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Abstract 17 

We used simulations based on Lake Whitefish (Coregonus clupeaformis) populations to 18 

explore the benefits of using spawning origin information for parsing catch to spawning 19 

populations in stock assessments for intermixed fisheries exhibiting an overlapping 20 

movement strategy. We compared this origin-informed assessment model with a standard 21 

assessment model that did not parse catch.  We additionally evaluated the influence of 22 

including annual recruitment penalties. For standard assessment models, spawning stock 23 

biomass estimates could be unstable and biased (sometimes by more than 50%), 24 

depending upon population mixing and productivity, and in some cases estimated near 25 

average zero recruitment in the terminal year. Incorporating information on population-26 

specific harvest age composition improved spawning stock biomass estimation (e.g., by 27 

sometimes essentially removing 50% biases, and improving accuracy).  Assessments with 28 

recruitment penalties produced less biased terminal recruitment estimates (sometimes a 29 

100% bias was removed).  Under status quo target mortality rates improvements in 30 

assessments did not necessarily translate to improved fishery management performance 31 

(e.g., avoiding depletion of spawning biomass), but such improvements, and overall 32 

better performance, were seen at lower target mortality rates.  33 
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Introduction 34 

Accurate estimation of spawning stock biomass and recruitment is important for the 35 

management of fishery stocks. Biased or imprecise estimates can influence measures of 36 

population productivity and year-class strength, stock-recruitment relationships, and 37 

management decisions (e.g., harvest regulations) that depend on these assessment results.  38 

When fish from distinct spawning populations intermix on fishing grounds during harvest 39 

periods (i.e., populations exhibit spatial structuring), estimating recruitment and 40 

spawning stock biomass dynamics for each spawning population from sampling 41 

programs that only target intermixed fisheries can be challenging. Statistical catch-at-age 42 

or catch-at-size models are commonly used for the assessment of commercial harvested 43 

fish populations for estimating biomass of spawning adults and recruitment dynamics. 44 

However, one known feature of such assessment models is that recruitment in the last 45 

several assessment years cannot be reliably estimated because there is little information 46 

about recruitment levels for those years.  In addition, such assessment models typically 47 

ignore spatial structure and assume harvest is from a single population (i.e., the “unit 48 

stock” assumption). 49 

When assessment data are collected from intermixed fisheries but a single population 50 

assumption is made in the stock assessment model, population abundance can be 51 

overestimated, which can further lead to inappropriate management advice especially for 52 

low productivity populations (Hutchings 1996; Fu and Fanning 2004; Ying et al. 2011; 53 

Hintzen et al. 2015; Li et al. 2015). For example, it has been argued that some Atlantic 54 

cod (Gadus morhua) and Pacific salmon (Oncorhynchus spp.) populations were 55 

overharvested due to intermixed fisheries that did not properly account for differences in 56 
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population productivities (Hutchings 1996; Morishima and Henry 1999; Fu and Fanning 57 

2004).  To facilitate management of intermixed fisheries, spatially-explicit stock 58 

assessment models can be used that either incorporate tagging data within the stock 59 

assessment framework (Eveson et al. 2009; Vincent et al. 2017), or incorporate mixing 60 

and migration rates in assessment models as fixed quantities (Guan et al. 2013; Li et al. 61 

2015). Both approaches allow for spatially-explicit estimation of abundances, mortality 62 

components, and other dynamic rates within an integrated stock assessment model. 63 

When accounting for spatial structure in stock assessments, two alternative movement 64 

strategies are commonly recognized: diffusion and overlap (Porch et al. 2001). The 65 

diffusion movement strategy, also known as meta-population mixing (Ying et al. 2011), 66 

assumes that the fraction of fish populations that move away from their original spawning 67 

areas become part of the spawning populations near to which they move (i.e., their 68 

spawning population identity changes according to their movement behavior). 69 

Conversely, the overlap movement strategy assumes 100% spawning site fidelity 70 

meaning that fish always move back to their original natal areas during the spawning 71 

season, and thus spawning population identity is maintained throughout a fish’s lifetime. 72 

In this paper we focus on stock assessment models assuming an overlap movement 73 

strategy.  While this is clearly a simplification for any given stock, it is a reasonable 74 

approximation of spatial structure for many stocks. 75 

A known problem for assessment models, when applied to populations exhibiting spatial 76 

structuring with moderate to high levels of intermixing, is that population-specific 77 

estimates of recruitment are uncertain or not estimable, and estimates of spawning stock 78 

biomass are unstable or biased, even when mixing rates are assumed known (Ying et al. 79 
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2011; Molton et al. 2012; Li et al. 2015). Li et al. (2015) proposed an overlap stock 80 

assessment model in which an integrated statistical catch-at-age (SCAA) assessment 81 

model was fit to overlapping fish populations by incorporating actual mixing rates in the 82 

model.  They found that mixing among areas caused problems in estimating population-83 

specific annual recruitments, and this led to substantial uncertainty and bias in estimation 84 

of recruitment and biomass. They hypothesized that this problem could be resolved if 85 

additional population-specific data were provided to the assessment model, such that 86 

harvest data could be allocated to source populations. Hintzen et al. (2015) evaluated the 87 

influence of fishery-independent survey data on the performance of an integrated catch-88 

at-age method for intermixing fish populations, in which information on the classification 89 

of the catch to their spawning origin were used to inform survey indices (i.e., the 90 

proportions of survey sample to spawning populations). However, the catch data they 91 

used in the assessment model were not reallocated back to the spawning populations 92 

because their assessment model ignored spatial structure. Thus, mismatch between spatial 93 

structures in the assessment data and in the assessment model still existed. They found 94 

that spatially-explicit survey data marginally reduced bias in estimation of biomass, but 95 

when there were errors in classification rates inaccuracies could actually increase.  96 

The goal of our research was to evaluate the benefits of including information on catch 97 

composition for the management of intermixing fish populations. Our research extended 98 

the overlap SCAA assessment model proposed by Li et al. (2015) by including 99 

information on population-specific harvest age composition, which could arise from 100 

having genetic or some other type of discriminatory characteristic (e.g., parasite 101 

community, meristic or morphometric feature) of the populations from a biological 102 
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sample collected from the intermixed fisheries. Herein, we refer to the overlap 103 

assessment model proposed by Li et al. (2015) as the “standard assessment model”, and 104 

the extended one with additional data on population source as the “origin-informed 105 

assessment model”. In both assessment models, annual recruitments were estimated as 106 

free parameters, which is the same approach used by Li et al. (2015). We further propose 107 

two alternative assessment models that are identical to these two models except that a 108 

penalty on annual recruitment residuals was incorporated in each model. Several studies 109 

conducted for single populations (no spatial structure) have shown that adding such 110 

penalties or other constraints can improve estimates of annual recruitment, particularly 111 

for terminal assessment years (Maunder and Deriso 2003; Methot et al. 2011; Korman et 112 

al. 2012). We tested how assessment and management performance of the standard and 113 

origin-informed assessment models were influenced by the magnitude of recruitment 114 

variation, assessment data quality, uncertainty regarding mixing rates, and target 115 

mortality rates.   116 

The dynamics of our simulations were based on lake whitefish (Coregonus clupeaformis) 117 

populations and fisheries in the upper Laurentian Great Lakes of North America, 118 

although results should have general applicability to populations with similar life history 119 

and movement patterns given the stochastic modeling of uncertainty and the range of 120 

sensitivity analyses we report. An overlap movement strategy was assumed for the 121 

simulated lake whitefish populations, because evidence suggests that lake whitefish 122 

populations in the Laurentian Great Lakes region overlap during non-spawning seasons 123 

but move back to where they were born during the spawning season of each year (Ebener 124 

et al. 2010a; Stott et al. 2010; Li et al. 2017). Although tagging studies have suggested 125 
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that considerable movement of lake whitefish in the Laurentian Great Lakes region from 126 

management units containing their spawning grounds to other management units during 127 

the non-spawning and harvest seasons (Ebener et al. 2010b; Li et al. 2017), they are still 128 

largely managed as unit stocks. To our best knowledge, our research is the first to 129 

evaluate the influence of including population-specific catch information on a spatial 130 

structured stock assessment model. Compared to Hintzen et al. (2015), we propose a 131 

different approach of using such information for the management of intermixing stocks 132 

with a focus directed towards spatially structured stock assessments.  133 

Methods 134 

Simulation framework 135 

Our simulation framework followed a management strategy evaluation approach (i.e., full 136 

closed-loop feedback simulation framework to evaluate alternative management 137 

procedures, Figure 1).  These at simulations were designed to determine the long-term 138 

assessment and management performance for both standard and origin-informed 139 

assessment models with or without a lognormal penalty on annual recruitment residuals 140 

(Table 1). The operating model consisted of four hypothetical lake whitefish populations 141 

with age-structure and an overlap movement strategy (i.e., 100% natal fidelity was 142 

assumed) that intermixed across four areas of harvest.  Observations from the four 143 

regions of harvest were then generated for input for the stock assessment models. 144 

Assessment models were fit to the observed data, and a harvest control rule was applied 145 

each year based on the assessment results so that target harvest levels (i.e., total allowable 146 

catch in our case) could be set. The management procedure then fed back to the operating 147 

model by implementing actual harvest based on the target with implementation error in 148 
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the operating model of next year. Given we were considering alternative stock 149 

assessment models and the stock assessment results influenced dynamics, separate 150 

simulations were conducted for each assessment approach, albeit using the same random 151 

number seeds.  To evaluate long-term performance of each assessment model, we ran 152 

each simulation for 100 years, and summarized results for the last 25 years. All symbols 153 

of index variables and accents used in the equations of this paper are identified in Table 154 

2. 155 

Operating model 156 

The operating model was stochastic and age-structured (i.e., ages 3 to 12 with the last age 157 

class an aggregate group including age-12 and older fish), operated in annual time steps, 158 

and recognized four geographic fishing grounds that were presumed to surround the four 159 

spawning areas (i.e., each spawning area was associated and located within a fishing 160 

region). Yearly time steps were considered because evidence suggested that the 161 

movement of lake whitefish populations in the upper Great Lakes generally occurred 162 

soon after spawning (i.e., between late October and early December, Li et al. 2017).  163 

Thus, we assumed that fish moved away from their spawning areas on the first day of 164 

each year, and all surviving fish returned to their original spawning areas to spawn at the 165 

end of each year.   166 

As described in detail below, many parameters of the operating model are taken from Li 167 

et al. (2015), which were based on a review of existing Lake Whitefish stock 168 

assessments.  A single set of life history (growth, maturity) parameters was used, 169 

representative of those estimated from biological data used in those stock assessments.  170 

General levels of recruitment stochasticity and productivity, and variations among 171 
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populations were based on analysis of recruitment and spawning stock sizes from the 172 

existing assessments.  The existing assessments are unit stock assessments, and the 173 

influence of this on perceived differences in recruitment productivity was taken into 174 

account when specifying varying productivity levels (Li et al. 2015).  In real assessments, 175 

with spawning populations that differ in life history, it is likely that there would be 176 

additional advantages of biological data that is spawning population specific, which we 177 

have not evaluated here.   178 

For each simulated population, we modeled recruitment (age-3 fish) from a Ricker stock-179 

recruitment function with a first-order autoregressive process (AR1):  180 

𝑁𝑖,𝑦,𝑎=3 = 𝛼𝑖𝑆𝑆𝐵𝑖,𝑦−3𝑒−𝛽𝑖𝑆𝑆𝐵𝑖,𝑦−3𝑒𝜀𝑅,𝑖,𝑦.      (1) 181 

𝛼𝑖 = 𝛼𝑖
′𝑒−0.5𝜎2

. 182 

𝜀𝑅,𝑖,𝑦 = 𝜌 × 𝜀𝑅,𝑖,𝑦−1 + 𝜏𝑅,𝑖,𝑦. 183 

𝜏𝑅,𝑖,𝑦 ~ 𝑁𝑜𝑟𝑚𝑎𝑙 (0, 𝜎𝑅
2). 184 

𝜎2 =
𝜎𝑅

2

1−𝜌2. 185 

where 𝑁𝑖,𝑦,𝑎=3 is the abundance of age-3 fish from population 𝑖 at the beginning of year 186 

𝑦, 𝑆𝑆𝐵𝑖,𝑦−3 is the spawning stock biomass of population 𝑖 in year 𝑦 − 3, and 𝛼𝑖 and 𝛽𝑖 187 

are Ricker stock-recruitment function parameters for population 𝑖. The parameters 𝜌 and 188 

𝜎𝑅 defined the stochastic process for deviations of recruitment from the underlying 189 

Ricker stock-recruitment function, producing temporally autocorrelated recruitment. The 190 

level of process error presented in Table 3 was used for all simulated populations in the 191 

baseline scenario. Process error parameters were varied in the sensitivity analysis for 192 
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evaluating the influence of recruitment variation on modeling results. The stock-193 

recruitment parameter 𝛼′, together with 𝛽, were chosen so that the deterministic stock 194 

recruitment would produce the desired average level of recruitment given stock size.  For 195 

the simulations, 𝛼′ was scaled by 𝑒−0.5𝜎2
 so that the expectation of the stochastic form of 196 

the recruitment relationship would equal the deterministic value and not depend on the 197 

assumed level of recruitment variation. 198 

Total spawning stock biomass (SSB) for population 𝑖 in year 𝑦 was calculated as the 199 

product of female percentage in the population (50%), weight-, maturity-, and 200 

abundance-at-age, and weight-specific fecundity (19733/kg). All equations and parameter 201 

values used for calculating SSB are defined in Table 4, which are the same as used by Li 202 

et al. (2015). 203 

For each population, post-recruitment (after age-3) abundances at age (a) at the beginning 204 

of each year were forward projected using an exponential mortality model with a constant 205 

natural mortality (M) of 0.25, and age-, year-, and region-specific (j) fishing mortality 206 

(F): 207 

𝑁𝑖,𝑦+1,𝑎+1 = 𝑁𝑖,𝑦,𝑎 ∑ 𝜃𝑖𝑗 exp(−𝑀 − 𝐹𝑗,𝑦,𝑎)𝑗 .      (2) 208 

According to equation 2, fish from a spawning population either remained in the region 209 

surrounding their natal area during the non-spawning season or moved to one of the other 210 

harvest areas, depending on the assumed mixing rates 𝜃𝑖𝑗.  Thus, the survival of fish in a 211 

population was a weighted average of the survival rates in each of the harvest regions, 212 

with weights equal to the proportions of fish from the population residing in the regions 213 

during the non-spawning season. In some scenarios, mixing rates varied among the 214 



 

 11 

populations in the operating model, but in all cases were temporally invariant for each 215 

population.  216 

We used stay rate 𝜃𝑖𝑖 (i.e., the proportion of fish from spawning population 𝑖 that stay in 217 

the area surrounding that population's spawning area during the non-spawning season) to 218 

represent movement dynamics for population 𝑖, and assumed that a greater stay rate 219 

indicated higher-quality habitat, so that a greater proportion of fish from other population 220 

moved to that area (Table 5). Thus, mixing rates 𝜃𝑖𝑗  (i.e., the proportion of fish from 221 

spawning population 𝑖 that move to the area surrounding population j’s spawning area 222 

during the non-spawning season) were calculated as (Li et al. 2015): 223 

𝜃𝑖𝑗 = (1 − 𝜃𝑖𝑖)
𝜃𝑗𝑗

∑ 𝜃𝑘𝑘𝑘≠𝑖

.               (3) 224 

where the summation is overall all areas 𝑘 except the fishing grounds surrounding the 225 

spawning area of population 𝑖. Total allowable catch (TAC) for each harvest area was 226 

determined via the management procedure described below. Actual harvest (𝐶) in each 227 

year was set equal to the TAC multiplied by a lognormal implementation error term with 228 

a coefficient of variation (CV) of 10%:    229 

𝐶𝑗,𝑦 =  𝑇𝐴𝐶𝑗,𝑦 exp(𝜁𝑗,𝑦 − 0.5𝜎𝑡𝑎𝑐
2).       (4) 230 

𝜁𝑗,𝑦 ~ 𝑁𝑜𝑟𝑚𝑎𝑙 (0, 𝜎𝑡𝑎𝑐
2). 231 

where 𝜎𝑡𝑎𝑐 is the standard deviation of  TAC implementation error 𝜁. The fully selected 232 

fishing mortality rate f that produced the actual harvest level given age-specific 233 

abundances was solved for using a Newton-Raphson algorithm and Baranov’s catch 234 

equation:  235 
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𝐶𝑗,𝑦 =
𝑠𝑎𝐹𝑗,𝑦

𝑀+𝑠𝑎𝐹𝑗,𝑦
(1 − 𝑒−𝑀−𝑠𝑎𝐹𝑗,𝑦) ∑ 𝑁𝑖,𝑦,𝑎𝜃𝑖𝑗𝑖 .      (5) 236 

Age-specific Fs were set equal to the solved f multiplied by age-specific selectivities 𝑠𝑎: 237 

 𝐹𝑗,𝑦,𝑎 = 𝑠𝑎𝑓𝑗,𝑦.         (6) 238 

Selectivities for age-3 and older ages were calculated from a gamma function that 239 

produced a dome-shape selectivity pattern with peak selectivity for age-10: 240 

𝑠𝑎 =
𝑎𝜂exp (−𝜏𝑎)

10𝜂exp (−𝜏10)
.         (7) 241 

where selectivity parameters 𝜏 = 1.26 year-1, 𝜂 = 13.074 cm (from Li et al. 2015), were 242 

assumed to be the same for different populations. 243 

We used the same approach as Li et al. (2015) to determine initialization abundances for 244 

each simulation. Specifically, initialization abundances for the populations were set to 245 

their equilibrium values based on the target mortality rate and a deterministic version of 246 

our model (equilibrium for populations at different productivity levels are shown as the 247 

intersections in Figure 2). As well, like Li et al. (2015), during the initial 20-year period 248 

of each simulation, the harvest control rule based on the target mortality rate was applied 249 

to the actual abundances at age (i.e., the assessment modeling was skipped). This was 250 

necessary as prior to year 20 the required data time series for conducting assessments was 251 

not available.  We were not interested in the transient dynamics during this initial period, 252 

and we set the starting conditions at the deterministic equilibrium solely to better ensure 253 

that the final 25 years of our 100-year simulations approximated steady-state conditions. 254 

Management Procedure 255 
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We attempted to emulate key aspects of the management procedures for lake whitefish in 256 

the 1836 Treaty-ceded waters, including data collection, stock assessment, and 257 

application of a constant total mortality harvest control rule (1836 Treaty Waters 258 

Modeling Subcommittee 2017). The underlying premises were that collected data were 259 

used to assess the populations (Figure 1), that the assessment results provided estimates 260 

of the abundance of fish present in each region, and that target harvests were set based on 261 

estimated abundances in an attempt to achieve the same target total mortality rate in each 262 

harvest region. All evaluated assessment models used an integrated SCAA assessment 263 

model that correctly accounted for movements (i.e., stay and mixing rates were model 264 

inputs and were accurately known) among the regions, with the exception of the 265 

sensitivity analyses that evaluated the consequences of uncertain mixing rates.  All 266 

assessment models fit the same population dynamic model to each of their observed data 267 

sets to estimate the parameters used to summarize population status and determine target 268 

harvest. When fitting the assessment models, only the most recent 20 years of data were 269 

used. We elected to use a fixed-length time series so that the amount of information 270 

available to an assessment remained stationary during the performance evaluation period 271 

(the last 25 years of each 100-year simulation).  While relatively short by assessment 272 

standards, 20 years represents more than three times the expected period between birth 273 

and production of offspring, given the assumed life history, fishery selectivity, and target 274 

mortality rate in our operating model, based on Lake Whitefish.  Simulations using a 40-275 

year assessment period for a subset of scenarios produced nearly identical results to those 276 

with the 20-year assessment period.  Age range of the assessment models was the same as 277 

that of the operating model.  By minimizing the negative log-likelihood (see objective 278 
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function subsection below), the assessment models were considered to have converged on 279 

a solution when the maximum gradient of the parameters was less than 0.001, and the 280 

Hessian matrix was positive definite. Convergence rate is defined as the fraction of 281 

simulations that met both of the above criterions. 282 

For the standard assessment models with or without a recruitment penalty (i.e., S and S 283 

W/Rec in Table 1), observed harvest, effort, and aggregated (across populations) harvest 284 

age composition data were collected annually for each region.  For the origin-informed 285 

assessment models (i.e., O and O W/Rec in Table 1), observed harvest, effort, and 286 

population-specific harvest age composition data were collected annually for each region. 287 

Observed harvest differed from actual harvest as a result of observation error, which was 288 

modeled with a lognormal error term 𝜐: 289 

𝐶̃𝑗,𝑦 =  𝐶𝑗,𝑦 exp(𝜐𝑦 − 0.5𝜎𝑐
2).       (8) 290 

𝜐𝑦 ~ 𝑁𝑜𝑟𝑚𝑎𝑙 (0, 𝜎𝑐
2). 291 

The observed fishing effort was a function of fishing mortality 𝑓, catchability 𝑞, and a 292 

lognormal observation error 𝜇 and we assumed 𝜎2
𝐹 = 4 𝜎𝑐

2.  293 

𝐸𝑗,𝑦 =
𝑓𝑗,𝑦

𝑞
𝑒𝑥𝑝 (𝜇𝑗,𝑦 − 0.5𝜎2

𝐹).       (9) 294 

𝜇𝑗,𝑦 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2
𝐹). 295 

In the baseline scenario, baseline level of CVs for the error terms of observed harvest and 296 

effort were used (Table 3) while different levels of CVs were explored in the sensitivity 297 

analyses for data quality. 298 
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For the standard assessment models, aggregated observed age compositions for area-299 

specific harvests were generated from multinomial distributions with probabilities equal 300 

to the actual age composition. For the origin-informed assessment models, observed 301 

population-specific age compositions for area-specific harvests were generated from 302 

multinomial distributions with probabilities equal to the actual population-specific age 303 

compositions in each region. The effective sample size (𝑁𝑒𝑓𝑓) for the multinomial 304 

distribution used to generate aggregated and population-specific age compositions was 305 

assumed at its baseline level (Table 3), except for the sensitivity analyses for data quality. 306 

Recruitment (𝑁̂𝑖,𝑦,𝑎=3) of each assessment year, abundances at age (except age at 307 

recruitment) in the first assessment year (𝑁̂𝑖,𝑦=1,𝑎>3), gamma function selectivity 308 

parameters (𝜏̂, 𝜂̂), catchability (𝑞̂), the annual deviation from general level of fishing 309 

mortality(𝜀𝐹̂𝑗,𝑦, Fournier and Archibald 1982), and the standard deviation from observed 310 

harvest (𝜎̂𝑐) were estimated during assessment model fitting. Recruitments in the standard 311 

and origin-informed assessment models without recruitment penalty were estimated as 312 

free parameters. For the assessment models that included a recruitment penalty, 313 

recruitment for each population 𝑖 was reparameterized as the product of average 314 

recruitment (𝑅𝜇𝑖
̂ ) multiplied by an annual residual (𝜀′𝑖,𝑦) that was exponentiated and bias 315 

corrected, so that the annual recruitment was assumed to come from a lognormal 316 

distribution: 317 

𝑁′𝑖,𝑦,𝑎=3 = 𝑅𝜇𝑖
̂ 𝑒𝜀′𝑖,𝑦−0.5𝜎′𝑅

2
.        (10) 318 

𝜀′𝑦~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎′𝑅
2

).  319 
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Post-recruit abundances at age in the first assessment year were estimated as free 320 

parameters. The fishing mortality in the assessment models was modeled in the same way 321 

as for the operating model, which was a product of selectivity at age and fully selected 322 

fishing mortality (same as in Equations 6 and 7, but here 𝜏̂ and 𝜂̂ were estimated 323 

parameters). The fully selected fishing mortality (𝑓′𝑗,𝑦) was modeled as a product of 324 

assessed catchability (𝑞̂), observed effort (𝐸̃𝑗,𝑦), and assessed annual deviation from 325 

general level of fishing mortality (𝜀𝐹̂𝑗,𝑦).  326 

The natural mortality rates assumed in all assessment models were the same as those used 327 

for the operating model. The parameters of all assessment models were estimated in AD 328 

Model Builder (Fournier et al. 2012).  329 

The population dynamics in all stock assessment models (i.e., S, S W/Rec, O, and O 330 

W/Rec) followed: 331 

𝑁′𝑖,𝑦+1,𝑎+1 = 𝑁′𝑖,𝑦,𝑎 ∑ 𝜃𝑖𝑗exp (−𝑀 − 𝐹′𝑗,𝑦,𝑎)𝑗 .     (11) 332 

𝐶′𝑗,𝑦,𝑖,𝑎 =
𝐹′𝑗,𝑦,𝑎

𝑀+𝐹′𝑗,𝑦,𝑎
(1 − 𝑒−𝑀−𝐹′𝑗,𝑦,𝑎)𝑁′𝑖,𝑦,𝑎𝜃𝑖𝑗.     (12) 333 

𝐶′𝑗,𝑦,𝑎 = ∑ 𝐶′𝑗,𝑦,𝑖,𝑎𝑖 .                                                                                                 (13) 334 

For each harvest area, aggregated harvest age composition for the standard assessment 335 

models (Equation 14, Table 1), and population-specific harvest age composition for the 336 

origin-informed assessment models (Equation 15, Table 1) were: 337 

𝑝′𝑗,𝑦,𝑎 = 𝐶′𝑗,𝑦,𝑎 ∑ 𝐶′𝑗,𝑦,𝑎𝑎⁄ .         (14) 338 

𝑝′
𝑗,𝑦,𝑖,𝑎

= 𝐶′
𝑗,𝑦,𝑖,𝑎 ∑ 𝐶′

𝑗,𝑦,𝑖,𝑎𝑖,𝑎⁄ .       (15) 339 
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Predicted SSB was calculated from estimated abundance at age 𝑁′𝑖,𝑦,𝑎 by using equation 340 

1, and assuming weight, maturity at age and weight-specific fecundity were known 341 

(Table 4). 342 

Objective function 343 

The objective function for each assessment model was the summation of at least three 344 

negative log-likelihood and log-prior/penalty components (Table 1).  All four assessment 345 

models assumed the same lognormal distributions for the log-likelihood component of 346 

total fishery annual harvest by harvest area and for the log-prior components associated 347 

with the fishing mortality-effort relationship for each harvest area.  348 

The total negative log-likelihood component for the log of area-specific annual fishery 349 

harvest was based on a normal distribution 350 

ℓ𝑐 = ∑ (𝑛𝑙𝑜𝑔𝑒(𝜎̂𝑐) + (
1

2𝜎̂𝑐
2) ∑ (𝑙𝑜𝑔𝑒(

𝐶̃𝑗,𝑦

𝐶̂𝑗,𝑦
))2

𝑦 )𝑗 ,     (16) 351 

where 𝑛 was the number of assessment years (i.e., 20 years). A normal distribution was 352 

also assumed for the log-prior penalty associated with the log annual deviation from the 353 

general level of fishing mortality  354 

ℓ𝜀𝐹 = ∑ (𝑛𝑙𝑜𝑔𝑒(𝜎𝐹
′) + (

1

2𝜎𝐹
′2) ∑ (𝑙𝑜𝑔𝑒(𝜀𝐹̂𝑗,𝑦))2

𝑦 )𝑗 ,                (17) 355 

where 𝜎𝐹
′2

 was assumed to be four times greater than 𝜎̂𝑐
2
, which matched what was 356 

assumed in the operating model. This penalty was equivalent to predicting effort as 357 

proportional to estimated fishing mortality and treating deviations between the log of 358 

observed and predicted fishing effort as normally distributed (Fournier and Archibald 359 

1982).  360 
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The third likelihood component was associated with harvest age composition and was 361 

based on a multinomial distribution, but there were differences in this likelihood 362 

component for standard and origin-informed assessment models.  For the standard 363 

assessment model (assessment models S and S W/Rec, Equation 18), the negative log 364 

likelihood component was for the aggregate harvest age composition for the harvest 365 

regions  366 

ℓ𝑎 = − ∑ ∑ 𝑁𝑒𝑓𝑓𝑦 ∑ (𝑝̃𝑗,𝑦,𝑎𝑙𝑜𝑔𝑒𝑝′𝑗,𝑦,𝑎)𝑎𝑗 .      (18) 367 

where 𝑝𝑗,𝑦,𝑎 and  𝑝′𝑗,𝑦,𝑎 are the observed and estimated proportions of harvest in area j by 368 

age 𝑎 in year 𝑦 and 𝑁𝑒𝑓𝑓 is the assumed effective sample size.  For the origin-informed 369 

assessment models (assessment models O and O W/Rec, Equation 19), the negative log 370 

likelihood component was for the population-specific harvest age composition for the 371 

harvest regions  372 

ℓ𝑝𝑎 = − ∑ ∑ 𝑁𝑒𝑓𝑓𝑦 ∑ (𝑝𝑗,𝑦,𝑖,𝑎𝑙𝑜𝑔𝑒𝑝′
𝑗,𝑦,𝑖,𝑎

)𝑖,𝑎𝑗 .     (19) 373 

where 𝑝𝑗,𝑦,𝑖,𝑎 and 𝑝′
𝑗,𝑦,𝑖,𝑎

 are the observed and estimated proportions of harvest in area j 374 

by age 𝑎 from population 𝑖 in year 𝑦, respectively. For baseline scenarios, 𝑁𝑒𝑓𝑓 was set 375 

equal to 50 for both standard and origin-informed assessment models, but was varied in 376 

sensitivity analyses to evaluate the influence of data quality.  377 

For standard and origin-informed assessment models that included a penalty on annual 378 

recruitment residuals (i.e., S W/Rec and O W/Rec in Table 1), the objective function 379 

included a log-penalty component that constrained the annual recruitment residuals 𝜀′𝑖,𝑦 380 

of equation 10 based on a normal distribution with standard deviation 𝜎′𝑅 equal to 2.0. In 381 

other words, the log-penalty on annual recruitment residuals was modeled as  382 
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ℓ𝑅 = ∑ (∑ 𝑙𝑜𝑔𝑒(𝜎′𝑅) +
𝜀′𝑖,𝑦

2

2𝜎′𝑅
2𝑦 )𝑗 .       (20) 383 

Application of the harvest control rule 384 

To mimic the timing of implementing assessments and setting harvest targets of lake 385 

whitefish fisheries in 1836 Treaty-ceded waters, we included a one-year lag between data 386 

collection and incorporation in the four stock assessment models. More specifically, an 387 

annual assessment was conducted each year of a simulation based on data collected 388 

through the previous year, to set the harvest targets for the following year. In the lag year, 389 

abundances were projected based on an exponential population model where total 390 

mortality rates were assumed to be the mean of the last three years’ value, and 391 

recruitments were assumed to be the mean of the most recent 10 years.  During the year 392 

of setting harvest targets (after the lag year), we used the same approach as in the lag year 393 

to project abundance at the beginning of that year. We then used Baranov’s catch 394 

equation (same as in equation 12 and 13) to calculate harvest target, while the fishing 395 

mortality rates were adjusted to the target fishing mortality rates, which can be calculated 396 

based on target mortality rates, estimated selectivity-at-age, and natural mortality rate.  397 

Simulation Scenarios 398 

We evaluated five productivity and movement scenarios (Table 5), and six sensitivity 399 

analysis scenarios (Table 3 and 6). We also evaluated all cross-combinations of 400 

productivity/movement scenarios and sensitivity analysis, and full results are available in 401 

the supplementary material. For each evaluated scenario, 200 simulations were 402 

conducted. In the baseline scenario (Table 5), we assumed the four simulated populations 403 

had equal stay rates and productivity levels to establish a baseline for comparison of 404 
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assessment and management performance results. Then we explored alternative operating 405 

model settings with different productivity and movement assumptions, to evaluate the 406 

consequences of different combinations of productivity and movement dynamics of lake 407 

whitefish populations on stock assessments. We also evaluated outcome sensitivity to 408 

different quality of assessment data, uncertain mixing rates assumptions, and recruitment 409 

variability.  410 

Baseline scenario and alternative productivity and movement scenarios 411 

We explored five scenarios of population-specific movement dynamics and productivity 412 

(scenario 1 is the baseline scenario) (Table 5). Overall, there were three different levels of 413 

productivity (i.e., low, baseline, and high), and three different stay rates during non-414 

spawning season (low, medium, high). Each productivity level corresponded to a specific 415 

steepness parameter, and different productivity levels shared the same unfished 416 

equilibrium spawning stock size (Table 3). However, higher productivity levels would 417 

lead to greater fished equilibrium stock size and recruit levels (Figure 2).  Target 418 

mortality rate (Target_A; annual death rate=1.0-annual survival rate) was assumed to be 419 

0.65 as a baseline level, which is the current rate used in 1836 Treaty-ceded management 420 

of lake whitefish, although as part of sensitivity scenarios explored the effects of a lower 421 

target mortality rate.   422 

In the baseline scenario (scenario 1), the four populations had identical "baseline" 423 

productivity and stay rates set to "medium" levels. Scenario 2 explored a case in which 424 

the four populations still had equal medium levels of movement, but two of the 425 

populations had low productivity while the other populations had high productivity. In 426 

scenarios 3 to 5, the four populations had different stay rates and either had equal 427 
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productivity levels (scenario 3) or unequal productivity levels (scenario 4: positive 428 

correlation between productivity level and stay rate; scenario 5: negative correlation 429 

between productivity level and stay rate).  430 

Sensitivity Analyses 431 

A total of six sensitivity scenarios (Table 6) were conducted to determine whether 432 

baseline results remained consistent after modifying specific conditions of the examined 433 

scenario (e.g., poor data quality). The purpose of the sensitivity analyses was to 434 

determine the general applicability of model results.    435 

Data Quality—The first two sensitivity scenarios considered different levels of data 436 

quality available for assessment models: low and high (relative to the baseline level), by 437 

varying effective sample size (𝑁𝑒𝑓𝑓) and the CVs for harvest and effort (Tables 3 and 6). 438 

The low and high levels of data quality were chosen to reflect the extreme data quality 439 

cases evaluated by Li et al. (2016) based on ranges seen in retrospective errors for actual 440 

lake whitefish stock assessments in the 1836 Treaty-ceded waters.  441 

Uncertain Mixing Rates—In the baseline scenario, the mixing rates were consistent 442 

across populations and simulation years in the operating model, and assumed as correctly 443 

known parameters in the stock assessment model. In the third sensitivity scenario, we 444 

assumed that annual stay rates in the assessment models were still treated as known 445 

parameters, but did not match the true 𝜃𝑖𝑖 in the operating model.  The annually varying 446 

stay rates 𝜃𝑖𝑖,𝑦 used in the assessment model were parameterized by a ‘logistic’ function 447 

of re-parameterized rates (𝜔𝑦)  448 

 𝜃′
𝑖𝑖,𝑦 = exp (𝜔′

𝑦) (exp(𝜔′
𝑦) + 1)⁄ .            (21) 449 
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The annual values for 𝜔′
𝑦 were generated from a normal distribution (Table 3). Different 450 

sets of mean and variance values were assumed to ensure the annually varying stay rates 451 

used in the assessments were within 10% of the true 𝜃𝑖𝑖. 452 

Recruitment Variation—For the next two sensitivity scenarios, we explored two 453 

recruitment variability levels (Table 3 and Table 6). In the high recruitment variability 454 

scenario, we kept the autocorrelation coefficient at 0.45 as in the baseline scenario but 455 

increased the stationary standard deviation in the recruitment process error to 1.5. For the 456 

second level, we removed the autocorrelation component of recruitment variation so that 457 

the recruitment variation was simply white noise, and kept the same stationary variance 458 

as for the baseline scenario.  459 

Target mortality—For the last sensitivity scenario, a lower target mortality rate 460 

(Target_A) of 0.55 was implemented in the management procedure because this rate has 461 

been identified as sustainable for a wide range of lake whitefish populations with 462 

different productivities (Li et al. 2015).   463 

Performance Statistics  464 

Performance statistics for evaluating the different assessment models were average SSB, 465 

the proportion of years SSB was less than 20% of the unfished SSB level (P(SSB<B20%)), 466 

average annual total yield and inter annual variation (IAV) in yield by area, relative error 467 

(RE) in the terminal assessment year SSB, and RE of estimating recruitment for all 468 

assessed years, over the last 25 years of the simulations. Relative error was calculated as  469 

𝑅𝐸 = (𝑥̅ − 𝑥)/𝑥, where 𝑥̅ is the predicted value based on the assessment results and 𝑥 is 470 

the true value generated from the operating model. We additionally estimated the 471 

autocorrelation in RE in the terminal assessment year SSB over the last 25 years for each 472 
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simulation. This was intended to assess autocorrelation in assessment errors under 473 

stationary conditions. The autocorrelation was estimated by fitting an AR1 model to the 474 

time series of REs in terminal SSB resulting from each simulation by ordinary least 475 

squares. We used the ar.ols function from stats package in R 3.2.2 for the autocorrelation 476 

coefficient (ARC) calculation (R Core Team 2016). A large positive ARC would imply 477 

that the assessment errors tended to be similar for multiple years in a row. The 478 

distributions of the performance statistics calculated over all 200 simulations for an 479 

evaluated scenario, were summarized by the median and inter-quartile range. We choose 480 

to run 200 simulations because preliminary results of the baseline scenario suggested that 481 

results from 200 simulations were nearly identical from those based on 1000 simulations.  482 

Results 483 

In general, all four assessment models converged on solutions. Convergence rate of the 484 

assessments was >93% across all scenarios for the origin-informed model (O), the origin-485 

informed model with recruitment penalty (O W/Rec), and the standard model with 486 

recruitment penalty (S W/Rec). Although the convergence rate of the standard assessment 487 

model (S) was 95% for the baseline scenario, it was less than 90% for other evaluated 488 

scenarios. Including a recruitment penalty increased the convergence rate for both 489 

standard and origin-informed models by 8.0% and 1.7% on average across all scenarios, 490 

with the largest improvement in convergence by 20.8% for the standard assessment 491 

approach under scenario 5 with low data quality (Tables 5 and 6).  492 

Baseline scenario 493 

Under the baseline scenario, where the simulated populations had the same stay rates and 494 

productivity levels, the expected assessment and management performance was the same 495 
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across all populations, and indeed the realized performance results were nearly identical 496 

(see full results in Supplementary material). Consequently, we summarize the results for 497 

only one of the four populations (i.e., Population 1 in Table 5). Compared to the standard 498 

assessment models (i.e., S and S W/Rec), adding population-specific harvest age 499 

composition in the origin-informed assessment models (i.e., O and O W/Rec) in general 500 

resulted in less bias and more weakly autocorrelated estimates of SSB in the terminal 501 

assessment year with smaller inter-quartile ranges (Figures 3a and 3f), and less 502 

uncertainty in estimates of recruitment (based on smaller inter-quartile ranges of RE) 503 

over all assessment years except for the final two years (Figure 3b). However, the origin-504 

informed assessment model performance did not translate into benefits in the 505 

management performance statistics, such as average true SSB and yield, with only 506 

slightly improvement in the IAV of yield (3c, 3d and 3e, and supplementary materials). 507 

When a recruitment penalty was added to both the standard and origin-informed 508 

assessment models (comparing S W/Rec and O W/Rec with S and O), this resulted in less 509 

IAV of yield (median IAV of yield decreased by 0.05 and 0.04 for standard and origin-510 

informed models, Figure 3e), and lower bias in estimates of recruitment for the last two 511 

assessment years (Figure 3b), but slightly higher risk of SSB being lower than 20% of its 512 

unfished level (median P(SSB<B20%) increased by 3.8% and 7.7%, Figure 3c).   513 

Both the standard and origin-informed assessment models without recruitment penalties 514 

had considerable difficulty in estimating recruitment levels in the terminal assessment 515 

year.  In most simulations, the recruitment RE in the terminal assessment year was -516 

100%, meaning that recruitment was being estimated at essentially 0 fish (Figure 3b and 517 

4).  However, when a recruitment penalty was included in the assessments (comparing S 518 
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W/Rec with O W/Rec), the origin-informed assessment model (i.e., O W/Rec) produced 519 

less biased estimates for the terminal assessment year recruitment (Figure 3b and Figure 520 

4). 521 

Alternative productivity and movement scenarios 522 

For the alternative productivity and movement scenarios, we present results only for 523 

populations 1 and 3 because for these scenarios populations 1 and 2 and populations 3 524 

and 4 had nearly identical results due to their same productivity and stay rates. When low 525 

and high productivity populations intermixed (Scenario 2, 4, and 5 in Figure 5), low 526 

productivity populations generally had high risk of being overfished (i.e., the interquartile 527 

ranges of average true SSB were below 20% of the unfished level) across all scenarios. 528 

Regardless of whether a penalty for annual recruitment residuals was included, the 529 

origin-informed assessment models (i.e., O and O W/Rec) substantially outperformed the 530 

standard assessment models (S and S W/Rec) in terms of estimation of SSB of the 531 

terminal assessment year for low productivity populations, but using population-specific 532 

harvest age composition data had only a slight influence on estimation of SSB for high 533 

productivity populations. More specifically, for the low productivity populations, the RE 534 

of estimated terminal assessment year SSB in year 100 was less biased, and the 535 

autocorrelation for these estimates over the last 25 years was lower for assessment 536 

models O and O W/Rec than for S and S W/Rec. Such differences in assessment 537 

performance were greater for scenarios where there was a negative correlation between 538 

stay rates and productivity. For the scenario where populations had the same productivity 539 
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but different stay rates (Scenario 3), assessment performance results were similar to those 540 

of the baseline scenario. 541 

With respect to the estimation of terminal assessment year recruitment and for 542 

management performance statistics, results for all alternative productivity and movement 543 

scenarios were similar to those found in the baseline scenario. Neither the standard or 544 

origin-informed assessment models without recruitment penalties could produce reliable 545 

estimates of recruitment in the terminal assessment year. When low productivity 546 

populations intermixed with high productivity populations (Scenario 2, 4, and 5 in Figure 547 

5), standard and origin-informed assessment models with recruitment penalties resulted 548 

in unbiased recruitment estimates in the terminal assessment year for high productivity 549 

population, but positive bias in recruitment estimates in the terminal assessment year for 550 

low productivity populations. 551 

Sensitivity Analyses 552 

The assessment and management performances for all the assessment models were 553 

generally insensitive to changes in the magnitude of actual recruitment variation, target 554 

mortality, data quality, and to uncertain mixing rates assumptions (Figure 6), with 555 

patterns in performance statistics similar to those of the baseline scenario. There were 556 

only three exceptions. First, with a lower total mortality target (55%), the origin-informed 557 

assessment models both with and without recruitment penalties had better management 558 

and assessment performance than the standard assessment models, as evidenced by lower 559 

P(SSB<B20%) (median at 0.08 for O and at 0.12 for S), similar or even higher yield 560 

(median at 204.8 for O and at 204.2 for S), lower IAV of yield (median at 0.32 for O and 561 

at 0.35 for S), and less biased with smaller inter-quartile range (inter-quartile range [-562 
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0.13,0.10] for O and [-0.18,0.15] for S), and less autocorrelated estimates of SSB (median 563 

at 0.37 for O and at 0.44 for S) in the terminal assessment year.  Second, when 564 

recruitment variation was high, P(SSB<B20%) was higher, and average yields were lower 565 

for all four assessment models.  In addition, for this high recruitment scenario both 566 

assessment models with recruitment penalties tended to overestimate recruitment 567 

(RecV_H in Figure 6).  Finally, when assessment data quality was low (RecV_L in 568 

Figure 6), all four assessment models tended to underestimate SSB, have greater IAV of 569 

yield, and greater inter-quartile range for the RE of estimating terminal year SSB.  570 

Discussion  571 

Attempting to account for movement in fish stock assessment models has become 572 

increasingly common for the management of intermixed fisheries (Cope and Punt 2011; 573 

Ying et al. 2011; Molton et al. 2012; Li et al. 2015; Vincent et al. 2017). In this study, we 574 

evaluated four spatially-structured SCAA models (standard assessment, standard 575 

assessment with recruitment penalty, origin-informed assessment, origin-informed 576 

assessment with recruitment penalty) for assessing lake whitefish populations that were 577 

assumed to exhibit an overlap movement strategy. We aimed to evaluate if considering 578 

additional assessment data about classification of catch to spawning origin, and adding a 579 

penalty for annual recruitment residuals, could improve the assessment and management 580 

performance of the overlap SCAA model proposed by Li et al. (2015). We found that 581 

data allowing parsing of catch from a management area to the specific spawning 582 

population the fish came from could result in less biased and less auto-correlated 583 

estimates of spawning stock biomass (SSB) in terminal assessment years, and less 584 

uncertainty in estimates of recruitment early in the time period assessed; while including 585 
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a lognormal penalty on annual recruitment residuals in assessment models substantially 586 

improved the estimation of recruitment in the terminal assessment years.  With the 587 

penalty, data on population source also led to improved terminal recruitment estimates.   588 

When we used data on the classification of catch to spawning origin in our proposed 589 

overlap assessment models, we assumed a multinomial distribution of population-age 590 

composition for each year of harvest from an area. This is an extension of what we 591 

assumed in our standard SCAA model in which a multinomial distribution was assumed, 592 

as is often done, for age composition of harvest. Use of these additional data did provide 593 

better estimation of the spawning stock biomass (SSB) in the terminal assessment year. 594 

Hintzen et al. (2015) reached a similar conclusion but with a small level of improvement 595 

when they used such data to inform survey indices for an integrated stock assessment 596 

model. This may be due to the mismatch between the spatial structures in their 597 

assessment data of catch and in the assessment model. Although spawning origin 598 

information allowed the assessment model to incorporate correct (or with uncertainty) 599 

survey indices, because their assessment model ignored spatial structure in the observed 600 

catch data such a mismatch can still lead to biased estimation of biomass and recruitment. 601 

Our results suggested that such improvements in assessment performance did not 602 

necessarily translate into improved management performance, except when we used a 603 

lower than status-quo mortality target. Under the status-quo mortality target, although the 604 

origin-informed assessment models provided better estimation of SSB than the standard 605 

overlap models, the calculated total allowable catch (TAC) based on the estimated SSB 606 

was still not sustainable. Coincidentally, because the standard assessment models tended 607 

to underestimate SSB, it resulted in a more “appropriate/conservative” TAC. This 608 
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argument is evidenced by our sensitivity analysis with lower target mortality rate 609 

(Target_A=55%) in which origin-informed assessment models had better management 610 

and assessment performance than standard assessment models. 611 

Past studies have found that when populations with different productivity levels intermix 612 

during harvest season, populations with lower productivity are generally more vulnerable 613 

to overharvest (Ricker 1958; Paulik et al. 1967; Hintzen et al. 2015; Li et al. 2015). The 614 

results from this study are consistent with those studies. We found that there was a high 615 

risk of being overfished for low productivity populations, especially when low 616 

productivity populations with high stay rates intermixed with high productivity 617 

populations with low stay rates. In such a case, for low productivity populations, standard 618 

assessment models tended to overestimate SSB, while the origin-informed assessment 619 

models provided nearly median unbiased estimation of SSB. We suspect that the standard 620 

assessment model is challenged to identify the correct age composition for low 621 

productivity populations from the aggregate sample collected from each harvest area, 622 

because they consist of mixtures of age compositions from populations with different 623 

productivity, with contributions depending on population productivities and movement 624 

rates.  Conversely, information on population-specific age compositions for area-specific 625 

harvests provides sufficient information to prevent inaccuracies in SSB estimates. 626 

Our sensitivity analysis suggested that the improvement by including population-specific 627 

age compositions for area-specific harvests was limited to scenarios without high 628 

assessment data quality. In other words, when data quality is high, standard assessment 629 

models can provide sufficiently accurate estimates of population-specific SSB when 630 

supplied with accurate mixing rates. Thus, an origin-informed assessment model may not 631 
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be necessary in conditions of high data quality and accurate information on mixing. We 632 

must emphasize that our consideration of data quality was focused on precision rather 633 

than potential biases in data. We also did not consider model misspecification except for 634 

the unmatched mixing rates assumed in the operating and assessment models in the 635 

sensitivity analyses, and our stochastic assumptions regarding recruitment for the models 636 

with recruitment penalties. A formal evaluation of how model misspecification affects the 637 

performance of spatially structured stock assessment model was outside the scope of our 638 

research but we would encourage investigations on this topic. We anticipate 639 

consequences of model misspecification to be case specific. Some cases of model 640 

misspecification may change the scale of biomass assessment, and this would not change 641 

the relative performance of the four assessment models we evaluated because target F in 642 

all assessment models would be adjusted to count for bias in similar manners.  In other 643 

cases, however, model misspecification may lead to too high estimation errors. In such 644 

there may not be a strong justification for collecting population-specific data because the 645 

advantages of origin-informed assessment models over the standard models may not be 646 

clear.  647 

The other major finding from this research was that including a lognormal penalty on 648 

annual recruitment residuals in both standard and origin-informed assessment models 649 

markedly improved the estimation of recruitment at the end of the assessment period. 650 

This is consistent with what has been found in evaluations of stock assessments without 651 

spatial structure (Maunder and Deriso 2003; Methot et al. 2011; Korman et al. 2012). 652 

Although the inclusion of a recruitment penalty did not prevent recruitment from being 653 

overestimated when recruitment variation in the operating model was high, its 654 
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performance was still better than when a recruitment penalty was not included.  This 655 

overestimation may stem, in part, from the large standard deviation for the distribution 656 

governing the annual recruitment deviations in the assessment models with recruitment 657 

deviations. We also found that IAV of yield was lower when a recruitment penalty was 658 

incorporated. This may result from the more stable/reasonable estimation of recruitment 659 

at the end of the assessment year period. Such stabilization of recruitment estimates can 660 

lead to a more stable prediction of future abundance, and that is what the TAC calculation 661 

is based on. Also, because we included a 1-year lag between assessment data collection 662 

and assessment model implementation to mimic the real management procedure for lake 663 

whitefish in Laurentian Great Lakes region, the impact of recruitment estimation near the 664 

end of the time series is magnified, given we needed to project an additional year over 665 

what is assumed in some studies. 666 

In summary, we found that for a spatially structured SCAA model that incorporated 667 

information on population-specific age composition of harvest resulted in less biased and 668 

less correlated estimates of spawning stock biomass (SSB) in terminal assessment years, 669 

and less uncertainty in estimating recruitment in early assessment years. Including a 670 

lognormal penalty on annual recruitment residuals in the spatial structured SCAA model 671 

substantially improved the estimation of recruitment in the terminal assessment years, 672 

which we suggest as “best practice” for spatially-structured assessment models.  Despite 673 

the improved assessment performance, preventing overharvest of low productivity 674 

populations when using such assessments will still require an appropriate harvest policy, 675 

such as lower target mortality rates or precautionary reference points. Different 676 

approaches for parsing catch to contributing populations are likely to have different levels 677 
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of classification accuracy.  For example, genetic classification methods may be more 678 

accurate than otolith microchemistry methods if there are not strong environmental 679 

differences among spawning locations.  Further research into how assessment model 680 

performance is affected by classification accuracy would be beneficial. We also 681 

recommend additional investigation of factors such as the inclusion of more complex 682 

spatial structure (e.g., seasonal movement), alternative harvest policies, model 683 

misspecification, and alternative spatial structured stock assessment models (e.g., 684 

spatially structured virtual population analysis, tag integrated assessment model) to 685 

evaluate the benefits of parsing catch to spawning populations when it comes to the 686 

management of spatially-structured populations.   687 
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Figure 1. The full closed-loop feedback simulation framework, which followed a 795 

management strategy evaluation approach.  796 

 797 

  798 
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Figure 2. Ricker stock-recruitment relationships for populations with low, medium, and 799 

high level of productivity (Table 3). Two dashed lines represent the replacement lines for 800 

F=0 and target F and their intersections with stock-recruitment curves (dots) define 801 

equilibrium for low, baseline, and high productivity. Note that the target F is calculated 802 

based on the natural mortality rate and the status quo target total mortality (A=0.65). 803 

 804 
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Figure 3. Simulation results (median ± interquartile range) for population 1 (Table 5) in 806 

the baseline scenario. Full model names are in Table 1. (a) Relative error of estimating 807 

terminal assessment year SSB during simulation year 91 to 100. (b) In simulation year 808 

100, relative error of estimating recruitment of the last ten assessment years. (c) 809 

Proportion of years SSB was lower than 20% of the unfished SSB level (B20%) over the 810 

last 25 years of simulations. (d) Mean annual yield for the fishing area surrounding 811 

spawning grounds of Pop1 over the last 25 years of simulations. (e) Mean interannual 812 

variation (IAV) in yield over the last 25 years of simulation. (f) Estimated autocorrelation 813 

for terminal year estimates of SSB during simulation years 75 to 100. 814 
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Figure 4. Relative error in estimates of recruitment for the terminal assessment year 817 

during the simulation year 76 to 100 for an example simulation. Full model names are in 818 

Table 1. 819 

 820 
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Figure 5. Simulation results (median ± interquartile range) for populations 1 and 3 under 822 

scenarios 2 to 5 (Table 5). Full model names are in Table 1. Each column represents a 823 

different productivity and movement scenario, and each row presents a different 824 

performance statistic. The x-axis of each column indicates the productivity levels (L, A, 825 

H are low, average, and high productivity levels) and stay rates associated with the two 826 

populations results are presented for. For example, L70% means low productivity 827 

population with 70% stay rate.  For each such productivity level and stay rate, results are 828 

given for the four different assessment methods, distinguished by different symbols.  The 829 

second, fourth, and sixth rows represents the same performance statistics as for Figure 3c, 830 

3e, and 3d. The first and third row are relative error of estimating terminal year SSB and 831 

recruitment in simulation year 100, respectively, with a 0 dashed line. The fifth row 832 
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represents the average SSB over the last 25 years of simulation, and the dashed line is 833 

20% of the unfished SSB.  834 

 835 

  836 
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Figure 6. Simulation results (median ± interquartile range) for Pop1 (Table 5) in 837 

sensitivity analyses. Full model names are in Table 1. Each column represents a 838 

sensitivity scenario, each row represents a performance metric (as described in Figure 5), 839 

and results in each panel are for the four assessment models. 840 
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Table 1. Composition of the assessment input data and objective function for the four 842 
assessment models we evaluated.  843 
 844 
Assessment 

model 

  Standard 

assessment 

model 

without a 

recruitment 

penalty (S) 

Standard 

assessment 

model with a 

recruitment 

penalty (S 

W/Rec) 

Origin-

informed 

assessment 

without a 

recruitment 

penalty (O) 

Origin-

informed 

assessment 

with a 

recruitment 

penalty (O 

W/Rec) 

Input data 

  

  

  

Observed 

harvest 

    

Observed 

effort 

    

Aggregated 

harvest age 

composition 

      

Population-

specific 

harvest age 

composition 

      

Objective 

function 

components 

(negative log 

likelihood or 

log-prior 

penalty for) 

  

  

  

Area-specific 

fishery 

harvest 

        

Annual 

deviation 

from the 

general level 

of fishing 

mortality 

        

Aggregate 

harvest age 

composition  

      
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Population-

specific 

harvest age 

composition 

      

Annual 

recruitment 

residuals 

    

 845 

 846 

Table 2. Index variables and accents used in all equations. 847 

Symbol Definition 

𝑖 Population 

𝑗 Fishing ground 

𝑦 Year 

𝑎 Age 

̃  Observed variable 

̂  Estimated variable 

′ Derived variable 

 848 
  849 
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Table 3. Coefficients for parameters used to generate different levels of productivity, data 850 
quality, recruitment variation, and annual-varying random generated rates in both 851 
operating and stock assessment models. 852 

Coefficient 

name 

Definition Coefficient values 

Productivity levels Low Baseline High 

Steepness S-R steepness 0.7 1.3668 1.9 

𝛼′ Ricker S-R parameter 0.0003169815 0.0007316319 0.001104342 

β Ricker S-R parameter 1.511359𝑒−10 2.318631𝑒−10 2.716004𝑒−10 

Data quality levels Low Baseline High 

𝑒𝑓𝑓𝑁 Effective sample size 25 50 100 

Harvest CV 

CV for observed 

harvest about actual 

harvest 

0.4 0.15 0.1 

Effort CV 

CV for observed 

harvest about actual 

effort 

0.8 0.3 0.2 

Annual-varying random generated 

rates  
Stay rate=91% Stay rate=70% Stay rate=52% 

𝜇𝜔 Mean of 𝜔𝑦 2.313635 0.8472979 0.08004271 

𝜎𝜔
2 Variance of 𝜔𝑦 0.3364 0. 0625 0.21 

Recruitment variation levels 
No 

autocorrelation 
Baseline High 

𝜌 
Autocorrelation 

coefficient 

0 0.45 0.45 

𝜎𝑅 
Innovative standard 

dev. in rec process error 

0.8734 0.78 1.3395 

𝜎 
Stationary standard 

dev. in rec process error 

0.8734 0.8734 1.5 

Target mortality levels 
Low Baseline (Status 

quo) 

 

A 
Annual total mortality 

rate 

0.55 0.65  
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Table 4. Biomass calculation in the operating model. 853 

Model name Model equation Equation 

number 

Age-specific 

SSB 

𝑆𝑆𝐵𝑖,𝑦 =  ∑  𝐹𝑒𝑚𝑊𝑎𝑚𝑎

𝑎

𝑁𝑖,𝑦,𝑎𝐹𝑒𝑐 

where 𝐹𝑒𝑚=0.5 (from Li et al. 2015) 

2.1 

Length at 

age 

𝐿𝑎=𝐿∞(1 − exp (−𝜅(𝑎 − 𝑡0))) 

where 𝐿∞=60.9 cm, 𝜅=0.1689 year-1, 𝑡0 = 0 year (from Li 

et al. 2015) 

2.2 

Weight at 

age 

𝑊𝑎 = 𝛾𝐿𝑎
𝜓 

where  𝛾 =8.06 × 10−5,  𝜓= 2.45 (from Li et al. 2015) 

2.3 

Maturity at 

age 

𝑚𝑎 =
𝑚∞

1 + exp (−𝜗(𝐿𝑎 − 𝛿))
 

where  𝜗 = 0.315 cm-1, 𝛿= 37.86 cm (from Li et al. 2015) 

2.4 

 854 
  855 
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Table 5. Simulation scenarios, including the baseline scenario and other combinations of 856 

productivity levels and stay rates, for four hypothetic populations used in the simulations. 857 

Scenario 

index 

Scenario Population 

identifier 

Productivity Stay 

rate  

Baseline 

(1) 

Equal mixing with baseline 

productivity 

Pop1 Baseline 70% 

Pop2 Baseline 70% 

Pop3 Baseline 70% 

Pop4 Baseline 70% 

2 
Equal mixing with different 

productivity 

Pop1 Low 70% 

 
Pop2 Low 70% 

 
Pop3 High 70% 

 
Pop4 High 70% 

3 
Unequal mixing with baseline 

productivity 

Pop1 Baseline 91% 

 
Pop2 Baseline 91% 

 
Pop3 Baseline 52% 

 
Pop4 Baseline 52% 

 
Unequal mixing with different 

productivity (Positive correlation 

between productivity and stay rates) 

Pop1 Low 52% 

4 
Pop2 Low 52% 

 
Pop3 High 91% 

 
Pop4 High 91% 

5 
Unequal mixing with different 

productivity (Negative correlation 

between productivity and stay rates) 

Pop1 Low 91% 

 
Pop2 Low 91% 

 
Pop3 High 52% 

 
Pop4 High 52% 

 858 

  859 
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Table 6. Scenarios for sensitivity analyses. In each sensitivity scenario, except for the 860 

change descripted below all other parameters are at their baseline levels.  861 

 862 

Scenario index Description Description of change from 

baseline scenario 

Dat_L Data quality levels (Table 3) 

all low. 

Data quality  

Dat_H Data quality levels (Table 3) 

all high. 

Data quality  

MixV_Ass Allowed mixing rates in the 

assessment model to vary 

annually about the true value 

assumed in the operating 

model. 

Mixing rates in the 

assessment model 

RecV_H Recruitment variation levels 

(Table 3) all high. 

Recruitment variation  

RecV_0 Recruitment variation levels 

(Table 3) all no 

autocorrelation. 

Recruitment variation  

TarA=55% Target mortality levels all 

low (Table 3). 

Target mortality 


