

Irrigation Energy Options and Considerations

Lyndon Kelley MSU Extension/Purdue University Irrigation Management Agent 269-467-5511, cell 269-535-0343

https://www.canr.msu.edu/irrigation/

Power Options to Run Your Irrigation System

VALLEY

Irrigation power cost vary on:

- power source
- power cost
- system pressure

Average fuel cost for pumping NE. USA: 2016 Cost per acre inch of irrigation water

Energy source	Electric	Diesel / propane
Pressure		
Low <35 psi	\$1.76	\$2.56 / 2.30
Med. 35 to 95 psi	\$2.48	\$3.76 / 3.27
High >100psi	\$ 3.56	\$ 4.87 / 3.90

Day to Day Power Operation Costs

Table 2. ComparativeCosts of VariousEnergy Sources toObtain Equal WorkOutput per DollarSpent

Adapted from AE-111 "Comparable Costs of Various Energy Sources for Irrigation Pumping"

Gasoline (\$/gallon)	Diesel (\$/gallon)	Propane (\$/gallon)	Electricity (kw-hr)
1.00	1.31	.79	10.4
1.10	1.44	.87	11.4
1.20	1.57	.95	12.5
1.30	1.70	1.03	13.5
1.40	1.83	1.11	14.6
1.50	1.97	1.19	15.6
1.60	2.10	1.26	16.7
1.70	2.23	1.34	17.7
1.80	2.36	1.42	18.7
1.90	2.49	1.50	19.8
2.00	2.62	1.58	20.8
2.10	2.75	1.66	21.8
2.20	2.88	1.74	22.8
2.30	3.01	1.82	23.9
2.40	3.14	1.90	25.0
2.50	3.27	1.98	26.0
2.60	3.40	2.06	27.0
2.70	3.53	2.13	28.1
2.80	3.67	2.22	29.1
2.90	3.80	2.29	30.1
3.00	3.93	2.37	31.2
3.10	4.06	2.45	32.2
3.20	4.19	2.53	33.2
3.30	4.32	2.61	34.3
3.40	4.55	2.69	35.3

Power Options

- All Electric System
 - electric to power the pump
 - electric to drive irrigation unit

Do you have access to a 3-phase, 480V power line?

Variable Frequency Drives

- Common for 20 Hp and less
- Recently 50+ Hp have been marketed
- Allows an effective use of portion of the total out put. (cornering arm, low psi /high psi combinations)
- Can be fed single phase powered to create 3 phase
- Takes an additional 5% energy at full output.
- Programing for slow start-up minimize brown out issues for power company.

Phase Converters

- Single phase to 3-phase conversion
- Used to drive pump and pivot or just pivot.
- Slow start-up minimize brown out issues for power company.

All Engine Power System

Engine power to pump water

Commonly used with High psi - Solid set irrigation units - Soft hose & hand hose irrigation units (water drive)

Engine powers 3 phase, belt driven generator or hydraulic pump to drive pivots.

Example- All Electric System 100 acres, 750 gpm, 45 psi.

Example- All Electric System 100 acres, 750 gpm, 45 psi.

	Cost	Salvage value	
Electric Co. install fee	\$1,750	0	
200 amp disconnect	\$500	\$100	
1350' buried electric cable * \$2.50 per ft.	\$3,375	0	
Well panel	\$1,000	\$250	
40 hp pump	\$3,000	\$1,000	
Totals	\$9,625	\$1,350	

Estimating Annual Irrigation Operation Costs 100 Acre Water Supply – 3 phase electric pump

Annual Ownership Cost

Depreciation: (original cost - salvage value)/years of use = \$506Interest: interest rate * average investment value = \$303Repair: estimated to between 2 to 5% of original cost = \$80Taxes: personal property tax: Michigan – no, Indiana = \$96Insurance: estimated at 0.5% * Average Investment Value = \$48Total Ownership Cost = \$1,034

Operating Cost (total actual annual cost / 100 acre * 7") \$2.50/ acre in. * 700 acre inches = \$1,750 annually <u>Total Operating cost annually</u> = \$1,960

Grand Total Estimated Annual Cost = Operating cost + Ownership Cost Grand Total Estimated Annual Cost = \$1,960 + \$1,034 = \$2,994

Example- All Electric System/ with Phase converter or variable frequency drive 100 acres, 750 gpm, 45 psi.

Example- All Electric System/ with Phase Converter or Variable Frequency Drive 100 acres, 750 gpm, 45 psi.

	Cost	Salvage value
	• ·•	
Electric Co. install fee	\$1,750 0	
200 amp disconnect	\$500 \$100	
Phase Converter/Variable Frequency Drive	\$3000	\$1000
1350' buried electric cable * \$2.50 per ft.	\$3,375	0
Well panel	\$1,000 \$250	
40 hp pump	\$3,000	\$1,000
Totals	\$12,625	\$2,350

Estimating Annual Irrigation Operation Costs Example- All Electric System/ with Phase converter or variable frequency drive **100 Acre Water Supply**

Annual Ownership Cost

Depreciation: (original cost - salvage value)/years of use = \$506 Interest: interest rate * average investment value = \$303 Repair: estimated to between 2 to 5% of original cost = \$80 Taxes: personal property tax: Michigan–0, Indiana = \$126 Insurance: estimated at 0.5% * Average Investment Value = \$13 <u>Total Annual Ownership Cost</u> = \$1,279

Operating Cost (total actual annual cost / 100 acre * 7") \$2.50/ acre in. * 700 acre inches = \$1,750 annually Total Operating cost annually = \$1,960

Total Annual Cost = Operating cost + Ownership Cost Grand Total Estimated Annual Cost = \$1,960 + \$1,279 = \$3,239

Example- Diesel Pump and Generator 100 acres, 750 gpm, 45 lbs.

Example- Diesel Engine and Generator 100 acres, 750 gpm, 45 lbs.

	Cost	Salvage value
Diesel engine & pump	\$20,000	3,500
Right angle drive	\$4,000	\$500
Generator cost	\$3,000	\$1,000
Totals	\$27,000	\$6,000

Estimating Annual Irrigation Operation Costs 100 Acre Water Supply - Diesel Engine, Right angle drive and Generator

Annual Ownership Cost

Depreciation: (original cost - salvage value)/years of use = \$2,200Interest: interest rate * average investment value = \$800Repair: estimated to between 2 to 5% of original cost = \$600Taxes: personal property tax: Michigan – 0, Indiana = 270 Insurance: estimated at 0.5% * Average Investment Value = \$135<u>Total Ownership Cost</u> \$4,005/year

Operating Cost (total actual annual cost / 100 acre * 7") \$2.50/ acre in. * 700 acre inches = <u>\$4,550/year</u> <u>Total Operating cost annually</u> = <u>\$4,760</u>

Grand Total Estimated Annual Cost = Operating cost + Ownership Cost Grand Total Estimated Annual Cost = $\frac{44,005}{4,005} + \frac{44,760}{5} = \frac{88,765}{5}$

Example- Propane/natural gas Engine and Generator -142 acres, 750 gpm, 45 lbs.

Example- Propane/Natural Gas and Generator - 100 acres, 750 gpm, 45 lbs.

	Cost	Salvage value
Nat. Gas engine	\$12,000	2,000
Right angle drive	\$4,000	\$500
Generator cost	\$3,000	\$1,000
Totals	\$19,000	\$4,500

Estimating Annual Irrigation Operation Costs 100 Acre Water Supply – Propane/Natural gas engine, Right angle drive and generator

Ownership Cost

Depreciation: (original cost - salvage value)/years of use = \$1,550 Interest: interest rate * average investment value = \$562.50 Repair: estimated to between 2 to 5% of original cost = \$240 Taxes: personal property tax: Michigan – 0, Indiana = \$190 Insurance: estimated at 0.5% * Average Investment Value = \$95 <u>Total Ownership Cost</u> \$2,638 /year

Operating Cost (total actual annual cost / 100 acre * 7") 3.50/ acre in. * 700 acre inches = $\frac{2,450}{\text{year}}$ Total Operating cost annually = 2,660

Grand Total Estimated Annual Cost = Operating cost + Ownership Cost Grand Total Estimated Annual Cost = $\frac{$2,638}{$2,660} = \frac{$5,298}{$5,298}$ Irrigation Energy Options- Decision consideration Always do your own home work, every situation is different

Quick and dirty cost comparisons high cost to low cost

Annual energy cost

gasoline > diesel > propane > electricity
Initial equipment and infrastructure cost
diesel > propane > gasoline > electricity
Annual maintenance, repairs, labor
diesel > gasoline > propane > electricity

Investigate Propane....

- About 1/3 saving in pumping cost (\$2.50 diesel = \$1.50 propane)
- Less fuel theft problems
- Minimal environmental storage, exhaust concerns
- Off season use grain drying tank
- No water in fuel issues
- Lower initial investment

If considering electric, what are the Electric Load Management Options your utility offers Electric Irrigation System Operators?

Commercial Energy Rate Off peak electric rate cost/kWh On peak electric rate cost/kWh Time of day operation restrictions Shut down concessions All considered actual rate can be from 2.3 cent

to 14.7 cents ? Kilowatt hour.

Estimated Annual Cost/Acre

10 yr. investment period, - salvage value, 5% interest, 7" application/yr., 100 acres

	Diesel engine + generator	Natural gas engine + generator	Single phase to 3 phase converter	3# Phase at pole
Total Annual Ownership Cost/ acre	\$40.05	\$26.38	\$12.79	\$10.34
Total Annual Operating Cost / Acre	\$47.60	\$26.60	\$19.60	\$19.60
Grand Total Annual Cost/Acre	\$87.65	\$52.98	\$32.39	\$29.94

\$87.65-29.94 x 100 acres = **<u>\$5771</u>** annually for 10 yrs. at 5% interest

Present Value of an Annuity

$$PV_{Ordinary Annuity} = C * \left[\frac{1 - (1 + i)^{-n}}{i} \right]$$

C = Cash flow per period (payment amount)

i = Interest rate

n = Number of payments (in this calculator, derived from the payment interval and number of years)

C = Cash flow per period (payment amount) i = Interest rate

n = Number of payments (in this calculator, derived from the payment interval and number of years)

Present Value of an Annuity- calculator

https://financialmentor.com/calculator/present-value-of-annuity-calculator

