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Abstract 12 
Understanding fish movement patterns is vital for stock assessment and fishery 13 
management.  We used a variable selection procedure in a Bayesian framework to 14 
understand what factors most likely affect the net movement distance of individual fish 15 
based on a conventional tag-recovery study of lake whitefish populations in Lake Huron 16 
during 2003-2011, where fish of this species with spawning site fidelity were tagged 17 
during the spawning season and recovered throughout the year.  We found that fish with 18 
greater total length, and those that were tagged and released from tagging sites near 19 
Cheboygan and Alpena, Michigan, moved longer net distances than fish from other 20 
tagging sites. Habitat conditions also had a profound effect on net movement distance.  21 
We found that shorter movement distances by lake whitefish can be expected if the 22 
relative density of the benthic amphipod Diporeia spp. was higher near the tagging site 23 
during the recovery year.  We also found evidence that lake whitefish may start their 24 
annual spawning migration runs earlier during warmer years.  More generally, our 25 
Bayesian framework for analysis of conventional tagging data has potential for wide 26 
applicability, and model details and our code are provided to facilitate this.   27 
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1. Introduction 35 
Many fish species move for long distances at various times during their life cycle, and 36 

movements made by individuals vary from regular and predictable migration to less-37 
predictable resource driven nomadism (Runge et al., 2014).  Most previous research that 38 
evaluated changes in fish spatial locations focused on either the triggering factors or 39 
distance between initial and final fish location (e.g., Albanese et al., 2004; Radinger and 40 
Wolter, 2014), or on estimating net movement/migration rates of populations (Polacheck 41 
et al., 2006; Vandergoot and Brenden, 2014).   42 

Fish movement is essential from both conservation and management perspectives. 43 
Movement behavior can influence how fish are distributed, whether their populations 44 
persist in the face of ecosystem changes, and how stocks are assessed. Fish movement 45 
can further influence ecological interactions and evolution (Lidicker and Stenseth, 1992).  46 
Management problems such as inaccurate assessment results, or inappropriate catch 47 
limits, can occur when actual fish movements do not agree with the spatial assumptions 48 
made in stock assessments and management decisions, which can result in local 49 
population depletion and population collapse (Fu and Fanning, 2004; Hutchings, 1996; Li 50 
et al., 2015; Mitchell and Beauchamp, 1988; Rothschild, 2007). 51 

Despite its ecological and management importance, understanding of fish movement 52 
patterns in time and space, and how movements are related to environmental variables, is 53 
still limited. Moreover, most previous research that focused on the triggering factors (i.e., 54 
factors causing the initiation of movement) and net fish movement distance were limited 55 
to stream fish, given the easy calculation of net distance moved from conventional 56 
tagging data. Much less is known about movement of fish that live in large water areas. 57 
Most of which is known has been derived from electronic tagging data, although there are 58 
many long-term conventional tagging programs. While technological advances make the 59 
use of acoustic or pop-up tags increasingly useful, conventional tags are still more widely 60 
used for estimating population size, mortality, and tracking individual growth, given their 61 
lower price. Conventional tagging data can also provide information on the location at tag 62 
release and tag recovery, which could be used for the estimation of movement route and 63 
intensity (e.g., net fish movement distance) (e.g., Albanese et al., 2004; Gilliam and 64 
Fraser, 2001). 65 

The goal of this study was to develop a model framework for analysis of how factors 66 
impact the distance fish move from when they are tagged until they are recovered ('net 67 
fish movement distance' hereafter) in a larger water body, based on conventional tag-68 
recovery results. We based our research on several lake whitefish (Coregonus 69 
clupeaformis) spawning stocks in Lake Huron of the Laurentian Great Lakes of North 70 
America.  As an ecological and economically important fish species in the Great Lakes, 71 
lake whitefish have been found to move freely among multiple management units during 72 
the non-spawning period, but show a high degree of natal homing, so nearly all mature 73 
fish return to spawn at the same location each year (Ebener et al., 2010b).  Previous 74 
research on lake whitefish movement patterns provides a useful platform for us to derive 75 
a priori hypotheses about the potential factors that influence movement. Since the 76 
establishment of dreissenid mussels in the early 1990s, the ecosystem of four of the five 77 
Great Lakes have changed substantially, including an overall decrease in the density of 78 
lake whitefish's preferred food- Diporeia spp. (Barbiero et al., 2011; McNickle et al., 79 
2006; Mohr and Nalepa, 2005). In this context, Rennie et al. (2012) evaluated the 80 



 3 

relationship between lake whitefish migration distance and growth rate, and found that 81 
the least mobile population of lake whitefish was supported by a remnant Diporeia spp. 82 
population. Ebener et al. (2010b) found that stock identity and season of recapture 83 
affected net movement distance most strongly, while the influence of variables such as 84 
sex, year, fish total length, and time at large was weaker. Although the role of 85 
temperature has not been directly implicated in explaining patterns in the fish movement, 86 
the association between lake whitefish harvest and surface water temperature suggested 87 
that such a connection may exist (Price et al., 2003). 88 

The pioneering studies of net movement distance used either a regression-tree based 89 
approach or ANOVA models to test whether net movement distance varied significantly 90 
in association with the factors they evaluated (e.g., Albanese et al., 2004; Ebener et al., 91 
2010b; Radinger and Wolter, 2014). Because some studies estimated the effects of 92 
different factors as additive (i.e., causing a given distance change rather than a percentage 93 
change in net movement distances), it is hard to generalize the results from studies with 94 
different spatial and temporal scales.  When jointly considering multiple factors and 95 
continuous covariates, the ANOVA approach can provide only a rough picture of the 96 
continuous relationship between net movement distance and explanatory factors.  Thus, a 97 
more thorough regression analysis is needed. The regression-tree based approach seeks to 98 
approximate nonlinearity and interactions in the relationships between the net movement 99 
distances and multiple factors by recursively partitioning the data points according to the 100 
categorization of the factors (Ebener et al., 2010b). Such partitioning may have difficulty 101 
in interpreting the effects, if the observations from the same tag or recovery area happen 102 
to be separated into different branches of the tree. Some regression-tree applications have 103 
partitioned data by site (i.e., different sites on different branches), and this can make it 104 
difficult to develop a general understanding of movement (Ebener et al., 2010b). In 105 
addition, although it is possible for regression-tree based approaches to rank or select 106 
variables based on variable importance measures, they do not provide any further insight 107 
of the uncertainty associated with their rankings or selections. Also information criteria, 108 
such as Akaike’s information criterion and the Bayesian information criterion, commonly 109 
used as penalization terms for the number of parameters in model, are not applicable for 110 
nonparametric tree-based models (Claeskens and Hjort, 2008).  111 

We therefore considered a global linear regression model that accounts for joint 112 
effects of multiple factors and the heterogeneity among sites, to study the relationship 113 
between the net movement distance and individual factors. We further conducted a 114 
variable selection procedure under a Bayesian framework to explore the plausibility of 115 
alternative regression models that include various explanatory variables, and assess the 116 
associated uncertainty.  Bayesian variable selection treats the regression model itself as 117 
random among all possible models with different sets of variables. Thus, it accounts for 118 
model uncertainty in the overall assessment of uncertainty by making inferences on how 119 
probable alternative models are after consideration of the data.  The implementation of 120 
Bayesian variable selection via the reversible jump Markov chain Monte Carlo 121 
(rjMCMC) (Green, 1995) procedure is substantially more efficient in exploring the model 122 
space than the traditional approaches such as all-subsets-regression (Woznicki et al., 123 
2016).  While we believe our approach has substantial advantages over regression-tree 124 
approaches, it could miss some nonlinear effects that could be identified by regression-125 
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trees.  Thus, as a check on robustness we compared our results with those from 126 
regression-tree methods. 127 

We considered how net distance moved from tagging to recapture locations changed 128 
monthly and over years, and how this net movement pattern depended upon tagging 129 
location. In addition, we considered how life history traits, namely total length, and sex, 130 
and habitat features, namely Diporeia spp. density and water temperature, played a role 131 
in these net movement patterns. Thus, the variables we considered as potential 132 
explanatory factors in this study were tagging year, recovery year, recovery month, 133 
year(s) between tag and recovery, fish total length, sex, tagging (spawning) site, and the 134 
habitat variables based on Diporeia spp. density and growing degree days.  135 

Our goal was to provide not only insight on how those factors influenced lake 136 
whitefish movement in Lake Huron, but also a model framework for analyzing 137 
movement mechanism based on conventional tagging data. Although Bayesian variable 138 
selection in linear regression is a long-established approach (Mitchell and Beauchamp, 139 
1988), it was rarely used in ecology or more specifically for uncovering explanations for 140 
movements (Drouineau et al., 2017; Ethier et al., 2017). Drouineau et al. (2017) used a 141 
Bayesian state-space model to analyze the effects of different environmental factors in 142 
triggering migration of silver eel in fragmented rivers. Ethier et al. (2017) used Bayesian 143 
models and variable selection to evaluate how environmental variables influenced 144 
regional variation in population trends of Bobolink. Both studies used a mixture 145 
distribution of priors (i.e., normal plus zero-inflation), which were estimated using a 146 
Gibbs sampler. However, their variable selection procedure did not introduce a penalty 147 
such as BIC for increasing number of selected variables. Also the Gibbs sampler usually 148 
involves scanning all variables at each iteration, which could be computational 149 
expensive, especially when the number of candidate variables is large.  150 

To the best of our knowledge, this study is the first to apply the Bayesian variable 151 
selection approach to compare the effects of various factors on fish net movement 152 
distance by introducing an explicit prior penalty on model complexity, and the most 153 
comprehensive to date in terms of the range of factors affecting whitefish movement. To 154 
avoid sampling all indicators within a Gibbs sampler circle as in Drouineau et al. (2017) 155 
and Ethier et al. (2017), we adopt the reversible jump MCMC algorithm for model 156 
exploration that mimics stepwise selection and subsets regression technique, which is 157 
more computationally efficient. Thus our research introduces an approach to fish 158 
movement studies, which has the potential to be much more effectively interrogate a 159 
large number of predictor variables.  To facilitate usage of our approach, we provide the 160 
open-source code for MATLAB program which is online available at to implement the 161 
method.  162 

2. Methods 163 
2.1 Data collection, selection, and calculation of net-movement distance 164 

Lake whitefish were tagged and released in a study coordinated by one of us (Mark P. 165 
Ebener) at 21 individual tagging sites from nine spawning stocks in Lake Huron from late 166 
October through December (i.e., spawning season) of 2003-2006. Total length (mm) of 167 
all 35,285 tagged fish were measured before release, spatial coordinates of the tagging 168 
and release location, and date of release were recorded for each fish.  Lake whitefish 169 
were tagged on or very near the spawning grounds and subsequently killed when 170 
recovered by the commercial or recreational fishery.  The commercial fishing season for 171 
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lake whitefish is not closed in Ontario waters during the spawning season, but it is closed 172 
in Michigan waters.  Thus, fish tagged and released at Detour, Cheboygan, Alpena, and 173 
Saginaw Bay (Fig. 1) were extant 1-4 weeks before being subjected to fishing and tag 174 
recovery.  At Burnt Island, the Fishing Islands, and Sarnia fish were also tagged during 175 
the spawning season, but commercial fishing was occurring simultaneously during 176 
tagging so they had little time to be extant prior to tag recovery. Recovery happened from 177 
December 2003 until December 2012, with the majority being recovered by commercial 178 
fishermen, and the rest recovered during fishery surveys. Subsets of the data used here 179 
were previously reported by Ebener et al. (2010a, 2010b), and details of the tagging 180 
methodology are given by Ebener et al. (2010a).  181 

Our analysis focused on drivers of net movement distance of lake whitefish tagged 182 
and recovered in Lake Huron.  We thus restricted attention to recoveries for which net 183 
distance movement could be calculated and for which explanatory variable data were 184 
available.  Only recoveries that had location information recorded (either by latitude and 185 
longitude or by 10-minute by 10-minute statistical grid, treated as though recovered at the 186 
grid center) were considered. In addition, we excluded observations from fish that were 187 
recovered within two days of release, as well as those without their recapture date, sex, or 188 
total length recorded (i.e., explanatory variables).  We also removed fish that were 189 
recovered from Lake Michigan because of our focus on movement within Lake Huron 190 
and because our explanatory variables were from Lake Huron.  We further excluded 191 
recoveries from two tagging sites that each produced only two total recoveries, and the 192 
two fish recovered during 2012.  Thus of the total of 2,098 reported lake whitefish 193 
recoveries, 1,368 recoveries were used in this study.  Details of data exclusion are 194 
described in Supplementary Table S1. These recovered fish had total lengths between 195 
375-667 mm at the time of tagging, and were tagged and released from seven spawning 196 
sites (Fig. 1).  197 

We used log-transformed net movement distance as a response variable because net 198 
movement distances were highly skewed. We calculated net movement distance based on 199 
the shortest water distance between tagging and recovery locations, using a Dijkstra type 200 
shortest path algorithm (Vincenty, 1975; online Appendix A). We standardized log-201 
transformed net movement distance by subtracting the mean and dividing by standard 202 
deviation prior to analysis.  203 

2.2 Explanatory variables 204 
We hypothesized that net movement distance for lake whitefish in Lake Huron would 205 

be influenced by 1) life history traits, which included total length, and sex; 2) temporal 206 
factors, which included tagging year (tag_Y), recovery year (rec_Y), recovery month 207 
(rec_M), and year(s) between tagging and recovery (year_lag); and 3) habitat condition, 208 
which included Diporeia spp. density, and growing degree days; and 4) tagging 209 
(spawning) sites. These hypotheses, related variables, and the expected sign of the 210 
associated coefficients, if hypotheses were supported, are in Table 1. Due to the strong 211 
spawning site fidelity of lake whitefish (i.e., nearly all lake whitefish move back to where 212 
they born each year during the spawning season), we only considered the habitat 213 
conditions during the recovery year as a predictor.  That is, the net movement is in 214 
actuality the net movement since the prior spawning season.  We used relative Diporeia 215 
spp. density, which was the Diporeia spp. density of the release location divided by the 216 
mean of all sampled stations in Lake Huron for that year. The U.S. EPA Great Lakes 217 
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National Program Office collected Diporeia samples every August since 1999 at 12 Lake 218 
Huron stations (Barbiero et al., 2011). The release location density was defined as the 219 
density at the sampled location closest to the release location. Our hypothesis was that 220 
lake whitefish tended to stay near their tagging locations when Diporeia density was 221 
higher in that vicinity.  222 

We proposed two alternative hypotheses for the relationship between growing degree 223 
days (GDDs) (i.e., also known as thermal time, a weather-based indicator about heat 224 
acumination for assessing fish growth; e.g., Chezik et al., 2014) and lake whitefish net 225 
movement distance, and these led to two distinct sets of GDD variables.  These two sets 226 
were used in two alternative analyses.  We calculated GDDs based on mean daily 227 
(daytime) surface temperatures from the Great Lakes Surface Environmental Analysis 228 
(GLSEA) remote sensing surface water temperature data (See online Appendix A).  229 

Case 1 (GDD hypothesis 1)—Lake whitefish respond to growing conditions they had 230 
experienced during the current year.  Thus, they would tend to be closer to their tagging 231 
(spawning) site when the growing degree days (GDD) at the tagging location was greater 232 
than the lake average GDD during that same time period.  This led us to define the 233 
explanatory variable relative GDD difference (“        ”), calculated as:          234 
                        , where        and         are the cumulated non 235 

negative degree days (       ) that exceeded     (Rennie et al., 2009) at the tagging 236 
location or for the lake-average, respectively, from the first day of the recovery year to 237 
the day of recovery.   238 

Case 2 (GDD hypothesis 2)—The spawning season of lake whitefish would be shifted 239 
earlier in the year, in years for which GDDs accumulated faster, because individual fish 240 
would reach a physiological status allowing spawning earlier under such conditions.  241 
Preliminary model fits without a GDD effect indicated that lake whitefish were generally 242 
closer to the spawning location during September through December, than at other times 243 
of the year. We therefore assumed that GDD might potentially influence net movement 244 
distance (to varying degrees) only during these months.  Thus, we added four additional 245 
interaction variables (recovery month          ) for September through December 246 
recoveries.  We used         because fish would be living and feeding away from their 247 
spawning/tagging sites until moving to those sites for spawning.   248 

After creating dummy variables and choosing the category with the largest number of 249 
observations as the baseline category for each factor, we have a total of    (for GDD 250 
hypothesis 1 case) and    (for GDD hypothesis 2 case) candidate variables including the 251 
intercept (Table 1). Note that there was no dummy variable created for the baseline 252 
category (i.e., tagging site: Detour, recovery month: June, tagging year: 2004, recovery 253 
year: 2006, or sex: Male), because it was defined as zero for all other categories for that 254 
factor.  All explanatory variables were standardized like net movement distance.   255 

2.3 Model framework 256 
We used Bayesian variable selection to identify the highly probable subsets of 257 

predictors for the linear regression and, given a set of predictors, we assessed likely 258 
parameter values. Given the Bayesian approach we used, inferences were based on a 259 
posterior distribution, which depends jointly on assumed prior distributions and the 260 
likelihood of the data. Model components (i.e., regression model, prior distributions, and 261 
likelihood) are described in Section 2.31 (Model Description) and how we used Markov 262 
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chain Monte Carlo (MCMC) techniques to derive posterior distributions in Section 2.3.2.  263 
A separate model selection process was conducted for the two cases (GDD hypotheses). 264 

2.3.1 Model description 265 
Each possible model is of the form: 266 

                                                     (Eq.1) 267 

where   is the response variable  (i.e., log-transformed net movement distance) with   268 
observations,    is the      design matrix (containing data for the predictors included 269 

for that regression),    is a vector of parameter coefficients (an intercept included in 270 
every model plus qj-1 additional coefficients for the predictor variables included for that 271 
model) and   is the residual error.  We assumed here homogenous, normal and 272 
independent residual errors, with variance   .   We assumed independent errors given the 273 
relatively large distances between tagging sites (Fig. 1) and because tagging and recovery 274 
spatial factors were included as potential explanatory variables.  As described in online 275 
Appendix B,    could be replaced with a selected correlation matrix.  A model with a 276 
specific subset of selected variables is represented by  , which formally is an index set, 277 
that maps the q variables in the selected model to the larger set of p possible variables. 278 

The                   had a normal prior            , where   279 

                . The   s were modeled as arising from a higher level inverse-gamma 280 

prior distribution ('hyperprior') with shape parameter    and scale parameter   . We 281 
assumed a hyperprior with inverse-gamma density for    with shape    and scale   . The 282 
hyperparameters were set to the values         and            , which 283 
correspond to a rather dispersed prior distribution.   284 

The normal prior with diagonal variance-covariance matrix for the   s represents a 285 

decision to use a Bayesian counterpart to Ridge regression.  The   s represent the signal 286 
to noise ratio of the effects in the model, and their magnitude played a role in whether an 287 
effect was included and the size of selected models.  Modeling them as arising from a 288 
hyperprior (rather than specifying their values) allowed for adaptive learning on which 289 
variables to include during the model search process. 290 

We included an intercept in all models to account for the grand mean level of  , as is 291 
often done for variable selection. There are a total of      possible models (i.e., an 292 
intercept-only model, all possible models with one additional variable, all possible 293 
models with two additional variables, etc.).  We specified the prior probability of each 294 
model as arising from the product of a prior probability for a model of a given size (i.e., 295 
    ), multiplied by the probability of a specific model given its size: 296 

                                                         (Eq.2) 297 

We let               for integer   from {1, 2, …., p}. Here   means 298 
“proportional to” up to a constant that is irrelevant in making inferences about the hyper-299 
parameter  . This placed higher prior probability on models with smaller size, as is 300 
consistent with common practice in variable selection, and the rate at which the prior 301 
probability falls as model size increases was determined by  .  We set           , 302 
which is analogous to a BIC-type penalty on the number of selected variables (Schwarz, 303 
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1978).  Conditional on q, each model     had an equal chance of being selected, i.e., 304 

           
   
   

  for    , and for     no selection is needed. 305 

2.3.2 Characterization of the posterior Distribution using MCMC 306 
We used Markov chain Monte Carlo methods to determine the posterior distribution. 307 

We used a hybrid reversible jump technique (rjMCMC), because it performs well when 308 
selecting among different sets of variables, which involved trans-dimensional states of 309 
Markov chain (Green, 1995; Woznicki et al., 2016). Our procedure involved running 310 
multiple chains and combining converged portions of these into one set of "retained 311 
samples." The retained samples were summarized to highlight desired properties of the 312 
posterior distributions.  313 

Details on the implementation of the hybrid of rjMCMC for model search and Gibbs 314 
sampler for parameters given the model, as well as procedures for evaluating MCMC 315 
convergence and producing the retained samples are given in online Appendix B.  We 316 
summarized the posterior distributions for regression model parameters in two ways:  317 

Variable-wise summary— This provided a summary conditional on the  -th variable 318 
being selected. This was based on summarizing all samples included in the final MCMC 319 
chains for a model that included the  th

 variable.  For the corresponding   , the posterior 320 

mean and 95% (equal probability tail) credible intervals were constructed from these 321 
samples. As a measure of the importance of each variable we also calculated the marginal 322 
inclusion probability (Barbieri and Berger, 2004), as the proportion of all retained 323 
MCMC samples that included the  th

 variable in the model.  324 
Model-wise summary— This was conditional on one specific model   in the posterior 325 

samples, and thus was based only on retained MCMC samples for that model. We 326 
provide such summaries for the 12 "top" models. Here models are ranked based on the 327 
posterior probability, calculated as the proportion of all retained MCMC samples that 328 
were model  . For the top models, we summarized the posterior distributions of the   s 329 

for all variables in  , again in terms of the posterior mean and 95% credible interval.  330 

2.3.3 Model diagnosis, simulation study, and comparison with tree-based methods 331 
We used the posterior predictive assessment of model fitness using the   -332 

discrepancy (Gelman et al., 1996), based upon which we calculated the Bayesian p-value 333 
for the top models in both GDD hypothesis cases. We also conducted simulations to 334 
evaluate how well our Bayesian variable selection procedure can discover the true set of 335 
important variables and estimate the corresponding effects, under five different scenarios 336 
with varying combinations of true predictor variable effects. We also applied two tree-337 
based methods to our data, and compared the top variables from tree-based methods, the 338 
gradient boosting regression tree method (Ethier et al., 2017) and the random forests 339 
approach (Breiman, 2001), to the selected variables from our variable-wise summary. 340 
Detailed methods for our diagnostic procedures, simulations, and tree-based applications 341 
are given in online appendices C, D, and E respectively, and performance statistics 342 
resulting from the simulations and tree-based methods are also presented in the 343 
appendices. 344 
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3. Results  345 
The posterior distributions of the number of selected variables were similar for the 346 

two GDD cases and suggested that the most probable model sizes had 6 and 7 variables 347 
including an intercept (Fig. 2). However, the selected variables were quite different (see 348 
Section 3.1). 349 

3.1 Variable-wise summary  350 
GDD hypothesis 1 Case: There were 10 variables with 95% credible intervals that did 351 

not cover 0, which we define as "consistent effects" (Fig. 3). Variables that had consistent 352 
effects generally had high marginal inclusion probability, and more generally variables 353 
with higher probability of inclusion tend to have more of their posterior distribution on 354 
one side of zero (Fig. 3). The six top variables (length, tagging site: Cheboygan and 355 
Alpena, Diporeia, and recovery months October and November) had marginal inclusion 356 
probability above 0.75 (i.e., they are selected by more than 75% of the total posterior 357 
samples). The variable recovery month September also had a relatively large marginal 358 
inclusion probability (0.40). The other variables that were detected as consistent effects 359 
had substantially lower marginal inclusion probability (<0.07) are: years lag, tagging site 360 
Fishing islands, and recovery month December. According to the posterior mean of those 361 
10 variables with consistent effects, fish with greater length, longer lag between the 362 
tagging and recovery years, released at tagging site Cheboygan, Alpena, and Fishing 363 
Islands, and recovered in December had greater net movement distance, while fish 364 
released at the tagging site with higher density of Diporeia, and recovered during 365 
September, October, and November had shorter net movement distance. Our first GDD 366 
hypothesis was not supported by the variable selection results because the 95% credible 367 
interval of the associated effect covered 0, and had a marginal inclusion probability of 368 
only 0.004.  369 

GDD hypothesis 2 Case: As was true for the previous case, consistency of effects and 370 
the marginal probability of inclusion were positively associated (Fig. 4).  The six top 371 
variables in terms of marginal inclusion probability (length, tagging site: Cheboygan and 372 
Alpena, Diporeia, recovery month November, interaction effect between lake-average 373 
GDD and recovery month October) were similar to the top variables for GDD hypothesis 374 
1. The major exceptions were for the recovery month October and the GDD associated 375 
variables (Fig. 4). Consistent with the results for GDD hypothesis 1, fish with greater 376 
length, longer lag between the tagging and recovery years, and released at tagging site 377 
Cheboygan, Alpena, and Fishing islands had greater net movement distance, while fish 378 
released at the tagging site with higher density of Diporeia, and recovered during 379 
September, and November had shorter net movement distance. The effect of recovery 380 
month October had a similar negative posterior mean, although the effect was less 381 
consistent. The less consistent effect of October is likely associated with the inclusion of 382 
the GDD associated variables for Hypothesis 2.  Our second hypothesis of GDD was well 383 
supported by the variable selection results. The interaction effect between lake-average 384 
GDD and recovery month October, and the interaction effect between lake-average GDD 385 
and recovery month November were both consistent, with a negative posterior mean and 386 
the former was smaller than the latter. That is, fish tended to have smaller net movement 387 
distance in October and November if the lake-average GDD was greater, and the effect 388 
was larger in October than that in November. On the other hand, the interaction between 389 
lake-average GDD and recovery month December was also consistent, but with a positive 390 
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posterior mean, which suggested that fish tended to have greater net movement distance 391 
in December if the lake-average GDD was greater. An overall interpretation of these 392 
effects is a shift in the spawning season in association with GDD, with more fish close to 393 
the spawning grounds by October and having moved away by December, when GDD was 394 
higher. 395 

3.2 Model-wise summary  396 
Given the variable selection result support our second GDD hypothesis, we only 397 

present model-wise summary for GDD hypothesis 2 case. One or more of the four 398 
interaction variables (recovery month × GDD for the fish that were recovered from 399 
September, October, November, and December) were included in at least one out of the 400 
top 12 models. In addition to the three variables with marginal inclusion probability 401 
equals 1 in Fig. 4 (Diporeia, tagging site: Cheboygan and Alpena), the interaction effect 402 
recovery month October × GDD was also included in all 12 top models (Fig. 5). 403 
Recovery month November was included in nine of the 12 top models (all but models 5, 404 
7, and 10), while the interaction variable November           was included in the other 405 
three top models. Total length of tagged fish was included in eight out of the 12 top 406 
models, recovery month September was included in four out of the top models, the 407 
interaction variable December          was included in three out of the top models, 408 
and recovery month December and the interaction variable September           were 409 
included in one out of the top models. The top two models both had a posterior 410 
probability greater than 0.14. These models were similar. The best model (i.e., the highest 411 
posterior probability model) included six variables and the second best model included all 412 
those variables, plus recovery month September. Most estimated   s are consistent across 413 
the top models, suggesting the effect of a variable was relatively uninfluenced by the 414 
presence of other variables in the models.  415 

The best model (Model 1 in Fig. 5) for the fit with GDD hypothesis 2 is summarized 416 
in Table 1. From the best model, fish that were tagged and released from tagging sites 417 
Cheboygan and Alpena had longer net distance than fish released at other tagging sites. 418 
Lake whitefish with greater total length also tended to have greater net distance. Fish that 419 
were recovered in November consistently had shorter net distance than fish recovered in 420 
other months. In addition, shorter movement distance could be expected if the relative 421 
Diporeia density was higher near the spawning locations during the recovery year. The 422 
interaction term of month October and lake-average GDD resulted in shorter net distance 423 
when lake-average GDD was high. 424 

3.3 Model diagnosis, simulation study, and comparison with tree-based methods 425 
Model diagnosis— There is no evidence for lack-of-fit of the top models under both 426 

GDD hypothesis cases.  In particular the scatterplot of predicted and realized   appear 427 
consistent with a 1:1 relationship (Fig. S1 in online Appendix C) and the Bayesian p-428 
values are much larger than 0.05, indicating that the null hypothesis that the observed 429 
data follow the hypothesized model is not rejected. We also did a residual analysis for the 430 
top model of both GDD hypothesis cases, and plotted averaged standard residuals for the 431 
MCMC samples associated with those top models versus selected (including both 432 
continuous variables and two way combinations of categorical predictors). We did not 433 
observe any suspicious patterns from the plot given: 1) all residuals are nearly symmetric 434 
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about zero, majority within (-3, 3), according to the 3-sigma rule, 2) there were no 435 
obvious trends in variation or mean across different values of the predictors. 436 

Simulation study— In general, our BVS method had consistent performance at 437 
identifying important variables, and in identifying an appropriate model under scenarios 438 
with varying combinations of candidate variables (see online Appendix D). Effects of 439 
interactions, and of continuous and categorical variables were all likely to be selected 440 
when they actually had effects, and not to be selected when they did not have effects on 441 
the response variable. Across all scenarios, the true model was very likely to be included 442 
in the top two models (i.e., probability >=0.9), and most likely to be our top model (i.e., 443 
probability >=0.74).  444 

Comparison with tree-based methods— The top variables from both tree-based 445 
methods in Figure S3 (online Appendix E) are consistent with Bayesian variable selection 446 
(BVS) results, although there were several exceptions. The first exception was for the 447 
GDD hypothesis 1 case, where GDD_Diff was not selected as important variable by 448 
BVS, but was selected as top variables by both boosted regression tree and random forest 449 
approaches. We believe that this is due to several high-leverage GDD_Diff observations 450 
(Fig. S4 in online Appendix E), which the regression tree methods see as nonlinear 451 
effects. A second exception, also for the GDD hypothesis 1 case, was that fish length had 452 
a high inclusion probability (0.78 with BVS) and was also a top variable for boosted 453 
regression trees but was not included in the top list for the random forests approach. A 454 
third exception was that the rank of the variable September was lower for the tree-based 455 
approaches than for BVS, and this was true for both GDD hypotheses, albeit the three 456 
approaches rank variable importance in different ways (probability of inclusion for BVS, 457 
see X axis of Fig. S3 and Fig. S5 for tree-based methods).  458 

4. Discussion  459 
The goal of this study was to develop a model framework for analysis of how factors 460 

impact net fish movement distance in a larger water body, based on conventional tag-461 
recovery results, and apply the framework to lake whitefish spawning stocks in Lake 462 
Huron of the Laurentian Great Lakes of North America.  Our framework used a data-463 
driven Bayesian variable selection (BVS) method, where the candidate variables 464 
represented hypothesis about drivers of net movement distance.  The hypotheses we 465 
evaluated were that the net movement distance of adult lake whitefish in the main basin 466 
of Lake Huron was related to 1) fish total length, 2) sex, 3) tag and release year, 4) 467 
recovery year, 5) recovery month, 6) year(s) between tagging and recovery, 7) Diporeia 468 
spp. density near the spawning locations relative to the lake-wide Diporeia spp. density, 469 
8) relative difference between the tagging site and lake-wide growing degree days, and 9) 470 
the interaction term between lake-wide growing degree days and recovery month. Some 471 
of the above hypotheses were well supported by the results presented.  472 

There was a consistent positive relationship between lake whitefish net movement 473 
distance and fish total length at the time of tagging. This is consistent with conclusions 474 
from previous studies of stream-dwelling fish, in which longer movement and home 475 
range was observed for larger fish (Gatz and Adams, 1994; Gunning and Shoop, 1963). 476 
This greater movement may be due to the increasing mass-specific bioenergetic costs of 477 
mobility with decreasing body size (Roff, 1991). Minns (1995) also found that the home 478 
range is related to body size in freshwater fisheries and is consistently larger in lakes than 479 
in rivers.  480 
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Because of the spawning site fidelity of lake whitefish, recovery months were 481 
expected to have effects on net movement distance. Ebener et al. (2010b), analyzing 482 
some of the same data but focused on different spatial and temporal scales with fewer 483 
predictor variables, also demonstrated that season of recapture played an important role 484 
in the distance moved by lake whitefish. Here, net movement distance was found to be 485 
negatively related to recovery months September, October and November, and positively 486 
related to December. This suggested that the spawning migration movement for lake 487 
whitefish generally occurred within months from September to November, and after that, 488 
fish tended to leave their spawning site and were actually further from the spawning 489 
location than in the baseline month of June.  490 

Past research has documented that some life history events such as reproduction can 491 
be accelerated with warmer water temperature (Forseth et al., 1999). For example, the 492 
spawning of walleye has occurred earlier with earlier ice-out related to warmer 493 
temperature (Schneider et al., 2010). We found similar patterns in our study. When lake 494 
average GDD was higher, lake whitefish tended to move or stay closer to their spawning 495 
sites from September to November, and to be further away from their spawning sites in 496 
December. This suggests that fish may start their annual spawning migration runs earlier 497 
in warmer years after acquiring and processing energy needed for spawning. The 498 
underlying mechanism could be that fish have to either achieve a critical condition before 499 
the cost of migration/spawning can be offset (Forseth et al., 1999), or to accumulate 500 
enough energy to survive a winter starvation period before spawning.  501 

Although the decline of Diporeia spp. density in the Laurentian Great Lakes due to 502 
the establishment of dreissenid mussels has been argued as the main reason of lake 503 
whitefish expanding their movement range (Ebener et al., 2010b; Rennie et al., 2012), we 504 
know of no other direct evaluation of an effect of Diporeia density on movement.  Our 505 
study evaluated this hypothesis by including relative Diporeia spp. density as a predictor 506 
for lake whitefish net movement distance, and we found that when relative Diporeia spp. 507 
density was high near the spawning grounds, lake whitefish tended to stay closer to their 508 
spawning site. This implied that fish might expand their foraging area when Diporeia 509 
density was low near their preferred habitat. Our analysis also found an effect of the 510 
relative density of Diporeia within a year, which suggests a pattern related to the density 511 
of this prey, not just a general change in movement over time throughout the lake as 512 
Diporeia declined.  513 

Lake whitefish tagged and released from the tagging sites Cheboygan and Alpena had 514 
consistently greater net distance than those released from other areas.  The underlying 515 
reasons may be relate to the bathymetry and shoreline features of Lake Huron. Deep 516 
water (>80 m) near Cheboygan and Alpena may restrict the movement of Cheboygan and 517 
Alpena spawning stocks to north-south direction where there is a large area with relative 518 
shallow water. In contrast, the spawning stocks in Detour and Burnt Inlands may be 519 
constrained from moving south by the deep water in north of the main basin of Lake 520 
Huron, so that they tended to move in the east-west direction.  Considering the shape of 521 
Lake Huron and the locations of those spawning stocks, movement in the north-south 522 
direction allows longer movement distance than in the east-west direction.  523 

There was similarity but also some differences in variable selection between our 524 
Bayesian variable selection and tree-based methods. One notable difference between tree-525 
based methods and the Bayesian method is in the inclusion of GDD difference in GDD 526 
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hypothesis 1 case for the tree-based methods but not by BVS. The overall neutral effect 527 
and low importance for the BVS was apparently because a few high-leverage points were 528 
treated as noise. By recursively partitioning the data according to different ranges of 529 
predictors, the tree-based methods are less sensitive to those points. However, such 530 
localized results based on small samples can hardly provide any general predictability.   531 
Rätsch et al. (2001) also found that overfitting can occur for regression tree-based 532 
methods using a boosting algorithm when there is a lot of noise.  533 

Our BVS method can be used for various different species and any water system 534 
meeting our input requirements. For conventional tagging studies done in large lakes 535 
(e.g., Lake Huron as in our case) or oceans, shortest water distance can be used as 536 
response variable; while for a tagging study done in a river, a river network needs to be 537 
built /considered for calculating (net) movement distance. Given that our Bayesian 538 
variable selection method penalizes the number of selected variables, it has the potential 539 
to perform well for other cases with more candidate explanatory variables than we used 540 
in our application. In addition, the approach is adaptable to situations where residuals 541 
might be correlated.  We assumed no such correlations given the spatial distribution of 542 
tagging sites and inclusion of spatial covariates (e.g., tagging sites), but in other situations 543 
there could be spatial structure that should be accounted for in random part of the model.  544 
In such cases correlations could be made a function of a measured quantity like distance 545 
between tagging sites, and our code and detailed description of the model in the 546 
supplement outlines how this can be done.  In addition, our Bayesian method also allows 547 
extra flexibility such as including: (1) random effects to cope with grouping variables 548 
with a large number of outcomes, which can greatly improve the prediction by better 549 
explaining the variability; (2) prior information for the effects of variables with flexible 550 
choices that can be leveraged from a broad catalog in the Bayesian variable selection 551 
literature.  Thus we believe our work established a framework that could facilitate 552 
additional studies of animal movement based on conventional tagging data. 553 

We made several simplifying assumptions and choices in our analysis. Firstly, we 554 
assumed 100% spawning site fidelity, so for the environmental factors Diporeia spp. 555 
density and GDDs, only data for the year of recovery were used.  While fidelity is likely 556 
not 100%, available data suggest it is quite high for lake whitefish (Ebener et al., 2010b).  557 
Secondly, the    used for the calculation of cumulative GDD is     (Rennie et al., 2009), 558 
but it is possible that this is not the best threshold or that fish are responding to 559 
temperature in a different or more complex fashion than we assumed. We believe that 560 
violation of the 100% fidelity assumption and the GDD assumptions would act to obscure 561 
effects of Diporeia and tagging site rather than cause us to discover artefactual effects. 562 
Thirdly, we assumed similar tag reporting rates across all recovery basins, so data were 563 
not weighted across different recovery basins. Violation of this assumption could be 564 
influencing details of our results.  However, we suspect the larger qualitative effects are 565 
real rather than artifacts of such a violation.  If there were dominating differences in tag 566 
reporting rates among basin, we would have expected that to be reflected in consistent 567 
tagging site effects for sites within basins, which we did not see in our results. 568 
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Appendix A. Calculation of shortest water distance and GDD 585 
Calculation of shortest water distance and GDD can be found in the online version, at 586 
XXX. 587 
Appendix B. Model implementation 588 
Model implementation can be found in the online version, at XXX. 589 
Appendix C. Model diagnostics  590 
Model diagnostics can be found in the online version, at XXX. 591 
Appendix D. Simulation study 592 
Simulation study methods and results can be found in the online version, at XXX. 593 
Appendix E. Comparison with two tree-based methods 594 
Two tree-based methods and their results can be found in the online version, at XXX. 595 
Appendix F. Codes for Bayesian variable selection, and tree based methods 596 
Code for Bayesian variable selection and tree-based methods can be found online, at 597 
https://doi.org/10.6084/m9.figshare.5177206.  598 
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Table 1. Summary of candidate variables/terms and their interpretation and relationship 710 
to hypotheses. A. For continuous variables, “Hypothesis” (first column) states our a priori 711 
hypothesis associated with the variable, and the second column indicates sign of 712 
associated coefficient that would support that hypothesis. B. Similarly for interaction 713 
terms, but here a single hypothesis (our GDD Hypothesis 2) is associated with all 714 
interaction terms, and the second column describes the interpretation of coefficients and 715 
the pattern in their sign that would support the hypothesis. C. For categorical (dummy) 716 
variables we did not have explicit a priori hypothesis for the sign of coefficients but did 717 
hypothesize that these factors could influence net distance. For these variables one level 718 
of a factor is the baseline with coefficient fixed at zero, and this level (category) is given 719 
in the first column and interpretation of the sign of other coefficients in the second 720 
column. For A through C, “X” in the “GDD H1” column indicates that the variable was a 721 
candidate variable/term in our variable selection process for the GDD Hypothesi1 1 Case, 722 
and the GDD H2 column likewise indicates if the variable/term was a candidate variable 723 
for the GDD Hypothesis 2 Case. The last row summarizes the total number of candidate 724 
variables for each GDD hypothesis. 725 
 726 
Table 2. Posterior mean and 95% credible intervals for parameters of the highest 727 
posterior probability model. 728 
 729 
Fig. 1. Map of the study area (Lake Huron) and seven tag release (spawning) sites.  Of 730 
total 1368 recoveries, 659 were from Detour, 300 from Cheboygan, 243 from Burnt 731 
Island, 42 from Saginaw Bay, 43 from Sarnia, 56 from Alpena, and 25 from Fishing 732 
Islands. 733 
 734 
Fig. 2. Posterior distributions for the number of selected variables (i.e., q − 1). The x-axis 735 
starts at 5 because all models selected at least five variables.  736 
 737 
Fig. 3.  Variable-wise summary results (posterior mean with 95% credible intervals) of 738 
the effect of variables (the   ), with variables named on y-axis for the case with GDD 739 
hypothesis 1. Bars are highlighted by red color when the 95% credible interval does not 740 
cover 0, which is defined as a consistent effect. The number above each bar is the 741 
marginal inclusion probability.  742 
 743 
Fig. 4. Variable-wise summary results (posterior mean with 95% credible interval of the 744 
effect    for the jth variable, as indicated in y-axis) for the case with GDD hypothesis 2. 745 
Bars are highlighted by red color when the 95% credible interval does not cover 0, which 746 
was defined as a consistent effect. The number above each bar is the marginal inclusion 747 
probability. 748 
 749 
Fig. 5. Model-wise summary for top 12 models ranked according to their posterior 750 
probability mass, for the case of GDD hypothesis 2. Variables that were included in the 751 
top 12 models are given on the y-axis. Horizontal bar represents posterior 95% credible 752 
intervals and symbols on each bar the posterior mean for each coefficient included in a 753 
model, with the associated model given to the left of the bar. Thus when more bars are 754 
given for a variable it was included in more models. 755 



 

A.  Continuous Variables 

Variable 

Name 

Hypothesis If support, sign of covariate GDD 

H1  

GDD 

H2  

Length Greater total length, fish 

range further from 

tagging site. 

>0 X X 

years_lag Longer lag between 

tagging and recovery 

year, recoveries tend to 

be further from tagging 

site. 

>0 X X 

Diporeia Higher relative Diporeia 

spp. density near the 

tagging site, fish stay 

closer to their tagging 

site. 

<0 X X 

GDD_Diff Greater GDD at the 

tagging location than the 

lake average, fish stay 

closer to their tagging 

site. 

<0 X  

B. Interaction Terms  

Names Hypothesis Sign of coefficient GDD 

H1  

GDD 

H2  

Sep 
         
Oct 
         
Nov 
         
Dec 
         

In years when lake 

average GDD is higher 

there is a shift in 

spawning timing.  This is 

reflected in shorter net 

distances in one or more 

adjacent spawning 

months, and longer net 

distances in later 

months.  

If <0, fish are closer to 

tagging site with higher 

        during that month, 

and if >0 further away.  

Support for hypothesis would 

be >0 coefficient for one or 

more adjacent months of Sep 

– Nov, and <0 coefficient for 

later months. 

 X 

C.  Categorical (Dummy) Variables 

Variable 

Names 

Baseline category (effect 

was 0) 

Interpretation of coefficient GDD 

H1  

GDD 

H2  

tag_site: 

Cheboygan 

tag_site: 

Burnt_Island 

tag_site: 

Alpena 

tag_site: 

Sarnia 

Fish tagged and released 

from Detour (Figure 1) 

If >0, larger net distance than 

baseline; if <0, shorter net 

distance than baseline 

X X 

Table 1



tag_site: 

Saginaw_Bay 

tag_site: 

Fish_Islands 

sex: Female Male tagged fish Same as above X X 

rec_Y: 2003 

rec_Y: 2004 

rec_Y: 2005 

rec_Y: 2007 

rec_Y: 2008 

rec_Y: 2009 

rec_Y: 2010 

rec_Y: 2011 

Tagged fish recovered 

from 2006 

Same as above X X 

rec_M:7 

rec_M:8 

rec_M:9 

rec_M:10 

rec_M:11 

rec_M:12 

rec_M:1 

rec_M:2 

rec_M:3 

rec_M:4 

rec_M:5 

Tagged fish recovered in 

June of each year 

Same as above X X 

tag_Y: 2003 

tag_Y: 2005 

tag_Y: 2006 

Fish tagged and released 

from 2004  

Same as above X X 

Total number of candidate variables for each case (without intercept) 33 36 

 



Variable Mean Lower Upper 

Rec_M:11 -0.49 -0.63 -0.35 

               -0.45 -0.58 -0.32 

Diporeia -0.17 -0.22 -0.12 

length 0.09 0.05 0.14 

tag_site: Cheboygan 0.69 0.57 0.80 

tag_site: Alpena 1.04 0.78 1.30 

 

Table 2
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