Leadership for Advanced Responses to Animal Diseases

Daral J. Jackwood, Ph.D.
Wooster, Ohio 44691
The Ideal Vaccine

• Efficacy – It must work
• Produce long-lived immunity
• Stable during storage
• Economical to produce
• Safe

The Problem: Conventional vaccines do not meet all these criteria and most are inadequate in multiple categories
Infectious Bursal Disease

- Acute, highly contagious disease of chickens.
- Usually seen in 4-6 week old birds.
 - Infections can occur from 1 week to 20 weeks of age.
- Bursa cells (B-Lymphocytes) are infected.
- Permanent immune suppression in young birds.
 - The immune suppression is transient (during the disease) in older birds.
Sub-Clinical IBDV

Variant scIBDV

Control
Classic Virulent IBDV
Very Virulent
IBDV
Infectious Bursal Disease Viruses Serotype 1

- Pathogenic Types
 - Sub-Clinical
 - Classic Virulent
 - Very Virulent

- Antigenic Types
 - Classic
 - Variant
 - New types (antigenic drift)

It is more complicated than this!
Infectious Bursal Disease Virus

- VP1: Polymerase
- VP2: Surface protein
- VP3: Internal Protein
- dsRNA Genome (2 segments)
VP2 Hypervariable Region

A Mp1 Mp2 B

aa222

aa322

aa313

VP2 of Infectious Bursal Disease Virus

Coulibaly et al., Cell 120:761-772. 2005
Sequence analysis can identify amino acids responsible for antigenic drift.

Figure 1. Deduced amino acid sequences of VP-2 variable domain (numbers according to Bayliss et al., 1990). Major (Azad et al., 1987) and minor (Van den Berg et al., 1996) hydrophilic peaks are indicated.

<table>
<thead>
<tr>
<th>Major hydrophilic peak A</th>
<th>Minor hydrophilic peak 1</th>
<th>Minor hydrophilic peak 2</th>
<th>Major hydrophilic peak B*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classic Consensus</td>
<td>AADYQFSSQQPQGTITLESANIDAITLSWGGELVQTSQGVLGATLIGFDGTPAVIRAVANGLTARTDINMPPNLVITPITQITSKLEIVTSKSGGQAGDRMSNSASGS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STC</td>
<td>T</td>
<td>T</td>
<td>V</td>
</tr>
<tr>
<td>52/70</td>
<td>T</td>
<td>N</td>
<td>T</td>
</tr>
<tr>
<td>DV86</td>
<td>H</td>
<td>T</td>
<td>N</td>
</tr>
<tr>
<td>D78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ref. Variant</td>
<td>K</td>
<td>N</td>
<td>I</td>
</tr>
<tr>
<td>Delaware-E</td>
<td></td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>Europe IBDVs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002-7</td>
<td>N</td>
<td>K</td>
<td>S</td>
</tr>
<tr>
<td>002-17</td>
<td>S</td>
<td>N</td>
<td>K</td>
</tr>
<tr>
<td>004-5</td>
<td>S</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>017-1</td>
<td>S</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>01-023-4</td>
<td>S</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>01-030-2</td>
<td>S</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>04??</td>
<td>T</td>
<td>T</td>
<td>N</td>
</tr>
<tr>
<td>05-059</td>
<td>S</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

* Major hydrophilic peak B is the single most critical region for the generation of escape mutants and affecting antigenic change.
New antigenic sites are created when the three molecules form a trimer.
Breeder Vaccination Program

• **Goal:** Provide a uniform high quality antibody to the chick by vaccinating the hens.
 – Maternal immunity should match the viruses found in the field.
 – This doesn’t always work because of mutations that occur in the field viruses.
• Autogenous breeder vaccines
The Problem

• Most breeder vaccines for IBDV are produced in chickens.
 – Birds are infected in isolation facilities and bursa tissues are harvested to prepare the vaccine.
 • High yields of virus but the process is slow, labor intensive and expensive.

• The vaccine virus must be inactivated to insure safety.

• One antigenic type of IBDV is produced with each batch of virus (Mono-valent).
The Answer
Virus-Like-Particles (VLPs)

• Vaccines
 – Safe, Economical, Effective

• Diagnostic Reagents
 – ELISA Antigens

Intellectual Property: Provisional patent 61/668,314 filed July 5, 2012 by The Ohio State University.
- License to LARAD, Inc.
What is a Virus-Like Particle?

IBDV

Structural Proteins

Self Assembly

VLP
Antigen Quality

Subunit IBDV Vaccine

VLP Vaccine

Protein Loops need to be exposed.
Antigen Quality

IBDV Subunit Vaccine

Tubular structures are poor vaccines

IBDV Virus-like Particles

VLPs are identical to the virus
Innovation
IBDV-VLP Product Advantage

Industry IBDV Vaccine Production
• Vaccine virus grown in live chicks
• Mono-valent vaccine
• Requires inactivation of virus
• Expensive and time consuming
• Animal use and containment issues

LARAD IBDV Vaccine Production
• VLPs produced in the Lab
• Multi-valent vaccine
• Safe (no live virus)
• Economical
• No animals needed
• Problems solved with VLP technology
 – VLP vaccines can be quickly engineered to protect against the mutating IBDV
 • Conventional vaccines do not account for antigenic drift
 • New VLP antigens for diagnostic assays (ELISA)
 – Eliminate the bottleneck that comes with using animals for vaccine production
 • Increased vaccine supply for unmet market demand
 – Product safety
 – Lower cost of production
Business Structure and Location

• Incorporated in Wooster, Ohio
 – Dr. Daral J. Jackwood – Founder and Science Advisor
 • Professor, The Ohio State University
 • Internationally recognized expert in virology and poultry health
 – Mr. H. Ken Rudd – CEO
 • BioBusiness Consultants
 • Marketing Manager/Marketing Director for several vaccine companies (Merial, Select Labs, Solvay)
 – The Ohio State University – Equity partner
 – Dr. Shauna R. Brummet – Business Advisor
 • President & CEO, BioHio Research Park
 • Entrepreneur with biotechnology business development experience
Vaccines Products for IBDV

• Off the Shelf – VLP Vaccine
 – Replaces current breeder flock vaccines

• Made-to-order VLP Vaccine
 – Addresses rapidly mutating virus

• Diagnostic Reagents for ELISA kits

VLP Products in the pipeline: Swine – PRRS
 Poultry - Reovirus
Leadership for Advanced Responses to Animal Diseases

LARAD Inc.
Wooster, Ohio 44691

Dr. Daral J. Jackwood, Founder
Professor
The Ohio State University
jackwood.2@osu.edu