
 

 

Introduction to Bayesian Modeling and Inference for Fisheries Scientists 1 

 2 

Jason C. Doll1 and Stephen J. Jacquemin2 3 

 4 

1 Quantitative Fisheries Center, Department of Fisheries and Wildlife, Michigan State 5 

University, 375 Wilson Road, Room 100, East Lansing, MI 48824. 6 

2 Department of Biological Sciences, Wright State University - Lake Campus, 7600 Lake 7 

Campus Drive, Celina, OH 45822 8 

 9 

Formatted for Fisheries 10 

 11 

Running Title: Bayesian Inference in Fisheries 12 

 13 

 14 

Correspondence: Jason C. Doll, dolljas1@msu.edu, Quantitative Fisheries Center, Department of 15 

Fisheries and Wildlife, Michigan State University, 375 Wilson Road, Room 100, East Lansing, 16 

MI 48824. 17 

 18 

  19 



 

 

Abstract 20 

Bayesian inference is everywhere, from one of the most recent journal articles in Transactions of 21 

the American Fisheries Society to the decision making process you go through when you select a 22 

new fishing spot. Bayesian inference is the only statistical paradigm that synthesizes prior 23 

knowledge with newly collected data to facilitate a more informed decision – and it is being used 24 

at an increasing rate in almost every area of our profession. Thus, the goal of this article is to 25 

provide fisheries managers, educators, and students with a conceptual introduction to Bayesian 26 

inference. We do not assume the reader is familiar with Bayesian inference, however, we do 27 

assume the reader has completed an introductory biostatistics course. To this end, we review the 28 

conceptual foundation of Bayesian inference without the use of complex equations; present one 29 

example of using Bayesian inference to compare relative weight between two time periods; 30 

present one example of using prior information about von Bertalanffy growth parameters to 31 

improve parameter estimation; and finally, suggest readings that can help to develop the skills 32 

needed to use Bayesian inference in your own management or research program. 33 

 34 

  35 



 

 

Introduction 36 

Bayesian inference is rooted in the notion that past experiences or information can be 37 

combined with new information to help explain certain events or inform the probability of 38 

outcomes associated with specific events. Although you might not be actively using Bayesian 39 

inference in your research, you are most likely using it in your everyday life. Bayesian inference 40 

is in the minds of card counters at the blackjack table, in the algorithm that picks the pop up 41 

advertisements on your favorite social networking site, and in the unconscious decision making 42 

process you go through when you select a new fishing spot. It is a way of thinking, learning, and 43 

has been proposed as the way our minds process information to make decisions (De Ridder et al. 44 

2014). This natural way of thinking is in contrast to how many analyze their data. For example, 45 

data are typically analyzed by calculating the probability of observing the data. This method of 46 

analyzing data is referred to as frequentist inference with Null Hypothesis Statistical Testing 47 

(NHST). When Bayesian inference is applied to data analysis, probabilities are assigned to 48 

certain outcomes given new information and making a decision based on the assigned 49 

probability. 50 

If we used NHST in our everyday lives, we might find ourselves in a very disappointing 51 

situation. For example, suppose you are an avid Walleye Sander vitreus angler that is interested 52 

in fishing for nothing else. One day, while vacationing in Florida, you feel the itch to go fishing. 53 

However, after a lifetime of experience honing your Walleye fishing technique in the waters of 54 

your home state, Minnesota, you realize you don’t know how good Walleye fishing is in Florida. 55 

Because you were trained as a frequentist and to use NHST, you decide to perform an 56 

experiment to determine the quality of Walleye fishing in Florida. Thus, you form a null 57 

hypothesis that fishing for Walleye in Florida is no different than fishing for Walleye in 58 



 

 

Minnesota. You know you catch approximately one fish per hour of fishing effort, and based on 59 

your null hypothesis of no difference, you predict you will catch one fish per hour of fishing in 60 

Florida. To test this hypothesis you fish – for days – and catch no Walleye. Minutes turn into 61 

hours, hours to days, and you catch no Walleye thus your trip was a failure. After you have 62 

collected enough data from an array of Florida lakes, rivers, and swamps, you calculate the 63 

probability of catching zero Walleye per hour in Florida (your data) is so small, that you 64 

conclude Walleye fishing in Florida is NOT the same as Walleye fishing in Minnesota! Thus 65 

rendering the assumption that Walleye fishing in Florida is no different from Minnesota false 66 

(i.e., rejecting the null hypothesis). In this scenario, the time spent collecting new data to make a 67 

conclusion about Walleye fishing in Florida could have been reduced if our angler from 68 

Minnesota would have used prior information on Walleye fishing in Florida. The reality is, 69 

however, that most of us looking to find a new fishing spot would just intuitively know to gather 70 

information before setting off to a new area for fishing. This information could come from blogs, 71 

overhearing conversations at the local fishing tackle shop (i.e., expert opinion), or distribution 72 

maps (i.e., published data). The point is, given a limited travel agenda searching for a new spot to 73 

go Walleye fishing; one would find themselves gravitating towards almost anywhere other than 74 

Florida….maybe the incredible spring Walleye fishery in western Lake Erie in Sandusky Ohio or 75 

even the St. Clair River run in southeastern Michigan.  76 

Bayesian inference has been used to find lost ships, crack the unbreakable Enigma code 77 

of World War II, predict the outcomes of elections, forecast nuclear meltdowns, predict Major 78 

League Baseball player performances (McGrayne 2012), and most likely, been used at some 79 

point in your own lives to find a new fishing spot. Within our own field, and more recently, 80 

Bayesian inference has been used in a variety of analyses including generalized linear models, 81 



 

 

species distribution modeling, incorporating phylogeny into standard models describing trends in 82 

abundance, and stock assessments (Punt and Hilborn 1997; Jacquemin and Doll 2014; 83 

Rahikainen et al. 2014). Bayesian inference is all around us and commonly used in fisheries 84 

science, yet many may not be familiar enough with it to appreciate its flexibility to address both 85 

simple and complex problems, and how it can take advantage of all available information to help 86 

produce clear and direct inferences. Therefore, the obvious questions and focal points of this 87 

article become; “What is Bayesian inference?”, “Why should I care about Bayesian inference?”, 88 

and “What can Bayesian inference do for me?”. We attempt to answer these questions here.  89 

The goal of this article is to provide fisheries managers, educators, and students with an 90 

introduction to Bayesian inference with minimal equations so one can take the next step towards 91 

incorporating Bayesian inference in their quantitative toolbox, be better prepared to critique 92 

research that uses Bayesian inference, and teach the next generation of fisheries scientists. 93 

Herein, we provide a brief overview of what Bayesian inference is and demonstrate how 94 

Bayesian inference can be applied to fisheries data using two examples.  95 

   96 

Bayesian Inference 97 

What is Bayesian inference? 98 

Bayesian inference uses a basic law of probability knows as Bayes’ theorem. Bayes’ 99 

theorem was discovered by the Presbyterian minister Thomas Bayes more than 250 years ago 100 

and later rediscovered in 1774 by Pierre Simon Laplace who described it in scientific 101 

applications. This simple probability rule combines what we already know about an event with 102 

new information to provide an updated belief about that event. Conceptually, what makes 103 

Bayesian methods unique is the incorporation of that prior information and reallocation of belief.  104 



 

 

To better understand Bayesian inference, we find it helpful to draw contrasts to what we 105 

already know (frequentist inference and NHST) from introductory biostatistics. Bayesian 106 

inference defines probability as a measure of belief about an event or model parameter (e.g., 107 

what is the probability of mean catch rates increasing under the new management program?). 108 

Bayesian inference uses of Bayes’ theorem (see below) to combine new data and any prior 109 

information. New data and prior information are incorporated by describing each with a 110 

probability distribution. The results are a posterior probability distribution that jointly describes 111 

the model parameters (e.g., all slope coefficients in a linear regression model). The posterior 112 

probability distribution of each parameter is often summarized as credible intervals (CI), which 113 

are a direct probability statement about the parameter of interest. Bayesian inference answers the 114 

basic question; “What is the probability of a hypothesis given our observed data and any prior 115 

information we might have?”. This is in contrast to frequentist inference where probability is 116 

defined as how often something occurs in the long run (e.g., If I were to hypothetically replicate 117 

a study many times, what is the probability of the observed or more extreme mean catch rates, if 118 

the new management program is not effective?). Frequentist inference treats model parameters as 119 

fixed unknown values and the data as random. Frequentist inference makes decisions based on 120 

how unlikely the observed values are if there is no effect and draws conclusions about the size of 121 

the effect from 95% confidence intervals that are based on hypothetical replicates. The 95% 122 

confidence intervals tell us, given a hypothetically large number of surveys, how often (95%) our 123 

calculated confidence interval would overlap the true parameter’s true value (noting that we have 124 

no way of knowing if our calculated 95% confidence interval overlaps the true value or not). 125 

This definition effectively renders the use of frequentist probability statements, which only apply 126 

to the sampling, useless as a direct measure of probability regarding a specific parameter. For 127 



 

 

example, we can say with 95% confidence that this sample of fish is not different from the main 128 

stock, but we can’t say there is a 95% probability that this sample of fish is the same as the main 129 

stock. Frequentist inference with NHST uses p-values to answer the question; “What is the 130 

probability of observing our data or more extreme data given some hypothesis (i.e., specified 131 

statistical model) is true?”.  132 

 133 

Why should I care about Bayesian inference? 134 

 There are at least two reasons why you might care about Bayesian inference, either you 135 

want to be able to better understand and critique articles that use Bayesian methods or you want 136 

to incorporate Bayesian methods into your own quantitative toolbox for analyzing data. Bayesian 137 

inference is being used at an increasing rate in fisheries management. Since 2000, fisheries 138 

related journals have seen a rise in the number of papers that use Bayesian analyses (based on a 139 

topic search conducted June 2017 in Web of Science; Figure 1). Transactions of the American 140 

Fisheries Society (TAFS), Canadian Journal of Fisheries and Aquatic Sciences (CJFAS), and 141 

Fisheries Research (FR) have exhibited the most consistent increasing trend. In 2016, 7 (6.4%; 142 

TAFS), 7 (4.5%; CJFAS), and 11 (4.0%; FR) of their published articles had “Bayesian” in the 143 

topical keywords and employed the methodology in their analyses. 144 

Bayesian inference has been gradually gaining momentum over the past few decades 145 

because of its many advantages over NHST and p-values. Interestingly, there is even a journal, 146 

albeit outside of our field (Basic and Applied Social Psychology), that put a blanket ban on 147 

NHST and p-values in favor of parameter estimation methods including Bayesian inference 148 

(Trafimow and Marks 2015). Additionally, the American Statistical Association (ASA) has 149 

clarified the use and interpretation of p-values by releasing the only formal policy statement 150 



 

 

released by the association (Wasserstein and Lazar 2016). This statement clarifies that p-values 151 

are not a measure of probability, do not measure the size of an effect, and cautions that policy 152 

decisions should not be made based solely on whether a p-value is below some threshold. The 153 

ASA policy statement also provides alternatives to p-values, such as Bayesian methods, that 154 

emphasize estimation over testing. Thus, understanding the general methodology of Bayesian 155 

inference and how it is interpreted can help you critique and understand this growing segment of 156 

the scientific literature.  157 

There are many advantages to Bayesian inference. Some of the most tangible advantages 158 

include improving your ability to draw conclusions conditional on the data (and prior 159 

information), easily propagate uncertainty through hierarchical relationships, easily obtaining 160 

uncertainty for derived quantities, incorporating latent variables and functions thereof (e.g., 161 

hierarchical occupancy models; Royle and Kéry 2007), incorporating prior knowledge, 162 

describing more ecologically realistic models, and being able to express your findings in terms of 163 

probability that are easier for non-scientists to understand (see Kruschke (2010) for more details 164 

on the advantages of Bayesian inference).  165 

 166 

What can Bayesian inference do for me? 167 

 Have you ever thought to yourself, “I wish I could tell this group of anglers there is some 168 

specific probability that the new management program will increase catch rates.”? If you have, 169 

Bayesian inference can help you do that! Bayes’ theorem is the only method of analyzing data to 170 

produce probabilities of different hypotheses (Gelman et al. 2014).  Concluding probabilities of 171 

outcomes based upon different management scenarios has already been widely used in the 172 

management of the world’s fisheries (methods synthesized in Punt and Hilborn 1997). Two 173 



 

 

recent examples of applied management studies that have used Bayesian inference include the 174 

development of mortality models to assess the outcomes of regulations on Largemouth Bass 175 

Micropterus salmoides populations, and to predict the results of a new size limit on Snapping 176 

Turtle Chelydra serpentina harvest (Kerns et al. 2015; Colteaux and Johnson 2017). Bayesian 177 

inference has even been used to inform the management of our favorite wandering Florida 178 

fisherman’s target catch as Tsehaye et al. (2016) estimated probabilities of spawning stock 179 

biomass, harvest, and a population crash through the use of a hierarchical age-structured stock 180 

assessment model of Walleye. In your own work, Bayesian inference can provide outcome 181 

probabilities that can better inform your management decision, regardless of how simple or 182 

complex the analysis. 183 

 184 

Bayes’ Theorem 185 

Bayesian inference uses probability theory as a formal way of incorporating new data 186 

with prior information to make a direct probability statement about a hypothesis – this is the 187 

foundation of Bayesian inference and is based on Bayes’ theorem (Equation 1; Figure 2). 188 

According to Bayes’ theorem, the posterior probability distribution, p(θ|X), of model parameters 189 

(θ) given observed data (X) is calculated by: 190 

Equation 1: 𝑝(𝜃|𝑋) =
𝑝(𝑋|𝜃)𝑝(𝜃)

∫ 𝑝(𝑋|𝜃)𝑝(𝜃)𝑑𝜃
 191 

Where: p(X|θ), the likelihood, denotes the probability distribution of the data given the 192 

parameters, p(θ) denotes the prior probability distribution of the model parameters, and the 193 

denominator is a normalizing parameter calculated by summing across all possible parameter 194 

values weighted by the strength of their belief to scale the results to be between 0 and 1. Thus, 195 

the posterior probability distribution equals the probability distribution of the data given the 196 



 

 

parameters, multiplied by the prior probability distribution of the model parameters, all divided 197 

by the sum across all possible probability distributions of data multiplied by all possible 198 

parameter values weighted by the strength of their belief. Conventionally, p(X|θ) is denoted as 199 

the likelihood. However, p(X|θ) is calculated from an assumed sampling distribution that is 200 

conditional on the data (X) not θ. That is, p(X|θ) is first defined and after the data (X) are 201 

observed, the same function is used and assumed to be proportional to the likelihood, such that 202 

L(θ|X) ∝ p(X|θ). For a thorough review of Bayes’ theorem, see Gelman et al. (2014), Carlin and 203 

Louis (2008), and McElreath (2016). 204 

 The posterior probability distribution is used to make all statistical inference and 205 

represents all that is known about the parameter after combining the prior probability distribution 206 

with new data. All parameters in a model and all derived quantities (e.g., difference between two 207 

parameters; see relative weight example) have a posterior probability distribution. The posterior 208 

probability distribution can be summarized by its mean or median with the spread of the 209 

distribution summarized with quantiles. The most common summary of the posterior probability 210 

distribution to represent full uncertainty is the 95% CI. The 95% CI is the range of values that 211 

are bounded by the upper 97.5% and lower 2.5% quantiles of the probability distribution.  212 

Prior information is arguably the most important and greatest advantage of Bayesian 213 

inference. Bayesian inference permits researchers to directly incorporate previous knowledge 214 

about model parameters in a transparent and defensible manner. Prior probability distributions 215 

measure how plausible all potential parameters values are before we see new data. When priors 216 

are based on the literature or expert opinions, they are considered “informative priors”. In 217 

contrast, when the researchers have no basis to construct an informative prior distribution, all 218 

possible values are given equal probability and considered “reference priors” or “diffuse priors”. 219 



 

 

When prior probability distributions are based on reference priors, the mean of the posterior 220 

probability distributions, particularly with simple models (e.g., linear regression), are similar to 221 

the point estimates of frequentist inference. However, drastically different interpretations remain 222 

because of the underlying definitions of probability under the different paradigms (see What is 223 

Bayesian inference?). Further, some critics argue that the use of informative priors in model 224 

building may be considered subjective (Martin et al. 2012). Indeed, prior distributions and the 225 

reliance on these “priors” has been the subject of much debate (Dennis 1996; Huelsenbeck et al. 226 

2002; McCarthy and Masters 2005). Nevertheless, the value of prior information cannot be 227 

discounted and Bayesian inference provides a transparent mechanism for its inclusion (Kuhnert 228 

et al. 2010). We would argue that there are very few situations where the researcher would truly 229 

have no prior information, and that their analyses would benefit from the inclusion of available 230 

prior information. 231 

Informative prior probability distributions can be categorized in two way; “population” 232 

and “state of knowledge”. The “population” category includes setting biologically realistic limits 233 

on the bounds of a parameter. For example, constraining estimates of detection probability to be 234 

between 0 and 1. The “state of knowledge” category includes expert knowledge and published 235 

literature. As we demonstrate later in this article, prior information based on the current state of 236 

knowledge allows us to make informed decisions where we would otherwise not have 237 

biologically relevant parameters (See von Bertalanffy growth model example). Many examples 238 

of incorporating informative prior probability distributions in fisheries applications can be found 239 

in the stock-assessment literature (McAllister and Ianelli 1997; Romakkaniemi 2015). Other 240 

ecological applications outside of fisheries include evaluating impacts of grazing on birds 241 

(Martin et al. 2005), estimating Mule Deer Odocoileus hemionus survival and abundance 242 



 

 

(Lukacs et al. 2009), and estimating poaching mortality of the Wolves Canis lupus (Liberg et al. 243 

2011). While incorporating informative prior information can increase the usefulness of your 244 

analysis, the prior probability distribution must be carefully selected and be supported by good 245 

science. 246 

Combining the likelihood and prior probability distribution into the posterior probability 247 

distribution can generally not be accomplished using standard integral approximation and there is 248 

often no analytic solution. Thus, sampling techniques that calculate numerical approximations of 249 

model parameters are required to overcome these issues. Markov Chain Monte Carlo (MCMC) is 250 

the most common method of sampling from the posterior probability distribution, other less 251 

common methods of sampling from the posterior probability distribution includes grid search 252 

(Kruschke 2015) and sample-importance-resampling (Rubin 1988). A full description of MCMC 253 

methods is beyond the scope of this paper, thus we only present a cursory overview here. MCMC 254 

methods include several different algorithms that sample from the posterior distribution with a 255 

Markov Chain. Constructing a Markov Chain is a process that generates a series of random 256 

numbers that are dependent on the previous random number and nothing else. Most MCMC 257 

processes begin with one set of random numbers that represent parameters in your model. Then a 258 

new set of random numbers are generated and compared with the first. If the new set of random 259 

numbers provide a better fit given the data and prior information they are saved and then 260 

compared to a new set of random numbers. If they do not provide a better fit given the data and 261 

prior information they are not saved and a new set of random numbers are generated and 262 

compared to the initial set. This process continues for hundreds and often thousands of iterations 263 

until the saved values have converged on the posterior probability distribution. The different 264 

algorithms that perform MCMC differ in their proposals and accepting or rejecting criteria and 265 



 

 

there are a variety of methods to identify convergence to the posterior probability distribution. 266 

There is also an initial period in the chain that is removed because they are unlikely to have come 267 

from the posterior distribution. The initial part of the chain that is removed is called the “burn-268 

in” period. It is also common to “thin” MCMC chains to remove the correlation between 269 

successive iterations and reduce the length of the chain and thus the amount of memory required 270 

to save the chain. This is accomplished by only saving every ith step in the chain. The number of 271 

iterations to discard between saved steps will be dependent on the amount of correlation and total 272 

number of iterations used in the MCMC chain. It is common to set the number of thinning steps 273 

to 3 but values greater than 10 are not uncommon for very long chains (e.g., > 10,000 iterations). 274 

The end result is a series of “iterations” with values for each parameter being estimated or 275 

quantity being derived that represents the joint posterior probability distribution. A more 276 

technical description of how MCMC works can be found in Congdon (2007). 277 

 278 

Applied fisheries examples 279 

 Here we present two increasingly complex fisheries examples to provide an applied 280 

framework using actual data. These examples are common and often first introduced in 281 

undergraduate fisheries management courses and in popular fisheries text books (Isely and 282 

Grabowski 2007; Walters and Martell 2004). Here we emphasize how the results are interpreted 283 

as a probability distribution of credible values as opposed to rejecting or failing to reject a null 284 

hypothesis. We also demonstrate the use of prior information to improve inference of a common 285 

fisheries model. 286 

 When conducting any analysis using Bayesian inference there are specific details that 287 

need to be included in the narrative that describes the methods. These include; software used, the 288 



 

 

number of concurrent MCMC chains, the total number of iterations, the number of burn-in steps, 289 

the number of thinning steps, the number of saved steps, and convergence diagnostics. The most 290 

common software used when fitting Bayesian models are JAGS (Plummer 2003), BUGS (Lunn 291 

et al. 2000), and Stan (Carpenter et al. 2017). All three are incorporated into the R programming 292 

environment through downloadable R packages. The specific details for the two examples 293 

presented here with complete model specification with JAGS and R code is available in the 294 

online appendix. Posterior probability distributions of the parameter estimates are summarized 295 

with their median and 95% CI. The analyses presented here are not intended to provide a 296 

thorough assessment of either fishery. Rather, we use these example as applications of Bayesian 297 

inference to common fisheries scenarios.  298 

 299 

Comparison of fish condition between years using relative weight (Bayesian t-test) 300 

 Relative weight is a common fisheries management metric that is used to monitor the 301 

response of a fish population due to regulation changes (Blackwell et al. 2000) and provides a 302 

familiar and practical example. Relative weight is the ratio of the weight of an individual fish to 303 

a standard weight for a given length scaled to be between 0 and 100. 304 

Equation 2: Wri = (
Wi

Wsi
) × 100 305 

Where Wri is the relative weight of individual fish i, Wi is the weight of individual fish i, and Wsi 306 

is a length-specific standard weight predicted by the weight-length regression for individual fish 307 

i. The specific equation used to calculate Ws comes from regional species specific weight-length 308 

formula (Neumann et al. 2012).  309 

Equation 3: log10(Ws) = 𝑎 + 𝑏 ∗ log10(TL) 310 



 

 

Where a is the intercept, b is the slope, and TL is total length of the individual fish. Here, we will 311 

compare Wr’s between two groups using the Bayesian two-sample t-test (Kruschke 2012). 312 

 The Bayesian two-sample t-test is simply the comparison of group means and is 313 

analogous to the frequentist two-sample t-test. However, the key difference between the two is 314 

that the frequentist t-test is only comparing group means to determine if they are “significantly” 315 

different whereas the Bayesian t-test is comparing the groups mean and uncertainty (i.e., 316 

standard deviation) to determine a difference and how much different. The Bayesian two-sample 317 

t-test describes the data from both groups with a normal distribution (a t-distribution can be used 318 

as an alternative to account for outliers).  319 

Equation 4: 𝑦𝑘𝑖~ 𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝑘, 𝜎𝑘) 320 

Where yki is the observed Wr for individual i in group k, μk is the mean of group k, σk is the 321 

standard deviation of group k. Note the normal distribution in JAGS is parameterized with the 322 

mean and precision (1/𝜎𝑘
2). Reference priors are used for μk and σk. 323 

Equation 5: 𝜇𝑘~𝑛𝑜𝑟𝑚𝑎𝑙(0,1000) 324 

Equation 6: 𝜎𝑘~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0,20) 325 

The assumptions for a Bayesian two-sample t-test (comparison between group means) do not 326 

change because we are using Bayesian inference. (i.e., we assume independent observations and 327 

do not assume equal variances). 328 

 329 

Application: Yellow Perch (Perca flavescens) relative weight long term (1992 vs 2002) 330 

comparisons  331 

Notable changes in management regulations and the Lake Michigan ecosystem have 332 

occurred over the past 30 years (Madenjian et al. 2002). Within Indiana waters, commercial 333 



 

 

fishing was closed in 1997 and a daily recreational creel limit of 15 fish was imposed. In addition 334 

to this, invasive species introductions, such as the Zebra Mussel Dreissena polymorpha, Quagga 335 

Mussels Dreissena bugensis, and Round Goby Neogobius melanostomus have altered the food 336 

web (Griffiths et al. 1991; Lauer et al. 2004; Nalepa et al. 2009). The numerous factors affecting 337 

Yellow Perch provide an ideal situation to evaluate changes in mean and standard deviation of 338 

relative weight as an applied example of Bayesian inference. We will use a Bayesian two-sample 339 

t-test (Kruschke 2012) to determine if average and standard deviation of Wr has changed after a 340 

10-year period (1992 and 2002) and if they have changed, how much have they changed?  341 

The data used for this analysis come from a long-term monitoring program in Southern 342 

Lake Michigan. Yellow Perch were sampled at three fixed sites using nighttime bottom trawling 343 

at the 5-m depth contour in 1992 and 2002 (other years are available, however we are only using 344 

two years of data for demonstration purposes only). For more details about the sampling program 345 

see Forsythe et al. (2012). Sites were sampled twice each month (July and August) for a total 346 

effort of 12 h each year. After each night, a random subsample of 300 Yellow Perch age > 1 347 

were measured for total length and total weight. Standard weight was calculated by using the 348 

parameters reported in Neumann et al. (2012). 349 

A total of 1,701 fish were included in this analysis. Relative weights ranged from 42.2 to 350 

142.4 (Figure 3). Mean Wr in 1992 and 2002 was 86.3 (95% CI = 85.4 to 87.3) and 73.2 (Figure 351 

4; 95% CI = 72.7 to 73.7). The distributions of mean Wr in 1992 and 2002 are clearly different, 352 

but one important question the manager will often ask is, how much different are mean Wr’s in 353 

2002 compared to 1992. This question can easily be answered under the Bayesian approach. In 354 

this example, we can simply subtract the posterior probability distributions of the mean Wr in 355 

1992 from 2002. By doing this, we obtain a derived parameter with a measure of uncertainty, a 356 



 

 

result that is more difficult to obtain under the frequentist paradigm with NHST. The change in 357 

Wr corresponds to a decrease in mean Wr of 13.1 (95% CI = 12.2 to 14.2) from 1992 to 2002. 358 

These results are interpreted as there being a probability of 0.95 that mean Wr has decreased 359 

between 12.2 to 14.2. Estimates of standard deviation in 1992 and 2002 were 11.3 (95% CI = 360 

10.7 to 11.9) and 9.1 (95% CI = 8.8 to 9.5), respectively, indicating a decrease in variability of 361 

2.2 (95% CI = 1.5 to 2.9) from 1992 to 2002. 362 

Because of the rich information contained in the results of Bayesian inference, we can 363 

begin to ask questions that have direct and meaningful implications for management. As we have 364 

discussed, the results represent probability distributions about parameters (e.g., Wr). Thus, the 365 

percentage of the posterior probability distribution that is greater than, less than, or between 366 

management benchmarks represent the probability of reaching that specific benchmark. For 367 

example, suppose a management benchmark for mean Wr is 73 (or this could be any specific Wr 368 

that managers are interested in) and if this benchmark was reached, we would conclude that 369 

some management action should be taken. To evaluate this scenario we would calculate the 370 

probability that mean Wr in 2002 is 73 or less. This is accomplished by determining the 371 

percentage of the posterior probability distribution of the mean Wr in 2002 that is less than 73 372 

(total number of iterations in the posterior probability distribution that are 73 or less divided by 373 

the total number of iterations in the posterior probability distribution). In this example, we find 374 

that there is a probability of 0.51 that the mean Wr is less than or equal to 73. The fisheries 375 

manager can use this calculated probability to make a conclusion on if a new management action 376 

should be taken. Similarly, suppose we decide that 73 is too low and a Wr of 80 or less would 377 

warrant some management action. Here, the entire posterior probability distribution for Wr in 378 

2002 is less than 80 and thus, there is a probability of 1.00 that Wr is less than 80. Features such 379 



 

 

as generating probabilities of achieving management benchmarks make Bayesian methods 380 

desirable for management decisions. 381 

 382 

Evaluating growth using the von Bertalanffy model (non-linear regression) 383 

 Understanding how individual organisms change in length over time is one of the 384 

fundamental pieces of information used in fisheries management. The change in length over time 385 

is typically assessed with length-at-age data acquired from observing annular rings on some bony 386 

structure (e.g., otolith, spines, opercle, etc.). Information on growth rates is used to predict future 387 

yield (Quist et al. 2010) and set harvest limits (Reed and Davies 1991). To estimate growth rates 388 

a biologist must select a growth model that plausibly reflects the relationship between length and 389 

age data. The von Bertalanffy growth model is one of the most common models to describe 390 

organisms’ growth (Doll et al. 2017; Hupfeld et al. 2016; Midway et al. 2015; Ogle et al. 2017). 391 

Equation 9:  y𝑖 = 𝐿∞(1 − 𝑒−𝜅(age𝑖−𝑡0)) + 𝜀𝑖 392 

Equation 10:  𝜀𝑖~𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜎) 393 

Where yi is the length of fish i, L∞ is the hypothetical maximum mean total length achieved, κ is 394 

the Brody growth coefficient with units t-1, agei is the age of fish i, t0 is the age when individuals 395 

would have been length 0, and εi is a random error term with mean 0 and standard deviation σ. 396 

Note the normal distribution in JAGS is parameterized with the mean and precision (1/σ2).  397 

 398 

Application: Monroe Reservoir Walleye (Sander vitreus) age and growth 399 

For this application, we use Bayesian inference with a non-linear regression model to 400 

estimate parameters associated with the von Bertalanffy growth model. We additionally 401 

incorporate prior information about model parameters. The data used for this analysis come from 402 



 

 

Walleye sampling conducted at Monroe Reservoir (Brown and Monroe Counties, Indiana) in 403 

October 2011 using 18 overnight experimental mesh gill net sets. Scale samples were taken from 404 

all Walleye for age and growth determination. For more information about the sampling protocol 405 

at Monroe Reservoir, see Kittaka (2008). 406 

We estimated parameters using reference prior probability distributions and also extended the 407 

model to incorporate informative prior probability distributions (Table 1). The parameters L∞ and 408 

κ were estimated on the log scale to restrict these parameters to be positive. Informative prior 409 

probability distributions were obtained from existing Walleye records at FishBase.org (Froese 410 

and Pauly 2017). We only included records that were from the United States and had estimates 411 

for all parameters, L∞, κ, and t0. This resulted in 26 observations for each parameter. Prior 412 

probability distributions were specified by taking the arithmetic mean and standard deviation of 413 

each parameter. Note that the prior probability distribution for L∞ and κ are the mean and 414 

standard deviation are on the log scale.  415 

Thirty-three fish were included in the analysis. Total lengths ranged from 33cm to 64cm and 416 

ages ranged from one to nine. Only one age six and one age nine fish were observed. Estimates 417 

of L∞ were higher with reference prior probability distributions, while κ and t0 estimates were 418 

lower with reference prior probability distributions (Table 2, Figure 5). Reference prior 419 

probability distributions resulted in greater uncertainty (i.e., wider 95% CI) compared to 420 

informative prior probability distributions (Table 2, Figure 5) for all parameters. Incorporating 421 

informative prior probability distributions also resulted in increased standard deviation (Figure 6) 422 

to accommodate the data and information in the prior probability distribution. 423 

Looking at the study as a whole something is very apparent – this Walleye dataset contained 424 

few older fish, a scenario that is common in routine fisheries surveys. Yet, through the use of 425 



 

 

informative prior probability distributions we can be better prepared to deal with data sets such 426 

as these. If prior information was not included here, the lack of older fish resulted in unrealistic 427 

estimates of L∞ because the curve does not reach an asymptote (Figure 7) and thus limits 428 

practical use of the results. Although Walleye have been collected over 70 cm, the majority of 429 

individuals are typically under 60 cm (Kittaka 2008). Thus, an average L∞ greater than 65 cm is 430 

not a biologically realistic scenario. Further, our estimate of κ using reference prior probability 431 

distribution resulted in the center of the posterior probability distribution (0.06) as being lower 432 

than any value reported at FishBase.org in the United States (Table 2, Figure 7). This 433 

immediately suggests our estimate without incorporating prior information is biased low. 434 

Assessing growth information from limited data can often be misleading due to lack of older fish 435 

and inferences drawn using reference prior probabilities can result in inaccurate conclusions. In 436 

this example, using informative prior probability distributions resulted in more biologically 437 

realistic parameter estimates. 438 

This Walleye example demonstrated two key aspects of Bayesian inference. The first is 439 

reallocation of belief. Incorporating new data reallocated the probabilistic belief to a new 440 

posterior probability distribution with reference and informative priors (Figure 5; A to B and C 441 

to D). The second key aspect of Bayesian inference demonstrated in this example is that prior 442 

information can be incorporated in the form of a prior probability distribution. The informative 443 

prior probability used in this example is the reason why the posterior probability distribution was 444 

more biologically realistic. The biological realism was worked into the model from the beginning 445 

by including information from 26 other studies.  446 

  447 

Conclusion 448 



 

 

Bayesian inference is a powerful and flexible tool that can be useful to all fisheries 449 

professionals. Although being able to make direct probabilistic statements about a hypothesis is 450 

desirable, perhaps the most advantageous aspect of Bayesian inference is being able to formally 451 

incorporate prior information in a defensible and logical way. Our field has grown substantially 452 

in its literature base over the past century and it seems worthwhile to stand on these past studies 453 

as we reach towards new and higher syntheses in the fisheries world. The literature provides a 454 

vast library of data that researchers can use to develop informative prior distributions, and is 455 

already being used in fisheries stock assessments (Punt and Hilborn 1997). There is no reason we 456 

should not incorporate this historical information into our research and management programs. 457 

Herein, we provided one example of how to understand and incorporate prior information into 458 

common fisheries models. There are many available sources that provide additional examples 459 

and details as to how one can incorporate prior information into your research (Millar 2002; 460 

McCarthy and Masters 2005; Kuhnert et al. 2010; Martin et al. 2012).  461 

Our goal with this article is to provide fisheries managers, educators, and students with an 462 

introduction to Bayesian inference. This is intended to be the first step towards a more complete 463 

understanding of what Bayesian inference is, when to use Bayesian inference, and how to apply 464 

Bayesian inference in one’s own research. There are many articles and books available to help 465 

readers with the most elementary as well as the most advanced steps (Kéry 2010; Parent and 466 

Rivot 2013; Gelman et al. 2014; Kruschke 2015).  467 

 Bayesian inference is not a panacea and should not be viewed as a one-size-fits-all 468 

method of analysis. Although many do tend to prefer Bayesian methods, one needs to also be 469 

pragmatic and view Bayesian inference as another tool to use when needed. Ultimately, what is 470 



 

 

most important, is that when a problem is approached, that the best statistical method to answer 471 

the question at hand is used. 472 

 473 
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Table 1. Prior probability distributions used in the von Bertalanffy growth model. The normal 483 

distribution is parameterized with the mean and precision (1/σ2) and the uniform distribution is 484 

parameterized with minimum and maximum values. A reference prior for standard deviation (σ) 485 

was used under both conditions. 486 

Parameter Reference prior probability Informative prior probability 

Log(L∞) Normal(0, 1/1000) Normal(4.27, 0.351) 

Log(κ) Normal(0, 1/1000) Normal(-1.16, 0.546) 

t0 Normal(0, 1/1000) Normal(-0.47, 0.522) 

σ Uniform(0, 100) 

 487 

 488 

  489 



 

 

Table 2. Posterior probability distributions from the von Bertalanffy growth model based on 490 

reference and informative prior probability distributions, reported as median (lower and upper 491 

95% Credible Interval). Note, L∞ (cm) and k (y-1) have been back transformed to the original 492 

scale. 493 

Parameter Reference prior probability Informative prior probability 

L∞ 109 (64, 505) 58 (54, 63) 

κ 0.06 (0.01, 0.22) 0.40 (0.31, 0.53) 

t0 -5.75 (-9.24, -2.58) -1.12 (-1.54, -0.72) 

σ 2.83 (2.23, 3.75) 3.33 (2.58, 4.48) 

 494 

  495 



 

 

Figure 1. Stacked frequency plot showing the time series of number of published articles that use 496 

Bayesian analysis in fisheries related journals by year between 2000 and 2016. Journals grouped 497 

by different shades of gray.  498 

 499 
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Figure 2. Bayesian inference flow chart using a description (A) and equations (B). 501 

 502 
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Figure 3. Histogram of data distribution of relative weight from 1992 (light gray) and 2002 504 

(black). Dark gray histogram represents the prior probability distribution of the mean relative 505 

weight for each group, see Figure 4 for full prior probability distribution.  506 

 507 
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Figure 4. Prior probability distribution (inlayed dark gray histogram and dark grey histogram in 509 

main figure) and posterior probability distribution of mean relative weight in 1992 (light gray 510 

histogram) and 2002 (black histogram). Prior probability distribution is inlayed to show the full 511 

probability distribution because it appears flat when the x-axis is scaled to show details of 512 

posterior probability distribution. 513 

 514 
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Figure 5. Violin plots of probability distributions for parameters of the von Bertalanffy growth 516 

model. Area within the violin plot represent the probability of parameter values, the widest 517 

portion of the violin plot indicates the highest probability. Solid points represent median of the 518 

probability distribution and solid lines represent 95% Credible Intervals. Group A are reference 519 

prior probability distributions for each parameter (because of the extreme uncertainty in the 520 

prior, it appears flat), Group B are the posterior probability distributions based on reference prior 521 

probability distribution, Group C are informative prior probability distribution for each 522 

parameter (see Table 1 for details), and Group D are the posterior probability distributions based 523 

on informative prior probability distribution. 524 



 

 

 525 



 

 

Figure 6. Posterior probability distribution of the standard deviation from the von Bertalanffy 526 

mode using reference prior probability distributions (left) and informative prior probability 527 

distributions (right). 528 

 529 

  530 



 

 

Figure 7. Mean growth curves based on reference (orange) and informative (blue) prior 531 

probability distributions. Points represent observed values, dashed line is the median of the 532 

posterior probability distribution with reference prior probability distributions, solid line is the 533 

median of the posterior probability distribution with informative prior probability distributions, 534 

shaded areas represent the 95% credible regions for the reference (orange) and informative (blue) 535 

prior probability distributions. 536 

 537 
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