MIDAS, loads cannot be adjusted based on calculated 
prices and assumed price elasticities. 

These simplifications enable SMARTS to solve much larger decision trees with 

up to several thousand terminal nodes. Data preparation for SMARTS is 

simpler than for MIDAS because there are far fewer parameters. The model's 

quick run times makes it possible to perform a wider range of sensitivity 

analyses. 

Despite these simplifications, SMARTS can incorporate many essential 

features of the utility planning process: 

* Up to two types of capacity additions (for instance, baseload 
coal and peaking combustion turbines). 

* Costs of demand-side programs, which may be uncertain. 

* Differential growth rates for peak and average demands. 

* Escalation in fuel prices. 

* Bulk power sales and purchases. 

-k Regulatory disallowance of costs for "excess" capacity. 

* A variety of objectives, including minimization of revenue 
requirements, minimization of electric rates, and 
minimization of disallowed capacity costs. 

* A variety of risk attitudes, from risk neutral to risk 
averse. 

SMARTS solves a decision tree, such as that in figure 3-1, by following 

three steps: 

1. Data bases on costs, demands, decision options, and 
uncertainties are prepared within an electronic 

spreadsheet, such as LOTUS 1_2_3. 33 

2. For each terminal node on the decision tree, three 
quantities are calculated by a program written in TURBO­
BASIC: the present worth of total utility costs, the 
discounted sum of power demands (used in step 3 to 
calculate levelized rates), and the present worth of 
disallowed capacity costs. Each terminal node represents 
one possible sequence of decisions and resolution of the 
uncertainties. These calculations are accomplished by 
performing production costing and financial analyses for 
each year in the planning period. Prior to stage 8, 
construction starts for new plants are dictated by the 
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choices made at the tree's decision nodes (see figure 3-1). 
However, subsequent starts are automatically made by SMARTS 
to satisfy reserve margin requirements, just as in MIDAS. 
It is accomplished as follows: the user specifies a target 
reserve margin; if demand in any year after year fifteen is 
such that there would be inadequate capacity, the model 
adds additional generation units of a size and type defined 
by the user. It is assumed that eight years are required 
to build a plant, so that to satisfy a reserve margin 
constraint in year sixteen, construction would have to 
commence in year eight. Shortfalls in capacity prior to 
year sixteen are assumed to be made up by purchasing power 

45 
at a very high price ($200 a megawatt-hour). 

3. Given the values of costs, demands, and disallowed costs at 
each terminal node, the decision tree is then solved by the 
standard "folding back" method, analogous to backwards 
dynamic programming. The objective used can be to minimize 
expected present worth of costs, expected levelized rates, 
expected disallowed capacity costs, or a weighted sum of 
the three. 

Objectives Used to Select Optimal Plans 

General Objectives 

Three general objectives are considered for the selection of optimal 

plans, discussed in the next chapter. The first two are frequently-stated 

objectives of integrated resource planning: minimizing the present value of 

total utility costs (in dollars) and minimizing of electric retail rates (in 

dollars per kilowatt-hour).23 Both objectives are used in the applications 

of MIDAS and SMARTS. The definition of the present value of total utility 

costs is obvious. The retail rate Dbjective, p*, the price charged per 

kilowatt-hour levelized over the planning horizon, is defined as
37

: 

'k 
P :Zt p E /(l+i)t 

t t (3-1) 

where P
t 

is the actual price per kilowatt-hour in year t and E
t 

is the total 

energy sales in kilowatt-hours during year t. In other words, if a price of 

p* was charged for every kilowatt-hour sold over the time horizon, the 
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present worth of utility revenue would equal the present worth of revenue 

* under the actual time series of prices. Thus, P can be viewed as a kind of 

average price. * 46 P is referred to here as the "leve lized rate." 

The third general objective is minimizing the present worth of 

disallowed capacity costs. The costs consist of the sum of the discounted 

costs of plant construction that are assumed to be disallowed by a 

regulatory commission because the system's reserve margin exceeds a 

specified threshold. Because of the difficulty of calculating it in MIDAS, 

this objective is used only in SMARTS. 

Other objectives have been suggested for utility planning. One is the 

maximization of net conSQmer value, which can be operationalized as consumer 
24 

surplus. However, use of that objective would require that the models 

allow demand to depend on price. SMARTS currently lacks that capability, so 

this objective is not considered here. Future work could include this 

criterion. 

These objectives do not necessarily lead to the same solutions.
23 

For 

example, consider a utility whose marginal (or avoided) cost of providing 

power is less than its average cost. In that case, minimizing total utility 

costs would justify subsidizing a conservation program whose cost per 

kilowatt-hour-saved is less than marginal cost. However, electric rates 

would have to increase as a result of that program, because the utility's 

fixed costs would have to spread over fewer sales. Therefore, minimizing 

the costs might not minimize the rates. As another example, a utility which 

attempts to minimize disallowed capacity costs may avoid adding new 

capacity, even if the cost of such capacity were less than the expense of 

the additional power it would have to purchase from other utilities. In 

this instance, one observes a contradiction between minimizing disallowed 

cost and minimizing total costs. Finally, minimization of total costs may 

justify certain demand management programs that would not be economical 

under a maximization-of-consumer-surplus objective. These conflicts are 

examined in chapters 4 and 5. 

Incorporating Risk Attitudes in the Objectives 

As Hirst has stated, the presence of risk makes it impossible to 

identify a plan that is "least cost" under all circumstances.
16 

Rather, 
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decision makers must somehow weigh the possible outcomes when choosing an 

optimal plan. One approach as explained earlier, is simply to minimize the 

expected value of the objective, defined as the sum of its possible values, 

each multiplied by its probability. Decision analysts call this type of 

behavior "risk neutrality. II It is also possible to behave in a risk-averse 

or risk-seeking manner by giving greater weight to poor or good outcomes. 

One way of modeling these different types of behavior is to describe a 

decision maker's preferences by a utility function whose expected value the 

decision maker attempts to maximize. The following general utility function 

is one frequently used by decision analysts: 

Maximize U(X) = a - becX (3-2) 

where X is the value of the objective (such as the present worth of utility 

costs) and a, b, and c are constants. Assuming that X is to be minimized, 

setting b>O and c>O will yield a risk-averse utility function. 

To illustrate the application of utility functions in decision making, 

consider again the simple example of figure 3-2. Imagine that the decision 

maker is risk averse, so that it is inappropriate merely to minimize 

expected costs. Risk here is the chance of having the cost stream too high. 

Instead, the values of a and b in (3-2) are chosen to result in the 

following utility function to model the decision maker's preferences: 

U(X) 1.0556 - 0.005e2.6762X (3-3) 

where X is the cost in billions of dollars. This function is risk averse 

because the expected value of U(X)--designated E[U(X]--for a risky 

alternative will have a lower utility than a riskless alternative which has 

the same value of E(X). That is, when choosing between two alternatives 

with the same E(X), the function results in a higher E[U(X)] for the less 

risky alternative. 

If X is the cost in equation (3-3), a cost of $0.9xl0
9

, which is the 

best value in figure 3-2, has a utility of one, while the worst value 

($2xl0
9

) has a utility of zero. To apply this utility function, the value 

of equation (3-3) is substituted for cost at each terminal node in figure 

3-1, and then the tree is solved in the normal fashion. Considering figure 
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3--2 as an example, the utility of option B under medium demand growth is 

0.779, which is calculated by substituting $1.5xl0
9 

in (3-3). E(u(x)), the 

expected utility of option A, which is the sum of the utilities of each 

level of demand growth weighted by the probabilities, is 0.597. The 

expected utility of option B is 0.662, which is higher, implying that B is 

preferred under this utility function although its expected cost is higher 

than that of option A. Option B is preferred because it is less risky 

compared to A, having a smaller chance of bad outcomes and a lesser standard 

deviation of cost. 

To what extent would a risk-averse attitude change the optimal strategy 

for an electric utility? In general, there are tradeoffs between risk and 

expected value; if a utility planner is willing to accept, say, a poorer 

expected value of total cost, then it may be possible to choose a strategy 

which is less risky. As shown in the above example, in figure 3-2, a 

planner could choose option B, which is less risky than A but has a higher 

expected cost. 

Note that risk-seeking functions can be simulated by using b<O and c<O 

in equation (3-2). This study is confined to risk-averse functions. 

Therefore, by inserting a risk-averse utility function in the MIDAS and 

SMARTS models, the strategies that maximize expected utility were found. 

Risk aversion is simulated by choosing high values of the parameter c. (The 

a and b parameters do not affect the ranking of alternatives and can both be 

set equal to one.) The effects of risk-averse decision making are studied 

in the next chapter by plotting the standard deviation of the objective (a 

measure of "riskll) for each solution versus the objective's expected value. 

The results will indicate whether it is possible to significantly lower 

risks in utility costs and rates and what it would cost (in terms of 

expected performance) to do so. 

Data Assumptions 

To illustrate the importance of uncertainty in utility planning, three 

planning problems are modeled, utilities A, Band C. Because this analysis 

considers only three specific cases, the results cannot be generalized for 

all utilities. But, because the utilities span a range of supply and demand 

conditions, the results can be considered indicative of the importance of 
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uncertainty for many utilities. Nevertheless, the reader is cautioned that 

before specific conclusions can be made for a particular utility, it is 

necessary to study that utility's special circumstances by using models 

similar to MIDAS or SMARTS. 

This section summarizes the data assumptions used in the analyses. The 

appendix provides additional detail for the MIDAS models. For each utility, 

a thirty-year planning horizon is considered in SMARTS. However, only a 

twenty-year horizon is modeled in MIDAS, due to its required computational 

time. 

Figure 3-1 displays the structure of the planning problems as modeled 

in S~~RTS. There are four sets of decision nodes, representing capacity and 

demand-side management program decisions at years zero and four, and five 

sets of chance nodes, representing various supply and demand uncertainties. 

The MIDAS model is the same, except that it omits the supply uncertainties 

and has fewer alternatives at each decision node. Table 3-1 lists these 

details for the MIDAS and SMARTS decision trees in relation to figure 3-1. 

For utilities A and B, expected growth rates are 1.8 percent a year 

(peak) and 2.0 percent a year (energy) in the absence of demand-side 

management programs. These growth rates are consistent with those forecast 

by utilities in the northeast and midwest. Utility C, however, expects peak 

and energy growth rates of 2.6 percent and 2.8 percent a year respectively. 

These rates are the averages used in chapters 4 and 5. Sensitivity analyses 

are conducted using a range of variances of the rates of demand growth 

around these expected values. 

Both the MIDAS and SMARTS models include decision nodes in years zero 

and four representing decisions about whether to pursue a demand-side 

program. Initial impact on demand growth of DSM programs was derived from 

an EPRI
28 

survey of fifty-nine rebate programs. An analysis of seventeen of 

those programs, which reported both peak reduction and cost data, reveals 

that the average program costs approximately $200-per-kilowatt-per-year of 

reduction in peak demand, with a range of $lOO-to $600-per peak kilowatt-per 

year (see the appendix), Typical programs reduce peak demands by between 

0.2 percent and 0.6 percent a year, with an average of 0.35 percent a year. 
27 

Another EPRI report presents subjective probability distributions for the 

nationwide impacts of DSM programs by the year 2000. DSM programs were 

forecast to reduce the total demand of 715 gigawatts in the year 2000 by 45 
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gigawatts on the average. The uncertainty band was that there is a 90 

percent chance that at least 19 gigawatts would be cut, and a 10 percent 

chance of more than 170 gigawatts. If this decrease takes place over an 

eight-year period, as is assumed in the MIDAS and SMARTS models, this 

implies that DSM programs are expected to lower the demand peak by an 

expected value of 0.8 percent a year, with an 80 percent confidence interval 

of 0.34 percent to 3.3 percent. The EPRI report also forecasts that the DSM 

programs would have even a greater impact on energy consumption, although 

individual utility DSM programs are often designed to address peaks rather 

than energy. 

Based on these results, it is assumed here that a DSM program is 

available to the three utilities which could lower peak and energy growth 

rates by 0.7 percent a year and 0.5 percent a year, respectively. These 

impacts are greater than have been experienced by most programs thus far, 

but are slightly less than the long-run impact that is expected by EPRI. 

The cost of these programs is assumed to be $200 per kilowatt-a-year. 

It is assumed that if the DSM programs are kept in place indefinitely, 

these decreases in growth rates would be maintained for eight years, at 

which time the higher (1.8 percent a year and 2.0 percent a year) growth 

rates would resume. On the other hand, if a DSM program is started and then 

later dropped, it is assumed that by eight years after the end of the 

program, the demands would be the same as they would have been without the 

program. The presumption behind these growth rates is that a DSM program 

targets energy-using equipment having a lifetime of eight years and that 

consumers replace one-eighth of that equipment every year. In the presence 

of a DSM program, it is assumed that consumers buy more efficient equipment, 

but that if the program was absent, then less efficient equipment would be 

purchased. Based on an eight-year effective life for DSM investments and a 

real interest rate of 6.1 percent, the $200 per kilowatt-a-year program cost 

translates into a cost per kilowatt-hour saved of about $0.008. The effect 

of higher values of this cost upon the optimal solutions is examined in the 

next chapter. 

It is assumed that each utility can build coal-fired generation 

capacity in increments of 400 MW. In addition, for every 400 MW coal unit, 
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Stage No. 

MIDAS Model: 

1 

2 

3 

4 

5 

6 

TABLE 3-1 

MIDAS AND SMARTS DECISION TREE SUMMARIES 

Node Type Year 

Decision o 

Decision o 

Chance o 

Decision 4 

Decision 4 

Chance 4 

Description 

Capacity expansion. Options: 
-Start construction of 0 units. 
-Start construction of 1 coal unit and 
associated combustion turbines. Unit 
will be on line in year 8. 

Demand-side program. Options: 
-Base case: no additional programs 
over those assumed in base case 
growth rate. 

-Additional program for years 1-4, 
expected to decrease peak growth 
rate by 0.7 percent/yr. 

Demand growth rate, years 1-4. Possible 
outcomes: 

-Growth rate 1% less than expected 
value. 

-Expected growth rate, given demand­
side program. 

-Growth rate 1% more than expected 
value. 

Capacity expansion. Options: same as 
stage 1, except that the choice is 
between 0 or 2 coal units. Coal units 
started in this year come on line in 
year 12. 

Demand-side program. Options: 
-Base case: no additional programs over 
those assumed in base case growth 
rate. 

-Additional program for years 5-20, 
expected to decrease peak growth rate 
by 0.7% until saturation. 

Demand growth rate, years 5-20. Possible 
outcomes, same as Stage 3. Expected 
growth rate accounts for demand-side 
programs and saturation of such programs. 
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Stage No. Node Type 

SMARTS Model: 

1 Decision 

2 Decision 

3 Chance 

4 Chance 

5 Chance 

6 Decision 

7 Decision 

8 Chance 

TABLE 3-1 (Cont'd) 

Year 

o 

o 

o 

o 

o 

4 

4 

4 

Description 

Capacity expansion. Options: same as 
MIDAS, plus: 

-Start construction of two coal units 
and associated combustion turbines. 
(If not delayed, units will be on line 
in year 8). 

Demand-side program. Options: same as 
MIDAS. 

Demand growth rate, years 1-4. Possible 
outcomes: same as MIDAS. 

Supply cost, years 1-30. In base case, 
possible outcomes include: 

-low capital and fuel costs. 
-expected capital and fuel costs. 
-high capital and fuel costs. 

In sensitivity analysis for utilities A 
and C, fuel costs are considered 
in stage 4 so that fuel and capital costs 
are independent. 

Supply costs, years 1-30. For utility B, 
base case, possible outcomes include: 

-high purchased power cost. 
-purchased power at expected cost. 
-low purchased power cost. 

In sensitivity analysis for utilities A 
and C, three outcomes (low, expected 
value, and high) are defined for fuel 
cost. 

Capacity expansion. Options: same as 
Stage 1, plus: 

-Delay construction of units started 
in year zero for four years. 

Demand-side program. Options: same as 
MIDAS, except any implemented programs 
are extended through year 30. 

Demand growth rate, years 5-30. Possible 
outcomes, same as MIDAS. 

39 



100 MW of combustion turbine capacity is also added. The costs and 

technical performance of these units are based on EPRI analyses, with the 

exception of the construction lead time and cost of construction delay. 

Table 3-2 summarizes these data. In the decision trees, decisions to start 

or delay construction in years zero and four are modeled using decision 

nodes. Recall that the decisions to start construction in year eight and 

afterwards are made automatically by the models. The automatic additions 

are made by adding enough capacity in each year, starting with year sixteen 

(allowing for eight years of construction after year eight), so that the 

utility's reserve margin is at least 20 percent. Perfect foresight 

regarding future demand levels is assumed for the automatic capacity 

additions; however, commitments to construction in years zero and four must 

be made without the benefit of knowing what demand will be realized. For 

example, if the reserve margin falls below 20% in year seventeen, (perfect 

foresight assumed), the model starts the construction of a 400 MW coal plant 

and a 100 MW combustion turbine in year nine to come on-line in the 

sixteenth year. 

TABLE 3-2 

GENERATION CAPACITY ADDITIONS COST AND PERFORMANCE DATA 

Parameter 

Fuel type 
Capacity 
Construction lead time 
Capital Cost: 

-if no construction delay 
-if construction delayed 

four years 
Heat rate 
Nonfuel variable operating 

cost 
Fixed operating cost 
Forced outage rate 
Planned outage rate 

Baseload Unit 

Coal 
500 MW(e) 

8 years 

$1806 /kW 

$2004 /kW 
10,060 Btu/kWh 

$2.3 /MWh 
$24 /kW/yr 

0.11 
0.09 

Peaking Unit 

Distillate 
2x50 MW(e) 

1 year 

$337 /kW 

$337 /kW 
13,800 Btu/kWh 

$4.0 /MWh 
$0.4 /kW/yr 

0.043 
0.05 

Source: EPRI, Reference 28. Capital costs inflated to 1988 dollars. 
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Capacity costs are assumed to escalate at the general rate of 

inflation. In cases where excess capacity costs are assumed to be 

disallowed by the public service commission, "excess" is defined as the 

capacity in excess of a 25 percent reserve margin. Once the reserve margin 

falls below 25 percent, enough capacity to bring the margin up to 25 percerlt 

is allowed into the rate base. 

Note from table 3-1 that the year-zero supply decision node for each 

MIDAS decision tree presents two options: start construction of either zero 

or one coal-fired unit, plus associated turbines. In year four, the options 

are to start building two additional units or none. The SMARTS tree 

contains more options. In year zero, the utility can start construction of 

zero or one coal unit plus combustion turbines. In year four, the utility 

can delay construction of the unit that is underway or continue its 

construction. If a unit is delayed, its capital costs are increased to 

account for the additional interest. Alternatively, each utility can decide 

to start building one, two, or no more coal units. 

Below, additional information is given on the characteristics and data 

assumptions for the three representative utilities studied. 

Assumptions Regarding Utilities Studied 

Utility A 

This hypothetical utility is typical of utilities in the Northeastern 

United States. At present it serves a peak demand of 2,200 MW with a load 

factor of 56 percent. The DSM program would cost $3,500,000 a year. 

The utility has 2,950 MW of capacity, of which 25 percent is nuclear 

fueled, 66 percent oil-fired steam, and the remainder combustion turbines. 

Fuel costs are based on those actually experienced in 1987 for northeastern 

utilities (approximately $1 per 10
6
Btu for nuclear, $2.5 per 10

6
Btu for 

6 
heavy oil, and $4 per 10 Btu for distillate). These costs are assumed to 

escalate at the general rate of inflation. 

The utility has contracted for 400 MW of firm power purchases from 

other utilities at an average cost of $42 a megawatt-hour. The utility has 

$2,100,000,000 in undepreciated assets and $450,000,000 a year in fixed 

operating expenses. In the near term, this utility's marginal cost of 

providing power is less than its average cost, but because of its slim 
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reserve margins, its marginal costs will soon rise to levels close to its 

average cost. 

Utility B 

This utility, which is representative of those in the Midwest, serves a 

peak demand of 4,600 MW. The load factor is 74 percent. A demand-side 

management program costing $6,400,000 a year is possible. 

The utility has 6,250 MW of capacity. Of this amount, the majority (77 

percent) is coal-fired. The heat rates of those units range from 10,300 Btu 

per kilowatt-hour for large units without scrubbers to 14,200 Btu per 

kilowatt-hour for smaller, older plants. An additional 19 percent of the 

total capacity is nuclear fueled, and the remainder consists of combustion 

turbines. Based on actual costs in the region, fuel costs are assumed to 
66' 

average $1.4 per $10 Btu for the coal fired units, $1 per $10 Btu for the 

nuclear capacity, and $6 per $106Btu for the combustion turbines.
40 

The utility has $7,240,000,000 in undepreciated assets and $620,000,000 

per year in fixed operating expenses. Because of the large fixed expenses 

and low operating costs for the fossil fueled plants, this utility's 

marginal cost will be well below its average cost for "the next few years. 

Utility C 

This utility is typical of Southwestern utilities. It serves a peak 

demand of 3,100 MW. The load factor is 59 percent. A $4,400,000 demand­

side program is an option. 

The total capacity is approximately 4,450 MW. Just over half (51 
6 40 

percent) is coal-fired, with a fuel cost of about $1.2 per $10 Btu. 

Natural gas-fueled steam plants and combustion turbines provide 20 percent 

and 12 percent of the capacity, respectively. The cost of natural gas 
6 

averages $3 per $10 Btu. The combustion turbines are expensive to run 

because of their relatively high heat rates (over 18,000 Btu per kilowatt­

hour). The remaining capacity, 17 percent, is nuclear. 

The utility has approximately $3,500,000,000 in undepreciated assets. 

Because of these large fixed costs, ample reserve margin, and low operating 

expenses for most of these plants, utility C's marginal cost will be 

significantly below its average cost for several years to come. 
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This utility was analyzed using SMARTS. MIDAS was not run for this 

utility, due to time and data constraints. 

Uncertainties Modeled as Chance Nodes 

Chapter 2 of this report reviewed sources of risk and uncertainty in 

least-cost planning. Table 2-1 in that chapter presented a preliminary 

screening of twenty-two causes of uncertainty. In the SMARTS analyses, only 

those rated in table 2-1 as important (**) or very important (***) are 

included. A comparison of table 2-1 and figure 3-1 shows how the 

uncertainties are captured as chance nodes in SMARTS. On the supply side, 

uncertainties 6, 8, and 9 (cogeneration, power from other utilities, and 

power from other sources) are modeled using a single chance node for the 

cost and availability of purchased power in figure 3-1. Fuel and capital 

cost uncertainties (numbers 2 and 3) are modeled explicitly as chance nodes. 

On the demand side, uncertainties 10, 13, and 14 (load growth rate, customer 

response to DSMs, effectiveness of DSMs) are combined into a single 

uncertainty: load growth. Uncertainty 12, cost of DSMs, is not modeled as a 

chance node, due to constraints on model size. Instead, a sensitivity 

analysis is performed to determine at what cost DSM programs are no longer 

justified under the objective to minimize the present worth of total cost. 

The third group discussed in chapter 2, regulatory uncertainties, is not 

modeled probabilistically. Instead, it is assumed that the utility knows 

exactly what fraction of "excess" capacity costs will be disallowed by its 

utility commission. 

Due to limits on model size, only demand uncertainties are modeled 

(using chance nodes) in the MIDAS decision trees. The supply uncertainties 

were not considered. 

The base-case probability distributions are summarized next. These 

distributions are modified extensively in the sensitivity analysis described 

subsequently. 

Base Case Probability Assumptions 

The probabilities associated with the base case are displayed in figure 

3-1 and are discussed below. These are the probabilities against which the 

sensitivity analysis is compared. 
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Demand Uncertainties 

An EPRI report states, "because of uncertainty in GNP, in relative fuel 

prices, and in other factors, future electricity demand is highly 

uncertain. 1127 It reports that the expected value of annual growth of the 

nation's peak demand between 1984 and the year 2000 is 2.5 percent, with an 

80 percent confidence interval of 0 percent to 4 percent. This probability 

distribution was based on interviews with experts on power demands. 

With regard to the load growth under base cases for utilities A and B, 

it is assumed that, in the absence of DSM programs, peak demand grows at an 

expected rate of 1.8 percent a year; with a standard deviation of 0.7 

percent a year. Energy demand grows at the slightly higher rate of 2 

percent a year, with the same standard deviation. If a DSM program is in 

place, lower growth rates apply, as discussed earlier in this chapter. In 

those cases, too, a standard deviation of 0.7 percent a year is used. These 

standard deviations are smaller than those discussed in the EPRI report: the 

former assume a given level of DSM effort while the latter result from a 

variety of assumptions about the extent of DSM programs. 

Utility C has mean growth rates that are higher than the above by 0.8 

percent a year. However, the standard deviations are the same. 

Ford and Geinzer present an analysis of the impact of energy 

performance standards for new homes and buildings upon demand uncertainties 

in the Pacific Northwest.
1S 

They conclude, contrary to the above 

assumption, that such standards would significantly reduce the standard 

deviation of demand. If true, such an effect would mean that all DSM 

programs would lower risks to utilities, the benefits of which could be 

estimated using a decision tree analysis. However, on the other extreme, it 

can be argued that uncertainties regarding participation rates, 

efficiencies, governmental subsidies, and other factors mean that DSM 

programs could increase the uncertainty in demand. In the analysis here, it 

is assumed that neither occurs and that DSM programs do not affect the 

standard deviation of demand growth rates. Future analyses should 

investigate this issue and its implications. 

The demand probability distributions are modeled by chance nodes at 

years zero and four with the following three-point distribution around the 

expected value: 

44 



- A 25 percent chance of a growth rate 1 percent more than the expected 

value. 

- A 50 percent chance of a growth rate equal to the expected value. 

- A 25 percent chance of a growth rate 1 percent less than the expected 

value. 

(See figure 3-1.) The chance node for year zero refers only to growth rates 

for years one through four, while the node for year four refers to the 

growth rates for years five through the planning horizon (twenty years for 

MIDAS and thirty years for SMARTS). For simplicity, probabilities for the 

two time periods are assumed to be independent. The above probabilities are 

changed in the sensitivity analysis to simulate cases with lesser or greater 

amounts of demand growth variance. 

Supply Uncertainties 

Three major groups of supply uncertainties are modeled in SMARTS: (1) 

fossil-fuel-price uncertainties, (2) capital-cost uncertainties, and (3) 

purchased-power uncertainties. Fossil-fuel-price and capital-cost 

uncertainties are modeled as a chance node at year zero of the model with 

the following three-point distribution (figure 3-1): 

- A 33 percent chance of a fossil fuel cost equal to 70 percent 
of its expected value and a capital cost equal to 85 percent 
of its expected value. 

- A 50 percent chance of the fossil fuel and capital costs 
equaling their expected values. 

- A 17 percent chance of a fossil fuel cost equal to 160 
percent of the expected value and a capital cost equal to 130 
percent of its expected value. 

The expected capital costs for capacity additions are given in table 3-2. 

The expected fossil fuel costs are assumed to equal the actual unit-by-unit 

costs in 1987 for the simulated utilities. Nuclear fuel costs are assumed 

to be known with certainty. The above cost levels are assumed to be 

maintained in real terms throughout the planning time horizon. An inflation 

rate of 6.1% per year is assumed in the studies. In the base case, fossil 

fuel and capital costs are assumed to be perfectly correlated, as indicated 
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above. This assumption is relaxed in a sensitivity analysis, in which it is 

assumed instead that the two cost categories are statistically independent. 

For the uncertainties associated with the cost and availability of 

purchased power, only utility A is assumed to have the opportunity to 

purchase significant amounts of power. The following three-point 

distribution is included in utility A's decision tree using a chance node: 

- A 33 percent chance of one-half the expected power supply 
being available at seven-sixths the expected price. 

- A 50 percent chance of the expected amount being available at 
the expected price. 

A 17 percent chance of two-times the expected amount being 
available at two-thirds the expected price. 

Sensitivity Studies 

The above data associated with the probabilities of outcome at chance 

nodes were used for the studies termed the "base case" analysis. In 

addition, sensitivity analyses were made to examine the effect of higher and 

lower variance in the demand. The following are the details of the data 

used for the sensitivity studies: 

* "High demand variance," in which probabilities of 0.5, zero, 
and 0.5 are assigned to growth rates of 1 percent a year 
above, 0 percent a year above, and 1 percent a year below the 
expected annual growth, respectively. This yields a standard 
deviation for demand of 1 percent a year. 

* "Zero demand variance," in which a probability of one is 
assigned to the expected growth rate. A standard deviation 
of zero results. 

In contrast, note that the base case distribution has a standard deviation 

of 0.7 percent a year. 

In the sensitivity analyses, the standard deviations of fuel and 

capital costs are altered by changing the probabilities of the extreme 

outcomes. For the "high fuel cost variance" case, the standard deviation is 

42.4 percent, resulting from a probability assignment of 0.67 for 70 percent 

of the expected value, 0.33 for 160 percent, and a zero probability for the 

expected value. The "zero fuel cost variance" case results from giving a 

probability of one to the expected value. The high-and zero-variance 
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scenarios for construction costs are obtained similarly, yielding standard 

deviations of 21.2 percent and zero percent, respectively. 

For the sensitivity analysis, changes in purchased power supply and 

cost uncertainties are modeled in the same manner. A standard deviation of 

o results from assigning a chance of one to the expected value. A standard 

deviation of 70.7 percent of the expected availability and 23.6 percent of 

the expected price results from giving a probability of 0.67 to the least 

favorable outcome (one-half of the expected power availability at seven­

sixths of the expected price) and 0.33 to the most favorable outcome (twice 

the expected power at two-thirds of the expected price). 
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CHAPTER 4 

RESULTS OF DECISION TREE ANALYSIS OF RISKS 

UNDER DIFFERENT OBJECTIVES 

This chapter describes the base case decision tree analysis of 

uncertainties for the utilities studied. Three general categories of 

results are presented. First, the effects of different planning objectives 

(minimization of total costs, rates, or disallowed capacity costs) upon 

optimal strategies are discussed. Then, the effect of risk attitudes is 

examined. Chapter 5 compares the impact of the uncertainties in supply and 

demand upon planning with a view to establish a ranking of uncertainties in 

order of their importance. 

Results 

Table 4-1 shows the results obtained from SMARTS. (All cost figures in 

this chapter are given in real 1988 dollars.) The table shows the present 

worth (PW) of expectations of cost, its standard deviation (SD), levelized 

value of expected rate and its SD of the optimal strategy for different 

objectives. The expected value of perfect information (EVPI) is also shown 

in table 4-1. The details of solving the decision tree to attain the 

different objectives have been shown in chapter 3. 

In table 4-1, the results for three main cattgories of objectives as 

shown. They are: 

* Minimize expected present worth of cost ("cost ll ) 

-k Minimize expected levelized rates (llrate") 

* Minimize expected disallowed capacity costs ("dis. cost") 

Table 4-1 displays three different types of solutions. In the first 

type, it is assumed that all costs are recovered. In the second type, it is 
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Case Utility 

A 

2 A 

3 A 

4 A 

5 A 

6 A 

7 A 

8 B 

9 B 

10 B 

11 B 

12 B 

13 B 

14 B 

15 C 

16 C 

17 C 

18 C 

19 C 

20 C 

21 C 

Key: Cost 

Cost, Risk 

TABLE 4-1 

SMARTS BASE CASE RESULTS: SOLUTION PERFORMANCE 
PW TotaL PW TotaL Levelized Levelized 

2 2 
Objective Costs Costs SD Rate Rate SD 

6 6 
[10 $] [10 $] [$/kWh] [$/kWh] 

4 
Cost 12860 1023 0.06953 0.00517 

4 

Cost,Risk 12860 1022 0.06951 0.00515 
4 

Rate 13191 1081 0.06833 0.00507 
4 

Rate,Risk 13180 1067 0.06834 0.00508 
5 

Rate 13084 1086 0.06849 0.00523 
5 

Rate,Risk 13091 1098 0.06852 0.00522 
4 

Dis. Cost 12861 1027 0.06954 0.00518 
4 

Cost 25416 2479 0.05045 0.00416 
4 

Cost,Risk 25512 2383 0.05022 0.00411 
4 

Rate 25994 2404 0.04986 0.00421 
4 

Rate,Risk 25967 2428 0.04988 0.00419 
5 

Rate 25025 2550 0.05021 0.00433 
5 

Rate,Risk 26045 2572 0.05024 0.00430 
4 

Dis. Cost 25555 2650 0.05084 0.00430 
4 

Cost 17265 1595 0.05632 0.00435 
4 

Cost,Risk 17342 1579 0.05666 0.00447 
4 

Rate 17727 1546 0.05566 0.00438 
4 

Rate,Risk 17699 1561 0.05567 0.00437 
5 

Rate 17634 1603 0.05595 0.00453 
5 

Rate,Risk 17698 1690 0.05601 0.00450 
4 

Dis. Cost 17308 1548 0.05652 0.00443 

Minimize Present Worth of Total Cost 
Maximize Risk Averse Utility Function for Cost 

Rate Minimize Levelized Price of Electricity 
Rate, Risk Maximize Risk AVerse Utility Function for Rate 
Dis. Cost Minimize Present Worth of DisalLowed Capacity Costs 
SD = Standard Deviation. 

Disallowed 

Costs PW 

6 
[10 $] 

2 

6 

135 

122 

0 

0 

0 

64 

287 

211 

166 

0 

0 

0 

23 

136 

184 

153 

0 

0 

0 

IBased on assumption that all costs, including Ilexcess" capital costs are 
recovered in rates. 

3 

EVPI 

4 

0.000127 

0.000043 

0 

74 

0.000109 

0.000135 

0 

19 

0.000057 

0.000085 

0 

2Based on assumption that capital costs of new generation capacity in excess of 
25% reserve margin are not recovered in rates. 

3EVP1 = Expected VaLue of Perfect Information, in units of the objective. 
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assumed that "excess" capacity costs are disallowed and are not recovered. 

The third category shows the objective of minimization or rates. In 

addition to the above, two sub-categories involving risk attitudes are also 

shown in table 4-1. They are: 

* Risk neutrality, modeled using a linear utility function (V(X) -X). 

'k High-risk aversion (ll r isk"), modeled using a risk- averse-utility 

function (c > 1000, b = 1.0 and a = 0 in equation 3-2). 

Table 4-2 shows the decisions made at each node concerning capacity 

addition and demand-side management programs resulting from the choice of a 

particular objective. 

Comparison of MIDAS and SMARTS Solutions 

MIDAS solutions for utilities A and B only under the total cost and 

levelized rate objectives were obtained. The MIDAS solutions are not shown, 

but are similar to the SMARTS results. The objective of minimizing 

disallowed capacity costs was not simulated in MIDAS. The MIDAS decisions, 

variable production costs, and differences between performance of different 

solutions are nearly identical to the SMARTS results. This confirms the 

usefulness and validity of SMARTS. However, the two models yield levelized 

rates that differ by about 10 percent. This occurs for several reasons: 

1. SMARTS employed a thirty-year time horizon, rather than the twenty 

years used in MIDAS. 

2. SMARTS has twice as many plant construction options in year four as 

MIDAS. 

3. SMARTS and MIDAS treat fixed costs, assets, and taxes differently. 

SMARTS was calibrated to fit the first year's fixed costs of the 

utility being modeled, but the MIDAS data base was not calibrated. 

As a result, MIDAS fixed costs did not exactly correspond to the 

utility's because of differences in specific assumptions about 

51 



TABLE 4-2 

SMARTS BASE CASE RESULTS: DECISIONS 
1 

Decisions 
Ut i l i ty Objective 

Stage 1 Stage 2 Stage 6 Stage 7 

2 
A Cost 0 DSM 0 (1) DSM 

2 
A Cost,Risk 0 DSM 0 ( 1 ) DSM 

2 
A Rate No DSM 0 (1) No DSM 

2 
A Rate,Risk No DSM 0 No DSM 

3 
A Rate 0 No DSM 0 ( 1 ) No DSM 

3 
A Rate, Risk 0 No DSM 0 ( 1 ) No DSM 

2 
A Dis. Cost 0 DSM 0 DSM 

2 
B Cost 0 DSM 1 (2) DSM 

2 
B Cost,Risk DSM (2,Delay) DSM 

2 
B Rate No DSM (2) No DSM (DSM) 

2 
B Rate,Risk No DSM (0) No DSM (DSM) 

3 
B Rate No DSM (0) No DSM (DSM) 

3 
B Rate,Risk No DSM 0 (1,Delay) No DSM (DSM) 

2 
B Dis. Cost 0 DSM 0 DSM 

2 
C Cost 0 DSM 1 (0) DSM 

2 
C Cost,Risk DSM Delay (0,1) DSM 

2 
C Rate No DSM (2) No DSM (DSM) 

2 
C Rate,Risk No DSM (0) No DSM (DSM) 

3 
C Rate 0 No DSM (2) No DSM (DSM) 

3 
C Rate,Risk 0 No DSM 0 (1) No DSM (DSM) 

2 
C Dis. Cost 0 DSM 0 DSM 

Key: 
lStage 1 and 6 are the plant construction decisions; the number of coal units that are 
started is shown. (See table 4-2 for definitions of the stages.) IIDelayll indicates 
that completion of a unit started previously is delayed 4 years. Stages 2 and 7 are 
demand side measure (DSM) decisions; whether or not such a program is undertaken is 
shown. For stages 6 and 7, the decision taken in most of the decision nodes of those 
stages is shown without parentheses; decisions made in a minority of the nodes are 
shown in parentheses. 

2Based on assumption that capital costs of new generation capacity in excess of 25% 
reserve margin are not recovered in rates. 
3Based on assumption that all costs, including "excess ll capital costs, are recovered in 
rates. 
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taxes, interest, depreciation, treatment of work-in-progress, and 

other fixed cost parameters. (Fixed costs associated with new 

plants were treated in the same way by the two models.) 

The difference in fixed costs are unimportant from a strategic standpoint, 

since such differences will not change decisions under the minimize-total­

cost objective. Similarities and differences between the MIDAS and SMARTS 

solutions are discussed elsewhere in the report. The purpose of such 

comparisons is to create a benchmark for comparing the results from the 

simplified SMARTS model to those from the more complex model. 

Effect of Choice of Objective 

A variety of objectives has been proposed for utility planning, 

including minimization of total utility costs, minimization of electric 

rates, minimization of total customer and utility costs, and maximization of 

consumer surplus. The purpose of this section is to determine whether the 

first two objectives make a practical difference when risk is accounted for 

explicitly. In addition, the effect of a regulatory policy that disallows 

"excess" capacity costs is also examined by simulating a utility which tries 

to minimize such penalties. 

"Minimize Total Costs" Versus "Minimize Levelized Rates" Objectives 

The most striking difference among the solutions in tables 4-1 and 4-2 

is between solutions that minimize the present worth of cost and those that 

minimize levelized rates. In terms of decisions that ensue due to the two 

objectives, the demand-side management programs are always implemented in 

the former case and are rarely used in the latter. The reason is that a DSM 

program whose cost per kilowatt-hour-saved is less than a utility's marginal 

cost is always justified under the cost objective, but causes electric rates 

to increase if marginal cost is less than average cost. The reason for the 

higher rates is that costs will decrease by a smaller percentage than will 

demand under a DSM program, which means that the average cost per kilowatt­

hour will increase. 
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The only situation in which DSM programs are attractive under the 

levelized rate objective is in year four if demand growth is high in years 

one to four and the expense of new capacity is also high. In that case, the 

capacity additions required by high demand growth rates cause levelized 

rates for utilities Band C to increase, which makes DSM programs easier to 

. of 47 
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Effect of the Cost of DSM Programs-on Decisions 

As explained in chapter 4, the costs and lifetimes assumed for DSM 

programs imply an average cost of $0.008 per kilowatt-hour saved. A 

sensitivity analysis was performed (by varying the cost of the DSM program 

around this value) for utilities A and B to determine at what cost DSM 

programs would no longer be justified under the total cost objective. In 

general for that objective, DSM programs are economical if their costs are 

less than the capacity and production costs they save. 

For utility B, DSMs with incurred costs up to $0.04 for every kilowatt­

hour saved, are justified in stage 2 (DSM decisions in year zero), while 

even more costly DSM programs are attractive
48 

in stage 7 (DSM decisions in 

year four). The same figures result from the MIDAS analyses. The $0.04 a 

kilowatt-hour figure is slightly lower than the long-run cost of energy from 

new coal and combustion turbine capacity. Such a high cost is justified 

because utility B requires new capacity in the near future, and DSM programs 

help to delay the need for that capacity. 

By contrast, for utility A, the highest DSM cost that can be tolerated 

under the cost objective in stage 2 is $0.024 a kilowatt-hour saved. This 

is because utility A does not need capacity for many more years and, as a 

result, DSM programs only help to avoid fuel and purchased power costs. 

However, in stage 7, DSM programs costing up to $0.05 a kilowatt-hour saved 

become justified under higher growth rates and higher fuel costs. 

It should be noted that if maximization of the present value of 

consumer surplus is the objective rather than minimization of cost, then DSM 

programs would be more difficult to justify 'than is indicated above, 
24 

particularly in stage 2. The reason is that when marginal costs are less 

than average costs, rates increase as a result of DSM programs, which causes 
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a loss in consumer surplus. To be economic, the DSM programs must be 

correspondingly less expensive to make up for this loss. 

Figure 4-1 portrays the tradeoffs between the rate and total cost for 

each utility based upon the SMARTS results. The MIDAS results, which are 

not shown, are nearly identical. 

The axes are the two objectives, costs and rates. As in all the 

figures of this chapter, the axes are "normalized" by dividing the actual 

value of the objective for the solution in question by the best value that 

could be achieved for that utility. For example, considering utility C, the 

point labeled tIC (Min Dis. Cost)" represents the solution for that utility 

in which a strategy is chosen that minimizes the expected value of 

disallowed capacity costs. Its value on the X axis (1.0025) is the ratio of 

that solution's expected present worth of total cost ($17,308 million, table 

4-1) to the best achievable total cost ($17,265 million, which is the 

minimum cost solution in table 4-1). Its value on the Yaxis (1.0102) 

likewise is the ratio of that solution's expected levelized rate ($0.05652 a 

kilowatt-hour) to the minimum achievable levelized rate ($0.05595 a 

kilowatt-hour), assuming that no capital costs are disallowed. Normalizing 

the results in this fashion allows us to make comparisons between different 

utilities. 

The points labeled "Min Cost ll optimize the total cost objective, while 

those designated "Min Rate" optimize the levelized rate objective. The two 

points labeled "Min Dis. Cost" are discussed in the next subsection. 

This figure demonstrates that the choice of objective in utility 

planning can make an important difference; minimizing rates can increase 

total costs by one or two percentage points. Altl10ugh such a difference 

seems small, it translates into hundreds of millions of dollars in terms of 

present value. 

In addition to the above, a sensitivity analysis was performed to 

examine the dependence of the cost-rate tradeoffs in figure 4-1 upon 

assumptions concerning demand variance. Three levels of the standard 

deviation of demand, discussed in chapter 3, were simulated for each 

utility: 1 percent, 0.7 percent, and 0 percent. The results of this 

analysis (not shown) reveal that a greater variance increases the spread of 

the tradeoffs between total costs and levelized rates. 
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Effect of the Minimize-Disallowed-Capacity-Costs Objective 

If a utility's regulatory commission has a policy of not allowing 

consumers to be charged for the capital costs associated with surplus 

capacity, the utility's optimal strategy may change. This subsection 

examines the impact of a minimize-disallowed-capacity-costs objective on the 

SMARTS model. 

Figure 4-1 also displays the solutions that minimize disallowed 

capacity costs for utilities Band C. These points are labeled "Min Dis. 

Cost". (For utility A, that solution is the same as the "Min Cost" strategy 

and hence not shown separately.) These solutions are less preferable than 

the "Min Cost fl points, as they perform worse on both the total cost and 

levelized rates objectives. They also result in higher rates than the "Min 

Rate ll objective and in higher total cost than the "Min Cost" objective. 

This occurs because a utility which minimizes disallowed capacity costs will 

make no capacity additions in either years zero or four, even if this 

results in increases in total costs or rates. 

To elaborate this aspect further, the disallowed cost objective 

motivates the utilities to be conservative. The models assume that if there 

is inadequate capacity, peaking power is available from other utilities at a 
49 

price of $200 a megawatt-hour. The utilities prefer to purchase this 

expensive power rather than build a new generating unit and run the risk 

that demand will be lower than anticipated, which could result in disallowed 

capacity costs. This is in contrast with the fact that, on an expected 

total cost basis, such a capacity addition would be justified. Hence, a 

possible result of a policy of disallowing "excessll capacity costs 

associated with surplus capacity could actually be increased rates and total 

costs for the consumer. 

Figure 4-2 shows tradeoffs between the present worth of total costs and 

the present worth of capacity costs that would be disallowed. It shows that 

if utilities Band C minimize their expected disallowed costs, they can 

force them to zero. However, this is done at the expense of a significantly 

higher total cost than the minimum cost solutions. Note that this cost 

increase is about double the disallowed cost, which implies that revenue 

requirements will go up if utilities try to minimize disallowed costs. For 

utility B, the indicated increase in cost in figure 4-2 translates to about 
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$70 million (table 3.1). These results indicate that disallowance of excess 

ff h h ff " 50 Th capacity costs can motivate ine iciency rat er t an e ~c~ency. e 

assumption behind this conclusion is that utilities would actually minimize 

costs if "excess" capacity costs are excluded from rates. Utilities, 

however, might pursue other objectives instead.
29 

Figure 4-2 also shows the effects of pursuing a minimization of 

levelized rates objective, assuming that capacity costs are disallowed. 

(These points are not the same as the minimize-rates points in figure 4-1, 

the latter assumes that all costs are recovered in rates.) The results 

imply that a policy of minimizing rates would result in even greater cost 

increases than if instead the utility strives to minimize disallowed costs. 

Sensitivity analyses were performed to evaluate the effect of different 

demand variances upon the results of figure 4-2. It was found that the 

different variances made little difference to the results with one 

exception. The exception was that the disallowed costs in the minimize 

total cost solution increase with higher demand variances. That is, a 

utility faces a greater risk of not recovering its investments as demand 

uncertainty increases. 

Effect of Risk Attitudes 

In a risky environment, utilities may be like other businesses in that 

they are risk-averse: they might be willing to accept a strategy which 

performs worse in terms of expected value to avoid the risks of bad 

outcomes. This section explores this aspect further. 

An increasing aversion to risk is equivalent to a heavier weighting of 

bad outcomes in a decision tree. As explained in chapter 3, risk-averse 

preferences are simulated here by maximizing the expected value of the 

utility function _e
cX 

(a simplification of equation 3-2), with c>O and X 

being either present worth of costs or levelized rates. 

Tables 4-1 and 4-2 show solutions resulting from two extreme risk 

attitudes: risk neutrality (c very small, equivalent to minimizing the 

expected cost or rate), and large risk aversion (c very large, equivalent to 

minimizing the worst possible outcome under the chosen strategy). Figures 

4-3 and 4-4 expand on those results by showing tradeoffs between risk 

(measured by the normalized standard deviation of the objective indicated as 
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the ordinate) and the normalized expected value of the objective for each 

utility under the base case assumptions. These tradeoffs are generated by 

solving the decision trees for these two extreme values of c. Points lying 

to the left of the figure correspond to risk neutrality and points to the 

right represent risk aversion. Figure 4-3 displays the results for the 

present-worth-of-costs objective, and figure 4-4 portrays those for the 

levelized-rates objective. Figures 4-3 and 4-4 demonstrate that, in 

general, a small (and probably insignificant) decrease in risk can be 

obtained, but at a price of worsening the expected performance. As an 

example, consider utility B in figure 4-3. The standard deviation of total 

costs can be lowered from 9.8 percent of the mean costs to 9,4 percent if 

one is willing to accept an increase of 0.4 percent in the mean cost. 

Table 4-2 shows how DSM and capacity addition decisions are affected by 

different risk attitudes. Under the minimize-total-cost objective, risk 

aversion motivates earlier capacity additions. The reason is that the 

utility, averse to the risk of high cost, prefers to avoid the very high 

cost situations of having insufficient capacity and having to purchase power 

during peak times at a high price (assumed to be $200 a megawatt-hour). 

Additional capacity may increase the expected cost, but lowers the risk 

because fuel and purchased costs are lower and, as a result, will not 

respond to changes in demand or fuel costs to such a great degree. 

On the other hand, risk aversion under the minimize-rate objective 

motivates fewer capacity additions, in the case where "excess" capacity 

costs are not deducted from rates. This occurs because of the utility's 

desire to avoid spreading a new plant's fixed cost over too small of a 

demand, resulting in higher rates. 

Figures 4-3 and 4-4 also show the effect of changing some of the base 

case demand assumptions for utility A. For utility A, the effect of 10 

percent higher electricity demands is shown. Under the base case demand for 

that utility, capacity additions are rarely justified under the minimize­

total-cost objective. With the higher demand shown, new plants become 

attractive. Therefore, there is a greater tradeoff between risk and cost. 

This is indicated by a larger difference in risk (ordinate) between the 

points in the extreme left and the right for utility A. 

Figure 4-5 displays the effect of different variances for demand, fuel 

and capital cost, and purchased power for utility A. Some observations can 

61 



x: xHi Fuel &. Capital Cost Variance 

Hi Demand Variance \) II 

Hi Purchased Power Cost Varieance 

Belse Variance D- V -EJ -----Sl 
+ -+Zero Purchased Pov.oer Variance 

o Zero Demand Veariance 

Zero Fuel &. Capital Cost Variance ~ 

0,998 1.002 
Ratio of (j) E(Present Worth of Total Cost) of the plotted 
lIolution to (ij) E(Present Worth of Total Cost) of the 
solution which minimizes E(Preeent Worth of Total Cost} 

1.004 

Fig. 4-5. Tradeoffs between total cost and its standard 
deviation under different demand and supply variances. 
utility A 

62 

l006 



be made from these results. The fuel and capital cost variance makes the 

most difference in the standard deviation of total cost, as indicated by the 

uppermost and the lowermost pairs of points. Differences in the variance of 

purchased power cost make the least difference. The latter result is not 

surprising, since purchased power supplies much less than half of utility 

A's energy. Note also that the variance of fuel and capital costs does not 

significantly affect the amount of the decrease in the standard deviation 

that can be obtained by increasing total cost. This is indicated by the 

almost identical slopes of the uppermost and the lowermost line segments. 

The demand variance, by contrast, makes the largest difference in the 

slope of the segments. The case of zero demand variance is indicated by a 

single point in the left of the figure. There, the risk-averse strategy is 

the same as the risk-neutral strategy. However, the tradeoff between risk 

and expected value grows as the demand variance grows. This is indicated by 

an increasing slope and length of the line marked "high demand variance." 

In sum, the above results show that only variance in demand ought to 

make a difference to a decision maker who is risk-averse. Risks in fuel, 

capital, and purchased power costs cannot be hedged against in these 

planning problems. The results demonstrate that a risk averse decision 

maker can hedge against demand risks to a small extent. 
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CHAPTER 5 

RANKING UNCERTAINTIES USING DECISION TREE ANALYSIS 

Uncertainties are of concern because they make financial projections 

(costs, revenues, and rates) uncertain, they make capacity expansion and DSM 

program decisions more difficult because of the possibility that those 

decisions will be suboptimal a posteriori, and consumers will be forced to 

make investments in conservation and plant expansion without knowing what 

electricity will cost. As a result, (1) financing becomes more difficult; 

(2) rates may not recover costs due to I1regulatory lag"; (3) resources, such 

as generating capacity or conservation investments, may be wasted; and 

(4) opportunities for cost savings may be missed. This chapter compares 

various supply and demand uncertainties in terms of their influence upon the 

variance of total costs and rates, their effect upon optimal decision 

strategies, the expected loss resulting from ignoring uncertainty, and the 

expected value of perfect information. A discussion of the implications of 

the results of chapters 4 and 5 concludes the chapter. 

Measures of Effects of Uncertainty 

Some uncertainties have a greater effect upon financial projections, 

wasted resource, and utility decisions than others. This section compares 

supply and demand uncertainties in terms of four Ineasures of these effects: 

1. Variation in the Objective. Which sources of uncertainty 

contribute the most to uncertainty in utility costs and rates? In 

particular, how do the standard deviations of utility costs and 

levelized rates depend upon the standard deviations of the various 

sources of uncertainty? 

2. Changes in Decisions. How do optimal capacity expansion and DSM 

program decisions depend upon the standard deviations of the various 

uncertainties? 
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3. The Cost of Disregarding Uncertainty. How does the expected 

value of the objective decrease if decisions are made as if there 

were no uncertainties? This cost is the difference between: 

* the expected value of the objective, given that an optimal 

strategy is chosen that takes into account the possible 

uncertainties, and 

* the expected value of the objective, if, instead, a strategy 

is chosen which ignores the uncertainties and assumes that the 

expected values of the demand and supply parameters will be 

realized. 

This difference measures the importance of explicitly considering 

probability distributions of uncertain parameters. 

4. Value of Perfect Information. How does the expected value of 

perfect information (EVPI) depend upon the standard deviation of the 

various uncertainties? EVPI is the difference between: 

* the expected value of the objective, given that one knows the 

future exactly (~ith the expectation taken over all the 

possible outcomes), and 

* the expected value of the objective, given the imperfect 

knowledge actu.ally available at the time that decisions must 

be made. 

EVPI quantifies the resource loss that results from making decisions 

under uncertainty. EVPI also indicates the maximum possible worth 

of studies which consider those uncertainties. If EVPI is small, 

then the uncertainties are unimportant to decision making and such 

studies would be unjustified. EVPI has been recommended as an 

appropriate measure of the cost of uncertainty in utili.ty studies, 

and has even been suggested as a useful objective to be minimized in 

'1' 1 . 19 utl l.ty p annlng. 
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In the following, with the aid of the simple decision problem portrayed 

in figure 3-2, the above four criteria are illustrated and elaborated upon. 

Variation in the Objective. Under the base case probability distribution 

for option A in figure 3-2 (0.25 for low demand growth, 0.5 for medium, and 

0.25 for high), the standard deviation of total cost is $0.396xI0
9

. If the 

variance of demand is increased by substituting probabilities of 0.5, zero, 

and 0.5 for low, medium, and high growth, respectively, option A is still 
9 9 

optimal (now with an expected cost of $1.45xlO ! compared to B's $1.65xlO ) 

as shown in figure 5-1. The standard deviation of total cost for these 

probabilities associated with the load growths increases 
9 

to $O.55xlO 

shows that the variance of the objective depends upon the variance of 

demand. 

This 

Changes in Decisions. As just noted, increasing the variance of demand does 

not change the decision; option A is still best, But if the variance is 

decreased to zero by assigning a probability of one to medium demand growth 

and zero to the other growth rates, then option B is chosen instead (since 

its cost under medium growth is less than A's). Therefore, uncertainties in 

demand can affect decisions. 

The Cost of Disregarding Uncertainty. Figure 5-2a shows a decision tree 

that results if demand uncertainties are ignored and it is naively assumed 

that the medium growth rate has a probability of one. The optimal strategy 

under certainty is then found to be option B. How does this naive strategy 

actually perform? This is calculated through use of the tree in figure 

5-2b. There, the actual expected performance of B, considering the 
. 9 

uncertainties, is found to be $1.575xI0. If, instead, a choice is made 

which explicitly takes into account the uncertainties, option A would be 

picked and an expected cost of $1.525xl0
9 

would result (figure 5-1). Thus, 

the expected cost of disregarding uncertainty is $500xl0
6

, the difference 

between the two figures. 

Value of Perfect Information. The value of perfect information for the 

problem shown in figure 5-1 is calculated by setting up the tree in figure 

5-2c. First, through perfect foresight, it is learned whether demand will 
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Present worth of cost .. 

$ 0.9 x 10 9 

$ 1.6 x 10 9 

$ 2 x 10 9 

$ 1.4 x 10 9 

$ 1.9 x 10 9 

Expected Value .. 
1.45 x 109 

so" _ 
0.55 x 10 tv 

Expected Values 
1.65 x 10 9 

SO .. 
0.25 x 10 9 

Figure 5-1. Example illustrating the effect of variance 
of demand on the variance of objective. 
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Medium Demand (1) 
Option A 

Medium Demand (1) 
Option B 

9 
$ 1.6 x 10 

9 
$ 1.5 x 10 

a) Decision tree for choosing optimal strategy, 
assuming incorrectly that demand growth will 
be "medium- (Option B is chosen). 

$ 1.4 x 10 

9 

$ 1.5 x 10 9 

9 

$ 1.9 x 10 

b) Decision tree for evaluating correct expected 
performance of option chosen in figure 5-2a 

Low (0.25) 

High (0.25) A 

9 
$ 0.9 x 10 

$ 1.4 x 10 9 

9 
$ 1.6 x 10 

$ 1.5 x 10 9 

$ 1.9 x 10 9 

c) Decision tree under perfect information about 
demand growth (Option A chosen if growth is low; 
Option B chosen if growth is medium or high). 

Expected Value .. 

1.575 x 10 9 

Figure 5-2. Decision trees for calculating the cost 
of ignoring uncertainty and the value of perfect 
information 
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be low, medium, or high. Each of these perfect forecasts has the 

probability shown in the figure. If demand is projected to be low, then 

option A would be chosen; otherwise, for medium and high demands, B would be 

the best. The expected cost of this optimal strategy under perfect 

information is $1.45xl0
9 

(=0.25$0.9xl0
9 

+ 0.5$1.5xl0
9 

+ 0.25$1.9xl0
9

). This 

is better than the expected performance of the optimal strategy under 

uncertainty (figure 5-1, $1.525xl0
9
). The expected worth of this perfect 

9 
foresight is the difference in the two costs, or $0.75xlO . 

These four measures of the effects of uncertainty are chosen to measure 

their effect on consumers, financial analysts, and utility planners. To 

consumers, financial analysts in utilities, and public service commissions, 

the first measure is most meaningful, since they are directly concerned with 

the risks in costs and rates. By contrast, utility planners (and the 

regulators who oversee their planning decisions) would find the last three 

measures most useful, since they show how the uncertainties affect planning 

decisions. Each of the latter indices illuminates a different aspect of 

the effect of uncertainty upon planning. 

As discussed in chapter 4, four types of uncertainties are modeled as 

probability distributions in the decision trees: (1) demand growth rates, 

(2) fuel costs, (3) plant construction costs, and (4) costs and availability 

of purchased power. Only the demand uncertainties are included in the MIDAS 

runs, while all four are incorporated in the SMARTS solutions. 

For utility A, three categories of uncertainty are compared: "demand", 

"supply" (fuel and capital cost together), and "purchased power". Fuel and 

capital cost are considered as one because they are assumed to be perfectly 

correlated. For utilities Band C, four sources of uncertainty are 

contrasted: demand, supply, capital costs separately, and fuel costs 

separately. The effects of the fuel and capital cost uncertainties are 

distinguished by modeling them as being independent. Their total impact, 

under the alternative assumption that they are perfectly correlated, is 

shown under "supply". 

comparisons of Uncertainties: Results 

The results of the analysis are compared in this section to obtain a 

ranking of the importance of different uncertainties. The comparison, at 
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first, is that of the variance of the objective. Subsequently, we shall 

compare the number of planning decisions that change due to the 

uncertainties regarding the input parameters. 

Variance of Objectives 

Utilities, regulators, and customers are concerned about uncertainties 

in total costs and rates. In this subsection, the relative contributions of 

demand and various supply risks to the standard deviations of costs and 

rates are assessed. 

Figures 5-3 through 5-6 summarize the effect of various sources of 

uncertainties on the standard deviations of the present worth of total costs 

and levelized rates. Figures 5-3 and 5-4 address utility A and figures 5-5 

and 5-6 show the corresponding results for utility B. The results for 

utility C are nearly identical to those for utility B and are not shown 

separately. The standard deviations of the objective are expressed as 

coefficients of variation (standard deviation divided by the mean). The 

three sets of points in each figure show the standard deviations of the 

objective under "high", "base case", and "zero" variances for each of the 

uncertainties. Each point in the "highll and "zero" sets is obtained by 

setting the variance of the indicated source of uncertainty at its "high" or 

"zero" value, respectively (see chapter 3), while using the base case 

distributions for the other sources. To clarify this further, consider 

points a, b, and c in figures 5-5 and 5-6. Point a is obtained by assuming 

high variance for fuel and the base case variances for capacity costs and 

demand. Point b results from using base variances for all three sources. 

Assuming a low variance for fuel and base variances for capacity cost and 

demand yields point c. 

The points labeled "base variance" in these figures are those that 

result from the base case probability distributions (described in chapter 3) 

for all the variables. It should be noted that the capacity cost and fuel 

cost uncertainties were assumed to be perfectly correlated for utility A 

(figures 5-3 and 5-4). However, for utility B, two different sets of 

assumptions were modeled: (1) where fuel and capacity cost are perfectly 

correlated, and (2) where fuel capacity costs are statistically independent. 

Figures 5-5 and 5-6 present the results of both sets of assumptions. 
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These figures show that supply costs--in particular, fossil fuel costs-­

have the greatest impact upon uncertainty in total costs and rates. That 

is, eliminating the variation in fuel costs would lower the uncertainty in 

system costs and rates the most. For the systems studied, uncertainties due 

to purchased power and capital costs are negligible. Demand uncertainties 

have some impact, although it is very small in terms of rates. 

The reasons for the relative importance of fuel costs compared to 

demand include: (1) its high variance (30 percent of the expected value in 

the base case), (2) its immediate impact, and (3) its effect on the cost of 

production for all the utility's output. Uncertainty in demand growth, by 

contrast, translates into a relatively small uncertainty in total demand (a 

standard deviation of 8.S percent of the expected value after ten years), 

has its greatest impact many years into the future (when the cost impacts 

will be heavily discounted by the present worth calculations), and affects 

production costs for only the increment of demand. Uncertainties in capital 

costs are relatively unimportant for similar reasons. 

The MIDAS model, which was only used to examine demand uncertainties, 

produced a change in the objective's variance due to a change in the demand 

variance was less than that in the SMARTS solutions. One reason for this is 

the longer time horizon used in SMARTS; it is in the later years when the 

variance in total demand is the greatest. 

Changes in Decisions 

From a utility planner's perspective, it can be argued that risks are 

unimportant unless they change the decision strategy. Variance in the 

objective means little by itself if the same decision is made no matter how 

much uncertainty exists. Two indices can be used to quantify this impact 

for each of the sources of uncertainty: (1) the fraction of generation 

expansion and DSM decisions that change as a result of increasing the 

standard deviation of the uncertainty in question from zero to the base case 

value, and (2) the fraction of generation expansion and DSM decisions that 

change as a result of increasing the standard deviation of the uncertainty 

in question from zero to the maximum value. 
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The two subsections that follow focus on the economic consequences of these 

decision impacts. 

The above fractions are defined for the SMARTS models as: 

F ~ O.25I./N. 
i=1,2,6,7 l l 

(5-1) 

where I. is the number of decision nodes in stage i that change and N. is 
l l 

the total number of decision nodes in stage i. For SMARTS, the four stages 

are: supply decisions, year zero (i=l); DSM decisions, year zero (i=2); 

supply decisions, year four (i=6); DSM decisions, year four (i=7) (see 

figure 3-1 or table 4-1). 

The fraction is defined as in equation (5-1) so that each stage is 

given equal weight; an unweighted index would allocate heavier weight to 

later stages because the number of decision nodes in the stages are unequal. 

Note that utility A must make a single capacity expansion and DSM decision 

in year one (N
l

=N
2
=1). However, there are twenty-seven different 

combinations of outcomes for fuel and capacity costs, purchased power, and 

demand in year four of utility A's decision tree (table 4-1). A capacity 

expansion and DSM decision must be made for each combination; hence 

N
6

=N
7
=27. Thus, the above definition of the fraction would normalize the 

changes in decisions by expressing them as a ratio to the total number of 

decisions in that particular stage. 

Figures 5-7 and 5-8 show, for each utility, the value of the indices 

defined above for the demand uncertainties. For utility B, a significant 

fraction of decisions change: 11 percent under the cost objective and 45 

percent under the rate objective. But for the other utilities, the 

fractions are 3 percent or less. 

For the supply uncertainties (fuel, capital cost, and purchased power), 

a value of zero resulted for equation (5-1) in every case, even when 

comparing the "highll and "zero" variance cases. Therefore, these results 

are not plotted. This indicates that demand uncertainties matter more in 

decision making than supply uncertainties. 

As a sensitivity analysis, two levels of demands in year zero are 

considered for utility A: the base level, and a high demand corresponding 
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to 10 percent above the base level (figures 5-7 and 5-8). Perhaps 

surprisingly, a high demand case results in fewer decisions in figure 5-7 

(min. cost objective). The reason is that in the base case, a low variance 

results in no additions of plants while a high variance causes construction 

of plants in some cases in year four. Conversely, in the high demand case, 

plants are added in year four irrespective of the variance of demand. 

However, under the rates objective (figure 5-8) more decisions change 

in the high demand case. This is because under the high demand variance and 

high demand level, utility A sometimes adds two units in year four rather 

than the one it adds under the smaller variance. This does not occur in the 

base demand case. Recall from chapter 4 that the rate objective justifies 

more plant construction than the cost objective. 

On the matter of imminent decisions, decisions in year zero are of 

immediate concern to utility planners. Only one instance of the decision 

changing in year zero was observed. Utility B finds it worthwhile to start 

constructing a coal plant in year zero if demand variance is high, whereas 

in the base case it chooses to wait until year four. 

MIDAS decisions show somewhat less sensitivity to demand. The major 

reason for this was that the MIDAS tree included fewer decision options. In 

particular, in year four, the MIDAS model simulation allowed the utility to 

choose between building zero and two units, while SMARTS model allows one, 

two or no units to be started. Therefore, it is easier for demand 

uncertainties to cause a change in the decisions in SMARTS due to the 

possibility of allowing single unit additions which are not permitted in the 

MIDAS simulation. 

The Cost of Disregarding Uncertainty 

Before 1973, in the era of stable prices and constant 7 percent a year 

demand growth, utility planners made capacity expansion decisions under the 

assumption that the future was known. To measure the cost of ignoring 

uncertainty, an index is suggested. 

The index is quantified for each source of uncertainty as follows: 

1. Obtain the optimal strategy assuming that the standard 

deviation of the source of uncertainty in question is zero, keeping 
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the standard deviations of the other sources of uncertainty at 

their base levels (figure 5-2a). These are the solutions 

associated with the lower points in figure 5-3 through 5-6. 

2. Take those naive strategies and calculate their expected 

performance under the base case standard deviation for the 

uncertainty in question (figure 5-2b). 

3. Compare the expected performance of the naive strategies (figure 

5-2b) with that of the optimal strategy under the base case. The 

optimal strategy for each utility is that associated with the "base 

variance" points in figures 5-3 through 5-7. In general, the naive 

strategies perform poorly. 

As shown in the previous section, of all the sources of uncertainty, 

only demand uncertainties affect planning decisions. Since only demand 

uncertainty matters, ignoring the uncertainties in fuel, capital costs, and 

purchased power would make no difference to the DSM and capacity decisions. 

Thus, the cost of ignoring the above supply uncertainties in planning is 

negligible compared to the cost of ignoring uncertainties in demand. By 

contrast, if the variance in demand is ignored, different decisions would be 

taken, especially in year four for capacity additions. 

The cost of ignoring uncertainties in demand is shown in figure 5-9 for 

the SMARTS minimization of cost solutions. The ordinate shows the ratio of 

the expected cost of uncertainty to expected present worth of total costs. 

The ordinates in figure 5-9 are less than 0.2 percent of the total cost for 

each utility, being highest for utility A under a 10 percent higher demand. 

These numbers appear small, but on a present-worth basis can still amount to 

hundreds of millions of dollars. The results under the levelized rate 

objective were similar. 

The MIDAS model shows a somewhat smaller cost of ignoring uncertain.ty 

for reasons discussed earlier. 
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Expected Value of Perfect Information (EVPI) 

Unlike the cost of ignoring uncertainty, the value of perfect 

information measures the difference in performance between the optimal 

strategy under uncertainty and the optimal strategy if the future were 

known. This measures the maximum worth of studies which would reduce the 

uncertainty. It is calculated in the following manner: 

1. Obtain the optimal strategy under uncertainty in the usual manner 

(figure 5-1). 

2. Obtain the expected performance under perfect information by 

solving a decision tree that has been rearranged so that all the 

chance nodes are encountered first (revealing the future), after 

which the decisions are made (figure 5-2c). For example, in the 

SMARTS model, the stages are rearranged into the following order: 

3,4,5,8,1,2,6,7. Note that stages 3,4,5, and 8 contain chance 

nodes and the rest contain decision nodes. In each of the chance 

nodes, different outcomes are taken as known and the performance 

(total expected cost or rates, etc.) of the system under perfect 

information is obtained as explained in connection with figure 

5-2c. The system's expected performance under perfect information 

is generally better than that calculated in step 1. 

3. Compare the performance of the optimal strategies under uncertainty 

and under perfect information. The difference between the 

expectation of the objective is the value of perfect information. 

This analysis is performed separately for each demand and supply 

uncertainty, assuming the base case probability distributions for the other 

sources. The steps are repeated for three values of the standard deviation 

of each uncertainty: zero, the base case value, and the highest value. 

As in the last two subsections, it was found that only demand 

uncertainties made any difference in planning decisions. The situation is 

the same here. Only demand uncertainties make a significant difference in 

decisions and, therefore, only information about demand has value. The 
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value of information for the various supply uncertainties is zero because 

different decisions would not be taken even if future supply costs and 

availability could be perfectly predicted. 

Figure 5-9 displays the effects of different levels of uncertainty in 

demand upon EVPI alongside the results of the previous subsection. The 

graph shows that as the standard deviation of the uncertainties increases, 

the value of perfect information increases in proportion. The figure shows 

that the most that a utility should pay for information which would 

eliminate uncertainties in demand is less than a fraction of 1 percent of 

the total cost of providing energy. However, this can, of course, amount to 

many millions of dollars. 

Discussion 

Uncertainties in utility planning are important because they increase 

the complexity of resource and financial decisions for utilities, and 

energy-using investment decisions for consumers. Even if uncertainty is 

considered in such decisions, there is a significant risk that resources 

will be wasted or opportunities for cost savings missed. If uncertainty is 

ignored, the danger is that plans will be adopted that are ideal for the 

narrow supply and demand projections upon which they are based, but 

disastrous under other, equally likely conditions. 

This and the previous chapter have addressed the following three 

questions: What are the impacts of alternative objectives in utility 

planning under uncertainty? What are the impacts of risk-averse decision 

making in planning? Which long-run sources of uncertainty are the most 

important to electric utilities: demand, fossil fuel costs, capital costs of 

new plants, or costs of purchased power? Short run uncertainties, such as 

weather or plant availabilities, are ignored in this analysis. 

These questions cannot be definitively answered for all utilities, 

since every planning problem is different. Nonetheless, the analysis 

presented is the first to have considered the implication of in 

planning for a cross-section of electric utilities. The methodology used-­

decision analysis--is both a conceptually correct and a practical means of 

quantifying the impacts of uncertainty upon system costs, rates, and 

planning decisions. 
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With regard to the first question, decision-tree models are solved 

under different objectives for three planning problems typical of utility 

conditions across the United States. It is found that two objectives, 

minimizing electric rates and minimizing system cost, may be incompatible in 

that they imply different capacity expansion and demand management 

decisions. Minimization of rates increases system costs. Another conflict 

between objectives occurs if a regulatory commission adopts a policy of 

disallowing recovery of "excess" capacity costs (or even if a utility just 

believes that such a policy is possible). The impact might be higher rates 

and higher system costs if the utility chooses to minimize the expected 

present worth of disallowed costs. As a result, it would avoid making 

capacity additions, even when they are economic. As pointed out earlier, 

this conclusion presupposes that the utility would otherwise attempt to 

minimize the present worth of system costs. 

As for the second question concerning risk attitudes, it was found that 

the attitudes did not matter much for the three utilities studied. It 

appears to be impossible to lower the risk (as measured by the standard 

deviation of system costs or rates) significantly by making capacity or 

demand management decisions that are different from those made under a risk­

neutral strategy. That is, in the models considered here, large decreases 

in risk cannot be purchased at the price of an increased expected value of 

total cost or rates. 

The answer to the final question, however, is dependent on whether the 

concern is with financial and rate-making problems or with resource 

planning. From the financial and rate point of view, the importance of an 

uncertainty is related to its impact on the overall uncertainty in system 

costs and rates. From the perspective of planning, importance is best 

measured in terms of its potential impact on decisions, the consequences of 

ignoring the uncertainty, and the benefits of obtaining information. For 

this reason, several measures of lIimportance" are defined by which the 

sources of uncertainty can be compared. 

The first measure of the severity of an uncertainty is the change in 

the variance of system costs and rates that results from a change in the 

variance of the source uncertainty. By this measure, fossil fuel price 

uncertainties are the most important for the three utilities studied, more 

so even than demand uncertainties. Uncertainties in capital cost and 

82 



purchased power have even less of an impact than demand. Under the base 

case assumptions of this analysis, fuel uncertainties account for two-thirds 

to three-quarters of the variance in the present worth of total costs, and 

an even greater fraction of the variance of rates. 

The reason for this is that fuel price uncertainties can affect the 

total cost of production dramatically in the near-term. Demand 

uncertainties, by contrast, affect costs farther in the future. In 

practice, however, demand uncertainties may still be crucial to financial 

planners because of the presence of fuel adjustment clauses and the need to 

raise capital for new facilities. Nevertheless, from a customer's point of 

view, the price of fossil fuels makes the cost of electric power most 

difficult to predict. 

From a long-range planning perspective, however, demand uncertainties 

appear to matter the most in capacity planning and demand-side management. 

For each of the three utilities studied, only demand uncertainties make any 

difference in the decision strategies. No matter what variances were 

assumed for the various supply uncertainties, the optimal decisions remain 

unchanged. The cost of ignoring supply uncertainties is found to be zero 

for all utilities, as is the value of acquiring information about those 

uncertainties. In contrast, capacity expansion decisions depend upon the 

assumed variance of demand. Further, the expected penalty of ignoring 

demand uncertainties ranges from one million dollars up to thirty million 

dollars, in present worth terms for the cases studied. The value of a 

perfect forecast of demand over the next thirty years is as high as 140 

million dollars. 

Strictly speaking, these conclusions apply only to the particular 

utility systems and assumptions tested here. Supply uncertainties could 

still impact planning decisions under several circumstances. For instance, 

if the cost of intensive demand-side management programs turns out to be two 

or three times higher than assumed here, then whether or not such programs 

are justified could depend on the variance of supply costs. As another 

example, if a greater range of fuels for new power plants were considered 

and if it were not assumed that the costs of natural gas, oil, and coal were 

perfectly correlated, alternative assumptions about uncertainties in fuel 

prices could alter the choice of generation technology. Nevertheless, 

demand would probably remain the crucial source of uncertainty. 
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The implication of the paramount importance of demand risks in decision 

making is that utilities and regulators should emphasize that source of 

uncertainty in any planning study. However, because supply uncertainties 

could affect some decisions, it is inadvisable to ignore other sources of 

uncertaintyentirely.19 But this poses a problem for the planner: it is 

difficult to incorporate several sources of uncertainty in a rigorous manner 

while at the same time considering a realistic number of ~lternatives. The 

reason is that most utility planning models do not incorporate uncertainties 

explicitly, and MIDAS, one widely-used model that does, has the disadvantage 

of long run times and intensive data preparation. 

The solution adopted here is one that might be useful to utility 

planners and regulators: apply a simple model such as SMARTS to examine a 

wide range of uncertainties and options and then use a more complex model to 

explore the critical uncertainties and choices in detail. A simple model 

can act as a screen, revealing which alternatives are unlikely to be chosen 

under what circumstances, and which uncertainties actually affect the 

decisions. Once those are known, a MIDAS scenario can be constructed which 

includes only the most attractive options at each decision node and the 

critical uncertainties. This modeling strategy will help planners and 

regulators be confident that all important uncertainties have been 

considered and that a good, "robust ll decision has been reached. 
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CHAPTER 6 

SHARING OF RISKS AMONG CUSTOMER CLASSES 

Overview 

Several objectives used in utility planning have already been examined. 

The objectives can be divided into two broad categories, those that minimize 

the risk to the utility, and those that minimize the risk to the ratepayer. 

The objective of minimizing disallowed capacity costs is an example of the 

former, while minimizing rates or costs exemplifies the latter category. 

In terms of risks to the consumer, all the consumers have been viewed 

so far in the report as a single group. The industrial, commercial, and 

residential customers, however, are represented as separate interest groups 

during rate hearings. Some groups are more organized than others. In any 

event, it is the responsibility of state commissions to examine the effect 

of a particular plan on each class of customer. This chapter reports on an 

examination of the relative risks among the customer classes. 

Long-term utility planning requires the projection of revenue 

requirements over a future period. However, such projections are subject to 

significant uncertainties caused by the uncertainties in the primary inputs 

used to estimate revenue requirements. These inputs include, among others, 

load growth rates, fuel prices, construction expenditures, interest and tax 

rates, and allowed rates of return. Uncertainty i.n any of these inputs 

produces a corresponding uncertainty in the revenue projections. To account 

for these uncertainties, one can assign subjective probabilities for various 

scenarios and produce a probability distribution of projected revenue 

requirements, or, for that matter, the distribution of any chosen objective. 

In addition to the probability distribution of total revenue requirements 

from all customers viewed as one class, one can also find the probability 

distribution associated with revenue requirements for each customer class. 

These probability distributions can be used as proxies for risks to 

different customer classes associated with various utility decisions. A 

comparative study of these risk profiles
30 

may provide valuable insights 
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about sharing of risks among customer classes. For example, if the risk 

profiles of two customer classes are significantly different, then it is 

pertinent to reexamine the basic rate-making principles that led to this 

outcome. 

In terms of uncertainties from financial and cost considerations, the 

preceding chapters show that the fuel price uncertainty is the most 

important one followed by load growth uncertainties. In terms of relative 

risks among customer classes, however, fuel price uncertainties have the 

least effect. The risk of having a higher or a lower fuel price affects all 

the customer classes similarly because the fuel cost recovered from each 

class is roughly proportional to its electricity consumption. Load growth 

uncertainties, especially when there are differences in load growth rates 

among different classes of consumers, may affect the classes differently. 

Besides this, utility decisions may affect the classes of consumers 

differently. For instance, the decision to build a new plant or not may 

influence the risk profiles of customer classes differently. The same is 

true for other decisions such as the purchase of power by a utility. 

In view of the above, MIDAS is used to examine the relative risk 

profiles of consumer classes. Because of large computational times and data 

preparation efforts to run MIDAS, we restrict our examination to 

illustrative small problems. Therefore, the effect of decisions on the risk 

profiles is not undertaken. The effect of chance causes--in particular load 

growth uncertainty--on risks to customer classes is examined. 

We consider two objectives, the revenue requirement (RR) and the 

levelized rate for each class. Here, the total revenue requirement 

represents total utility cost (assuming there are no disallowed costs) 

discussed elsewhere in the report. Then a class RR represents the 

allocation of the total utility cost to an individual customer class. The 

use of the rates objective would give an indication of the average price of 

electricity to each consumer class. We have chosen to examine the class RR 

objective. 

One might argue that the class RR itself does not portray risk and that 

the rates are of importance. While this may arguably be true, we point out 

that the two objectives become identical in the absence of a demand-side 

management (DSM) program. The role of demand-side management programs in 
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least cost utility planning has been examined in earlier chapters. In this 

chapter, we focus on the impact of load growth uncertainties on customer 

class risks. Demand-side management programs can indeed be a source of load 

growth uncertainties. Our analysis in this chapter, however, is limited to 

the examination of the effect of load growth uncertainties, irrespective of 

their sources. As such, we have chosen to ignore the role of demand-side 

management programs in our analysis of customer class risks. In view of the 

above, both the rates and the RR are equally valid objectives for the 

analysis. In the interest of minimizing the computational effort, we have 

opted for the latter. 

Analysis of Load-Growth Uncertainties 
Using a Decision-Tree Framework 

The use of decision trees to analyze utility risks has been described 

in the earlier chapters. In this chapter, we are concerned with the 

comparison of probability distributions of revenue requirements. Therefore, 

a simple decision tree and the method of obtaining the probability 

distribution of a chosen objective is described. 

Figure 6-1 shows a decision tree. There are two possible decisions. 

One is to build a coal plant and the other is not to build it. There are 

three postulated chance events. These events are shown as high, medium and 

low load growth rates with probabilities of 0.2, 0.5 and 0.3 respectively. 

Each combination of decisions and events can be defined as a scenario. In 

figure 6-1, there are a total of six scenarios with three scenarios for each 

decision. In general, the probability of each scenario of a decision tree 

is given by the combined probability of events contained in the scenario. 

In figure 6-1, there is only one set of chance events and therefore, the 

probability of each scenario is simply that associated with corresponding 

chance event. For each scenario, one can also calculate an objective such 

as the revenue requirement. The set of values of the objective together 

with the corresponding set of probabilities constitutes a probability 

distribution. There is a probability distribution associated with each 

decision. For the decision tree in figure 6-1, there are two such 

probability distributions, one for each decision. The probability 
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distribution of the total revenue requirement (RR) obtained above is 

associated with the entire customer population viewed as a single group. 

One can find the probability distribution of class RR in the following way. 

For a given scenario, the total RR is allocated to each customer class 

using a chosen cost-of-service method. The class RR thus obtained has the 

same probability as that of the total RR from which it has been derived. 

For example, let the total RR be $100 for scenario 1 with a probability of 

0.2. Assume that $30 of this $100 is allocated to the residential class of 

customers according to a chosen cost-of-service method. Then the 

probability of residential customers having a class RR of $30 is also 0.2, 

because it corresponds to the same scenario. Similar cost allocation 

calculations are repeated for other scenarios. The set of class RR together 

with corresponding sets of probabilities constitutes a probability 

distribution of class RR. 

As mentioned earlier, one can interpret the probability distributions 

of revenue requirements as risk profiles. Then the decision-tree framework 

allows the evaluation of utility decisions from a risk perspective. In 

normal utility planning practice, one examines risks to the utility as well 

as the ratepayers viewed as a whole. In this chapter, we examine how risk 

is distributed among customer classes by comparing their risk profiles. We 

also discuss how rate-making principles and related cost-of-service methods 

may effect the distribution of uncertainties and risks among customer 

classes. 

Using MIDAS to Analyze Customer Class Risks 

To analyze different scenarios in our study, we use the decision tree 

capability of MIDAS. An overview of MIDAS is given in chapter 3. In this 

section we provide a more detailed view of MIDAS with particular emphasis on 

its rate-making method. 

MIDAS has a simulation module embedded in a decision-tree framework. 

The simulation module performs load analysis, capacity planning, production 

costing, financial projections, and rate calculations. The simulation is 

done for each scenario in the decision tree. The inputs for MIDAS consist 

of the data for the decision tree, historical load data as well as future 

load projections, plant operating data and financial parameters. The 
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outputs are proforma financial statements such as the balance sheet, the 

income statement, and the sources-and-uses-of-funds summary. MIDAS also 

produces reports on production costs and cost-of-service analysis. 

The simulations performed in MIDAS can be broadly divided into two 

major submodules. The first consists of production costing calculations. 

The second includes revenue requirements and cost-allocation analyses. 

The production costing calculations in MIDAS proceed as follows. 

First, MIDAS uses historical load data and user-supplied forecasts for 

future load growth rates to create hourly load profiles 

the study period. Next, it uses "load duration curves ll 

operating data for generating plants, and probabilistic 

for every year in 
31 

(LDC) ,cost and 

. 1 . 43 f' j Slmu atlon to In( 

the total energy production. Finally, MIDAS calculates the cost of energy 

production. 

Once the production cost has been determined, other expenses and return 

on capital investment are added to find total revenue requirements. Other 

expenses include fixed operating costs, depreciation charges and taxes. The 

return on investment is based on either an allowed rate of return on 

regulated rate base or an allowed return on equity. 

Next, a cost allocation analysis is performed on the revenue 

requirements. Cost allocation assigns the total cost of service which is in 

this case, the total revenue requirement (assuming no disallowed costs) to 

causal factors, and finally to customer classes. Figure 6-2 illustrates a 

hypothetical cost-allocation process. Initially, each cost item 

contributing to the revenue requirements is classified according to three 

causal factors: demand, energy, and customer. Demand-related costs are 

costs such as investments in generation and transmission facilities. Energy 

costs include costs such as fuel expenses, purchased power, and part of 

operating expenses. Customer costs are expenses for customer-related 

services. They include some distribution expenses and costs of metering and 

billing. Finally, each category of cost is allocated to individual customer 

classes. In MIDAS these allocations are performed in the following way. 

Demand-related costs are allocated to each customer class in proportion to 

class peak demand. Energy-related costs are allocated in proportion to each 

class's energy consumption. Customer-related costs are allocated in 

proportion to the weighted number of customers in each class. 
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TOTAL 
REVENUE 

REQUIREMENTS 
$507 

CLA SSIFICATION 

ENERGY CUSTOMER 
$262 $54 

DEMAND 
$191 

ALLOCATION 

EN ERGY CUSTOMER DEMAND 

RESIDENTIAL $ 67 $ 37 $ 65 

COMMERCIAL $ 75 $15 $ 55 

INDUSTRIAL $ 120 $ 2 $ 71 

TOTAL $262 $ 54 $191 

TOTAL 
$507 

TOTAL 

$169 

$145 

$ i93 

$507 

Fig. 6-2. A hypothetical cost allocation process 

(Source: Electric Power Research Institute, MIDAS, Palo Alto, 
California, 1988) 
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In MIDAS, the first step (that is, cost classification, see figure 6-2) 

requires user inputs of cost allocation factors for demand, energy, and 

customer categories. These factors then are applied to the total revenue 

requirements to find the total demand, energy and customer costs. Thus in 

MIDAS the cost classifications are done on the total cost (that is, total 

revenue requirements) and not on individual cost items (such as fuel costs, 

operating expenses, depreciation charge, etc). This procedure is less 

rigorous than one where each cost item is classified into cost categories 

(i.e., demand, energy and customer). In our analysis, we have used a method 

which is intermediate between the above two in computational rigor. The 

details of our method ar~ discussed in a later section. 

Sample Study 

A representative midwestern utility was chosen for our study. In 1987, 

the total system capacity for the utility was 5,827 MW and the reserve 

margin was 27.3 percent corresponding to a peak load of 4,579 MW. The 

system is identical to utility B described in the appendix. An 833 MW coal 

plant comes on line in 1988 and a 500 MW coal plant is added in 1998. The 

decision tree for this system is shown in figure 6-3. We do not consider 

alternative planning decisions in this example study but rather focus on the 

impact of load growth uncertainties on customer class risk. Therefore, 

there are no decision nodes in the decision tree shown in figure 6-3. The 

system is assumed to continue with a load growth rate of 2 percent until 

1990. Beginning in 1990, three possible load growth scenarios are 

postulated. It is assumed that there is a 50 percent probability that the 

system load continues to grow at an annual rate of 2 percent, a 30 percent 

probability that the load growth rate is 1 percent and a 20 percent 

probability that it is 3 percent. Beginning in 1994, another set of 

scenarios are postulated with a broader band of uncertainty. It is assumed 

that there is a 50 percent probability that the load grows at a rate of 

3 percent, a 30 percent probability that the growth rate is 1 percent and a 

20 percent probability that the growth rate is 5 percent. A complete 

simulation of energy production, costs, and total revenue requirements is 

done for each scenario of the decision tree (figure 6-3) for the period 
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0.04 

HIGH (3%) [0.2J 9 MEDIUM (3%) [0.5] 
2 0.10 

1994 
LOW (1%) [0.3] 

3 0.06 

HIGH (5%) [0.2] 
4 0.10 

\.0 I w 
MEDIUM (2%) [0.5] MEDIUM (3%) [0.5] 

i990Y 1994 
5 0.25 

LOW ( (%) [0.3] 
6 0.15 

HIGH (5%) [O.2J 
7 0.06 

LOW ( 10/0) [0.3] () MEDIUM (3%) [0.5] 
8 0.15 

1994 
LOW ( 10/o) [0.3] 

9 0.09 

Fig. 6-3. Decision tree for sample study 



1988-2000. The revenue requirement is assigned a present worth (PW) using 

a 6 percent escalation and a 5 percent discount factor. Each scenario in 

the tree is identified by an endpoint. Associated with each endpoint is a 

probability. For example, endpoint 1 represents the scenario in which a 3 

percent load growth is followed by a 5 percent load growth. The 

corresponding probability is 0.2 times 0.2 or 0.04. 

Two cases are considered in this sample study. In case one, all 

classes are assumed to have the same load growth rates as that of the system 

in each stage. In case two, differential growth rates in class demands are 

simulated. In this case, classes 1 and 2 (commercial and residential) are 

always assumed to have the medium load growth rate at each stage while class 

3 (industrial) load growth rates are adjusted such that, the composite load 

growth rate for the whole system remain the same as in case one. 

To illustrate the difference between the two cases, let us consider the 

load growth rates in stage 1 (years 1990-1993 in figure 6-3). It should be 

noted that the load growth rates shown in figure 6-3 are those for the whole 

system. In case one, for the high growth scenario, the load growth rates 

for all classes are all equal to 3 percent, the same as the system load 

growth rate. In case two, for the same high growth scenario, the load 

growth rates for classes 1 and 2 are assumed to be 2 percent, the same as 

the medium load growth rate. The load growth rate for class 3 is then 

adjusted such that the system load growth rate is still 3 percent, the same 

as in case one. A similar adjustment for class 3 load growth rate is made 

the low growth scenario. For the medium growth scenario, the load growth 

rates are all 2 percent for all classes in both cases. Therefore, in case 

two, the class 3 load growth rate is higher than 3 percent for the high 

growth scenario and less than 1 percent for the low growth scenario. The 

above examples assume that the industrial customer class is more volatile 

with respect to load growth rates than the other classes. This assumption 

is hypothetical and is made for illustrative purposes. 

The set of revenue requirements for all end points and corresponding 

probability values constitute a probability distribution of total revenue 

requirements. To examine the sharing of the risks of load growth 

uncertainties among different customer classes, one also needs to construct 

probability distributions of revenue requirements for each customer class. 
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This requires an allocation of total revenue requirements among customer 

classes. The cost allocation routine available in MIDAS is not used for 

this analysis
44 

Instead, the following cost allocation procedure is used. 

Cost Allocation Procedure 

The data required for this procedure are the total revenue 

requirements, fuel and other variable operating costs, peak demand and 

energy consumption of each customer class, and the number of customers in 

each customer class. These are obtained as MIDAS outputs. The cost-

allocation procedure, which is based on the standard embedded cost-of 

service method and similar to that used in MIDAS (except for the changes in 

input assumptions explained in endnote 44), is carried out in two steps. 

Step 1 

This is called the classification step. In this step, the total costs 

(that is, revenue requirements) are classified into energy, demand, and 

customer costs. Fuel and other variable operating costs are classified as 

energy costs. Purchased power is ignored in these calculations because it 

is not a part of the capacity mix used in this study. This leads to an 

energy allocation factor defined as follows: 

Energy 
Allocation 
Factor (EAF) 

Fuel Cost + Other Variable Operating Costs 
Total Revenue Requirements (RR) 

(6-1) 

The customer allocation factor (CAF) is given a value of 0.1. This is 

based on a rough estimate of historical customer-related costs. Therefore, 

Customer Allocation Factor (CAF) 0.1 (6-2) 

The demand allocation factor (DAF) is given by, 

Demand Allocation Factor (DAF) 1 - EAF - CAF (6-3) 
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The above allocation factors can now be used to assign costs to each 

category by the following method: 

Step 2 

Energy Expenses (EE) 

Demand Expenses (DE) 

Customer Expenses (CE) 

RR * EAF 

RR ,,'r; DAF 

RR * CAF 

(6-4) 

(6-5) 

(6-6) 

In this step, costs of each category are allocated to each customer 

class. Let E~, D~, and C_ be the energy consumption, the peak demand, and 
Ll U 11 

the number of customers, respectively for customer class.n. Then the 

corresponding customer allocation factors FE n' FD n' and FC are given by 
n 

FE E / 2:E (6-7) 
n n n n 

FD D / 2:D (6-8) 
n n n n 

FC C / 2:C (6-9) n n n n 

In (6-9), all classes of customers are assigned equal weights for 

simplicity although they may be different in a more rigorous calculation. 

Since customer costs are assumed to be only 10 percent of all costs, this 

simplification is unlikely to have any significant effect on the final 

results of this analysis. 

The energy cost EC , the demand cost DC and the customer cost CC for 
n n n 

customer class n are given by 

EC EE ,,'r; FE 
n n 

(6-10) 

DC DE ,,'r; FD 
n n 

(6-11) 

CC CE ~':: FC 
n n 

(6-12) 

Finally, the total cost, RR (i.e., revenue requirements for customer 
n 

class n), is given by, 
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RR 
n 

EC DC + CC 
n + n n 

(6-13) 

The RR for a complete set of scenarios and corresponding probabilities 
n 

constitute the probability distribution for the customer class n. 

Case One 

In this case, the load growth rates for class I (commercial), class 2 

(residential), and class 3 (industrial) are assumed to be equal to each 

other and to the total system load growth rate for different scenarios shown 

in figure 6-3. 

Discussion of Results 

The revenue requirements (RR) for the whole system and each customer 

class, and corresponding probabilities for each end point (scenario) are 

shown in table 6-1. Each horizontal line in the table shows values for a 

single scenario in the decision tree in figure 6-3. For example, endpoint 

4 represents the scenario where a 2 percent load growth rate in 1990-1993 is 

followed by a 5 percent load growth rate in 1994-2000. For this scenario, 

the system RR is 48,623 million dollars. The RR of class 1, class 2 and 

class 3, for the same scenario, are 12,536, 18,943, and 17,144 million 

dollars respectively. The probability that the above scenario occurs is 

0.10. This probability, therefore, is assigned to both the system RR and 

each class RR for endpoint 4. Table 6-1 also shows the mean and standard 

deviation of each RR. The mean is obtained as a probability-weighted sum of 

RR for all endpoints. The standard deviation is similarly derived using 

standard statistical techniques. 

It is observed from table 6-1 that the variation in system RR as well 

as class RR is small relative to the mean. This fact is also reflected in 

the relatively small values of standard deviation, varying between 1.4 

percent and 1.8 percent of the mean. In spite of this small variation, it 

may be useful to study how the class RR vary with each other and with the 

system RR. For example, let the total system RR by higher for scenario X 

than that for scenario Y. Then one also expects the RR of each class to be 

higher for scenario X than that for scenario Y. Any deviation from this 
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TABLE 6-1 

REVENUE REQUIREMENTS (RR) FOR CASE ONE 

System Class 1 Class 2 Class 3 
RR RR RR RR 

End:2oint (M~l (M~2 (M~2 (M~2 Probability 
1 49,358 12,718 19,224 17,416 0.04 

2 47,141 12,139 18,361 16,441 0.10 

3 47,657 12,209 18,456 16,993 0.06 

4 48,623 12,536 18,943 17,144 0.10 

5 47,751 12,326 18,606 16,819 0.25 

6 47,014 12,124 18,007 16,883 0.15 

7 47,907 12,364 18,666 16,877 0.06 

8 47,086 12,166 18,350 16,571 0.15 

9 46,447 11,920 17,993 16,533 0.09 

Mean 47,518 12,248 18,451 16,798 

Standard 
Deviation 682 184 328 240 

Source: Authors' calculations. 

behavior indicates an uneven sharing of revenue risks. In particular, if a 

change of scenarios results in a higher RR for one class and a lower RR for 

another class, it is clear that the revenue risk is not shared evenly by the 

two classes. We also compare the probability distributions of class RR, 

h · h b' d' k f·1 30 fl" k w ~c may e ~nterprete as r~s pro ~ es or measures 0 re at~ve r~s . 

In figures 6-4 through 6-6, revenue requirements of two of the customer 

classes are shown against system revenue requirements. In comparing RR to 

assess risks, it is the variation from their means that is of interest and 

not their absolute values. Therefore, the RR of each class as well as of 

the whole system is shown as a percentage of its own mean to obtain 

dimensionless plots. Each point in the plots represents an endpoint and, 

therefore, shows revenue values that have equal probability for each 
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customer class. Figure 6-4 shows that class 1 (commercial) and class 2 

(residential) revenue requirements generally show an increasing trend with 

increasing system revenue requirements. There is, however, a deviation from 

this behavior for system revenue requirements around 99.2 percent. The 

class 1 revenue requirement shows a slight drop around 99 percent of system 

revenue requirements. Class 2 RR shows a corresponding rise about the same 

point. At values above 99.2 percent of system RR, the two class RR track 

each other with class 2 RR staying slightly higher than class 1 RR. Figure 

6-4 shows that at least at one point (around 99.2 percent) a rise in system 

RR is not evenly shared for the two customer classes. A similar effect is 

even more clearly shown in figures 6-5 and 6-6. In both of these figures) 

there are several points where a rise in system RR is accompanied by a drop 

in RR of one class and by a corresponding rise for another class. In figure 

6-5 such an effect can be obtained around 99 percent and 100.5 percent of 

system RR. In addition, while class 1 and class 2 RR generally increase 

with increasing system RR (except for a slight drop in class 1 RR at about 

99 percent of system RR), class 3 RR declines sharply at both 99 percent and 

100.5 percent of system RR. The same observations are true for figure 6-6. 

From the above observations, it is clear that an increase in system RR may 

not always evenly distributed among all customer classes. While the above 

results may be specific to input data assumptions, the possibility of their 

occurrence is clearly demonstrated. We limited our analysis in this case to 

a single source of uncertainty, namely that of load growth. We also assume 

that the load growth rates and related uncertainties are the same for all 

classes. In a more complex case in which other sources of uncertainty are 

included and customer classes are considered to have different load growth 

rates, the above efEect (the uneven sharing of RR among classes) may become 

even more accentuated. 

Figures 6-7 through 6-9 show the cumulative probability distribution 

(CDF) of each class RR. Each ordinate in these figures represents the 

probability that the RR is equal to or lower than the corresponding 

abscissa. If one draws a vertical line through any abscissa, (figures 6-7 

through 6-9), its intersection with the curve represents the probability 

that the RR is the indicated value or less. These probabilities can be 

interpreted as comparative measures of risk as they corLespond to the same 

level of revenues. This is consistent with our earlier interpretation of 
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probability distributions as risk profiles. It can be observed, from 

figures 6-7 through 6-9, that the risk is not evenly shared by all customer 

1 11 1 1 f RR51 f" l' b . c asses at a eve so, con lrmlng our ear ler 0 servatl0ns. 

The earlier analysis brings out two interesting conclusions. First, 

the increases in system revenue requirements may not be evenly shared among 

customer classes in some cases. In the illustrative example, the 

differences in risks may not be deemed very high. But in a general case, 

particularly when the effect of certain decisions on the customer classes is 

considered, these differences could be large. In particular, if the 

differences in the growth rates among the classes of customers were large, 

and if the anticipated growth rate for a particular class did not 

materialize, the other classes have to bear the risks associated with the 

plant construction justified on the basis of total system load growth. It 

is evident that if the relative share of revenue requirements decreases for 

one class, some other class has to take up the increased revenue burden. 

Also, the effect of a DSM program on different customer classes cannot be 

predicted with certainty. The introduction of a DSMprogram may lead to 

different load growth for different customer classes. A utility plan, based 

on the aggregate system load growth may not account for this effect, and may 

not distribute the revenue burden evenly among customer classes. This 

indicates a need to model the load growth rate of each customer class 

separately in least cost utility plans. 

Second, relative risks, defined as the probability of equal levels of 

RR (when a level is defined as a percent of the mean), may not be shared 

evenly by all customer classes. We have considered only one source of 

uncertainty (load growth rates) and a relatively small time period (thirteen 

years) primarily to reduce the computational effort in using MIDAS. This 

has resulted in a narrow band of variation in RR. Therefore the PDFs of 

revenue requirements are relatively "peaky" and somewhat similar, and the 

total variation in RR as observed from figures 6-4 through 6-9 is only about 

7 percent. The observed results, being dependent on the utility system 

studied and the subjective probabilities used in performing the analysis, 

could be different for other utilities and probability assumptions. 

Nevertheless, the results show that one can construct plausible scenarios 

where the risk associated with uncertain revenue burdens may not be shared 

evenly by all customer classes, given a particular cost-allocation method. 
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The above indicates that there may be a need to address the issue of 

equitable risk sharing for classes of consumers rather than viewing 

customers as one entity. One could possibly argue for a regulatory position 

that favors unequal risk-sharing among customer classes. Regardless of what 

regulatory position one favors on this issue, an investigation of risks to 

different classes of customer in the least-cost planning process merits 

consideration. 

Case Two 

In this case, customer classes 1 and 2 (commercial and residential) are 

assumed to have medium-load growth rates in the period 1990-2000 (see figure 

6-3). They are 2 percent in 1990-93, and 3 percent in 1994-2000. It is 

assumed that the high (3 percent in 1990-1993 and 5 percent in 1994-2000) 

and the low (1 percent in 1990-2000) system load growth rates are caused 

entirely by class 3 (industrial). In other words, class 3 is considered 

relatively more volatile and entirely responsible for possible uncertainties 

in system load growth rates. This might be an extreme assumption, but our 

objective is to see how the volatility in the load growth of a particular 

class affected the sharing of the revenue burden. This is also a simple 

demonstration of the effect of modelling the load growth rate of each class 

separately in utility planning. 

Discussion of Results 

The results for this case are shown in table 6-2. The table shows that 

the RR values for each endpoint as well as the mean RR are not significantly 

different from those of case one. The variation in RR for the whole system 

as well as class 1 is small and is comparable to that observed in case one. 

There is, however, a much larger variation observed in class 3 RR, 

presumably caused by assigning the entire responsibility in load growth 

variation to this class. Also, class 2 RR appears to have an even smaller 

variation than observed earlier. The last two observations are also 

consistent with a larger standard deviation (870 million dollars) for class 

3 and a smaller standard deviation for class 2 (167 million dollars) than 

those observed for case one (240 million dollars for class 3 and 328 million 
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TABLE 6-2 

REVENUE REQUIREMENTS (RR) FOR CASE TWO 

System Class 1 Class 2 Class 3 
RR RR RR RR 

Endpoint (M$) (M$) (M$) (M$) Probab iIi ty 

1 49,358 12,162 18,506 18,690 0.04 

2 47,141 12,023 18,223 16,894 0.10 

3 47,657 12,586 18,915 16,156 0.06 

4 48,623 12,110 18,422 18,090 0.10 

5 47,751 12,326 18,606 16,819 0.25 

6 47,014 12,594 18,578 15,841 0.15 

7 47,907 12,052 18,282 17,573 0.06 

8 47,086 12,301 18,512 16,273 0.15 

9 46,447 12,517 18,713 15,216 0.09 

Mean 47,518 12,320 18,536 16,661 

Standard 
Deviation 681 194 167 870 

Source: Authors' calculations. 

dollars for class 2, see table 6-1). Ideally, there should have been no 

variation (zero standard deviation) in class 1 and class 2 RR as these 

classes are assumed to experience no uncertainty in load growth rates. Yet, 

these classes experience uncertainties in RR due to uncertainties associated 

with total RR. It appears that even when a single class is responsible for 

uncertainties in load growth, other classes still have to bear a part of the 

resulting risk. As in case one, we study the correlation among class RR and 

the probability distributions of class RR to evaluate relative risks among 

customer classes. 

Figure 6-10 shows the class RR as a function of system RR. Figure 6-10 

shows that class 1 (commercial) and class 2 (residential) generally follow 

each other as in the previous case (figure 6-4). However, while there was a 
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general increase in class RR with increasing system RR in figure 6-4, a much 

wider fluctuation is observed in figure 6-10. An explanation can be found 

by observing figures 6-11 and 6-12. In both of these figures, there are 

sharp increases and decreases in class 3 (industrial) revenue requirements, 

which causes the opposite effect in either class 1 or class 2 RR. It can 

also be seen that class 3 RR does not follow either class 1 or class 2 RR. 

In other words, a decrease in class 3 RR is accompanied by an increase in 

either class 1 or class 2 RR and vice versa. These observations are similar 

to what we observed in the previous case as anomalies with respect to the 

sharing of revenue burden among customer classes. In case one, we observe 

this uneven sharing of the revenue burden among customer classes when their 

load growth rates are assumed to be equal. We conclude that this anomaly 

may be caused primarily by the use of a particular cost-allocation method. 

The introduction of differential load growth rates among customer classes is 

expected to exaggerate this anomaly. We intended to identify and quantify 

the magnitude of this effect. In the present case, the assumption of one 

particular class being entirely responsible for the uncertainty in load 

growth rates appears to exaggerate this anomaly. Observe that the 

uncertainty band for class 3 RR has been broadened from about 7 percent to 

about 21 percent, as seen by comparing the ordinates of figures 6-5 and 

6-11. This fact and the shifting of the uncertainty in RR from class 3 to 

the other two classes (as discussed in an earlier part of this section) may 

have contributed toward sharpening this anomaly. 

Finally, figures 6-13 through 6-15 show the cumulative probabilities 

for class 3 RR. It shows the same effects that were observed in figures 6-7 

through 6-9. However, the variation in class 3 P..R (caused by assigning the 

shifts in load growth rates entirely to this class) is wider. While the RR 

shown in figures 6-7 through 6-9 varied between 97 percent and 105 percent, 

it varies between 91 percent and 113 percent for class 3 (compare ordinates 

of figures 6-5 and 6-11). The variation in RR for classes 1 and 2 remains 

roughly the same in both cases. Because of the wider variation in RR of 

class 3 than in the previous case, the sharing of risk (interpreted as 

comparative probabilities for the same level of RR) between this and the 

other two classes is less evenly distributed (figures 6-14 and 6-15). For 

example, the probability that the RR is 100.5 percent of mean or less is 

0.92 for class 2, while it is 0.66 for class 3. Note that the difference in 
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probabilities varies with the class RR. At a RR of about 100 percent of the 

mean, this difference (figure 6-15) is Zero. Analysis of case two 

strengthens our conclusions based on analysis of case one. When one class 

is responsible for uncertainties in load growth, the other classes would 

still share this risk if traditional cost allocation methods are followed. 

This is borne out more clearly by the analysis in case two. We also observe 

that there is uneven sharing of the revenue burden among classes at 

different levels of total system RR. This anomaly is further exaggerated in 

case two. 

SummRry 

In this chapter, we examined the sharing of risks among customer 

classes and how it is affected by the use of traditional ratemaking 

principles. We presented two cases. Case one examines how the use of a 

particular cost allocation method affects the sharing of the revenue burden 

and related risks among customer classes. In case two, we analyze how the 

sharing of risks is affected by differences in load growth rates among 

customer classes. The analysis is for a simple illustrative scenario and 

considered only one uncertainty, that of load growth. As a result, we 

observe uncertainties in RR that are relatively small. Had other sources of 

uncertainties been considered, we would have expected significantly larger 

uncertainties in RR. In spite of these relatively small uncertainties in 

observed RR, we were able to analyze the distribution of relative risks 

among customer classes by comparing their probability distributions. We 

find that the revenue burden and the relative risks may not always be shared 

evenly among customer classes. 

We also observed that the uneven sharing of risk might be a consequence 

of the use of a particular cost-allocation method. If a utiLity plan is 

designed to achieve a given objective for the entire customer population 

viewed as a single group, and the allocation of costs among customer classes 

is treated as a completely separate task, this may lead to uneven and 

perhaps inequitable sharing of risks among customer classes. Further, 

traditional cost-allocation methods ignore differences in load growth rates 

among customer classes and base their analyses on the system load growth 

rate. Such differences in load growth rates may be caused not only by 
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inherent differences in consumption behavior among customer classes but also 

by the potentially different responses to DSM programs. The cost and 

related risk of either a construction program or a DSM program may not be 

evenly distributed among customer classes if the utility plan and the 

ratemaking method are based on the aggregate system load. There is, 

therefore, a need to model the load growth rates of different customer 

classes separately and build this into the utility planning and the 

ratemaking processes. 

Based on the above, it is our opinion that the planning process cannot 

exclude the ratemaking process. The relative risks of different customer 

classes have to be examined in addition to the risk to the investors or the 

risk to customers viewed as a whole. Some might argue that the risks of 

different classes need not be the same. Irrespective of what interpretation 

of equity one favors in regard to sharing of ratepayer risks, different 

ratemaking methods must be examined along with the planning process to 

obtain equitable risks. Therefore, the planning process and the ratemaking 

process should be considered inexorably intertwined if one wishes to address 

the issue of equitable risk sharing among customer classes. This suggests 

that the utility planning models should not be run in isolation from the 

ratemaking models. This may require that sophisticated ratemaking models be 

built into planning models to examine the risk profiles of different 

customer classes. Further, the load growths of different customer classes 

may have to be modelled separately and integrated with planning and 

ratemaking models. Most of the currently available load forecasting models 

produce separate forecasts for each customer class and utilization of this 

resource merits consideration in building integrated least cost plans. 

In our study, we have considered only one source of uncertainty (that 

of load growth) and a particular cost-allocation method (a simplified 

embedded cost-of-service method). A more comprehensive examination of 

ratemaking principles in regard to how they effect sharing of ratepayer 

risks requires analyses of different cost-allocation methods, other sources 

of uncertainty, and the impact of different utility decisions. Such 

analyses constitute potential directions for future research to address 

issues raised in this chapter. 
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CHAPTER 7 

CONCLUSIONS 

Utility resource expansion planning entails decision making under 

uncertainties. Several mathematical models to aid the decision maker are 

available. Models employing decision tree analysis are popular among 

utility planners and state commissions. 

The planning process should include four major aspects: demand side 

options, coordination with neighboring utilities, cost incurred by 

ratepayers, and the inclusion of non-energy related goals. Chapter 2 shows 

that these considerations introduce certain complexities. Chapter 2 also 

discusses certain common misconceptions about least cost planning and 

suggestions to resolve these complexities. In addition, a way of 

establishing internal consistency in the data input to these complex 

planning models is also suggested. Internal consistency checks are site 

specific and may, therefore, vary from one utility to another. 

The work reported in the subsequent chapters examines some major 

objectives in utility resource expansion plans using models based on 

decision tree analysis. Uncertainties regarding the outcome of future 

events are measured by a properly chosen objective. There is no general 

agreement on the choice of an appropriate objective. The choice is guided 

by one's perception of risks and the conditions prevailing in the power 

system. Therefore, there could be a considerable amount of discussion 

regarding the pros and cons of choosing a particular objective. 

It was not the intent of the analyses to identify the optimum (or the 

least cost) resource plan for any utility for any given set of data and 

uncertainties. Rather; the intent was to examine the choice of different 

objectives in respect of the decisions to which they lead. In addition, our 

goal was to establish a ranking of uncertainties in regard to their degree 

of importance. 

Certain objectives had to be chosen for the establishment of such a 

ranking. It is evident that the objectives of minimizing total cost and 

that of minimizing rates would be identical if there were to be no load 
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management. The analyses of chapters 3 to 5 quantify the difference between 

these two objectives in the light of DSM programs. An additional objective 

used was that of minimizing disallowed capacity costs. 

In order to conduct the analyses, certain assumptions were made. One 

might assert that other assumptions might have led to different results. 

While we agree with such assertions, we point out that the assumptions made 

in the study are not critical to the concepts that the report intends to 

examine. For instance, the addition of a 400 MW coal plant and a 100 MW 

combustion turbine when the reserve margin falls below 20% has been modelled 

in the studies. One could make different assumptions or set up more complex 

decisions for the capacity additions. Then, one might obtain results 

different from these. The objective of the minimization of cost may not 

conflict with that of minimizing disallowed capacity costs. Nevertheless, 

the conclusion that planners have to examine resource expansion alternatives 

obtained by the objectives of minimizing disallowed capacity costs, rates, 

number of decisions that change, and total costs is substantiated by our 

study. 

In terms of the sensitivity of the objectives to uncertainties, it is 

found that the variance of the cost and rates objectives are most affected 

by the uncertainties in fuel prices. However, from the perspective of long 

range planning measured in terms of the number of decisions that change, 

demand uncertainties matter the most. In regard to the concerns of the 

investor, the minimization of disallowed capacity cost was used as an 

objective. 

The report has examined one other aspect, the risks to customer 

classes. In a planning exercise, the system load is generally viewed as a 

whole. The analysis in chapter 6 shows that by representing the loads of 

individual classes (commercial, industrial and residential), the risk 

profiles for each class can be obtained. One could then examine the cost 

allocation procedure and the ratemaking principles vis a vis the risk 

profiles. Ratemaking principles could be examined to fairly distribute the 

risk among the three classes. This indicates that the ratemaking procedure 

is intertwined with that of resource planning. 

In the examples shown in chapter 6, we were constrained by the fact 

that the spread in the revenue requirement (RR) for the various scenarios 

120 



dictated by the chance causes was not large. In a more realistic situation, 

one would have a large decision tree with different load growth scenarios 

and with different penetration of DSM programs for the customer classes. In 

such a situation, the spread in the RR would be larger than those obtained 

in our simple and expedient examples. Nevertheless, our theses that the 

relative risks to the classes have to be compared by modelling them 

separately and that the cost allocation methods may need to be adjusted to 

obtain equitable risks, are well supported by our examples. 
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APPENDIX 

MIDAS DATA BASE DESCRIPTION 

This appendix describes briefly the two sets of data bases used in 

running MIDAS and the assumptions taken to arrive at them. It also explains 

the decision tree used to analyze the two systems described. 

The decision tree created for the MIDAS test run has six nodes--four of 

them being decision nodes and two chance nodes. The first decision node is 

EFFORT put in promoting the DSMs with two branches--high effort and low 

effort. The second decision node is the supply side opt.ion selected in 

1987--to build a new coal plant and a combustion turbine or not. The third 

node is a chance node concerning load growth. It has three branches--high 

load (or low response to DSMs, expected load (or expected response) and low 

load (or high response). The same three nodes are repeated for decisions 

four years later (1991), yielding 144 endpoints for the decision tree. The 

remainder of this appendix details the assumptions behind the construction 

of this tree. 

The model is run for twenty years. Capacity expansion decisions in 

1987 and 1991 are represented as explicit decision nodes. For capacity 

decision in the period 2003-2006, MIDAS does automatic capacity expansion to 

maintain a reserve margin of 20 percent over the peak demand. The units 

used for this capacity expansion are 500 megawatt coal, 50 megawatt 

Combustion Turbine units. Also there is option for MIDAS to automatically 

buy purchased power from other utilities at the rate of $200 a megawatt-hour 

(20 cents a kilowatt-hour). 

Two systems, representative of a Northeastern and a Midwestern United 

States utility, have been modeled. They are known as utility A and 

utility B. 

Generating Capacity Data 

The total system capacity in 1987 is 3,362 megawatts for utility A and 

5,827 megawatts for utility B, with a reserve margin of 38.24 percent and 
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27.25 percent respectively. The peak load for the two utilities is 2,432 

and 4,579 megawatts, the annual demand being 11,925.3 and 29,710.1 gigawatt­

hour. The capacities already available in the systems are listed below in 

table A_1. 34 ,35,36 The financial data for these plants and for the 
34 35 

utilities as a whole has been taken from EIA documents.' The net plant 

value is 2,108.029 and 7,239.741 million dollars respectively. 

TABLE A-I 

LIST OF EXISTING CAPACITY INCLUDED IN THE MODEL 

Type Capacity, MW 
Utility A Utility B 

nuclear 745 850 

steam 
1 

1,972 4,813 

gas/oil 245 164 

purchased power 400 

1The steam capacity is oil/gas fired in case of Utility A and 
coal fired for Utility B. 

The coal plant additions being modeled as explicit .decision nodes are a 

500 megawatt plant in 1987 and two 500 megawatt plants in 1991. For each 

500 megawatt coal plant, a 100 megawatt unit of Combustion Turbine is also 

installed. The data for these plants has been taken from the EPRI Technical 

Assessment Guide
37 

and utility reports. The parameters considered for the 

plants are given below in table A-2. 
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TABLE A-2 

NEW COAL PLANT PARAMETERS 

Type of Plant Coal Steam 

Capacity, MW 500 

Number of Units 1 

Forced outage rate 11% 

Maintenance rate 9% 

Heat rate, Btu/KWh 10060 

Fixed Cost, $/Kw/year 24 

Variable costs, $K/MWh 2.3 

Capital cost, $mm 660 

Load Data 

Combustion Turbine 

100 

1 

4.3% 

5% 

13800 

0.4 

3 

29.5 

The three energy (KWh) load growth rates considered after 1987 are 3 

percent for high, 2 percent for expected and 1 percent for low load growth 

rates under a low DSM effort. For high DSM effort, these rates become 2.5 

percent, 1.5 percent and 0.5 percent respectively. The peak load (MWh) 

growths are 0.2 percent lower than the corresponding energy growth rates for 

low DSM effort and 0.4 percent lower for high DSM effort. These rates are 

summarized in table A-3. After 1991, the three rates depend upon decisions 

taken in 1991 as well as 1987. The load growth rates after 1991 are 

detailed in tables A-4 to A-6. below. 
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Load 
Growth 

High 
Expected 
Low 

Load 
Growth 

High 
Expected 
Low 

TABLE A-3 

LOAD GROWTH RATES FOR 1988-1991 IN PERCENT 

Load growth Rates for energy (peak), 
DSM Effort High Expected Low 

High 
Low 

2.5(2.1) 
3.0(2.8) 

TABLE A-4 

1.5(1.1) 
2.0(1.8) 

LOAD GROWTH RATES FOR 1992-1995 IN PERCENT 

1.5(0.1) 
1.0(0.8) 

Energy (peak) growth rates for different DSM decisions, 
Decision for DSM promotional effort taken in 1987/1991 

High/High High/Low Low/High Low/Low 

2.5«2.1) 
1.5(1.1) 
0.5(0.1) 

3.0(2.8) 
2.0(1.8) 
1.0(0.8) 

TABLE A-5 

2.5(2.1) 
1.5 (1.1) 
0.5(0.1) 

3.0(2.8) 
2.0(1.8) 
1.0(0.8) 

LOAD GROWTH RATES FOR 1996-1999 IN PERCENT 

Energy (peak) growth rates for different DSM decisions. 
Decision for DSM promotional effort taken in 1987/1991 

High/High High/low Low High Low/Low 

3.0(2.8) 
2.0(1.8) 
1.0(0.8) 

3.5(3.5) 
2.5(2.5) 
1.5(1.5) 
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TABLE A-6 

LOAD GROWTH RATES FOR 2000 ONWARDS IN PERCENT 

Load Growth 

High 
Expected 

Low 

Energy(Peak) Growth Rates 

3.0(2.8) 
2.0(1.8) 
1.0(0.8) 

The probability of high load growth is 0.25, for expected load growth 

it is 0.50, and for low 0.25. These probabilities are same for both the 

stages. The mean growth rates and variances for energy and peak growth 

rates are given in table A-7 below. 

TABLE A-7 

MEANS AND VARIANCES FOR DIFFERENT DSM DECISIONS 

High DSM Effort 
Low DSM Effort 

Percent Energy Growth Rate 
Mean Variance 

1.5 
2.0 

0.707 
0.707 

Percent Growth Rate of Peak 
Mean Variance 

1.1 
1.8 

0.707 
0.707 

The demand growth rate for ECAR (East Central Area Reliability) region 

is projected to be about 1.7 percent, and for NPCC (Northeast Power 

Coordinating Council) about 2.0 percent.
38 

With higher effort for promoting 

DSM's this growth rate can be reduced by up to 0.7 percent (this figure is 

based on~the various results of utility programs reported in the EPRI 
39 

Compendium of Utility Sponsored Rebate Programs). The peak reductions and 

the rebates to achieve this are detailed in figure A-l. 
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The DSM costs in the MIDAS expenses file have been estimated based on 

the data given in the EPRI Compendium of Utility Sponsored Rebate 
39 

Programs, also shown in table A-8 and figure A-2. The cost of DSMs per 

kilowatt of peak reduction is taken as about $200 a kilowatt. 

TABLE A-8 

PEAK REDUCTION AND REBATE PROGRAM COSTS 

Utilities 

Arizona PSC 
Aust TX Resource Mgmt Group 
City WI, L&P, Springfield IL 
Gulf Power Co 
Gulf States Util 
Jersey Cent P&L 
Metro Edison 
Nevada Power 
Okla Gas & Elec 
Otter Tail Power 
Pacific Gas & Elec 
Penn Elec Co 
Penn Power & Light 
S Cal Edison 
Texas Util Elec Co 
Verdigris Valley Elec Co 
W Texas Util Co 

Cost/KW,$ 

190 
260 
130 
100 
400 
375 
100 
275 
140 

90 
600 
115 
110 
420 
125 
280 

84 

Percent Peak Reduction 

0.43 
1.38 
0.06 
0.01 
0.02 
0.24 
0.18 
0.38 
0.19 
0.22 
0.4 
0.25 
0.13 
0.53 
0.88 
0.14 
0.49 

Source: Electric Power Research Institute, A Compendium 
of Utility-Sponsored Energy Efficiency Rebate Programs 
(Palo Alto, California: EPRI, December 1987). 
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44. The cost-allocation calculations in MIDAS are bypassed for the 
following reasons. In MIDAS the user inputs energy, demand, and 
.customer allocation factors. However, these factors can only be 
estimated after the results of the production costing calculations are 
available. In MIDAS, the production costing and the cost allocation 
calculations are carried out sequentially in a single computer run. 
The two sets of calculations cannot be separated through user 
intervention. In other words, the user has to run MIDAS to obtain 
production costs, estimate cost allocation factors off-line, and then 
rerun MIDAS to find costs of service. It would be more efficient to 
have a separate cost-allocation routine that can use the production 
costing results directly from a single run of MIDAS. The cost­
allocation procedure reported her is developed for that purpose. 

45. The price of $200 per MWh should not be confused with firm purchases. 
Utility A is modelled to incorporate firm purchases of 400 MW at $45 
per MWh. The price of $200 per MWh is used only for emergency 
purchases. Such purchases are made only at times of system peak when 
machines are on outage. The production costing simulation gives the 
expected loss of energy (ELOE) if no purchases were made. The model 
assumes purchases at $200 per MWh to make the ELOE equal to zero. 

* 46. The concept of levelized rate is based on the following. If P is 
defined as a constant fixed price charged per KWh in everyone of the 
future years ~nder stu~y, the present worth of the revenue stream is 
given by ~ P Et/(l+i) . The present worth of the annual costs is 
~ Ct/(l+i) where C is the cost in year t. Since cost is equal to 
revenue requirement; the present worth of annual costs is nothing but 
the numerator of equation (3-1). Equating the present worth of ~ 

revenue stream to the stream of cost, one obtains the definition of p" 
as in equation (3-1). 

47. This does not imply that DSM programs are always economic if new plants 
were to increase electric rates. This is because, under inflation, 
rate regulation based on the book of value of assets can result in 
rate increases in the early years of a plant, while causing rates to 
fall in real terms later. The overall levelized rate can, as a 
result, either be higher or lower due to the plant addition, depending 
on several factors. 

48. This limiting value for DSM was obtained by running the SMARTS model 
with increasing values of DSM and by observing if the decision tree 
analysis would indicate the choice of DSM. 

49. Note that this is an assumption in the model. It may be that the 
utility will seek this additional power from outside parties through 
competitive bidding. Under those circumstances, the decision tree 
will have to be restructured to model such an alternative. Then, the 
results may be different from those indicated here. 
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50. Absent other factors, e.g., A-J effect (not accounted for here) could 
counter this result. 

51. In figure 6-7, the probability of class 2 RR being at 98.5 percent of 
its mean is about 0.19 while the corresponding probability for class 2 
is about 0.32. At 100.5 percent of mean, for class 1 RR, the 
probability is about 0.72 while the corresponding probability for 
class 2 is about 0.79. Similar observations are true for figures 6-8 
and 6-9. 
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