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REVIEW & INTERPRETATION

Feedstock crops are crops that can be used in industrial pro-
cesses such as fermentation into alcohol fuels. The idea of pro-

ducing biofuel ethanol from feedstock crops goes back to 1925. In 
an interview published in the New York Times on 24 Sept. 1925, 
Henry Ford predicted: “The fuel of the future . . . is going to 
come from fruit like that sumac out by the road, or from apples, 
weeds, sawdust—almost anything. There is fuel in every bit of 
vegetable matter that can be fermented” (Proquest Historical 
News, 1925).

After the United States’ gasoline shortages of the 1970s, 
research in conversion of crop feedstock biomass into alcohol fuels 
began earnest. Today, as a result of early research eff orts, many 
microorganisms containing biomass conversion enzymes have 
been discovered, and several pretreatment processes have been 
examined to recover from energy shortages (Greene et al., 2004; 
Lynd et al., 2005) and reduce the accumulation of atmospheric 
greenhouse gases (Farrell et al., 2006; Ragauskas et al., 2006).

Presently, most ethanol produced in the United States is corn 
(Zea mays) ethanol, which is from the conversion of corn grain 
starch (a polysaccharide) into glucose via enzymatic hydrolysis 
and subsequent fermentation of glucose into ethanol. The etha-
nol produced from starch is more costly than ethanol produced 
directly from fermentation of sugarcane (Saccharum sp.) sugar 
(Dias de Oliveira et al., 2005).

Feedstock Crop Genetic 
Engineering for Alcohol Fuels

Mariam B. Sticklen*

ABSTRACT

One of the goals of the U.S. government is to 

have “cellulosic ethanol” produced from a variety 

of sources, including feedstock crop biomass 

(a mass of raw material used in alcohol fuels 

processing), because these biomass sources 

contain polysaccharides that can be converted 

into fermentable sugars. Furthermore, the feed-

stock biomass sources are renewable and could 

become available at a billion tonnes per year in 

the United States. There are three major steps 

associated with the conversion of feedstock 

biomass into cellulosic ethanol. The fi rst is the 

production of hydrolysis enzymes such as 

microbial cellulases, which convert the cellulose 

of feedstock biomass into fermentable sugars. 

The second step is the pretreatment processes 

used to break down the recalcitrant lignocel-

lulose complex of feedstock into more reactive 

intermediates and to remove the lignin residues 

so the cellulase enzymes can have access to cel-

lulose. The third step is fermentation of sugars 

into ethanol. The fi rst two steps are the subject of 

this review. Plant genetic engineering has been 

used to directly express heterologous versions 

of cellulase and hemicellulase enzymes in situ. 

Plants have also been genetically modifi ed for 

less lignin content or for more digestible lignin. 

An increase in feedstock polysaccharides and an 

increase in overall crop biomass via crop genetic 

engineering have also been reported. This article 

reviews the advancements made in feedstock 

crop genetic engineering in the above areas and 

discusses possible near-future perspectives.
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Using ethanol as transportation liquid 
fuel is not a new idea. Henry Ford’s fi rst 
car, the 1896 Quadracycle, ran on pure 
ethanol (http://www.ideafi nder.com/
history/inventors/ford.htm#STORY). 
And the fi rst gas station to off er 10% corn 
ethanol blend opened in 1933 (Fig. 1).

To date, more than 100 corn ethanol 
plants are in operation in the United States, 
with a production capacity of more than 
18.9 billion L (5 billion gal) per year. More 
than 100 new corn ethanol plants are cur-
rently under construction or near comple-
tion, which will add about 30 billion L (8 
billion gal) to the U.S. annual capacity.

In the United States, there are plans 
for the construction of six commercial cel-
lulosic ethanol plants (ethanol produced 
from plant lignocellulosic matter), with a 
total capacity of approximately 530 mil-
lion L (140 million gal) per year (USDOE, 
2007). These include Abengoa Bioenergy 
in Kansas, Alico, Inc. in Florida, Bluefi re 
Ethanol in southern California, POET in 
Iowa, Iogen Biorefi nery Partners in southeastern Idaho, 
and Range Fuels in Georgia. Michigan has also planned 
on constructing a cellulosic ethanol plant to convert wood 
chips and other forest residues into ethanol. In Canada, 
there is currently a small commercial biomass ethanol plant, 
with a few more planned to be constructed soon.

Because of recent increases in corn yields and advances 
in farm operations, corn ethanol technology now has 
a positive net energy balance (MacDonald et al., 2003; 
Demain et al., 2005). According to Farrell et al. (2006), 
corn ethanol provides about 25% more energy than it con-
sumes during its production. The problem with production 
of corn ethanol is that an increase in corn consumption 
results in more demand and higher price of corn in gen-
eral. While this results in more prosperity for farmers, it 
also means higher prices for all corn-dependant products 
such as meat and dairy products. Regardless, if all corn 
seeds presently produced in the United States were con-
verted to ethanol, only 15% of the country’s transporta-
tion fuels consumption would be covered (Houghton et 
al., 2006). Therefore, corn ethanol is not considered to 
off er a long-term solution to the U.S. transportation fuel 
needs; rather, it represents a great transitional technology 
(Somerville, 2006).

Cellulosic ethanol is produced from fi brous lignocel-
lulosic biomass matter. Cellulose is a polysaccharide with 
linkages that impart a microcrystalline structure that is more 
diffi  cult to saccharify than starch. Compared with corn eth-
anol, lignocellulosic biomass is much more available in the 
United States, about 1 billion Mg per year (Perlack et al., 

2005; Somerville, 2006), and much greater amounts at the 
global level (Y-H.P. Zhang et al., 2006; Ragauskas et al., 
2006). Rice (Oryza sativa L.) straw, which produces about 
half of the agronomic biomass worldwide (Kim and Dale, 
2004), is routinely burned around the globe. This creates 
pollution, which causes asthma and other health problems 
(Sticklen, 2006; McCurdy et al., 1996; Kayaba et al., 2004; 
Golshan et al., 2002). In addition, unlike corn ethanol, lig-
nocellulosic biomass is not used for human consumption. 
Therefore, there is no negative impact on the global food 
supply (Golshan et al., 2002).

Crop lignocellulosic biomass structure and composi-
tion vary depending on plant taxa, plant age, plant parts 
(Ding and Himmel, 2006), cell types, and individual cell 
wall layers. Plant lignocellulosic biomass is essentially 
composed of plant cell wall materials that consist mostly of 
crystalline cellulose embedded in a matrix of hemicellu-
lose and pectin, which are surrounded by lignin (Bothast 
and Schlicher, 2005; Ding and Himmel, 2006).

Signifi cant knowledge exists concerning the struc-
ture of cellulose. Discoveries have been reported on genes 
associated with cellulose biosynthesis and over all under-
standing of the cellulose biosynthesis pathways (Somer-
ville, 2006; Hayashi et al., 2005; Saxena and Brown, 
2005; Robert et al., 2004; Taylor et al., 2004; Doblin et 
al., 2003, 2002).

Plant cellulose is found in both primary and second-
ary cell walls in the form of microfi brils. These microfi -
brils are about 30 nm in diameter and composed of about 
36 polysaccharide subunits. The most likely location of 

Figure 1. Photo, taken in April 1933, shows a Lincoln Nebraska gas station of the Earl Coryell 

Co. selling “Corn Alcohol Gasoline.” By permission of the Nebraska Historical Society.
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The polysaccharides of feedstock biomass, such as cel-
lulose and hemicellulose, could be converted into ferment-
able sugars using hydrolysis enzymes. However, the lignin 
residues physically block the exposure cellulosic matter to 
hydrolysis enzymes (Zhang and Lynd, 2006; Ragauskas 
et al., 2006).

Three major steps are associated with biological con-
version of lignocellulosic biomass into ethanol fuels. First 
is the production of hydrolysis enzymes (Kabel et al., 2005) 
such as cellulases including microbial endoglucanase (1,4-
β-D-glucan glucanohydrolase; EC 3.2.1.4), exoglucanase 
(1,4-β-D-glucan cellobiohydrolase; EC 3.2.1.91) and β-
glucosidase (cellobiase or β-D-glucoside glucohydrolase; 
EC 3.2.1.21). While β-glucosidase completes the hydro-
lysis by converting the cellabiose and cellu-oligosaccha-
rides into monomeric molecules of glucose (Sternberg, 
1976), the endo- and exo-glucanases act synergistically 
and promote the solubilization of crystalline cellulose 
into cellubiose (Wood et al., 1989; Bhat and Bhat, 1997). 
β-glucosidase also relieves the cellobiose-induced inhi-
bition of endo- and exo-glucanases (Wood and McCrae 
1982; Bhat et al., 1993). To hydrolyze the hemicellulose 
of the feedstock lignocellulosic matter into fermentable 
sugars, diff erent groups of hemicellulases such as endo-
xylanases and exo-xylanases (Collins et al., 2005) would 
also be needed for such conversion.

The second step is the lignocellulose pretreatment 
processes, which is still expensive (Eggeman and Elander, 
2005). This step chemically and physically breaks down 
the recalcitrant feedstock lignocellulose complex into 
more reactive intermediates and disrupts the lignin struc-
ture so the cellulase enzymes can have access to cellu-
lose. Presently, lignocellulosic pretreatment technologies 
include dilute acid, hot water fl ow-through, ammonia 
fi ber explosion (AFEX), ammonia recycle percolation, 
steam water explosion, lime, and organosolv (Eggeman 
and Elander, 2005; Mosier et al., 2005; Wyman et al., 
2005a,b; Pan et al., 2005). An ideal pretreatment technol-
ogy must have low initial capital investment costs, low 
sugar degradation (McMillan, 1994) during its processes, 
and reasonable operating costs.

The third step, which is beyond the scope of this 
review, is the fermentation of sugars into cellulosic etha-
nol. The fermentation can also produce biobased materials 
such as lactic acid and succinic acid (L. Zhang et al., 2006; 
Ragauskas et al., 2006; Wyman et al., 2005b).

Because the fi rst two steps are expensive for commer-
cial cellulosic ethanol (Ragauskas et al., 2006), this article 
reviews the use of feedstock crop genetic engineering as 
a more economical alternative technology. I also review 
other feedstock genetic engineering approaches that might 
prove useful in increasing the crop biomass by prolonging 
the vegetative growth stage. At the end, I discuss possible 
future perspectives.

assembly of microfi brils is the Golgi. After assembly, the 
microfi brils are moved to the plasma membrane, where 
they become activated (Gibeaut and Carpita, 1993). Cel-
lulose microfi brils are composed of linear chains of up 
to 15,000 unbranched glucose units. These chains stack 
together via extensive interchain hydrogen bonding to 
form microfi briles (Somerville, 2006).

Along with cellulose, hemicellulose is found in ligno-
cellulosic matter. Hemicellulose polysaccharides are com-
posed of xylan backbone (a polymer of β-1,4-linked xylose) 
found in all plant cell walls. However, unlike cellulose, 
hemicellulose has a random amorphous structure, and it 
is hydrolyzed by dilute acid as well as numerous hemicel-
lulase enzymes. Plant hemicellulose consists of about 200 
branched sugar residues. These residues include xyloglucans 
with a heavily substituted β-1,4-glucan, glucomanans with 
β-1,4-linked mannose, glucoronoarabonoxylans with β-
1,4-linked xylan, and mixed-linkage glucans with glucosyl 
residues containing both β-1,3- and β-1,4-glycocyl linkage 
backbones (Carpita and McCann, 2000).

Basic research is in progress to better understand the 
functions of some of the genes and proteins associated with 
hemicellulose biosynthesis (Liepman et al., 2007; Cavalier 
and Keegstra, 2006). Bauer et al. (2006) and Persson et al. 
(2007), for example, revealed certain xylan biosynthesis 
pathway genes in Arabidopsis mutants.

The process of biosynthesis of plant cell wall polysac-
charides has been elegantly illustrated, and certain proteins 
have been identifi ed that play important roles in cell wall 
polysaccharide biosynthesis (Lerouxel et al., 2006). Cer-
tain phenolics compounds such as ferulate dehydrotrimers 
that are known to cross-link plant-derived polysaccharides 
have also been identifi ed (Ralph et al., 2004a). These cross-
linking compounds provide the plant cell wall strength but 
decrease the degradability of lignin by pretreatment process-
ing and decrease the plant digestibility by livestock (Bun-
zel et al., 2004). In grasses, for example, ferulate dimmers 
and trimmers cross-link between individual polysaccharides 
and between lignin and polysaccharides (Schatz et al., 2006). 
Certain monomers substitute for monolignols in some wild-
type and transgenic plants. These monomers display the same 
function as monolignols in their chemical radical coupling 
and cross-coupling. These substitutes could improve the 
feedstock biomass conversion processing of fermentable sug-
ars for alcohol fuels (Ralph, 2006).

Willats et al. (2001), Ridley et al. (2001) and O’Neill 
et al. (2004) have reviewed the structure and function of 
pectins. Pectins are complex polysaccharides in the mid-
dle lamella (i.e., the layer between adjacent plant cells) in 
form of a mixture of homogalacturonan, rhamnoglactu-
ronan I, and a minor amount of rhamnoglacturonan II 
polymers (Voragen et al., 1995). However, no research has 
been reported on conversion of pectins into fermentable 
sugars for alcohol fuels.
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Production of 
Hydrolysis Enzymes 
Within Crop Biomass
Over the last few decades, technolo-
gies associated with the production 
of recombinant cellulase enzymes in 
microbes and the effi  ciency of pro-
ducing biologically active enzymes 
within microbes have improved. 
More recently, the cost of cellulase 
production in microbes has been 
dramatically reduced (Knauf and 
Moniruzzaman, 2004; Ragauskas et 
al., 2006). Despite these advances, 
this technology remains economi-
cally unfeasible at commercial level.

During the last few years, bio-
logically active heterologous ther-
mostable endo-1,4-β-endoglucanase 
(E1) enzyme of Acidothermus cellulolyti-
cus (Tucker et al., 1989; Baker et al., 
1994) expressed in Arabidopsis (Ziegler et al., 2000), potato 
(Solanum tuberosum L.) (Dai et al., 2000) and tobacco (Nico-
tiana sp.) (Ziegelhoff er et al., 2001) plants. This enzyme was 
produced in plants to use the free energy of sun via photo-
synthesis. At the time, however, there was concern that the 
harsh pretreatment conditions might damage the biologi-
cal activity of plant-produced heterologous E1 enzyme. In 
other words, it was not known whether transgenic feedstock 
could be directly put into pretreatment processes while per-
forming enzymatic hydrolysis. To investigate this question, 
the biological activity of heterologous E1 was assayed after 
AFEX, which is a relatively mild pretreatment. The results of 
this investigation demonstrated that about two-thirds of the 
activity of the heterologous E1 were lost due to the AFEX 
pretreatment (Teymouri et al., 2004). Therefore, in follow-
up studies, the E1 enzyme was genetically expressed in corn 
(Biswas et al., 2006; Fig. 2) and rice (Oraby et al., 2007), 
which are both emblematic biomass crops. Plant total soluble 
proteins including the E1 were then extracted from the dry 
transgenic biomass and added to AFEX-pretreated lignocel-
lulosic matter for enzymatic hydrolysis. The E1 expressed in 
corn and rice successfully converted the AFEX-pretreated 
corn stover and rice straw into glucose (Ransom et al., 2007; 
Oraby et al., 2007). In the transgenic corn and rice, E1, with 
addition of β-glucosidase (Novozyme 188, St. Louis, MO), 
successfully converted 30% of corn stover and rice straw into 
glucose, whereas the commercially available mix enzymes 
(Genencor commercial Spezyme CP microbial cellulase) and 
β-glucosidase converted about 90% of the crop biomass into 
glucose (unpublished results; see Fig. 3 and 4). B-glucosidase 
was added to complete the hydrolysis and to relieve the cella-
biose-induced inhibition of endo- and exo-glucanases (Bhat 
et al., 1993). These experiments demonstrate that E1 pro-

duced in feedstock biomass crops is a viable alternative to 
commercially available enzymes. The results shown in Fig. 
3 and 4 are comparable to those recently published by the 
author’s team (Oraby et al., 2007; Ransom et al., 2007).

Production of the single thermostable E1 in rice and 
corn (Oraby et al., 2007; Biswas et al., 2006) had no 
apparent harm to the plants’ normal growth and develop-
ment. This is probably because this specifi c thermophilic 
E1 enzyme is not active under plant temperature in vivo, 
plant cellulose is mostly in crystalline form, and the plant 
cell wall cellulose is covered by a matrix of hemicellulose 
and lignin, which protects against cell wall damage.

It is not clear, however, that heterologous E1 did 
not damage the plant cell wall. A comprehensive study 
reported by the Biotechnology Group from the Danish 
Institute of Agricultural Sciences (Sorensen et al., 2000) 
demonstrated that the tuber pectin organization in trans-
genic potato (S. tuberosum L. cv. Posmo) was disturbed by 
the expression of a fungal endo-galactanase gene regu-
lated by a tuber-specifi c promoter. Similar to the above 
study of transgenic rice, transgenic potato plants had no 
apparent abnormalities in growth and development. The 
disturbance of transgenic plant cell wall pectin was evi-
denced by Fourier transform infrared microspectroscopy, 
immune-gold labeling, sugar analysis, and the isolation 
of rhmnogalacturonan I fragments compared with the 
wild-type nontransgenic potato tubers. This group also 
reported that the expression of endo-a-1,5-arabinanase 
protein targeted into the potato Golgi compartment 
interfered with the rhamnogalacturonan in Golgi vesicles. 
In these transgenic plants, arabinose content of the cell 
wall was reduced by 70% (Skjot et al., 2002). Therefore, 
the results for transgenic potato tuber suggest that the E1 

Figure 2. Immunofl uoresence confocal microscopy to confi rm the localization of the 

hetrologous A. cellulolyticus endo-1,4-β-endoglucanase E1 enzyme in transgenic maize 

leaf (left) compared with that of untransformed maize leaf (right). Both transgenic and the 

control leaves were treated with the E1 monoclonal primary antibody and the fl uorescein 

isothiocyanate (FITC) anti-mouse secondary antibody. Green areas around cells of transgenic 

maize sample (left) indicate the apparent accumulation of E1 in apoplast. By permission of 

Current Opinion in Biotechnology (Sticklen, 2006).
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produced in rice and corn may have damage that was not 
readily apparent, and further investigations are necessary.

Production of biologically active β-glucosidases in 
tobacco have been reported (Reggi et al., 2005; Kiran 
et al., 2006). However, these studies did not investigate 
cell wall deconstruction. Further research is needed to see 
whether β-glucosidases expressed in plants can convert 
cellubiose into glucose.

Microbial xylanases have been produced, in their bio-
logically active forms, specifi cally in the endosperm of barley 
(Hordeum vulgare) grain (Patel et al., 2000) and constitutively 
in tobacco (Herbers et al., 1995; Kimura et al., 2003a), rice 

(Kimura et al., 2003b), and potato (Yang et al., 2007). How-
ever, no reports are available on the use of these heterologous 
xylanases for the hydrolysis of feedstock hemicellulose.

Lignin Manipulations Via Feedstock 
Crop Genetic Engineering
It is believed that reduction in feedstock lignin or modi-
fi cation of lignin structure may reduce the needs for pre-
treatment processes (Ragauskas et al., 2006). Lignin, the 
second most abundant polymer (cellulose being the fi rst) on 
earth has a biosynthesis pathway (Fig. 5) that can be readily 
manipulated. Cell wall structure has been studied (Carpita 

and McCann, 2000), and an excellent recent review 
article (Boerjan et al., 2003) and a book have discussed 
lignin content, structure variations, functions, and 
lignifi cation (Hayashi, 2006; Ralph, 2006). Strategies 
have also been considered on how to manipulate the 
lignin biosynthesis pathway for diff erent purposes such 
as an increase in feedstock digestibility and bleaching 
(Boudet, 2000; Dean, 2005; Ralph, 2006).

By defi nition, lignin is a complex mixture of 
phenylpropanoid polymers that are attached together 
by radical coupling (Ralph et al., 2004b) derived from 
three hydroxycinnamyl alcohol monolignols, includ-
ing para-coumaryl, coniferyl, and sinapyl alcohols 
(Fig. 5). Each of these residues results from separate 
but interconnected biosynthesis pathways. Manipu-
lation of each of the lignin biosynthesis pathways is 
expected to modify plant lignin. Lignin biosynthe-
sis pathways are also linked to other functional and 
defense responsibilities such as those associated with 

protecting plants from pathogens and 
insects (Ragauskas et al., 2006).

Jung and Ni (1998) studied the 
downregulation of lignin in alfalfa 
(Medicago sativa) to improve digest-
ibility of this crop by rumen. Other 
examples of lignin downregulation 
were modifi cation of the transgenic 
tobacco cell wall lignin structure 
via the use of homologous antisense 
technology (Blaschke et al., 2004) 
and the eff ect of downregulation 
of 4-hydroxycinnamate 3-hydrox-
ylase or C3H (Fig. 5) on lignin 
structure. Downregulation of C3H 
predictably increased the propor-
tion of para-hydroxyphenyl units 
relative to the normally dominant 
guaiacyl/syringyl ratio (Ralph et 
al., 2006). Furthermore, the down-
regulation of hydroxycinnamoyl-
CoA:NADPH oxidoreductase or 
CCR (Fig. 5) in poplar (Populus) 

Figure 3. Production of glucose from conversion of substrates including 

carboxymethyl cellulose (CMC), Avicel ,and ammonia fi ber explosion–

treated corn stover (AFEX-CS) using the transgenic corn-produced 

heterologous A. cellulolyticus endo-1,4-β-endoglucanase E1 enzyme. 

The enzymatic hydrolysis was conducted for a period of 72 h, at 50°C 

with 90 rpm shaking (unpublished data). These results are similar to those 

published in Ransom et al. (2007).

Figure 4. Comparison of percentage of feedstock crop cellulose converted into glucose through 

conversion of ammonia fi ber explosion (AFEX)-treated and untreated (UT) corn stover (CS) and 

rice straw (RS) cellulose hydrolyzed using 4 mL of transgenic rice soluble proteins containing 

4.9% rice E1 heterologous enzyme compared with 15 fi lter paper units (FPU) of Genencor 

commercial Spezyme CP microbial endoglucanase and exoglucanase mix (unpublished data). 

Novozymes commercial microbial β-glucosidase (6.5 mg 15 mL−1) was added to both the rice 

E1 heterologous enzyme and to the commercial mix enzymes to inhibit cellubiose inhibition. 

These results are similar to those published in Oraby et al. (2007).
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resulted in more digestible cellulose by Clostridium cel-
lulolyticum and twice the fermentable sugar production 
(Dean, 2005, p. 4–26).

Plant lignin concentration has also been reduced via 
genetic engineering. Downregulation of hydroxycin-
namate-CoA/5-hydroxyferuloyl-Co-A- ligase or 4CL 
(Fig. 5) in transgenic quaking aspen (Populus tremuloides), 
for example, resulted in a 45% decrease in lignin with a 
concomitant 15% increase in cellulose (Hu et al., 1999)· It 
is believed that such compensation occurred because the 
quantitative or qualitative changes of one cell wall com-
ponent often results in alteration of other cell wall com-
ponents (Boudet et al., 2003).

The downregulation of cinnamyl alcohol dehydroge-
nase in poplar has caused an increase in less-conventional 
syringyl units and β-O-4-bonds, and more free pheno-
lics groups (Lapierre et al., 2004). The downregulation 
of phenyl ammonia lyase or PAL (Fig. 5), which is the 
master enzyme responsible for the downstream regulation 
of the whole lignin biosynthesis fl ux, could depend on the 
level of PAL suppression (Elkind et al., 1990; Bate et al., 
1994). It is also believed that lignin downregulation could 
be further amplifi ed by multiple gene cotransformations 
(Ragauskas et al., 2006).

Success in research on reducing lignin content and/or 
modifi cations of lignin confi guration has recently shown 
very fast progress. This is a result of the recent advance-
ments in technologies associated with multidimensional 
nuclear magnetic resonance, pyrolysis–mass spectrom-
etry, and UV microspectrometry, which have allowed the 
observation of the subcellular lignin structural changes 
at an extremely high resolution (Rogers and Campbell, 
2004; Ralph and Bunzel, 2005; L. Zhang et al., 2006).

Despite all the research on lignin biosynthesis pathway 
enzymes, several questions associated with the pathway 
remain. As lignin deposition is both complex and highly 
variable even within a single plant cell, more basic research 
is needed to further understand the genetic basis for lignin 
biosynthesis, regulation of genes associated with the pathway, 
lignin deposition, and overall coordination (Dean, 2005).

Other Feedstock Crop Genetic Engineering 
Approaches to Alcohol Fuels
Understanding plant cellulose biosynthesis has long been 
considered important, and basic research in this area is under-
way in diff erent laboratories (e.g., Kawagoe and  Delmer, 
1997; Arioli et al., 1998; Balwell, 2000; Persson et al., 2005; 
Haigler, 2006; Andersson-Gunneras et al., 2006).

Figure 5. Lignin biosynthesis pathway. PAL, phenyl ammonia lyase; C4H, cinnamate 4-hydroxylase; C3H, para-coumarate 3-hydroxylase; 

COMT, caffeic acid O-methyltransferase; CCoAOMT, caffeoyl-CoA O-methyltransferase; 4CL, 4-coumarate:CoA ligase; 4CL??, certain 

species have 4CL activity toward sinapic acid; CCR, cinnamoyl-CoA reductase; CAD, cinnamyl alcohol dehydrogenase; SAD, sinapyl 

alcohol dehydrogenase; HCT, para-hydroxycinnamoyl-CoA:quinate shikimate para-hydroxycinnamoyltransferase; CCR? And F5H?, 

enzymes whose substrates have not been tested; F5H: ferulate 5-hydroxylase; ?, conversion has been demonstrated; ??, direct conversion 

not convincingly been demonstrated. 
***

, enzymatic assays in Arabidopsis have shown that the shikimate and quinate esters of para-

coumaric acid are the ideal substrates for para-coumarate 3-hydroxylase (C3H). This means that in Arabidopsis, 4CL fi rst converts the 

para-coumarate to para-coumaroyl-CoA, and then the C3H converts the para-coumaroyl-shikimate and para-coumaryoyl-quinate. This 

fi gure is a less-comprehensive summary of a 2003 report (Boerjan et al., 2003) and the 2002 redrawing of lignin biosynthesis pathway 

(Humphreys and Chapple, 2002).



R
e
p
ro

d
u
c
e
d

fr
o
m

C
ro

p
S

c
ie

n
c
e
.

P
u
b
lis

h
e
d

b
y

C
ro

p
S

c
ie

n
c
e

S
o
c
ie

ty
o
f

A
m

e
ri
c
a
.

A
ll

c
o
p
y
ri
g
h
ts

re
s
e
rv

e
d
.

2244 WWW.CROPS.ORG CROP SCIENCE, VOL. 47, NOVEMBER–DECEMBER 2007

A promising area of research for possible increase 
in crop biomass is to delay the feedstock crop fl ower-
ing time. Several reports indicate that the switch from 
vegetative to reproductive growth (fl owering) is a key 
developmental change in the plant life cycle. This switch 
is controlled by both environmental and developmen-
tal signals (Reeves and Coupland, 2000; Simpson and 
Dean, 2002; Jang et al., 2003; Henderson and Dean, 
2004). The regulation of this switch and genes associ-
ated with the mechanism of the switch have been stud-
ied (Sheldon et al., 1999; Araki, 2001). A single fl oral 
repressor gene, FLOWERING LOCUS C (FLC), was 
identifi ed in Arabidopsis (Michaels and Amasino, 2000). 
Several genes act to promote the expression of the FLC 
gene, which is known to delay fl owering by suppressing 
a group of fl oral promotion genes called fl oral pathway 
integrators (Scortecci et al., 2001). Plants overexpressing 
the FLC gene prolong their vegetative growth phase 
unless they are exposed to vernalization (Michaels and 
Amasino, 2000; Sheldon et al., 1999).

Because delay in fl owering time results in prolonged 
vegetative growth, it was conceptually predicted that 
FLC-transgenic plants would produce higher vegetative 
biomass yields (Sheldon et al., 1999). This hypothesis was 
recently proven in the author’s laboratory in a late-fl ower-
ing tobacco, confi rming that expression of the single Ara-
bidopsis FLC gene that delayed fl owering by three week 
signifi cantly increased transgenic plant biomass at the 
greenhouse level (Salehi et al., 2005).

An increase in overall crop biomass may occur via the 
regulation of plant growth regulators. Increased gibberellin 
biosynthesis in transgenic hybrid poplar, for example, pro-
moted plant growth and biomass (Eriksson et al., 2000).

As new biomass crops such as switchgrass (Panicum 
virgatum), miscanthus (Miscanthus × giganteus), and other 
perennial grasses are considered for use in production of 
cellulosic ethanol. New lines of studies in these crops will 
become important in the near future. For example, the 
correlation between the photosynthetic rate (Richards, 
2000) and an increase in atmospheric CO

2
 concentration 

increased the overall plant biomass (Maroco et al., 1999). 
Other factors such as plant nutrients, oxygen, water, respi-
ration, circadian clock (Dodd et al., 2005), and the capac-
ity of C

4
 plants to store more carbon (Maroco et al., 1999) 

must also be taken into research considerations for these 
crops. In addition, how these plant genotypes infl uence 
carbon sinks and the ability to acquire suffi  cient nitrogen 
and other resources (Sinclair et al., 2004) are all important 
physiological studies to be considered. At present, there 
are no reports on genetic modifi cation of plants in any of 
these areas.

CONCLUSIONS AND 
FUTURE PERSPECTIVES
Successful production of biologically active A. cellulolyti-
cus E1 endo-1,4-β-glucanase in diff erent crop species and 
the capability of this plant-produced enzyme to help the 
conversion of feedstock cellulose into glucose (Fig. 2 and 
3) are most encouraging. This could be an excellent start 
for production of a battery of all the diff erent hydroly-
sis enzymes targeted for storage in diff erent subcellular 
compartments (e.g., apoplast, chloroplast, mitochondria, 
endoplasmic reticulum) of the same feedstock biomass. 
Multitargeting enzymes in cell compartments could 
potentially generate high levels of enzymes yield.

Theoretically, plant-produced hydrolysis enzymes must 
be cheaper than the same produced in microbes. The ideal 
scenario would be to produce designer biomass crops that 
express their own cell wall hydrolysis enzymes and have 
less lignin or more easily deconstructable lignin residues 
(Sticklen, 2006). This may be as realistic as producing single 
designer microbes that secrete all of the necessary hydroly-
sis enzymes and also utilize all sugars in an “integrated bio-
processing” for fermentation (Lynd et al., 2005).

Plants are known to be used as “green bioreactors” for 
the production of large amounts of biomolecules such as 
essential enzymes, carbohydrates, lipids (Horn et al., 2004; 
Breithaupt, 2004; Bailey et al., 2004; Cai et al., 2006; Fischer 
et al., 2004; Qi et al., 2004; Liu et al., 2005; Chiang et al., 
2005), polymers such as polyhydroxybutyrate (Bohmert 
et al., 2002; Saruul et al., 2002; Zhong et al., 2003), and 
especially higher-value compounds such as pharmaceuticals 
(Howard and Hood, 2005). The level of production of such 
compounds could be drastically increased using approaches 
such as boosting of transcription level, direct transcription 
in tissue suited for protein accumulation, transcript stabi-
lization, translation optimization (Streatfi eld, 2007), and 
subcellular targeting (Sticklen, 2006).

To date, reports on lignin pathway enzymes have con-
centrated on improving the pulping industry or livestock 
feed digestibility. Decrease in feedstock lignin content 
and especially genetic alteration of lignin for a less-expen-
sive lignin deconstruction could well decrease the costs 
of biomass pretreatment processes and reduce the needs 
for environmentally undesired chemicals presently used in 
pretreatment processes.

Basic research such as advancement in plant lignin 
transcript profi ling (Ehlting et al., 2005) would certainly 
enhance the lignin modifi cations to improve cellulosic 
fuel technology in the near future.

Understanding the plant cell walls may require a system-
based approach to integrating biophysical,  developmental, 
and genetic information into a useful and functional model 
(Somerville et al., 2004). One aspect of future research may 
concentrate on how to modify the lignin content and lignin 
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chemistry without interfering with defense against invad-
ing pathogens and insects.

Studies of carbon sequestration must also be consid-
ered as we move toward the long-term use of crop feed-
stock for alcohol fuels. In addition, looking at the overall 
alcohol biofuels picture, problems associated with ethanol 
fuel technology include distillation costs, since ethanol is 
highly hydrophilic; transportation costs, because it cannot 
be transported through pipelines; and ethanol toxicity to 
fermentation microbes. Some would argue that butanol fuel 
may be a better option because, despite its few drawbacks, it 
is much less hydrophilic and can partition out of the aque-
ous phase (Somerville, 2006). Further research compar-
ing the economic feasibility of ethanol versus butanol will 
determine the best course for the biofuel industry.
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