Maximizing the Value of Your Yield Data

Dennis Pennington Wheat Systems Specialist

ting and and and and

MICHIGAN STATE UNIVERSITY Extension

Do you...

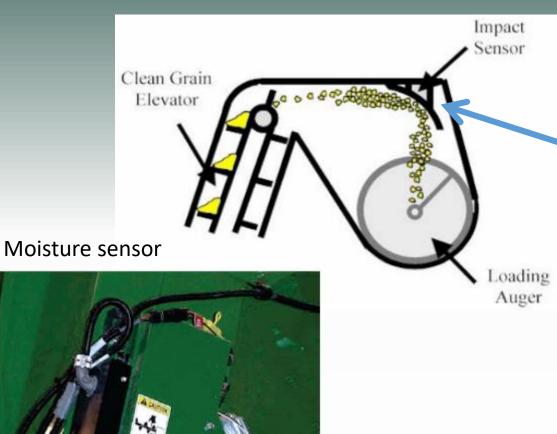
- Have a yield monitor?
- Use it?
- Download and store data from it?
- Print maps?
- Grid soil sample?
- Write prescriptions?
- Use it to make management decisions?
- How?

Initial steps...

- Learn how a yield monitor works
- Calibrate the monitor
- Set up grower, farm, field names (and use them)
- Import data to software program
 - Apex
 - Farmworks
 - SMS
 - Map Shots
 - Summit
 - Others

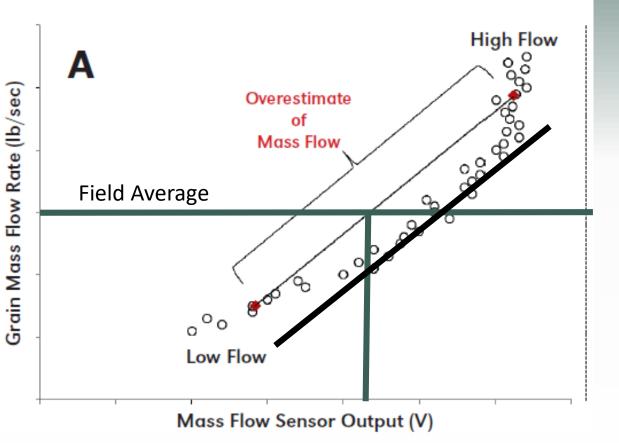
Key Points:

- 1. Calibrate!
- 2. Manipulate!
- 3. Operate!

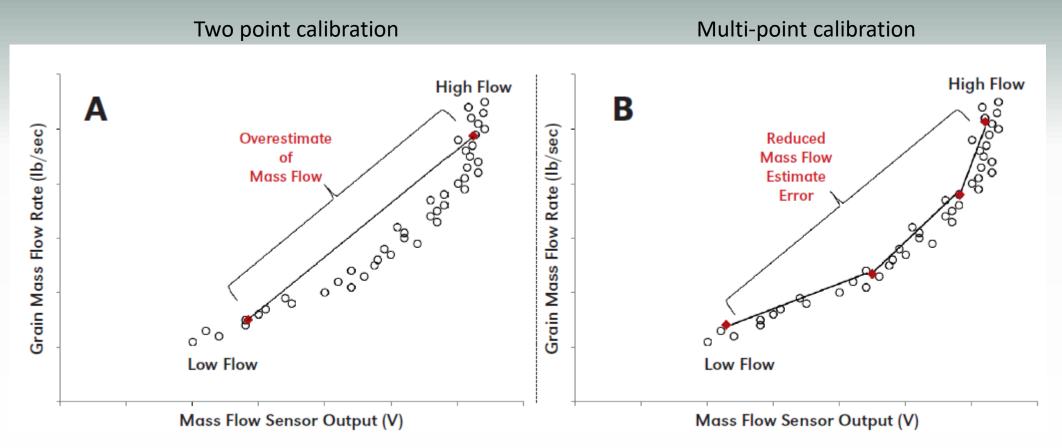

Why Calibrate?

- To ensure accurate data collection
- On farm research
- Create management zones
- Yield data used to create prescriptions
- VRT
 - Fertilizer & lime
 - Seeding rate
 - Varieties

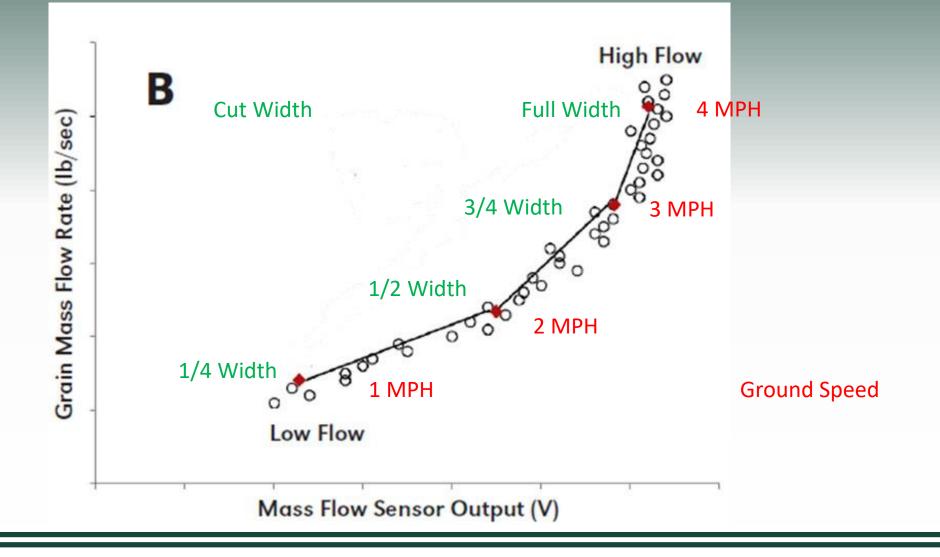
How a Yield Monitor Works


Mass flow sensor

Best Management Practices for Collecting Accurate Yield Data and Avoiding Errors During Harvest, Luck, J. and Fulton, J. UNL Bulletin EC2004.


Mass Flow Sensor Response

• Non-linear


- Different between combines
- Varies between crops
- Influenced by:
 - Grain moisture
 - Test weight
 - Clean grain elevator
 - Operator behavior
 - Maintenance
 - Other

Calibrating the mass flow sensor

ASTER T

How to get desired flow rate?

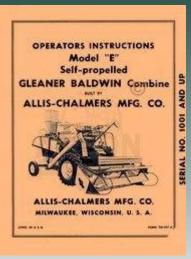
Sur T

Don't take the shortcut!

 MPH	Flow rate	Monitor (lbs)
1	Low	3293
2	Medium	4158
3	Medium	5422
 4	High	4120

MP	РН	Flow rate	Monitor (lbs)	Weigh Wagon (lbs)	
1	-	Low	3293	3976	
2	2	Medium	4158	4161	
3	•	Medium	5422	4736	
4	-	High	4120	3762	

Γ	МРН	Flow rate	Monitor (lbs)	Weigh Wagon (lbs)	Difference (lbs)	
	1	Low	3293	3976	-683	
	2	Medium	4158	4161	-3	
	3	Medium	5422	4736	686	
	4	High	4120	3762	358	


wagon (ibs) Differenc	e (lbs) Difference (%)
3976 -683	3 -17.2%
4161 -3	-0.1%
4736 686	5 14.5%
3762 358	9.5 %
	4161 -3 4736 686

 MPH	Flow rate	Monitor (lbs)	Weigh Wagon (lbs)	Difference (lbs)	Difference (%)
1	Low	3293	3976	-683	-17.2%
2	Medium	4158	4161	-3	-0.1%
3	Medium	5422	4736	686	14.5%
4	High	4120	3762	358	9.5%
		16,993	16,635	358	2.1%
CaselH	combine, Berri	en County, MI.			

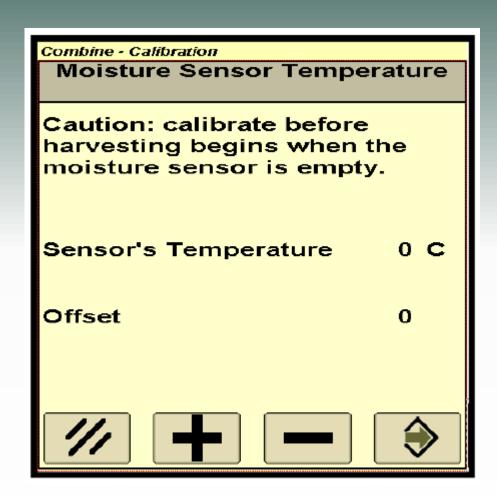
Calibration methods

- Each combine is different read owners manual
- Most new combines have "Advanced" calibration method
 - Allows for multi-point calibration
 - Wizard will give you only quick and dirty calibration
- Some older combines have built in calibration curve where only one calibration is performed
 - John Deere 70 series combines

SETUP Yield Ca	libration
Mass Flo	N
Calibration Star	ndard 🔊
	Flow
Yield Calibration	Start
is Stopped	Start
Harvested	
Weight (lb):	0
Scale	
Weight (lb):	
Calibration	650
Factor:	650

1. Distance (some models use GPS, others use radar/wheel sensors)

- 2. Moisture sensor temperature
- Mass now vibration
- 4. Moisture sensor
- 5. Weight calibration (at least 3000 lbs)
- 6. Other settings:
 - Lag time
 - Header position
 - Cut width
 - GPS offsets


Recommended: if collecting on farm research data – ask grower to download monitor files prior to starting your trial.

Once per season

- 1. Distance (some models use GPS, others use radar/wheel sensors)
- 2. Moisture sensor temperature
- 3. Mass now vibration
- 4. Moisture sensor
- 5. Weight calibration (at least 3000 lbs)
- 6. Other settings:
 - Lag time
 - Header position
 - Cut width
 - GPS offsets

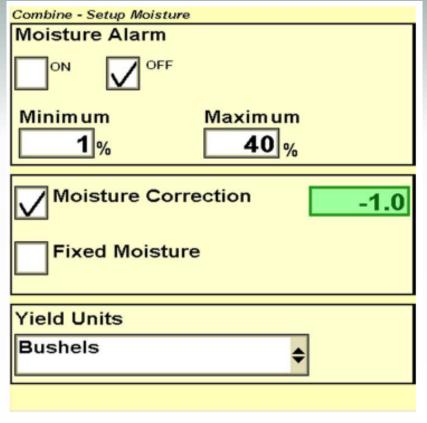
Recommended: if collecting on farm research data – ask grower to download monitor files prior to starting your trial.

Once per season (not after sunlight)

- 1. Distance (some use radar/whee
- 2. Moisture sensor
- 3. Mass flow vibrat
- 4. Moisture sensor
- 5. Weight calibratic
- 6. Other settings:
 - Lag time
 - Header position
 - Cut width
 - GPS offsets

Recommended: if col research data – ask g monitor files prior to

ne r eel	Combine - Calibration Mass Flow Vibration	Combine - Calibration Mass Flow Vibration
sor rat or atic	You are about to perform the Mass Flow Vibration Calibration. The machine should be stationary and not harvesting. The engine should be running at normal harvesting RPM. The threshing system and feeder house should be engaged.	Calibrating. Please wait
col k g to		


Once per season for each crop (with proper head at operating height)

- 1. Distance (some models use GPS, others use radar/wheel sensors)
- 2. Moisture sensor temperature
- 3. Mass flow vibration
- 4. Moisture sensor use trusted tester!
- 5. Weight calibration (at least 3000 lbs)
- 6. Other settings:
 - Lag time
 - Header position
 - Cut width
 - GPS offsets

Recommended: if collecting on farm research data – ask grower to download monitor files prior to starting your trial.

Moisture Meter Capacitance Plate

Once per season for each crop

- 1. Distance (some models use GPS, others use radar/wheel sensors)
- 2. Moisture sensor temperature
- 3. Mass flow vibration
- 4. Moisture sensor
- 5. Weight calibration (at least 3000 lbs)
- 6. Other settings:
 - Lag time
 - Header position
 - Cut width
 - GPS offsets

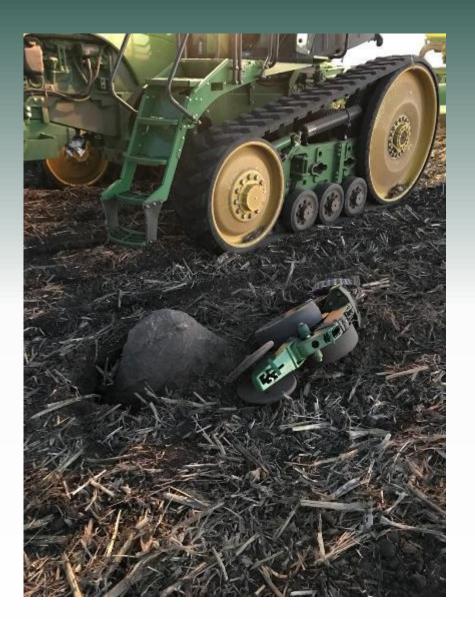
Recommended: if collecting on farm research data – ask grower to download monitor files prior to starting your trial.

0 8	Load ID	Estimated Ib	Actual Ib	%		
	1	11348 23.4 <u>%</u>	10980	3.4	11	-
	2	9663 25.0 <u>%</u>	9874	-2.1	11	
	3	13611 23.9 <u>%</u>	13956	-2.5	11	
	4	11330 24.2 <u>%</u>	11120	1.9	11	
	5	13301 16.6 <u>%</u>	13214	0.7	11	V
					-	

Once per season per crop (wet & dry)

- 1. Distance (some models use GPS, others use radar/wheel sensors)
- 2. Moisture sensor temperature
- 3. Mass flow vibration
- 4. Moisture sensor
- 5. Weight calibration (at least 3000 lbs)
- 6. Other settings:
 - Lag time
 - Header position
 - Cut width
 - GPS offsets

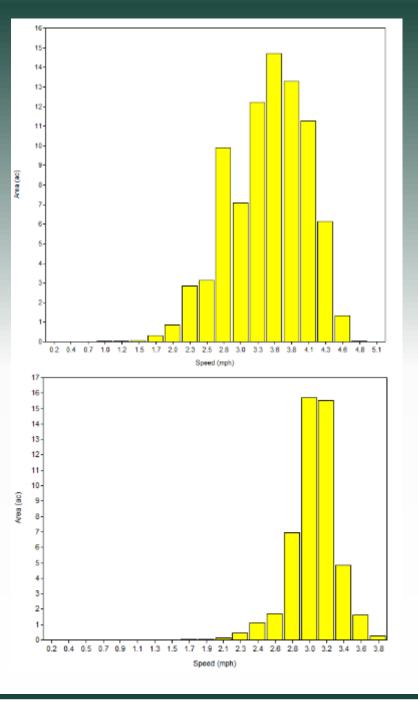
Recommended: if collecting on farm research data – ask grower to download monitor files prior to starting your trial.


Load ID	Estimated Ib	Actual Ib	%		
1	11348 23.4 <u>%</u>	10980	3.4	11	-
2	9663 25.0 <u>%</u>	9874	-2.1	11	
3	13611 23.9 <u>%</u>	13956	-2.5	11	
4	11330 24.2 <u>%</u>	11120	1.9	11	
5	13301 16.6 <u>%</u>	13214	0.7	11	-

Once per season per crop (wet & dry)

Manipulate - Data clean up

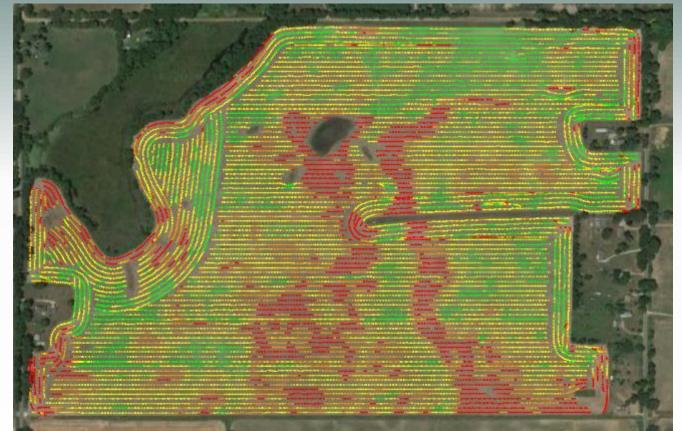
- Grower/farm/field errors
- "wild" points (outside of field)
- Turnaround on ends
- Partial swath width (last pass)
- Abnormalities 2106 bu/a soybean yield?
- Speed up/slow down



Variation in Operators???

Soybean Harvest – Ground Speed

2 Type of Operators


- 1. Those that tend to adjust hydrostat frequently.
- 2. Those that tend to maintain a preferred ground speed with minor speed adjustments based on operating conditions.

Your intention for using data?

- Prescriptions
- Post harvest analysis
- Need:
 - 1. Relative precision (spatial) and
 - 2. Cleaning prior to analysis

Agronomic Data Vield Maps

202

166

COMMON YIELD MAP USES

- VR Seeding Zones
- Multi-hybrid Zones
- Nutrient Removal Maps
- Post-harvest analyses by zones, soil attributes, etc.
- Others...

Producer Value

Quality data leads to accurate analyses and information. Historical data provides value to RX creation.

Agronomic Data Vield Maps

202

166

2 common issues these days...

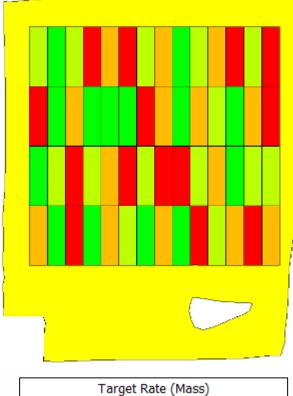

ney Cres

- Limited yield maps per field
- Poor quality yield data

Credit: John Fulton, OSU

Operate – Use technology for your own research

- Most farms have yield monitors
- Many have VRT capabilities (owned or hired)
- RTK accuracy is greatly improved
- Less time
- Easier for farmer


Plot Layout Considerations

- Field size
- Application width
- Combine header width
- Traffic patterns
- Replications
- Plot orientation

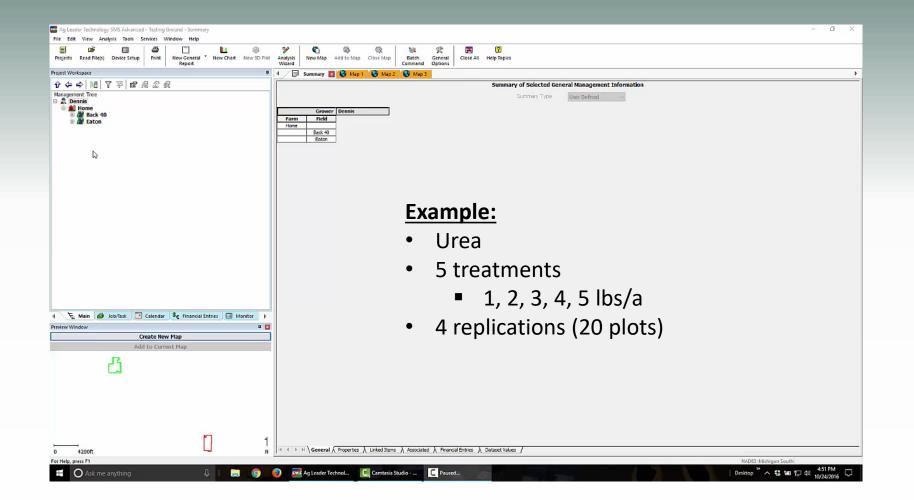
Operate: on farm research - seeding rate

Target Rate (Mass)
(lb/ac)
183.0(8.678 ac)
162.0 (8.678 ac)
158.0(24.740 ac)
142.0 (8.678 ac)
121.0 (8.676 ac)

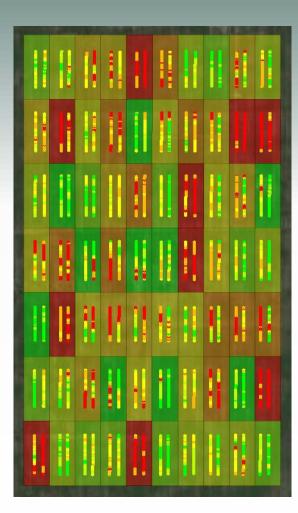
90 foot x 300 ft4 rates x 14 reps30 foot combine header90 foot sprayer

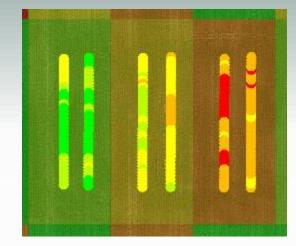
Plot Traffic

Operate: on farm research – nitrogen rate



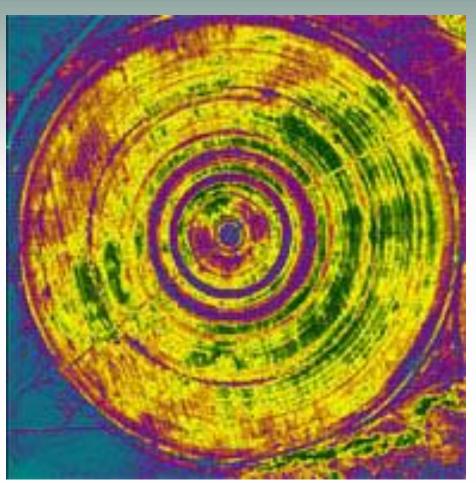
120 foot x 300 ft7 rates x 10 reps30 foot combine header120 foot sprayer


Plot Traffic

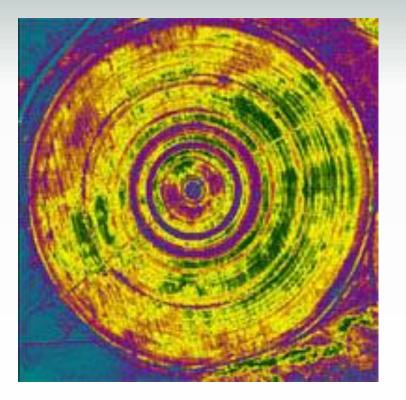

Create plots in SMS Advanced

Manipulate: edit yield layer to obtain data

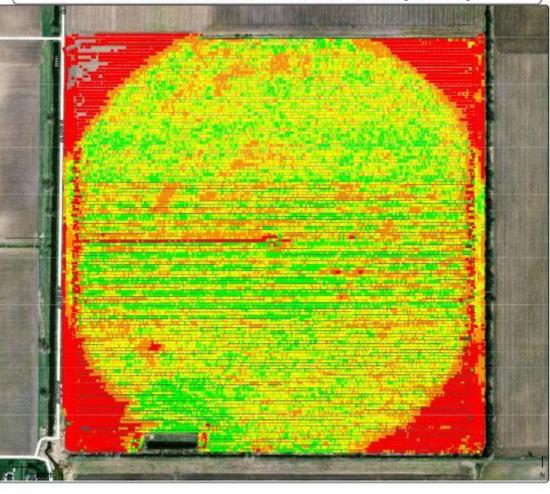
			(Dry) I/ac)	
114.39	-	199.36	(0.00	ac)
105.60				
98.27	-	105.60	(0.00	ac)
		98.27		
59.05	-	90.37	(0.00	ac)



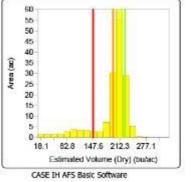
-Statistics(Selecte	d / All)
Minimum	102.04 / 59.05 bu/ac
Maximum	<u>132.65 / </u> 199.36 bu/ac
Average	115.50 / 102.65 bu/ac
Total	0.00 / 0.00 bu
Area	0.00 / 0.00 ac
Area Length	0.00 / 0.00 ac 0.00 / 0.00 ft

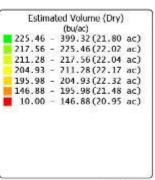

Low Uniformity = Under Application in areas = Reduced Yields

Even with adequate scheduling a 30% deviation in application uniformity can result in a 40% yield reduction in low application areas of the field.



Have you seen yield map patterns that match the irrigation system configuration?





Grain Harvest 2012 - Good South(CORN)

	Field : Good South
	Year : 2012
	Operation : Grain Harvest
	Crop / Product : CORN
	Op. Instance : Harvest - 1
	Area : 152.77 ac
	Avg. Yield : 187.77 bu/ac
l	Avg. Moisture : 18.55 %
2	9/2/2013 4:22:56 PM

Page 1 of 1

Questions?

Dennis Pennington MSU Wheat Systems Specialist pennin34@msu.edu Phone: 269-832-0497

