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SÊ®½ ó�ã�Ù fl ow simulations have a multitude of appli-

cations at various scales, from irrigation scheduling to 

obtaining global climate change estimates. Modeling of fl ow in 

variably saturated soils requires water retention and hydraulic 

conductivity parameters that are impractical to measure for large-

scale projects. As opposed to saturated fl ow, the nonlinearity of 

the unsaturated fl ow constitutive (hydraulic) properties seriously 

complicates calibration of the variably saturated fl ow models 

against fi eld monitoring data.

Pedotransfer functions are routinely used to relate the 

hydraulic parameters to readily available data on soil properties 

that can be found on soil maps or extracted from soil survey 

reports. Since pedotransfer functions are empirical regression-

type relationships, their accuracy outside of their development 

region is essentially unknown. A wealth of pedotransfer infor-

mation has recently accumulated in nearly all parts of the world. 

Unfortunately, no good method currently exists to decide which 

pedotransfer function model should be used for a specifi c site or 

application (Pachepsky and Rawls, 2004).

Climate predictions faced similar uncertainties in model 

selection in the 1980s. To deal with these uncertainties, mul-

timodel prediction emerged as a popular technique in climate 

prediction (Barnston et al., 2003; Palmer et al., 2000, 2004; 

Shukla et al., 2000). Th e objective of multimodel prediction 

is to reduce modeling errors by combining forecasts of various 

independent models. Since its introduction by Bates and Granger 

(1969), multimodel prediction has been subject to much debate 

that can be summarized into questions: (i) is a multimodel pre-

diction better than the single best forecast, and (ii) what is the 

best approach to weigh predictions obtained with the diff erent 

models? Regarding the fi rst question, several studies (Kharin and 

Zwiers, 2002; Krishnamurti et al., 2000; Palmer et al., 2004) 

have reported systematic improvements in the forecasts with 

multimodel ensemble prediction, while others have argued that 

the benefi t of multimodel prediction in seasonal predictions 

is marginal compared with that of using the best single model 

(Doblas-Reyes et al., 2000; Graham et al., 2000; Peng et al., 

2002). Regarding the second question, some studies have dem-

onstrated that proper weight selection leads to relatively better 

forecasts compared with simple averaging of the predictions from 
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CalibraƟ on of variably saturated fl ow models with fi eld monitoring data is complicated by the strongly nonlinear depen-
dency of the unsaturated fl ow parameters on the water content. Combining predicƟ ons using various independent 
models, oŌ en called mul  model predic  on, is becoming a popular modeling technique. The objecƟ ve of this study was 
to compare diff erent methods of mulƟ model simulaƟ on of the fi eld soil water regime using pedotransfer funcƟ ons 
(PTFs). We solved the Richards fl ow equaƟ on using HYDRUS-1D with parameter sets derived from 19 published PTFs 
and compared diff erent methods of combining the simulaƟ on results from the 19 individual models by (i) using only the 
best model, (ii) using equal weights, (iii) regressing measured values to the results of the individual models, (iv) using 
singular-value decomposiƟ on (SVD) in the regression, (v) using Bayesian model averaging, and (vi) using weights derived 
from Akaike criteria. Data on soil water contents and basic soil properƟ es at fi ve depths along a 6-m transect in a lay-
ered loamy soil were used to calibrate the Richards equaƟ on and to develop the input for the PTFs. The SVD mulƟ model 
was the best method, with an accuracy of about 0.01 m3 m−3 at the 35-cm depth and about 0.005 m3 m−3 at greater 
depths for 30 d of monitoring and 13 mo of tesƟ ng. This indicates that mulƟ modeling in combinaƟ on with monitoring 
of the soil water regime can be a viable approach to simulaƟ ng water fl ow in the vadose zone.
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several models (Krishnamurti et al., 2000; Pavan and Doblas-

Reyes, 2000; Yun et al., 2003), while others have shown that 

weighting the forecasts from individual models is not better than 

simple averaging (Kharin and Zwiers, 2002; Peng et al., 2002; 

Doblas-Reyes et al., 2005). Th e various studies suggest that the 

answer to these two questions may well depend on the number 

of data points available for hindcasts (i.e., for evaluation of the 

models with data from the past).

Th e effi  ciency of multimodel predictions was demonstrated 

for streamfl ow forecasts by Regonda et al. (2006). Multimodel 

prediction methods are now slowly also being used in groundwa-

ter modeling. For example, Ye et al. (2004) suggested using the 

weighted results of several spatial variability models for unsatu-

rated fractured tuff  to run fl ow simulations for situations where 

standard information criteria provide an ambiguous ranking of 

the models such that it does not justify selecting one of them 

and discarding all the others. Methods of weighting predictions 

obtained from diff erent groundwater fl ow models have been dis-

cussed in detail by Poeter and Anderson (2005). Recently, the 

feasibility of applying multimodel simulations to water fl ow in 

the vadose zone was demonstrated (Guber et al., 2006).

Th e objective of this study was to compare diff erent methods 

of multimodel simulation of the fi eld soil water regime using PTFs. 

We applied multimodeling using a large database of information on 

unsaturated soil water dynamics along a 6-m transect.

Methods for Mul  model Simula  ons
We consider the case where several PTF models exist to esti-

mate parameters in the constitutive relationships (soil hydraulic 

properties) needed for application of the governing Richards 

equation to particular variably saturated fl ow problems. Th e 

multimodel simulation may then mean either (i) combining 

the output of several PTFs for the hydraulic parameters into a 

single parameter set and then running the fl ow model with this 

parameter set, or (ii) running the fl ow model with outputs of 

individual PTFs for the hydraulic parameters and then combin-

ing the obtained outputs of the fl ow model. In this study, we 

considered multimodel simulations in the sense of the second 

option, which is commonly used in meteorological predictions. 

Combining simulation results from N models is performed as

( )
=

= + −∑
1

N

i i i
i

S Y w F F  [1]

where S is the multimodel simulation result, Y  is the mean of the 

observed values during the training period, i is the model (i = 1, 2, …, 

N), N is the total number of PTF models, Fi is the simulation result 

from model i, iF  is the mean of the simulation results obtained with 

model i during the training period, and wi are the weights on the 

forecasts of individual models. Equation [1] shows that during the 

training period, the multimodel prediction equation relates devia-

tions from the average of the observed values (S − Y ) with deviations 

from the average of the simulated values (F − iF ).

Existing methods to combine predictions according to Eq. 

[1] diff er in the way in which the weights wi are obtained. Such 

methods have been reviewed by Clemen (1989), Burnham and 

Anderson (2002), Armstrong (2001), and Jolliff e and Stephenson 

(2003), among others. Th e review below briefl y outlines the con-

ceptual foundations of some of those methods and includes the 

approaches selected for comparison in our study.

Regression-Based Methods

If the measured values of the variable to be simulated are 

Y, then the weights wi are determined by treating Eq. [1] as a 

multiple linear regression equation with S − Y  as the dependent 

variable and Fi − iF  as the independent variable, and fi tting 

the linear combination of multimodel predictions =Σ 1
N
i w i(Fi −  

iF ) to the observations Y − Y . Such a method of obtaining 

multimodel forecasts has been called superensemble forecasting 

(Krishnamurti et al., 2000).

Th e main problem of using regression to search for wi is the 

existence of relatively high correlations between Fi values. Having 

correlated independent variables in regression, or multicollinearity, 

does not preclude using the resultant regression for predictions 

within the range of observation (Neter and Wasserman, 1974); 

however, it leads to very inaccurate regression coeffi  cients that are 

not easily interpreted and a matrix for the system of equations for 

calculating weights that is numerically close to singular (Kharin 

and Zwiers, 2002). Yun et al. (2003) showed that improvements 

in superensemble forecasts can be achieved by applying an SVD 

technique to solve the system of equations for the coeffi  cients wi.

Bayesian Model Averaging

Following Raftery et al. (2003), a basic premise is the 

assumption that for any given forecast, there is a “best” model; 

while we do not know what that model is, uncertainty about the 

best model can be quantifi ed using Bayesian model averaging. 

Let the bias-corrected value to simulate be Y − Y , and the bias-

corrected simulations fi = Fi − iF . Simulation fi is then associated 

with a probability density function (PDF), gi = (Y − Y |fi), which 

is interpreted as the PDF of Y − Y  conditioned on fi given that 

fi is the best simulation. Th e Baysian model averaging (BMA) 

predictive model is

( ) ( )
=

− = −∑1 2
1

| , ,..., |
N

N i i i
i

p Y Y f f f w g Y Y f  [2]

where wi is the posterior probability of the simulation fi being 

the best one and is based on the performance of model i in the 

training period. Th e wi are probabilities that add up to one.

Raftery et al. (2003) indicated that it is often reasonable to use 

the normal distribution N(fi,σi
2) to approximate the conditional 

PDF gi = (Y − Y |fi). In that case, the BMA predictive mean is the 

conditional expectation of Y given the simulations, namely

=

⎡ ⎤− =⎣ ⎦ ∑1 2
1

E | , ,...,
N

N i i
i

Y Y f f f w f  [3]

Th e weights wi and the variances σi
2 are found using the maxi-

mum likelihood method. Th e expectation maximization, or EM 

algorithm (McLachlan and Krishnan, 1997) can be used for the 

normal conditional PDFs (Raftery et al., 2003). Th e EM algo-

rithm is a method for fi nding the maximum likelihood estimator 

when the problem can be recast in terms of “missing data.” Th is 

algorithm is iterative, and alternates between two steps, the E (or 

expectation) step, and the M (or maximization) step. Assuming 

that the conditional PDF gi = (Y − Y |fi) is computed as

( )⎡ ⎤− +⎢ ⎥
= −⎢ ⎥

⎢ ⎥σ π σ⎢ ⎥⎣ ⎦

2

2

1
exp

2 2

i
i

i i

f Y Y
g  [4]
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the algorithm starts with initial guesses for the weights wi and 

variances σi. At the E step, estimates of the missing values zji
(m) 

are computed as

( )
( )

−

−

=

− σ
=

− σ∑

1

( )

1

1

,

,

m
j ji im

ji N
m

i ji i
i

g Y Y f
z

g Y Y f

 [5]

where j is the number of the observation within the training 

period (j = 1, 2, …, K), i is the number of the model, and m is the 

number of the iteration. Th e M step then consists of estimating 

weights and variances as

=
= ∑( ) ( )

1

1 K
m m

i ji
j

w z
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 [6]
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In general, Bayesian model averaging is designed and has been 

used to generate probabilistic forecasts. For that reason, this 

approach appears to have wider applicability in probabilis-

tic forecasting than deterministic regression-based averaging 

(Rajagopalan et al., 2002).

Using InformaƟ on Theory

Following Burnham and Anderson (2002), Poeter and 

Anderson (2005) suggested using the Akaike information crite-

rion to derive the weights for individual models as

( )
( )=

− Δ
=

− Δ∑ 1

exp 0.5

exp 0.5

i
i N

ll

w  [8]

where

Δ = − minAICc AICci i  [9]

AICci is the value of the Akaike criterion for the ith model, and 

AICcmin is the minimum AICc value of all models in the set. Th e 

AICc value for a model is given by

( ) ( )+
= σ + +

− −
2 2 1

AICc log 2
1

k k
n k

n k
 [10]

where n is the number of observations, σ2 is the residual vari-

ance estimated as the sum of squared residuals divided by n, and 

k is the number of estimated parameters. Th is methodology is 

effi  cient if models require estimating their parameters before the 

prediction averaging.

MulƟ model SimulaƟ ons

Th e following multimodel prediction meth-

ods were compared in our study: (i) using only 

the best model, (ii) assigning equal weights to all 

models, (iii) using the superensemble, (iv) using 

the superensemble with SVD to fi nd weights, (v) 

using Bayesian model averaging, and (vi) using 

information theory. Initial estimates of the BMA 

weights were taken proportional to the inverse 

RMSEs of individual models. Singular-value decomposition was 

performed using routines from Press et al. (1992).

Experimental Data
Th e experimental fi eld was located at Bekkevoort, Belgium, 

in a meadow at the bottom of a 4% slope. Th e soil was classifi ed 

as a Eutric Regosol (FAO, 1975) or a Udifl uvent (Soil Survey 

Staff , 1999). Th e top 1 m included three soil horizons: an Ap 

horizon between 0 and 25 cm, a C1 horizon between 25 and 55 

cm, and a C2 horizon between 55 and 100 cm. A trench, 1.2 m 

deep and 8 m long, was excavated at the fi eld site. Soil texture 

was measured with the pipette method following pretreatment 

with sodium hexametaphosphate. Textural classes were loam at 

the 15-, 35-, and 55-cm sampling depths and silty loam at 75- 

and 95-cm depths (Table 1). Th e grass cover was removed from 

the experimental area. A plastic sheet covered the side of the 

trench along which instrumentation was installed. Volumetric 

water contents were measured with time domain refl ectometry 

(TDR). Sixty TDR probes (two rods 25 cm long, 0.5-cm rod 

diameter, 2.5-cm rod spacing) were installed along the trench at 

12 locations spaced 50 cm apart laterally, at fi ve depths of 15, 35, 

55, 75, and 95 cm. Th e TDR measurements were performed with 

a Tektronix (Beaverton, OR) 1502B cable tester. Th e automated 

system of Heimovaara and Bouten (1990) was used to control, 

retrieve, store, and analyze measurements of the travel time of the 

electromagnetic waves along the TDR rods. Th e time diff erence 

between two measurements for the same probe was 2 h. Rainfall 

was measured and recorded continuously near the trench across 

a catch area of 200 cm2 (Fig. 1).

Th e trench was fi lled after all devices were installed. A thin 

layer of gravel (1–2 cm) was evenly distributed over the study area 

to (i) decrease the erosive eff ect of rain impact on the bare soil 

surface, (ii) minimize evaporation from the soil surface, and (iii) 

decrease the growth of weeds on the experimental plot. Weeds 

were regularly removed from the site during the summer. Field 

measurements started on 11 Mar. 1998 (Day 0). We used 250 d 

of data. Additional details about the site and the experiment are 

given by Jacques (2000) and Jacques et al. (2001).

Pedotransfer FuncƟ ons and Flow SimulaƟ ons

Th e literature was searched for pedotransfer functions to 

estimate the soil water retention and hydraulic conductivity prop-

erties from soils data available at the site. We used only PTFs 

that had been developed from relatively large (>200 samples) 

databases. To estimate soil water retention, we selected 19 PTFs 

developed in diff erent regions. Equations for the PTFs were taken 

from the appendices of Guber et al. (2006) and Pachepsky et 

al. (2006). Five of the PTFs (those by Campbell and Shiozawa 

[1992], Mayr and Jarvis [1999], Rawls and Brakensiek [1985], 

T��½� 1. Average values of soil properƟ es at the monitoring depths.

Depth
No. of 

samples
Soil textural fracƟ on Bulk 

density
Organic C

>50 μm 50–20 μm 20–10 μm 10–2 μm <2 μm
cm —————————— % (w/w) —————————— g cm−3 % (w/w)
15 7 58.6 19.3 6.4 4.5 11.1 1.42 2.2
35 8 56.7 18.9 7.8 3.2 13.3 1.54 0.8
55 5 57.3 17.6 6.6 3.7 14.8 1.53 0.4
75 3 49.6 21.2 7.9 4.4 17.4 1.53 0.3
95 4 43.8 30.3 7.4 4.5 14.0 1.53 0.6
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Saxton et al. [1986], and Williams et al. [1992]) esti-

mated the parameters of the equation of Brooks and 

Corey (1964):

λ

≤

⎧⎪ ⎛ ⎞⎪ ⎟⎜⎪θ−θ >⎟⎜⎪ ⎟⎜= ⎝ ⎠⎨⎪φ−θ ⎪⎪⎪⎩

b
r b

r
b,                

,   

1 h h

h
h h

h  [11]

while four other equations (Varallyay et al., 1982; 

Vereecken et al., 1989; Wösten et al., 1999) esti-

mated the parameters of the van Genuchten (1980) 

equation

( )

θ−θ
=

θ −θ ⎡ ⎤+ α⎢ ⎥⎣ ⎦

r

s r

1

1
mn

h

 [12]

where θ is the volumetric water content, h is the pressure 

head (taken here positive for unsaturated conditions), 

φ is the porosity, θr is the residual water content, hb 

is bubbling pressure, λ is the pore size distribution 

index, θs is the saturated water content, and α, m, and 

n are empirical shape-defi ning parameters. Nine pedo-

transfer functions (Baumer, 1992; Canarache, 1993; 

Gupta and Larson, 1979; Hall et al., 1977; Petersen 

et al., 1968; Rajkai and Várallyay, 1992; Rawls et al., 

1982, 1983; Tomasella and Hodnett, 1998) estimated 

water contents at several fi xed pressure heads. Th e van 

Genuchten parameters θs, θr, α, and n in these cases 

were evaluated by fi tting Eq. [12] to the water retention 

points obtained from those PTFs. Th e value of param-

eter m was calculated as m = 1 − 1/n. Th e residual water 

content θr was set to 0.001 m3 m−3 and the saturated 

water content θs to the porosity φ for PTFs that evalu-

ated values of the water content at only two pressure 

heads (15,000 and 330 cm). Two PTFs (Vereecken et 

al., 1989; Varallyay et al., 1982) used van Genuchten 

parameters assuming m = 1. To use these PTFs for the 

fl ow simulations, water contents were calculated at 

the pressure heads used by those researchers to derive 

the PTFs, after which we estimated θs, θr, α, and n by 

fi tting Eq. [12], with m = 1 − 1/n, to the calculated 

water retention data. We also used the Rosetta software 

(Schaap, 2004) to generate van Genuchten parameters 

from texture and bulk density. Pedotransfer functions 

were enumerated as shown in Table 2. A FORTRAN 

code to estimate water retention with the pedotransfer 

functions of this study, except Rosetta, is available on 

request from the corresponding author.

Th e saturated hydraulic conductivity, Ksat, has also 

been estimated from a PTF. Th e literature contains only 

three Ksat PTFs that were developed or tested using 

large databases (Rawls et al., 1998; Wösten et al., 1999; 

Schaap et al., 2001). We focused on the multimodeling 

with diff erent water retention PTFs, and used only the 

PTF developed by Rawls et al. (1998).

Th e HYDRUS-1D software (Simunek et al., 1998) 

was used to run the simulations. Th is software gives 

options to run simulations either with the Brooks–

Corey water retention Eq. [11] or the van Genuchten 

F®¦. 1. Observed (symbols) and simulated (using the calibrated model, lines) 
daily average water contents. Observed values are averages across the transect 
for each depth and each day.

T��½� 2. EnumeraƟ on of pedotransfer funcƟ ons (PTFs) invesƟ gated in this work.

No. PTF
PTF predictors

Clay Silt Sand
Bulk 

density
Organic 
maƩ er

Itop†

1 Rawls et al. (1982) + + + +
2 Saxton et al. (1986) + +
3 Williams et al. (1992) + + +
4 Campbell and Shiozawa (1992) + + +
5 Rawls et al. (1983) + + + + +
6 Verekeen et al. (1989) + + + +
7 Gupta and Larson (1979) + + + + +
8 Baumer (1992) + + + +
9 Varallyay et al. (1982) + + +
10 Canarache (1993) + +
11 Peterson et al. (1968) +
12 Rajkai and Várallyay (1992) + + + +
13 Tomasella and HodneƩ  (1998) + +
15 Rawls and Brakensiek (1985) + + +
16 Hall et al. (1977) + + + +
17 Williams et al. (1992) + + +
18 Wösten et al. (1999) + + + + + +
18 Mayr and Jarvis (1999) + + + + +
19 RoseƩ a (Schaap et al., 2001) + + + +

† Variable equal to zero for subsoil and one for topsoil.
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Eq. [12]. Th e particular equation was selected depending on the 

invoked PTF. Th e unsaturated hydraulic conductivity (K) func-

tion was calculated using

( ) λ+ += 2/ 2
sat e

lK h K S  [13]

for the model of Brooks and Corey (1964), and

( ) ( )⎡ ⎤
= − −⎢ ⎥

⎢ ⎥⎣ ⎦
1/

sat e e1 1
ml mK h K S S  [14]

for the van Genuchten–Mualem model (van Genuchten, 1980), 

where

θ−θ
=

θ −θ
r

e
s r

S  [15]

and l is a pore-connectivity parameter. A separate simulation run 

was performed with HYDRUS-1D for each PTF. Water retention 

was estimated by applying the PTFs to the soil properties of each 

individual layer at the Bekkevoort fi eld site (0–25, 25–45, 45–65, 

65–85, and 85–150 cm; see Table 1).

We evaluated the weighting methods in terms of their accu-

racy (i.e., errors in reproducing the training or hindcast data sets), 

and reliability (i.e., errors in reproducing the test data sets). Th e 

training (i.e., determining the weights) was done with daily water 

contents using moving windows that were from 30 to 150 d long. 

All data outside the windows were used to test the multimodel 

prediction. Average and standard deviations of RMSEs for 

each window size were obtained separately for the testing and 

training sets.

Th e Richards water fl ow model was calibrated using complete 

time series of measured water contents, measured precipitation 

data, and evaporation rates estimated from water budget com-

putations (Pachepsky et al., 2006). Th e calibration was used to 

evaluate the applicability of the Richards equation to the observed 

fl ow processes, and to compare the accuracy of the calibrated 

model with those of the multimodel predictions. Th e inverse 

solution option of HYDDRUS-1D was used for this purpose. 

Th e soil profi le was subdivided into fi ve layers: 0 to 25, 25 to 

45, 45 to 65, 65 to 85, and 85 to 105 cm. Th e four parameters 

θr, θs, α, and n in Eq. [12] and the two additional parameters 

Ksat and l in Eq. [14] were estimated for each layer by fi tting the 

Richards fl ow model to daily water content values averaged across 

the trench at each depth. Initial estimates of the parameters were 

obtained by using data on soil texture (Table 1) and the Rosetta 

PTF included in the HYDRUS-1D software. A total of 30 param-

eters were estimated during model calibration.

Results
Observed and simulated soil water contents are shown in 

Fig. 1. Th e topsoil exhibited more weather-related variations in 

the water content than the subsoil. Still, the relatively dry periods 

between Days 55 and 76 and between Days 140 and 166 are 

refl ected in lower soil water contents at depths down to 75 cm.

Calibrations with the Richards fl ow model for the fi ve-layer 

profi le resulted in relatively high accuracy (Fig. 1). Th e RMSE 

values decreased with depth (Table 3); calibrated parameters along 

with their standard errors and linear tolerance intervals are shown 

in Table 3. Th e parameter θr was found to have the lowest accu-

racy. Th is was not surprising since most of the observed water 

contents and pressure heads were in the relatively wet range (data 

not further shown). In contrast, values of θs were very reliable. 

Th e parameters α and n could be defi ned reliably only for the top 

layer. For all other layers, the tolerance intervals were very wide, 

although the estimates themselves were acceptable. As indicated 

by Hill (1998), this suggests that the information content of data 

for the deeper layers was insuffi  cient for conclusive evaluation. 

Since the top layer experienced more drying (Fig. 1), the simu-

lations were found to be more sensitive to the retention shape 

parameters α and n. By comparison, most or all of the data in 

the deeper layers remained close to saturation, leading to unreli-

able estimates for α and n. Th e same is true for the hydraulic 

conductivity parameters Ksat and l. Still, the satisfactory agreement 

between the observed and calculated data does indicate applicabil-

ity of the Richards equation to the fl ow processes at this site.

Th e HYDRUS-1D model (Simunek et al., 1998) was used 

next to simulate fl ow at the fi eld site using hydraulic param-

eters obtained with the PTFs. An example of the results of these 

simulations is shown in Fig. 2 for the 15-cm depth. Th e scat-

ter in the simulated water contents was found to be substantial. 

In general, the simulated soil water contents were lower than 

the observations and also decreased somewhat faster during 

dry periods. Temporal variations in the soil water content were 

T��½� 3. Calibrated van Genuchten (Eq. [12]) and van Genuchten–Mualem (Eq. [14]) parameters for the Richards fl ow equaƟ on, and associ-
ated RMSEs for diff erent soil horizons.

Depth θr θs α n Ksat l RMSE

cm ———— m3 m−3 ———— cm−1 cm d−1 m3 m−3

0–25 0.005 ± 0.220 0.363 ± 0.001 0.00110 ± 0.0004 1.80 ± 0.19 0.055 ± 0.006 0.01 ± 0.83 0.0088
25–45 0.086 ± 1.209 0.362 ± 0.008 0.00184 ± 0.0040 1.27 ± 1.14 50 ± 409 0.50 ± 36.4 0.0055
45–65 0.154 ± 1.150 0.367 ± 0.004 0.00123 ± 0.0044 1.53 ± 1.35 0.207 ± 0.300 5.01 ± 54.4 0.0038
65–85 0.108 ± 1.443 0.388 ± 0.008 0.00133 ± 0.0042 1.49 ± 1.44 0.167 ± 0.329 0.5 ± 24.9 0.0053
85–105 0.010 ± 0.453 0.386 ± 0.004 0.00155 ± 0.0016 1.20 ± 0.20 4.16 ± 7.64 18.4 ± 31.5 0.0043

F®¦. 2. Daily average water contents at the 15-cm depth; lines are sim-
ulaƟ ons with 19 pedotransfer funcƟ ons; circles are observed values.
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more pronounced with some PTFs than with others; 

however, inspection of Fig. 2 shows that the diff erent 

PTFs produced almost parallel time series that were 

shifted in various degrees with respect to each other. 

Computed correlation coeffi  cients between the time 

series supported this fi nding. A color-coded matrix of 

correlation coeffi  cients between the calculated water 

content time series using diff erent pedotransfer functions 

is shown in Fig. 3 for the 15-cm depth. Correlation coef-

fi cients between simulated soil water contents exceeded 

0.95 in >48% of the cases, while very few correlation 

coeffi  cients were <0.5. Similar results were obtained for 

the other depths (data not shown).

Th e accuracy and reliability of diff erent methods 

to build the multimodel prediction are compared in 

Fig. 4. Th e superensemble was found to be the worst 

weighting method, characterized by high accuracy 

and very low reliability (data not shown in Fig. 4 

because they are outside the axis scales). Assigning 

equal weights (simple averaging) was the second worst 

method. Th is method also had testing RMSE values 

larger than the training RMSEs, although the diff er-

ence was not as dramatic as with the superensemble 

method. Th e accuracy of the superensemble was the 

worst of all the methods. Bayesian model averaging 

fared only slightly better than simple averaging. Using 

only the best model was a reasonably good approach 

in terms of accuracy. Th e reliability of this method, 

however, was almost the same as with simple averaging 

and Bayesian averaging. Th e results of the information 

theory method were no diff erent from using the best 

model. Using SVD in the superensemble appeared to 

be the best method in that both the accuracy and reli-

ability RMSE values were almost two times less than 

those of all other methods considered in this study. An 

example in Fig. 5 of applying the SVD to the whole 

250-d observation period as a training period illus-

trates the performance of this technique.

Th e results in Fig. 4 further show that training 

with 30 d of data leads to lower reliability than when 

60 or 90 d of data are used in the training. We found 

a weak trend of increasing accuracy with the dura-

tion of training. Figure 4 also compares multimodel 

results with the results obtained with the Richards 

model calibrated on data from the entire observation 

period. Th e error bars for the calibrated model were 

obtained from the statistical distributions of RMSE 

for the same training and testing periods that were 

used for the multimodel predictions. Th e data in Fig. 

4 show that the accuracy of the superensemble with 

SVD is comparable to the accuracy and reliability of 

the calibrated Richards equation, even when weights 

are derived from 30 d of observations. Th e overall 

accuracy and reliability of the SVD multimodel was 

slightly less, or comparable to, the accuracy of the 

calibrated model.

Th e reliability of the SVD method was found 

to be not random in time. Th e RMSE time series 

shown in Fig. 6 indicate that the SVD multimodel 

F®¦. 3. Spearman correlaƟ ons between Ɵ me series of water contents at the 15-cm 
depth from simulaƟ ons obtained with diff erent pedotransfer funcƟ ons (PTFs).

F®¦. 4. Root mean squared errors of mulƟ model simulaƟ ons of the training and 
tesƟ ng data sets; results are for the best in training model (red), the arithmeƟ c 
average of all individual models (green), the superensemble with singular-value 
decomposiƟ on (pink), Bayesian averaging (blue), the use of the informaƟ on the-
ory (cyan), and calibrated Richards equaƟ on (brown).
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was slightly less accurate, and slightly more reliable, in the fall 

toward the end of the experiments. Th is was observed for all 

depths (data partly shown in Fig. 6). Spearman correlation coeffi  -

cients between SVD-simulated and measured soil water contents 

were between 0.6 and 0.8 at the 15-cm depth, between 0.5 and 

0.8 at the 35-cm depth, and between 0.4 and 0.8 depending on 

the starting day of the training period.

Time series of weights of the individual models as a function 

of the beginning of the training period are shown in Fig. 7 for the 

fi rst nine of 19 individual PTFs at the 15-cm depth. Inspection 

of the weights shows that none of the models was consistently 

ignored. Depending on the training period, the same PTF could 

have larger or smaller input into the multimodel prediction. 

While the weights of a few PTFs were sometimes negative, in 

most cases the PTF predictions were summed up with positive 

weights. Similar results were obtained for the other four depths 

(data not shown).

Discussion
Multimodel simulations rely on the assumption that the 

physics of each individual model is correct. Unfortunately, PTFs 

are merely estimators of model parameters, and as such do not 

aff ect the description of the physical processes involved, in this 

case the Richards equation based on mass conservation in com-

bination with the Darcy–Buckingham law for the fl uid fl ux. Th is 

fl ow model was applicable in principle since it could be fi tted rea-

sonably well to the data (Fig. 1). Our attempts to use multimodel 

simulations based on the Richards equation are hence warranted. 

Th e similarity in simulated physical processes caused strong cor-

relations between predictions from individual models (Fig. 2 and 

3), which is a typical feature of multimodel predictions.

Diff erent methods used for the multimodel predictions were 

found to perform quite diff erently. Th e superensemble with SVD 

was found to be by far the best method in our study (Fig. 4). Th is 

conclusion cannot be generalized. We believe that a preliminary 

assessment of all methods should be performed for specifi c appli-

cations, at least until some experience is accumulated in using 

multimodels for simulations of fl ow in variably saturated soils. 

Also, the saturated hydraulic conductivity, Ksat, was estimated from 

a single PTF in this study, whereas two more PTFs (Wösten et al., 

1999; Schaap et al., 2001) also could be used to expand the multi-

model, which includes 57 rather than 19 individual models.

Values of weights in Eq. [1] were negative for some models 

when the regression-based methods were applied. Bayesian 

model averaging and Akaike criteria application do not allow 

negative weights. Th e regression-based methods treat weights as 

fi tting coeffi  cients that can have any sign. Th e reason for nega-

tive weights is that the model predicts behavior opposite to that 

measured. Th at may happen because of prediction errors of some 

individual PTFs. Consider a PTF that predicts water retention 

that is too low. Th en the fl ow model will predict the much faster 

movement of an infi ltration pulse through the soil profi le than 

should happen in reality. In such a case, a water loss will be pre-

dicted at some depths for some period of redistribution of the 

F®¦. 5. Results of applying the superensemble with the singular-
value decomposiƟ on to mulƟ modeling of the whole observaƟ on 
period. Daily average water contents at 15-cm depth; lines are 
simulaƟ ons and circles are observed values.

F®¦. 6. Dependencies of root mean square errors in the training 
(solid line) and tesƟ ng (dashed line) data sets on the beginning 
and duraƟ on of the training period for the superensemble with 
singular-value decomposiƟ on method for training periods of (a) 30, 
(b) 60, and (c) 90 d.

F®¦. 7. Weights of the simulaƟ ons with the fi rst nine pedotransfer 
funcƟ ons in the superensemble mulƟ model with singular-value decom-
posiƟ on obtained for the 15-cm depth with 30-d training periods.
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infi ltration pulse while in actuality water will still be accumulat-

ing in these horizons. In such a case, the model with this PTF 

will indeed predict behavior opposite to that observed, and the 

values of weights from regression-based multimodeling may be 

negative for this model. Note that the SVD method, which allows 

negative weights, performed the best.

Th e list of methods to build the multimodel ensemble in 

this work is far from exhaustive. For example, principal com-

ponent analysis (Young, 2002) can be used to replace correlated 

predictors Fi in Eq. [1] with a smaller number of uncorrelated 

predictors. Th e number of independent variables in Eq. [1] can 

be decreased by using only a subset of models (Kharin and Zwiers, 

2002). Various statistics have been proposed to select the “best” 

subset of input variables (Neter and Wasserman, 1974; Kharin 

and Zwiers, 2002; Regonda et al., 2006). Young (2002) and 

Regonda et al. (2006) listed several other methods to combine 

models. Recent developments include using patterns found in 

experimental data to adjust the weights of individual forecasts in 

multimodel predictions (Zheng et al., 2004). Th ere is no reason 

why a nonlinear combination of individual simulations could not 

be used in multimodels. Using data mining techniques, such as 

artifi cial neural networks, may be benefi cial toward that end.

Both the accuracy and, to a lesser extent, the reliability of the 

SVD multimodel had temporal variations (Fig. 6). Th e accuracy 

but not the reliability of the SVD multimodel was worse when 

the training occurred between Days 135 and 185. Juxtaposing 

data in Fig. 1 and Fig. 6 shows that the accuracy decreased for 

training periods that included a period of intensive drying fol-

lowed by extensive wetting. Th is was not correctly refl ected by 

simulations based on the Richards fl ow model. All individual 

models performed somewhat poorly in a qualitative sense during 

these time periods, and training was less successful than when the 

Richards equation was a satisfactory model. One possible remedy 

would be using diff erent weighting coeffi  cients by introducing 

an indicator variable for prevailing antecedent soil conditions or 

boundary conditions. Th e viability of such an approach should 

depend on the magnitude of the available data sets. Th is may 

present an interesting avenue for future research.

The relatively poor performance of the superensemble 

method was somewhat expected based on previous experience 

with climate and hydrologic models (i.e., Regonda et al., 2006). 

Using the best model was the second best method in this work. 

Th e superiority of a multimodel prediction to that of a single 

model has been observed consistently in meteorological forecasts. 

Th is is attributed to the fact that it is diffi  cult or impossible to 

defi ne the single best model (Hagedorn et al., 2005) if various 

training and testing periods are considered. Figure 8 shows that 

there was no generally superior model in our study, and that 

the model considered the best depends on when the training 

period started. Hagedorn et al. (2005) noted that a single model 

may perform better in some situations but that the multimodel 

approach in the long term will give more reliable simulations.

Th e premise of superiority of multiple-source simulation 

systems is based on the hypothesis that “two or more inaccurate 

but independent predictions of the same future events may be 

combined in a very specifi c way to yield predictions that are on 

average more accurate than either of any of them taken individu-

ally” (Th ompson, 1977). Th is hypothesis is supported by some 

artifi cial neural networks studies, specifi cally the group method 

of data handling (e.g., Pachepsky and Rawls, 1999), which uses 

combinations of individually poor predictions to create predic-

tors with excellent performance. Th e results of this study seem to 

further corroborate this hypothesis.

The weights of modeling results with individual PTFs 

depended on the training period (Fig. 7). Th is is an expected 

outcome from the regression analysis when diff erent regression 

coeffi  cients are obtained if diff erent data subsets are used to 

develop the regression. Similarly, the training and testing accu-

racies were also dependent on the training period (Fig. 4). In spite 

of diff erences in weight values, however, the overall accuracy of 

the multimodel depended much more on the method used to 

combine predictions than on the testing data set (Fig. 4). Th e 

selection of the training data set aff ected the participation of 

individual models in the multimodeling results, but the overall 

accuracy and reliability of the multimodel did not vary much. In 

particular, the accuracy and reliability of the SVD multimodel 

remained relatively high for all training data sets (Fig. 4).

We include here a comment about terminology. Th e term 

ensemble prediction is sometimes also used to refer to the integra-

tion of the results of many simulation runs but for cases where 

the initial conditions and parameters or models are randomly 

perturbed. Th e term multimodel ensemble prediction is used when 

both diff erent models and their input perturbations are used in 

individual simulation runs.

In this study, we deliberately made no attempt to discrimi-

nate between PTFs or to single out the best PTF or PTFs. First, 

the multimodel concept does not presume any such analysis since 

it is agreed from the outset that all models will contribute. Second, 

based on the data in Fig. 8, the result would depend on the 

training period. We note that several attempts have been made 

to relate the performance of PTFs to similarity in geographic 

regions, to the size of the database used to develop a PTF, to the 

F®¦. 8. Pedotransfer funcƟ ons (PTFs) that provided the most accu-
rate simulaƟ ons at four depths using a 30-d training period for 
diff erent days of the beginning of training.
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homogeneity of this database in terms of measurement meth-

ods, or other factors (Pachepsky and Rawls, 2004). All of these 

attempts appear to have been inconclusive. Our results by no 

means make a general statement about the quality or reliability 

of an individual PTF because the results depend on the chosen 

data set and training period.

Th e similarity in accuracy between the calibrated Richards 

model for the layered soil and the multimodel predictions with 

PTFs suggest the interesting possibility of using soil moisture 

monitoring data to obtain a more accurate predictive soil water 

fl ow model. Monitoring soil moisture and fi nding weights for 

the multimodel prediction may well be a very viable approach to 

simulating fi eld water fl ow in the vadose zone.
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