
1 

 

Temporal variation in total phosphorus concentrations revealed from a 1 

multidecadal monitoring program on Big Platte Lake, Michigan 2 

 3 

Travis O. Brenden •••• Reneé Reilly •••• Edward Eisch •••• Aaron Switzer •••• Gary E. Whelan 4 

 
5 

Travis O. Brenden • Reneé Reilly 
6 

Quantitative Fisheries Center, Department of Fisheries and Wildlife, Michigan State University, 7 

East Lansing, MI 48824 USA  8 

 9 

 10 

Edward Eisch • Aaron Switzer • Gary E. Whelan 11 

Fisheries Division, Michigan Department of Natural Resources, P.O. Box 30446, Lansing, MI 12 

48909 USA 13 

 14 

Corresponding author contact information: Travis O. Brenden; brenden@msu.edu; 517-930-15 

2156 16 

 17 

Abstract  Effective water quality management depends on enactment of appropriately-designed 18 

monitoring programs to reveal current and forecasted conditions.  Because water quality 19 

conditions are influenced by numerous factors, commonly measured attributes such as total 20 

phosphorus (TP) can be highly temporally varying.  For highly varying processes, monitoring 21 

programs should be long term and periodic quantitative analyses are needed so that temporal 22 

trends can be distinguished from stochastic variation, which can yield insights into potential 23 

modifications to the program.  Using generalized additive mixed modeling, we assessed temporal 24 

(yearly and monthly) trends and quantified other sources of variation (daily and subsampling) in 25 

TP concentrations from a multidecadal depth-specific monitoring program on Big Platte Lake, 26 

Michigan.  Yearly TP concentrations decreased from the late 1980s to late 1990s before 27 

rebounding through the early 2000s.  At depths of 2.29 to 13.72 m, TP concentrations have 28 

cycled around stationary points since the early 2000s, while at the surface and depths ≥ 18.29 29 
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concentrations have continued declining.  Summer and fall peaks in TP concentrations were 30 

observed at most depths, with the fall peak at deeper depths occurring one month earlier than 31 

shallower depths.  Daily sampling variation (i.e., variation within a given month and year) was 32 

greatest at shallowest and deepest depths.  Variation in subsamples collected from depth-specific 33 

water samples constituted a small fraction of total variation.  Based on model results, cost-saving 34 

measures to consider for the monitoring program include reducing subsampling of depth-specific 35 

concentrations and reducing the number of sampling depths given observed consistencies across 36 

the program period. 37 

 38 

Key Words: water quality; monitoring program; generalized additive mixed model; Big Platte 39 

Lake   40 
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Introduction 41 

 42 

Water quality monitoring, which entails the collection of physical, chemical, and/or biological 43 

characteristics of water through statistical sampling, is a fundamental component of effective 44 

water quality management (Ward et al. 1986; Dodds et al. 2012). Information derived from water 45 

quality monitoring can reveal the current condition of a system, as well as be used to forecast 46 

expected results stemming from alterations in management policies, effects of invasive species, 47 

or variations in climate and other large-scale processes, such as land use (Moore et al. 1976; 48 

Adrian et al. 2009; Glaser et al. 2009).  In the United States, passage of the amended Clean 49 

Water Act in 1972, which mandated control of pollutants into navigable waters, prompted many 50 

agencies to enact monitoring programs so that compliance with regulations could be monitored 51 

(LaBeau et al. 2013). Similarly, European Union (EU) states intensified water quality monitoring 52 

after parliament adopted the Water Framework Directive in 2000, which committed EU states to 53 

achieving “good” water quality status in all water bodies (Fölster et al 2014).  While federal 54 

statutes create the framework for many monitoring programs, monitoring efforts are often 55 

implemented in partnership with state and local agencies, private individuals, consulting firms, 56 

and non-governmental organizations.  57 

Water quality goals and standards vary greatly across systems and states, but usually 58 

include protecting recreational uses of waters, ensuring consumable fish, protecting and restoring 59 

aquatic ecosystems, and ensuring safe drinking water and public health.  Likewise, goals of 60 

water quality monitoring programs can be diverse, and include elements related to determination 61 

of trends, compliance with water quality standards, and/or assessment of environmental impacts 62 

(Whitfield 1988).  Ideally, the sampling strategy associated with a particular monitoring program 63 
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is developed considering both water quality and monitoring goals in combination as they both 64 

influence whether collected data can actually determine whether goals have been met (Moore et 65 

al. 1976; Whitfield 1988).  Critical design features of sampling strategies for water quality 66 

monitoring include measurement time span, measurement frequency, and method of 67 

measurement (Moore et al. 1976).   68 

Water quality monitoring involves sampling a time-varying stochastic process (Loftis and 69 

Ward 1980), and a range of factors can affect the measured attribute including anthropogenic 70 

disturbance and/or management policies, climate, and instrumentation error/noise (Moore et al. 71 

1976; Loftis and Ward 1980).  Together, these factors can lead to a high degree of temporal 72 

variability in water quality attributes.  Ecological and environmental processes that are 73 

characterized by high degree temporal variability require long-term monitoring programs so that 74 

process patterns (i.e., trends) can be separated from noise, and that the relative importance of 75 

different components of variation can be assessed (Hirsch et al. 1982; Franklin 1989; Pace and 76 

Cole 1989; Dodds et al. 2012).  When short-term monitoring programs are used to characterize a 77 

process with high temporal variability, problems can arise because management decisions may 78 

be made based on anomalous random results (Dodds et al. 2012).   79 

For water-quality management to benefit fully from a long-term monitoring program, 80 

periodic quantitative analysis of collected data also is necessary (Moore et al. 1976; Franklin 81 

1989; Pace and Cole 1989).  Ward et al. (1986) described water-quality monitoring as suffering 82 

from a “data-rich but information-poor” syndrome because of what they believed were 83 

inadequate attempts to extract meaningful information from collected data. This in turn can put 84 

monitoring programs at risk of termination because benefits cannot be easily communicated to 85 

members of the public, agency administrators, or government officials (Ward et al. 1986).  86 
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Quantitative analyses of the data resulting from long-term water-quality monitoring programs 87 

can be used to assess short- (seasonal) and long-term (annual) temporal variation (i.e., trends) in 88 

the attribute of interest, which can indicate whether management policies are having desired 89 

effects or require modification (Whitfield 1988).  Quantitative analyses can also be used to 90 

assess other components of variation in the attribute of interest due to factors such as 91 

instrumentation nose and spatial variability, which may provide beneficial information for 92 

making improvements to the monitoring program (Moore et al. 1976; Beck 1987). 93 

 Big Platte Lake (44°41.48′N, 86°05.63′W) is a 1,020-ha lake located in the northwest 94 

region of the state of Michigan’s Lower Peninsula in Benzie County (Fig. 1).  Since the late 95 

1980s, total phosphorus (TP) in Big Platte Lake has been intensively monitored as part of 96 

litigation involving phosphorus discharge from the state of Michigan’s Platte River State Fish 97 

Hatchery (PRSFH) located upstream from Big Platte Lake.  As part of this monitoring, TP 98 

concentrations have been measured at multiple depths from a single site approximately every 99 

two weeks with triplicate readings taken at each depth. The long-term monitoring of Big Platte 100 

Lake and the sampling strategy employed in the monitoring program (i.e., consistent 101 

measurement techniques employed over a regular schedule) provide a rather unique opportunity 102 

for assessing variation in TP from an inland lake (Hirsch et al. 1982).  Prior research by Smith 103 

and Canale (2015) assessed volume-weighted averaged TP concentrations from Big Platte Lake 104 

using a subset (2005 to 2013) of data from the monitoring program for determining whether the 105 

sampling program was appropriate for assessing compliance with a numerical standard (see Site 106 

description).  From this analysis, it was determined that the sampling program was more 107 

intensive than needed based on recent measurements and that reducing the number of readings 108 

per depth would still have high power for comparison against the numerical standard (Smith and 109 
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Canale 2015).  An assessment of temporal trends in the depth-specific TP concentrations across 110 

the entire period of the monitoring program has not previously been conducted.  The goal for this 111 

study was to quantify temporal (yearly, monthly) trends and assess other components of variation 112 

(daily, subsampling) variation in depth-specific TP concentrations from the multidecadal, depth-113 

specific monitoring program from Big Platte Lake.  A rigorous quantitative analysis 114 

decomposing temporal trends of TP concentrations in Big Platte Lake and the variability in daily 115 

and subsampling variations will offer insights into possible modifications to the lake’s water 116 

quality monitoring program and aid in the design of programs for other lakes in the region (Beck 117 

1987).  According to Pace and Cole (1989), dissemination of results on interannual variability in 118 

monitored attributes from long-term studies is important because the findings can have broad 119 

relevance.     120 

 121 

Materials and methods 122 

 123 

Site description 124 

 125 

Big Platte Lake lies within the Platte River watershed, which has a total surface area of 126 

49,840 ha (Fig. 1).  Land use/cover in the watershed is predominantly upland and lowland forest 127 

(61.1%), followed by upland openland (16.9%), agriculture (9.4%), water (7.5%), and urban 128 

(2.7%) (Fig. 1).  Mean and maximum depths of Big Platte Lake are 4.6 and 27.4 m, respectively 129 

(Tonello 2010).  Shoreline development of Big Platte Lake is heavy with many homes and 130 

cottages located around the lake’s perimeter with the exception of the southeast shoreline 131 
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(Tonello 2010). The lake is considered oligotrophic with algal growth limited by phosphorus 132 

levels (Canale et al. 2004).   133 

 The PRSFH, which is operated by the Michigan Department of Natural Resources 134 

Fisheries Division (DNR), is located approximately 13 km upstream from the upper end of Big 135 

Platte Lake (Fig. 1).  The PRSFH is the primary producer of Coho salmon (Oncorhynchus 136 

kisutch) for stocking in Michigan, although Chinook salmon (Oncorhynchus tshawytscha), 137 

Atlantic salmon (Salmo salar), and walleye (Sander vitreus) also are produced at the hatchery.  138 

Historically, the PRSFH used surface water from the Platte River for fish production with the 139 

water subsequently becoming enriched with phosphorus from fish egestion and unconsumed feed 140 

prior to its being discharged back into the river.  In the 1970s, phosphorus loading from the 141 

PRSFH was estimated to be as high as 1,960 kg/yr (Canale et al. 2004), which prompted a 142 

lawsuit in the 1980s by local residents of Big Platte Lake (Platte Lake Improvement Association) 143 

against the DNR to reduce phosphorus discharge from the hatchery.  In 2000, a settlement 144 

agreement between the parties was reached whereby phosphorus discharge from the hatchery 145 

after facility renovations would be reduced to a maximum of 79.5 kg/yr and no more than a total 146 

of 34.0 kg in any 3-month period (Canale et al. 2004).  The settlement agreement also stipulated 147 

that volume-weighted averaged TP concentration of Big Platte Lake should be less than 8.0 μg/L 148 

95% of the time (Canale et al. 2004).  Facility renovations of the PRSFH were completed in 149 

2004.  Between 2000 and 2009, the PRSFH was occasionally out of compliance with the 150 

settlement agreement.  Since summer 2010, phosphorus discharge from the PRSFH has complied 151 

with the settlement agreement.   152 

 Canale et al. (2010) constructed a phosphorus budget for Big Platte Lake using 153 

monitoring data collected to the mid 2000s.  According to their analysis, based on typical loads 154 
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and lake inflow rates, 86% of the baseline total phosphorus load to Big Platte Lake originated 155 

from nonpoint sources (Canale et al. 2010).  Other sources based on their analyses included 156 

atmospheric deposition (4%), discharge from the PRSFH (3%), and internal loading from 157 

sediment release (3.5%) (Canale et al. 2010).   158 

   159 

Sampling methods 160 

 161 

The description of the TP sampling in Big Platte Lake has previously been described in 162 

Canale et al. (2004, 2010) and Smith and Canale (2015) and is only briefly summarized here. TP 163 

concentrations have been measured at 8 depths (≈ 0.0, 2.29, 4.57, 9.14, 13.72, 18.29, 22.86, and 164 

27.43 m below the surface) since 1989 from a single site located over the deepest portion of the 165 

lake, although sampling at the 2.29 m depth did not begin until early 1993.  For this study, we 166 

used data collected from November 1989 to November 2014.  Sampling has occurred 167 

approximately every 2 weeks, weather permitting.  Monitoring during the winter months is 168 

sometimes difficult because it depends on ice conditions being suitable for safe sampling; the 169 

longest time span between successive samples was 105 days during winter 2002.  Early in the 170 

monitoring period (pre 1999), sampling was sometimes conducted weekly.  Across the entire 171 

monitoring program period, water samples were collected on average every 16.8 days.    172 

Water samples are collected by lowering a Kemmerer water sampler to the desired depth 173 

and activating the sampler trip heads.  A single water sample is collected at each depth, with 174 

triplicate subsamples taken from each sample for TP analysis.  TP concentrations are measured 175 

using the acid persulfate digestion-ammonium molybdate method (Eaton et al. 2005).  176 

Laboratories that have conducted the TP analyses changed in 2002 and 2012.  Because TP 177 
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concentrations in Big Platte Lake are near the detection limits for laboratory operations, several 178 

quality control measures are implemented to improve accuracy and precision of TP concentration 179 

measurements (Smith and Canale 2015).  Occasionally, TP concentrations from a subsample are 180 

discarded because of presumed contamination. This was generally a rare occurrence as the 181 

average number of subsamples available during the course of the study ranged from 2.95 to 2.97 182 

for the various depths.  The time series of measured TP concentrations by depth from Big Platte 183 

Lake is shown in Fig. 2.  In total, 12,488 TP concentration measurements were used for this 184 

study.  185 

 186 

Statistical analyses 187 

 188 

 For analyses, TP concentrations were loge transformed to help stabilize variation in 189 

measurements across the time-series.  A generalized additive mixed model was fit to the 190 

transformed concentrations that included depth-specific intercepts, smoothing components for 191 

sampling year, sampling month, and the tensor-product interaction (Wood 2017) between 192 

sampling year and month, and a sampling date random effect term that was unique to each 193 

measurement depth.  The smoothing components for sampling year, sampling month, and the 194 

interaction between sampling year and month were intended to describe the temporal trends in 195 

TP while the sampling date random effect captured the short-term (i.e., daily) variation in TP 196 

concentrations.  With this model, the residual component accounted for the variation among 197 

subsample concentrations across the sampling depths as well as other stochastic sources of 198 

variation.   Smoothing components were based on penalized regression splines with the degree of 199 

smoothness estimated as part of the model fitting process.  The number of knots for the spline 200 
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smoothing components was set at 24 knots for year, 12 knots for month, and 12 knots for the 201 

year×month interaction. Models were fit by maximum likelihood in R version 3.3.2 (R Core 202 

Team 2016) using the bam function from the mcgv library (Wood 2011).  Because of the size of 203 

the dataset and the complexity of the model, model estimation was performed on Michigan State 204 

University high-performance compute clusters.   205 

 After fitting the generalized additive mixed model, Pearson residuals were calculated and 206 

autocorrelation in the depth-specific residuals was assessed in R using the acf function from the 207 

stats library (R Core Team 2016).   Autocorrelation in the residuals by sampling depth was 208 

assessed using two ways: 1) by randomly sampling a single residual on each sampling date, and 209 

2) by averaging the residuals for each sampling date.  For the autocorrelation analysis based on 210 

random sampling, we repeated the analysis 1,000 times and calculated the average of the 211 

autocorrelation value across the iterations.  We additionally conducted a breakpoint analysis of 212 

the depth-specific residuals using the cross-entropy method for normally distributed random 213 

variables described in Priyadarshana and Sofronov (2015).  The purpose of the breakpoint 214 

analysis of the generalized additive mixed model time-series of residuals was to determine if 215 

there were points in the time series where the mean or variance of the residuals changed, which 216 

might suggest the presence of an influencing factor that was unaccounted for by the generalized 217 

additive mixed model.  The breakpoint analysis was conducted in R using the breakpoint 218 

package (Priyadarshana and Sofronov 2016).  Breakpoints in the mean of the residuals was 219 

determined using CE.Normal.Mean function, whereas breakpoints in the mean or variance of the 220 

residuals was determined using the CE.Normal.MeanVar function.  The maximum number of 221 

possible breakpoints was set at 20 with the optimum number of breakpoint determined using 222 

Bayesian information criterion model selection (Priyadarshana and Sofronov 2016). 223 
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  224 

Results 225 

 226 

 Transformation of the TP concentrations resulted in more homogenous variation across 227 

the time series, although there remained some concentrations that might be considered as outliers 228 

at the shallowest and deepest measurement depths (Fig. 3).  Plots of both the raw (Fig. 3) and 229 

transformed (Fig. 4) measurements suggest that TP concentrations declines early in the time 230 

series, followed by a rebound and subsequent periodicity in the concentrations.  Visual 231 

determination of temporal trends in the TP concentrations is difficult because of the considerable 232 

amount of variation evident in measurements from the sampling program.  233 

 The generalized additive mixed model fit to the transformed TP concentrations 234 

converged on a solution, although it took nearly 65 hours for the model to be estimated even with 235 

analyses performed on Michigan State University high-performance compute clusters.   The 236 

adjusted R2 for the estimated model was 90.0%.  The basis dimensions for the smoothing effects 237 

for year, month, and year×month interaction were appropriate based on residual randomization 238 

tests described in Wood (2017).   239 

The depth-specific intercepts for the generalized additive mixed model indicated that TP 240 

concentrations increased with sampling depth with deeper areas having the largest differences 241 

between sampling depths (Table 1).  In other words, there was a larger difference in TP 242 

concentrations between the 22.86 and 27.43 m sampling depths then between the 0.0 and 4.57 m 243 

sampling depths.  The smoothing components for year were largely consistent across the 244 

different sampling depths and suggested generally declining TP concentrations from 1989 to the 245 

late 1990s followed by increasing concentrations from the late 1990s to the early 2000s (Fig. 4).  246 
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At sampling depths of 2.29 m to 13.72 m, TP concentrations exhibited some cycling from the 247 

early 2000s to 2014, whereas at the surface and sampling depths of 18.29 to 27.43 m TP 248 

concentrations steadily declined with more rapid declines at the deeper depths (Fig. 4).    249 

The smoothing components for month were consistent for sampling depths ranging from 250 

4.57 to 18.29 m with peak concentrations occurring in June and around November (Fig. 5).  At a 251 

sampling depth of 0 m, a peak in transformed TP concentrations also occurred in November (Fig. 252 

5), with a somewhat smaller peak around March.  At the 22.86 and 27.43 m sampling depths, 253 

transformed TP concentrations peaked in June with a smaller peak in September.  At the deepest 254 

sampling depth, there was another peak in concentrations around January (Fig. 5).  For the 2.29 255 

m sampling depth, the estimated smoothing component for month was linear and suggested 256 

generally increasing concentrations during the course of a year (Fig. 5). 257 

 The smoothing components for the year×month interactions suggested that for each 258 

sampling depth there were particular years where TP concentrations exhibited even greater 259 

monthly fluctuations than what was suggested from the estimated monthly smoothing component 260 

(Fig. 6).  For example, across most sampling depths October to November was typically 261 

associated with peak TP concentrations based on the estimated monthly smoothing component.  262 

Based on the smoothing component for the interaction between year and month, in the early 263 

years of the sampling program there was a negative effect (i.e., TP concentrations were lower 264 

than what was predicted from the additive year and month effects) predicted from the year and 265 

month interaction whereas in later years there was a positive effect (i.e., TP concentrations were 266 

greater than what was predicted from the additive year and month effects) (Fig. 6).  Conversely, 267 

the opposite was true (positive effect predicted for early in the time series and negative effect 268 

predicted for later in the time series) for the March and April sampling months (Fig. 6).   269 
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 The standard deviation estimates for the sampling date random effect were the largest and 270 

nearly equal at the shallowest (0 m; 0.218) and deepest (27.43 m: 0.225) sampling depths 271 

meaning that these depths had the largest daily fluctuations in TP concentrations (Table 2).  The 272 

standard deviation estimates for the sampling date random effort for the other depths ranged 273 

0.155 to 0.187 (Table 2).  The standard deviation for the residual component of the generalized 274 

additive mixed model, which accounts for all remaining unexplained variation in the data 275 

including factors such as variation among subsamples, was 0.090 (Table 2).     276 

 Examination of model predictions based only on the smooth terms for year, month, and 277 

year×month interactions (i.e., absent the predictions from the sampling date random effect), 278 

supported the general pattern from the visual examination of the transformed TP concentrations 279 

(i.e., initial decline early in the sampling period followed by somewhat of a rebound in the late 280 

1990s and early 2000s) but also better revealed some of the seasonal trend in the concentrations 281 

(Fig. 7).  Including the random effect predictions in the model predictions clearly demonstrated 282 

the extent of sampling date variation in the concentrations across the time series (Fig. 8).   283 

 The lag-1 autocorrelation when sampling date residuals were randomly sampled was less 284 

than 0.005 for each of the sampling depths.  Conversely, when sampling date residuals were 285 

averaged, the lag-1 autocorrelations ranged from 0.103 to 0.235 for the sampling depths, 286 

suggesting there was some, although not strong, positive autocorrelation in TP concentrations 287 

across sampling dates that was not accounted for in the generalized additive mixed model fit to 288 

the observed data.      289 

 No mean breakpoints were detected from the breakpoint analyses of the residuals from 290 

the generalized additive mixed model at any of the sampling depths.  When breakpoint analyses 291 

were allowed to account for changes in mean or variances, some breakpoints were identified for 292 
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each sampling depth (Fig. 9).  The number of estimated breakpoints for each of the sampling 293 

depths ranged from two (0 m) to nine (27.43 m).  All sampling depths except for the 27.43 m 294 

sampling depth had four or fewer estimated breakpoints.  At the 0.0 and 2.29 m sampling depths, 295 

breakpoints were identified within a couple of months of when the first laboratory change 296 

occurred (Fig 9).  Across all sampling depths, breakpoints were identified within 8 months of 297 

when the second laboratory occurred (Fig. 9).    298 

 299 

Discussion 300 

 301 

Maintaining water quality monitoring programs can be expensive and logistically 302 

challenging (Dodds et al. 2012; La Beau et al. 2013); consequently, many monitoring programs 303 

are characterized by short periods and irregular sampling (Whitfield 1988; Stow 1995). 304 

Oftentimes, monitoring programs are initiated to evaluate the success of a particular restoration 305 

project and consequently programs may have limited funding or have been instigated by a 306 

political directive (Lindemayer and Likens 2009), which likely contributes to the paucity of long-307 

term monitoring programs.  One proposed solution for dealing with limited funding to support 308 

monitoring is to establish endowments and use the earned interest to support the program 309 

(Steinman and Ogdahl 2004).  Despite the associated challenges in maintaining long-term 310 

monitoring programs, their importance is widely recognized among ecologists and natural 311 

resource managers (Lindemayer and Likens 2009).  Long-term monitoring programs are crucial 312 

for separating pattern from noise, and increase the chances of finding ecological “surprises” (i.e., 313 

unexpected outcomes that lead to major paradigm shifts in thinking) in the measured attribute 314 

(Lindenmayer et al. 2010; Dodds et al. 2012).  As well, data arising from long-term monitoring 315 
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can prove useful for answering/testing future questions/hypotheses that were never foreseen 316 

when monitoring was initiated (Burt et al. 2014).   317 

What length of time constitutes “long term” for a monitoring program is admittedly 318 

equivocal (Strayer et al. 1986).  In a case-study review of long-term data sets, Dodds et al. 319 

(2012) evaluated six monitoring programs that ranged in duration from 10 to 80 yrs.  Similarly, 320 

Lindenmayer et al. (2010) in a review of the types of ecological surprises that can result from 321 

long-term studies considered monitored programs with durations of at least 25 years.  For this 322 

study, we analyzed a 25-year time series of TP concentrations from Big Platte Lake, which is in 323 

the range of time spans of the case studies evaluated by Lindenmayer et al. (2010) and Dodds et 324 

al. (2012).  Dodds et al. (2012) noted that nearly every ecological study that involves some form 325 

of active monitoring covers only a small fraction of time from a paleoecological perspective.  326 

Nevertheless, they defined a long-term data set as one that is “measured through time using 327 

standardized methods that allow for the elucidation of ecological system responses to drivers 328 

(e.g., linear, lag, threshold, regime shift) to drivers, disturbances (e.g., presses or pulses) 329 

recovery from disturbances, and relevant interactions for a given hypothesis” (Dodds et al. 330 

2012).  Major drivers of phosphorus levels in lakes include point sources, nonpoint sources, and 331 

internal loading, with point sources tending to be temporally stable and nonpoint sources and 332 

internal loading tending to be temporally variable due to linkages with seasonal agricultural 333 

activities, irregular climate events, and anthropogenic activities (Carpenter et al. 1998; Orihel 334 

2017).  While a 25-year time span is perhaps not long enough to distinguish major land use/ 335 

cover changes in the surrounding watershed or rare climatic events, it should be of sufficient 336 

duration for contrasting temporal variation at the scales of interest for this study (i.e., since major 337 

changes in the PRSFH operations were implemented).   338 
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As noted earlier, for management to benefit fully from a monitoring program periodic 339 

quantitative analysis of collected data is necessary (Moore et al. 1976; Franklin 1989; Pace and 340 

Cole 1989).  One of the recognized benefits from quantitative analysis of long-term monitoring 341 

data is that it provides a framework for organizing information on the measured attributes 342 

conditioned by the assumed process and underlying statistical model (Stow 2015). According to 343 

Ward et al. (1986), water quality monitoring programs must have firmer scientific and systematic 344 

bases if they are to provide useful information for water quality management.  Analyses similar 345 

to those conducted in this study can reveal the scale of variability in the attribute, which in turn 346 

can yield important information for how a monitoring program can be modified.  Expansion of 347 

the type of continuous monitoring conducted at Big Platte Lake to more systems and watersheds 348 

across the state or larger spatial areas (e.g., Laurentian Great Lakes) would likely prove 349 

beneficial for providing key information on temporal and systematic changes in important water 350 

quality attributes.    351 

Monitoring of TP concentrations in Big Platte Lake was initiated because of concerns and 352 

subsequent litigation regarding phosphorus discharge from the PRSFH.  The PRSFH was 353 

historically regarded as the major point source for TP in Big Platte Lake with a peak phosphorus 354 

loading of approximately 2000 kg/yr in the mid 1970s (Canale et al. 2004).  Since the late 1970s, 355 

phosphorus loading from the PRSFH has declined steadily, with a loading of between 300 and 356 

400 kg/yr in the late 1980s/early 1990s to around 80 kg/yr starting in the late 1990s through to 357 

the present (Canale et al. 2004, 2010).  The year effect predicted from the generalized additive 358 

mixed model fit to the Big Platte Lake TP monitoring program predicted a consistent decline in 359 

TP across all sampling depths from 1989 to the late 1990s, mirroring the decrease in phosphorus 360 

loading from the hatchery.  However, the increase in the predicted TP year effect from the late 361 



17 

 

1990s to the mid 2000s suggests that whereas phosphorus discharge from the PRSFH was 362 

reduced, loading from other sources increased.  Except for the PRSFH, no other major point 363 

source of phosphorus has been identified in the Platte River watershed (Canale et al. 2010), 364 

which points to increased phosphorus input from nonpoint sources, internal loading, or some 365 

other source for the increase in TP concentrations.  Canale et al. (2004) similarly noted that 366 

volume-weighted averaged TP concentrations had declined by approximately 35% from the mid 367 

1970s to the early 2000s despite an approximate 95% reduction in point source phosphorus 368 

loading.  Canale et al. (2010) attributed the lack of greater reductions in TP concentrations in 369 

Platte Lake to increases in non-point source loading and evaluated some remedial actions that 370 

might help to further reduce TP concentrations in the lake, although they acknowledged that 371 

predicting internal loading of phosphorus can be difficult.  In other systems, internal loading of 372 

phosphorus has been implicated as a major reason why water quality does not immediately 373 

improve post-implementation of management actions (Søndergaard et al. 2003).  Fluctuations in 374 

internal loading of phosphorus can result from changes in water chemistry, degree of external 375 

loading of organic material, chemical concentrations of surface water run-off, and changes in 376 

fish and invertebrate community composition (Søndergaard et al. 2003; Orihel et al. 2017).  377 

While Big Platte Lake is presently classified as oligotrophic, based on past litigation history it 378 

seems clear that residents near the lake have ongoing concerns about TP concentrations and 379 

consequently efforts to identify the phosphorus sources should be undertaken.  380 

 Monthly variations in TP concentrations can vary considerably across systems, with peak 381 

TP concentrations in some systems occurring in the summer while in other systems peak 382 

concentrations occur in late fall or early winter, or there is very little monthly variation in 383 

concentrations (Johengen et al. 1994; Nicholls et al. 2001).  In Big Platte Lake, peak TP 384 
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concentrations at most depths occurred in June and in October; an additional peak occurred in 385 

February at the surface and deepest sampling depths.  The June peak is likely caused by high 386 

precipitation or runoff from melting snow during this time of year, which leads to excessive 387 

runoff from surrounding watersheds or atmospheric deposition.  Fall peaks of TP concentrations 388 

in other lakes have been attributed to lake turnover, which results in increases in TP 389 

concentrations due to release from sediments (Stewart and Markello 1974).  Big Platte Lake does 390 

stratify every summer with the deeper (≥18.29 m) portions of the lake turning anoxic, which 391 

spurs internal loading of phosphorus (Orihel et al. 2017).  Based on the monthly smoothing 392 

component estimated from the generalized additive mixed model, a peak concentration of TP at 393 

the deepest sampling depths occurred approximately one month earlier than at the other sampling 394 

depths, which perhaps is suggestive of phosphorus release from the sediments around this time 395 

of year.  Additional research into factors causing seasonal variations in TP concentrations would 396 

be beneficial. 397 

Based on breakpoint analyses of the model residuals, there is evidence to suggest that the 398 

laboratories that have been responsible for determining the TP concentrations from the collected 399 

samples have varied in their performance.  As previously indicated, TP concentrations in Big 400 

Platte Lake are near the detection limits for laboratory operations.  When the first laboratory 401 

change occurred in 2002, the new lab switched from using a spectrophotometer with a light path 402 

of 1 cm to one with a light path of 10 cm, which provided more accurate measures of absorption 403 

and thus more accurate measurements of TP concentrations (G. Whelan, personal observation).  404 

The laboratory change that occurred in 2012 was primarily to improve the timeliness with which 405 

measurements of TP concentrations from the Big Platte Lake monitoring program could be 406 

obtained. The timeliness of obtaining TP concentration measurement is important as quicker 407 
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results allows for faster adjustments in PRSFH operations, which facilities the hatchery’s ability 408 

to meet the guidelines agreed upon in the settlement agreement.  Methodologies between the 409 

send and third laboratories are believed to be consistent, including the use of 10-cm 410 

spectrophotometer light path for measuring TP concentrations.  Nevertheless, the proximity of 411 

the identified breakpoints across all sampling depths to when the laboratory change occurred in 412 

2012 suggests some possible methodological change that is contributing to greater variation in 413 

TP concentration measurements, although we cannot entirely rule out that the increased variation 414 

is environmentally caused.  With long-term monitoring programs, shifts in laboratories or 415 

laboratory methods are likely unavoidable. Consequently, developing contingency plans for how 416 

to deal with these type of changes, such as instituting a time-period where samples are processed 417 

by both laboratories or methodologies so results can be compared and contrasted, should be a 418 

specified component of a monitoring program framework so that consequences of these changes 419 

can be conclusively determined. 420 

 Whitfield (1988) recommended that water-monitoring programs initially be very 421 

conservative and collect samples frequently, with the aim of modifying the program after initial 422 

evaluation of collected data.  Similarly, Lindenmayer and Likens (2009) suggested that long-423 

term monitoring programs switch to an adaptive framework that allows sampling methodology, 424 

as well as underlying questions and analytic approaches, to evolve over time, while 425 

simultaneously ensuring the integrity of the long-term data record is maintained.  Based on our 426 

modeling results, if cost-saving measures were to be implemented to the Big Platte Lake water-427 

quality monitoring program, perhaps the best option would be to reduce the number of 428 

subsamples collected at each sampling depth.  We would recommend reducing the number of 429 

subsamples rather than reducing the sampling frequency given the differences in sizes of the 430 
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standard deviations for the sampling date random effect and the residual component of the 431 

model.  With respect to other modifications to the sampling program, maintaining monthly 432 

sampling would be prudent given the degree of variation observed across months.  Given 433 

qualitatively similar temporal trends observed at some depths, an additional cost-saving measure 434 

that might be warranted would be to reduce the number of sampling depths to a subset of what is 435 

currently sampled. For example, results at the 22.86 and 27.43 m depths for both year and 436 

monthly effects were sufficiently similar that it may not be necessary to continue sampling both 437 

depths.  Similarly, results at the 4.57 to 13.72 m depths may also be sufficiently similar that it is 438 

not necessary to continue sampling each of these depths.   439 

 The intent of this study was to assess temporal variation in TP concentrations from the 440 

long-term monitoring that has been conducted on Big Platte Lake to inform possible changes to 441 

the lake’s sampling program and facilitate program design for other lakes in the region.  442 

Regional monitoring of TP concentrations in inland lakes can be beneficial for understanding 443 

broad-scale eutrophication fluctuation stemming from land-use changes in an area, but also can 444 

be used as a basis for understanding for assessing aquatic communities of monitored systems 445 

(Paukert and Willis 2003; Bachmann et al. 2012; Gorman et al. 2014).  While the Big Platte Lake 446 

monitoring program provides a wealth of information pertaining to temporal variability in TP 447 

concentration, the dataset cannot be used to assess other important aspects of water quality 448 

monitoring programs, such as spatial variation or explorations of factors that might have given 449 

rise to the temporal variation in TP concentrations that we observed.  Previous research 450 

conducted on large inland lakes in North America such as Lakes Champlain, Huron, Erie, and 451 

Ontario have shown that trends in TP concentrations can vary considerable across regions within 452 

a system (Nicholls et al. 2001; Smeltzer et al. 2012). Although Big Platte Lake is considerably 453 
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smaller than the aforementioned systems, how TP concentrations may spatially vary across the 454 

system and how any spatial variation might compare to temporal variation is not clear.  Some 455 

additional water quality attributes are collected as part of the Big Platte Lake monitoring 456 

program; however, these data were not collected across the entire time series, which limited our 457 

ability to conduct analyses to explain some of the observed variation in TP concentrations.  458 

Future monitoring programs on either Big Platte Lake or other inland lakes should consider the 459 

costs and benefits of expanding sampling coverage to more than one region and collecting 460 

information on possible explanatory variables for the water quality attribute under study to 461 

strengthen the forecasting quality of constructed models.  Additionally, according to Franklin 462 

(1989) and Lindenmayer et al. (2010), long-term studies benefit when they are able to encompass 463 

elements of experimentation so that responses tied to experimental alteration can be explicitly 464 

measured.  These changes will undoubtedly elevate costs of monitoring programs, but would 465 

also increase the chances of novel scientific discoveries from the programs (Lindenmayer et al. 466 

2010).   467 

 468 

Conclusions 469 

 470 

Modeling revealed nonlinear year and month trends in TP concentrations from Big Platte Lake, 471 

MI based on measurements collected from the multidecadal monitoring program.  Additionally, 472 

there was a high degree of daily variation in TP concentrations, with considerably lower 473 

variation associated with conducting triplicate measurements at each sampling depth.  Overall 474 

temporal trends in TP concentrations were different among some of the sampling depths, with 475 

none of the trends aligning well with phosphorus loading reductions that have occurred due to 476 
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operational changes at the PRSFH, which is the only major point source for phosphorus to the 477 

lake.  This mismatch between TP trends and PRSFH phosphorus loading suggests that reduced 478 

loading from the hatchery has been offset by increases in other sources.  Follow-up analyses of 479 

model residuals suggest laboratories that have processed Big Platte Lakes water samples have 480 

possibly differed in their ability to obtain precise measurements.  To lower monitoring program 481 

costs, reducing the number of readings at each sampling depth or reducing the number of 482 

sampled depths would be the best option based on modeling results.  Given widespread concerns 483 

about socio-economic and human health consequences of eutrophication, we anticipate TP 484 

monitoring of aquatic systems will continue to be a routine part of water quality management; 485 

the degree of temporal variation observed in this study suggest that sporadic or haphazard 486 

collections will unlikely yield an accurate picture of TP levels in the monitored system.  When 487 

designing long-term water quality monitoring programs, procedures for dealing with laboratory 488 

or methodological changes should be included in designs to ensure consistency in the time series. 489 

 490 

 491 

Acknowledgements  Funding for this research was provided by contributing partners of the 492 

Quantitative Fisheries Center, which includes Michigan State University, Great Lakes Fisheries 493 

Commission, Michigan Department of Natural Resources – Fisheries Division, and other 494 

Council of Lake Committee fishery management agencies.  The authors thank Wilfred Swiecki 495 

and other members of the Platte Lake Improvement Association for their efforts in maintaining 496 

the Big Platte Lake total phosphorus monitoring program and database.  This work was 497 

supported in part by Michigan State University through computational resources provided by the 498 



23 

 

Institute for Cyber-Enabled Research. This is publication 20XX-XX of the Quantitative Fisheries 499 

Center at Michigan State University.   500 

 501 

References  502 

 503 

Adrian, R., O’Reilly, C., Zagarese, H., Baines, S. B., Hessen, D. O., Keller, W., Livingstone, D. 504 

M., Sommaruga, R., et al. (2009). Lakes as sentinals of climate change. Limnology and 505 

Oceanography 54:2283-2297. doi: 10.4319/lo.2009.54.6_part_2.2283. 506 

Bachmann, R. W., Bigham, D. L., Hoyer, M. V., & Canfield, D. E., Jr. (2012). Phosphorus, 507 

nitrogen, and the designated uses of Florida lakes. Lake and Reservoir Management 508 

28:46-58. doi:10.1080/07438141.2011.650835. 509 

Beck, M. B. (1987). Water quality modeling: a review of the analysis of uncertainty. Water 510 

Resources Research 23:1393-1442. doi:10.1029/WR023i008p01393 511 

Burt, T. P., Howden, N. J. K., & Worrall, F. (2014). On the importance of very long-term water 512 

quality records. WIREs Water 1:41-48. doi: 10.1002/wat2.1001 513 

Canale, R. P., Harrison, R., Moskus, P., Naperala, T., Swiecki, W., & Whelan, G. (2004). Case 514 

study: reduction of total phosphorus loads to Big Big Platte Lake, MI through point 515 

source control and watershed management. Proceedings of the Water Environment 516 

Federation Watershed 4:1060-1076. doi:10.2175/193864704790896829. 517 

Canale. R. P., Redder, T., Swiecki, W., & Whelan, G. (2010). Phosphorus budget and 518 

remediation plan for Big Big Platte Lake, Michigan. Journal of Water Resources 519 

Planning and Management 136:576-586. doi:10.1061/(ASCE)WR.1943-5452.0000071. 520 



24 

 

Carpenter, S. R., Caraco, N. F., Correll, D. L., Howart, R. W., Sharpley, A. N., & Smith, V. H. 521 

(1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological 522 

Applications 8:559-568. doi:10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2. 523 

Dodds, W. K., Robinson, C. T., Gaiser, E. E., Hansen, G. J. A., Powell, H., Smith, J. M., Morse, 524 

N. B., Johnson, S. L., et al. (2012). Surprises and insights from long-term aquatic data 525 

sets and experiments. BioScience 62:709-721. doi:10.1525/bio.2012.62.8.4. 526 

Eaton, A. D., Clesceri, L. S., Rice, E. W., Greenberg, A. E., & Franson, M. H. (2005). Standard 527 

methods for the examination of water and wastewater, 21st edition. Washington D.C.: 528 

American Public Health Association. 529 

Fölster, J., Johnson, R. K., Futter, M. N., & Wilander, A. (2014). The Swedish monitoring of 530 

surface waters: 50 years of adaptive monitoring. Ambio 43(Suppl. 1):3-18. doi: 531 

10.1007/s13280-014-0558-z, 532 

Franklin, J. F. (1989) Importance and justification of long-term studies in ecology, In. G. E. 533 

Likens (Ed.), Long-term studies in ecology (pp. 3-19) New York: Springer.  534 

Glaser, D., Rhea, J. R., Opdyke, D. R., Russell, K. T.,  Ziegler, C. K., Ku, W., Zheng, L., & 535 

Mastriao, J. (2009). Model of zebra mussel growth and water quality impacts in the 536 

Seneca River, New York. Lake and Reservoir Management 25:49-72. doi: 537 

10.1080/07438140802714411. 538 

Gorman, M. W., Zimmer, K. D., Herwig, B. R., Hanson, M. A., Wright, R. G., Vaughn, S. R., & 539 

Younk, J. A. (2014). Relative importance of phosphorus, fish biomass, and watershed 540 

land use as drivers of phytoplankton abundance in shallow lakes. Science of the Total 541 

Environment 466-467:849-855. doi:10.1016/j.scitotenv.2013.07.106. 542 



25 

 

Hirsch, R. M., Slack, J. R., & Smith, R. A. (1982). Techniques of trend analysis for monthly 543 

water quality data. Water Resources Research 18:107-121. doi: 544 

10.1029/WR018i001p00107. 545 

Johengen, T. H., Johannsson, O. E., Pernie, G. L., & Millard, E. S. (1994). Temporal and 546 

seasonal trends in nutrient dynamics and biomass measures in Lakes Michigan and 547 

Ontario in response to phosphorus control. Canadian Journal of Fisheries and Aquatic 548 

Sciences 51:2570-2578. doi:10.1139/f94-257. 549 

LaBeau, M. B., Gorman, H., Mayer, A., Dempsery, D., & Sherrin, A. (2013). Tributary 550 

phosphorus monitoring in the U.S. portion of the Laurentian Great Lake Basin: Drivers 551 

and challenges. Journal of Great Lakes Research 39: 569-577. 552 

doi:10.1016/j.jglr.2013.09.014. 553 

Lindenmayer, D. B., & Likens, G. E. (2009). Adaptive monitoring: a new paradigm for long-554 

term research and monitoring. Trends in Ecology and Evolution 24:482-486. doi: 555 

10.1016/j.tree.2009.03.005. 556 

Lindenmayer, D. B., Likens, G. E., Krebs, C. J., & Hobbs, R. J. (2010). Improved probability of 557 

detection of ecological “surprises”. Proceeding of the National Academy of Sciences of 558 

the United States of America 107:21957-21962. doi:10.1073/pnas.1015696107. 559 

Loftis, J. C., & Ward, R. C. (1980). Water quality monitoring − some practical sampling 560 

frequency considerations. Environmental Management 4:521-526. doi: 561 

10.1007/BF01876889. 562 

Moore, S. F., Dandy, G. C., & DeLucia, R. J. (1976). Describing variance with a simple water 563 

quality model and hypothetical sampling programs. Water Resources Research 12:795-564 

804. doi:10.1029/WR012i004p00795. 565 



26 

 

Nicholls, K. H., Hopkins, G. J., Standke, S. J., & Nakamoto, L. (2001). Trends in total 566 

phosphorus in Canadian near-shore waters of the Laurentian Great Lakes. Journal of 567 

Great Lakes Research 27:402-422. doi:10.1016/S0380-1330(01)70656-9. 568 

Orihel, D. M., Baulch, H. M., Casson, N. J., North, R. L., Parsons, C. T., Seckar, D. C. M., & 569 

Venkiteswaran, J. J. (2017). Internal phosphorus loading in Canadian fresh waters: a 570 

critical review and data analysis. Canadian Journal of Fisheries and Aquatic Sciences 571 

74:2005-2029. doi: 10.1139/cjfas-2016-0500. 572 

Pace, M. L., & Cole, J. J. (1989). What questions, systems, or phenomena warrant long-term 573 

ecological study? In. G. E. Likens (Ed.), Long-term studies in ecology (pp. 183-185) New 574 

York: Springer.  575 

Paukert, C. P., & Willis, D. W. (2003). Aquatic invertebrate assemblages in shallow prairie lake: 576 

fish and environmental influences. Journal of Freshwater Ecology 18:523-536. 577 

doi:10.1080/02705060.2003.9663993. 578 

Priyadarshana, W. J. R. M, & Sofronov, G. (2015). Multiple break-points detection in array CGH 579 

data via the cross-entropy method. IEEE/ACM Transactions on Computational Biology 580 

and Bioinformatics 12:487-498. doi:10.1109/TCBB.2014.2361639. 581 

Priyadarshana, W. J. R. M, & Sofronov, G. (2016). breakpoint: An R Package for multiple 582 

break-point detection via the cross-entropy method. R package version 1.2. (www. 583 

CRAN.R-project.org/package=breakpoint). 584 

R Core Team. (2016). R: a language and environment for statistical computing. Vienna, Austria: 585 

R Foundation for Statistical Computing. (www.R-project.org). 586 



27 

 

Smeltzer, E., d. Shambaugh, A., & Stangel, P. (2012). Environmental change in Lake Champlain 587 

revealed by long-term monitoring. Journal of Great Lakes Research 38(Suppl. 1):6-18. 588 

doi: 10.1016/j.jglr.2012.01.002. 589 

Smith, E. P., & Canale, R. P. (2015). An analysis of sampling programs to evaluate compliance 590 

with numerical standards: total phosphorus in Big Platte Lake, MI. Lake and Reservoir 591 

Management 31:190-201. doi:10.1080/10402381.2015.1061073. 592 

Søndergaard, M., Jensen, J. P., & Jeppesen, E. (2003). Role of sediment and internal loading of 593 

phosphorus in shallow lakes. Hydrobiologia 506-509:135-145. doi: 594 

doi.org/10.1023/B:HYDR.0000008611.12704.dd. 595 

Steinman, A. D., & Ogdahl, M. (2004). An innovative funding mechanism for the Muskegon 596 

Lake AOC. Journal of Great Lakes Research 30:341-343. doi: 10.1016/S0380-597 

1330(04)70351-2. 598 

Stewart, K. M., & Markello, S. J. (1974). Seasonal variation in concentrations of nitrate and total 599 

phosphorus, and calculated nutrient loading for six lakes in western New York. 600 

Hydrobiologia 44:61-89. doi:10.1007/BF00036157. 601 

Stow, C. A. (2015). The need for sustained, long-term phosphorus modeling in the Great Lakes. 602 

Journal of Great Lakes Research 41:315-316. doi:10.1016/j.jglr.2015.03.001. 603 

Tonello, M. A. (2010). Big Platte Lake. Status of the Fishery Resource Report 2010-110. 604 

Michigan Department of Natural Resources and Environment, Lansing. 605 

(https://www.michigan.gov/documents/dnr/2010-110_351459_7.pdf) 606 

Ward, R. C., Loftis, J. C., & McBride, G. B. (1986). The “data-rich but information-poor” 607 

syndrome in water quality monitoring. Environmental Management 10:291-297. doi: 608 

10.1007/BF01867251. 609 



28 

 

Whitfield, P. H. (1988). Goals and data collection designs for water quality monitoring. Water 610 

Resources Bulletin 24:775-780. doi: 10.1111/j.1752-1688.1988.tb00928.x. 611 

Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood 612 

estimation of semiparametric generalized linear models. Journal of the Royal Statistical 613 

Society, B 73:3-36. doi: 10.1111/j.1467-9868.2010.00749.x. 614 

Wood, S. N. (2017). Generalized additive models: an introduction with R, 2nd edition. Boca 615 

Raton, Florida: Chapman and Hall/CRC.   616 



29 

 

Table 1.  Depth-specific intercepts and standard errors from generalized additive mixed model fit 617 

to the loge TP concentrations from Big Platte Lake, Michigan.   618 

Depth (m) Coefficient Estimate Standard Error 

0.00 1.960 0.010 

2.29 1.995 0.022 

4.57 1.993 0.007 

9.14 2.004 0.008 

13.72 2.008 0.007 

18.29 2.025 0.008 

22.86 2.183 0.009 

27.43 2.321 0.010 

 619 

  620 
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Table 2.  Standard deviation estimates and 95% confidence intervals (in parentheses) for the 621 

smoothing components, sampling date random effects, and residual component from the 622 

generalized additive mixed model fit to the loge TP concentrations from Big Platte Lake, 623 

Michigan.  Standard deviations exist for smoothing components because the mgcv package 624 

estimates degree of smoothness as a random effect.  Two standard deviations exist for the 625 

year×month interaction because of how the interaction is parameterized.  The standard deviation 626 

estimate for the residual effect represents remaining variation in TP concentrations and includes 627 

variation across subsamples. 628 

Model Effect Standard Deviation  

Year (Depth 0.00 m) 0.083 (0.043 − 0.159) 

Year (Depth 2.29 m) 0.061 (0.031 − 0.119) 

Year (Depth 4.57 m) 0.13 (0.069 − 0.245) 

Year (Depth 9.14 m) 0.076 (0.031 − 0.187) 

Year (Depth 13.72 m) 0.047 (0.024 − 0.091) 

Year (Depth 18.29 m) 0.056 (0.027 − 0.118) 

Year (Depth 22.86 m) 0.05 (0.024 − 0.106) 

Year (Depth 27.43 m) 0.065 (0.034 − 0.125) 

Month (Depth 0.00 m) 0.095 (0.049 − 0.186) 

Month (Depth 2.29 m) 0.000 (0.000 – N.E.) 

Month (Depth 4.57 m) 0.106 (0.058 − 0.193) 

Month (Depth 9.14  m) 0.111 (0.059 − 0.206) 

Month (Depth 13.72 m) 0.058 (0.022 − 0.153) 

Month (Depth 18.29 m) 0.107 (0.056 − 0.205) 
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Month (Depth 22.86 m) 0.215 (0.129 − 0.357) 

Month (Depth 27.43 m) 0.268 (0.160 − 0.450) 

Year×Month (Depth 0.00 m) 0.009 (0.002 − 0.03); 0.032 (0.016 − 0.067) 

Year×Month (Depth 2.29 m) 0.016 (0.008 − 0.033); 0.043 (0.021 − 0.086) 

Year×Month (Depth 4.57 m) 0.015 (0.006 − 0.038); 0.038 (0.022 − 0.064) 

Year×Month (Depth 9.14 m) 0.014 (0.005 − 0.036); 0.034 (0.019 − 0.061) 

Year×Month (Depth 13.72 m) 0.052 (0.024 − 0.111); 0.020 (0.011 − 0.037) 

Year×Month (Depth 18.29 m) 0.037 (0.018 − 0.077); 0.020 (0.011 − 0.036) 

Year×Month (Depth 22.86 m) 0.027 (0.009 − 0.08); 0.024 (0.012 − 0.050) 

Year×Month (Depth 27.43 m) 0.093 (0.039 − 0.222); 0.018 (0.009 − 0.034) 

Sampling Date (Depth 0.00 m) 0.218 (0.204 − 0.234) 

Sampling Date (Depth 2.29 m) 0.185 (0.171 − 0.200) 

Sampling Date (Depth 4.57 m) 0.155 (0.144 − 0.168) 

Sampling Date (Depth 9.14 m) 0.172 (0.160 − 0.186) 

Sampling Date (Depth 13.72 m) 0.159 (0.148 − 0.172) 

Sampling Date (Depth 18.29 m) 0.174 (0.162 − 0.188) 

Sampling Date (Depth 22.86 m) 0.187 (0.174 − 0.201) 

Sampling Date (Depth 27.43 m) 0.225 (0.209 − 0.242) 

Residual 0.090 (0.088 − 0.091) 
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Figure Captions 630 

Fig. 1. Platte River watershed and location of Big Platte Lake and Platte River State Fish 631 

Hatchery.  Land use/land cover in the watershed is also shown and is based on a 2001 632 

land cover dataset derived from classification of Landsat Thematic Mapper imagery 633 

(Michigan Geographic Data Library; 634 

https://www.mcgi.state.mi.us/mgdl/?rel=thext&action=thmname&cid=5&cat=Land+Cov635 

er+2001).  The inset shows the location of the Platte River watershed in the state of 636 

Michigan. 637 

Fig. 2.  Total phosphorus in μg/L by sampling depth from Big Platte Lake, Michigan.  The 638 

vertical lines identify when laboratories that analyzed collected water samples changed.  639 

The horizontal lines indicate the mean total phosphorus concentration across the entire 640 

time series at each depth. 641 

Fig. 3.  Loge transformed total phosphorus in μg/L by sampling depth from Big Platte Lake, 642 

Michigan.  The vertical lines identify when laboratories that analyzed collected water 643 

samples changed. The horizontal lines indicate the mean total phosphorus concentration 644 

across the entire time series at each depth. 645 

Fig. 4.  Depth-specific partial predictions (i.e., additive effects) (± 1 SE) of loge total phosphorus 646 

in μg/L from Big Platte Lake, Michigan as a function of year based on the fitted 647 

generalized additive mixed model. The vertical lines identify when laboratories that 648 

analyzed collected water samples changed. 649 

Fig. 5.  Depth-specific partial predictions (i.e., additive effects) (± 1 SE) of loge total phosphorus 650 

in μg/L from Big Platte Lake, Michigan as a function of month based on the fitted 651 

generalized additive mixed model. 652 
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Fig. 6.  Year-by-month partial predictions (i.e., additive effects) by sampling depth from the 653 

generalized additive mixed model fit to loge total phosphorus concentration from Big 654 

Platte Lake, Michigan. A positive value indicates year and month combinations where 655 

predicted loge total phosphorus is greater than the additive main effects of year (Fig. 4) 656 

and month (Fig. 5), whereas a negative effect indicates year and month combinations 657 

where predicted loge total phosphorus is smaller than the additive main effects of year 658 

(Fig. 4) and month (Fig. 5).  659 

Fig. 7.  Observed (circles) and predicted (line) total phosphorus in μg/L by sampling depth from 660 

the generalized additive mixed model fit to the loge total phosphorus concentrations from 661 

Big Platte Lake, Michigan. The generalized additive mixed model predictions do not 662 

include the random effect term for sampling depth meaning the predictions just describe 663 

the large-scale temporal trends in total phosphorus.  The vertical lines identify when 664 

laboratories that analyzed collected water samples changed. 665 

Fig. 8.  Observed (circles) and predicted (line) total phosphorus in μg/L by sampling depth from 666 

the generalized additive mixed model fit to the loge total phosphorus concentrations from 667 

Big Platte Lake, Michigan. Unlike Fig. 7, the generalized additive mixed model 668 

predictions include the random effect term for sampling date.  The vertical lines identify 669 

when laboratories that analyzed collected water samples changed. 670 

Fig. 9.  Pearson residuals (black circles) by sampling depth from the generalized additive mixed 671 

model fit to the loge total phosphorus concentrations from Big Platte Lake, Michigan. The 672 

black ×s overlaying the residuals indicate the location of breakpoints in the mean or 673 

variance of the residuals identified by the cross-entropy method (Priyadarshana and 674 
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Sofronov 2015). The vertical lines identify when laboratories that analyzed collected 675 

water samples changed. 676 
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