GENETIC DIVERSITY OF THE GUATEMALAN CLIMBING BEAN COLLECTION

María Gabriela Tobar Piñón, Samira Mafi Moghaddam, Rian Lee, Julio Villatoro, Juan M. Osorno and Phillip E. McClean

2017 Feed the Future Legume Innovation Lab Grain Legume Research Conference
Ouagadougou, Burkina Faso
August 15th, 2017
Introduction

• The most important pulse crop for human consumption around the world.
• Source of protein and iron.
Feed the Future Innovation Lab for Collaborative Research on Grain Legumes
Guatemala has the highest rate of chronic malnutrition in Latin America.
Milpa system and climbing bean collections

- Intercropping array
- Maize, climbing bean and squash.
- *In situ* collection of climbing beans, n=600 (50 years).
- Survey collection, n=500 (MSU and ICTA, 2015).
- Genetic diversity and development of varieties.
Races

- Middle America
 - Mesoamerica
 - Durango
 - Jalisco

- Andean
 - Perú
 - Nueva Granada
 - Chile

Singh et al. (1991)
Genetic diversity of Middle American gene pool

• Beebe et al. (2000), using RAPDs, proposed race Guatemala, mostly Guatemalan climbing beans.

• Blair et al. (2009), using microsatellites, supported race Guatemala (61 accessions). Also, proposed Durango-Jalisco complex.
Objectives

• Analyze the genetic diversity of Guatemalan climbing bean collections using single-nucleotide polymorphism (SNP) markers.

• Correlate the genotypic data with phenotypic traits of economic/agronomic importance, using a genome-wide association study.
Materials and Methods

• Population selection
 – 369 Guatemalan accessions (old collection).
 – Mesoamerican Diversity Panel (MDP):
 • 100 accessions of race Mesoamerica.
 • 100 accessions of race Durango-Jalisco.
 – 12 wild accessions from Guatemala (USDA-GRIN)
Materials and Methods

- Tissue collection
- DNA extraction
- Genotype by sequencing
 - Msel and Taqα1 restriction enzymes.
- SNP calling (136,382 SNPs)
 - Samtools, BWA mapping, GATK.
 - Filtering for 0.05 MAF (102,343 SNPs)
- Population structure and genetic diversity analysis
 - PCA, ML tree (SNPhylo), STRUCTURE, Fst, He, PIC values.
- Genome wide association study (GWAS)
 - GAPIT, 4 models.
STRUCTURE analysis
Guatemalan collections and Mesoamerican races
Phylogenetic tree
Guatemalan collections and Mesoamerican races

Durango/Jalisco
Mesoamerica
Guatemala (new)
Guatemala (old)
Wilds

Guatemala (New)
Guatemala (Old)
Durango/Jalisco
Mesoamerica
Wilds

0.2 LD
Principal Components Analysis

Guatemalan collections and Mesoamerican races

- Durango/Jalisco
- Mesoamerica
- New collection
- Old collection
- Wilds

Feed the Future Innovation Lab for Collaborative Research on Grain Legumes
Diversity Statistics

<table>
<thead>
<tr>
<th>Sup-population</th>
<th>H_o</th>
<th>H_e</th>
<th>PIC</th>
<th>%Monomorphic</th>
<th>F_{st} value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durango/Jalisco</td>
<td>0.4597</td>
<td>0.3437</td>
<td>0.2680</td>
<td>8.17</td>
<td>0.2904</td>
</tr>
<tr>
<td>Mesoamerica</td>
<td>0.4569</td>
<td>0.3366</td>
<td>0.2625</td>
<td>8.08</td>
<td>0.3054</td>
</tr>
<tr>
<td>Guatemala (old)</td>
<td>0.4755</td>
<td>0.3623</td>
<td>0.2842</td>
<td>3.30</td>
<td>0.1474</td>
</tr>
<tr>
<td>Guatemala (new)</td>
<td>0.4892</td>
<td>0.3897</td>
<td>0.3052</td>
<td>0.50</td>
<td>0.1192</td>
</tr>
</tbody>
</table>
Phylogenetic tree of Guatemalan beans

- Guatemala old collection
- Guatemala new collection
- Guatemala wilds
PCA based on regions, new collection
PCA based on elevation, new collection
Association mapping

Elevation

- Flowering process

Feed the Future Innovation Lab for Collaborative Research on Grain Legumes
Conclusions

• Guatemalan climbing beans did not group with any of the previously defined races of common bean.

• Race Guatemala represents a new source of genetic diversity.

• Genomic regions were associated with several traits of economic importance.

• Genomic regions were associated with local adaptation in the Guatemalan climbing beans.
Acknowledgements

• Dr. Phillip McClean
• Dr. Juan Osorno
• Dr. Samira Mafi
• Rian Lee
• Julio Villatoro
• Carlos Maldonado
• Angela Miranda
• Dr. Jill Hamilton
• Dr. Ali Soltani