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Abstract 21 

 Sustainable management of fish stocks is promoted through the application of 22 

Management Strategy Evaluations, providing information to managers on the relative 23 

performance of alternative management approaches (strategies) while accounting for 24 

uncertainty. In this study, we developed a simplified management strategy evaluation of 25 

a stock of cisco, Coregonus artedi, in Thunder Bay, Ontario, to determine both the 26 

sustainability of the current harvest control rule (i.e., a constant exploitation rate of 27 

10%) and the performance of alternative harvest control rules in meeting fishery 28 

objectives. Success in meeting fishery objectives was evaluated through attained yields, 29 

inter-annual variation in yields, magnitude of spawning biomass, and the risk of 30 

reaching low spawning biomass – performance metrics established based on 31 

consultation with an advisory group to Lake Superior fishery managers. Our simulations 32 

explicitly accounted for uncertainty in the frequency of strong year classes being 33 

produced by cisco, the stock-recruit relationship, stock abundance, and the sex-specific 34 

nature of roe harvest. Assuming future productivity is similar to that observed over a 35 

period from 1985-2015, results suggest the current exploitation rate of 10% is 36 

sustainable in terms of maintaining spawning biomass above 20% of the unfished level. 37 

Variants of constant exploitation rate control rules that included thresholds defining 38 

when exploitation rate is to decrease as a function of spawning biomass increased yield, 39 

decreased risk, and increased the magnitude of spawning biomass at the end of the 40 

simulation period. However, these advantages came at the expense of greater inter-41 

annual variation in yield. Constant catch control rules greatly underperformed constant 42 

exploitation rate control rules in terms of magnitude in yield, however they did reduce 43 
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inter-annual variation in yield compared to constant exploitation rate control rules. 44 

Furthermore, conditional versions of constant catch control rules (i.e., threshold stock 45 

sizes below which catch limit was reduced) mitigated risks of staying at low stock size.   46 

[A] Introduction 47 

 Informed management of fish stocks to promote sustainable and economically 48 

viable yields requires clearly defined objectives and quantitative analyses on the effect of 49 

alternative harvest policies in achieving said objectives. This can be facilitated through a 50 

process known as Management Strategy Evaluation (MSE), or the evaluation of 51 

management strategies using simulation (Punt et al. 2008). A central tenet of these 52 

simulations is the attempt to account for uncertainty in key processes, such as the stock 53 

assessment, the stock-recruit relationship, or the implementation of a harvest control 54 

rule, as accounting for these uncertainties has been shown to affect the outcome of 55 

evaluations (Deroba and Bence, 2008). This can be done by including several possible 56 

scenarios within an operating model that encompass the realistic range of key 57 

uncertainties underlying the true dynamics of the fishery (Deroba and Bence, 2012).  58 

MSEs can allow for tailoring specific harvest control rules to meet given fishery 59 

objectives. Alternatively, due to limited information or analytical capacity, many 60 

fisheries are managed through the calculation of biological reference points (Goodyear 61 

1993) used in defining targets or limits (Caddy and Mahon 1995; Quinn and Deriso 62 

1999). These are based on generalizable rules that have been proposed and applied 63 

across fisheries with different life histories and harvest dynamics (i.e., fishing mortality 64 

should be lower than F0.1, SPR40%). Time and data permitting, MSEs are preferred for 65 

fisheries management. 66 
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Loosely defined, harvest policies are guidelines on how harvest levels should be 67 

set in each season, whereas (harvest) control rules refer to the formulae used to specify a 68 

target or limit amount of harvest. Harvest control rules set target or limit harvest based 69 

on the state of the system (e.g., stock biomass) and are operationalized via policy 70 

parameters (e.g., the fishing mortality rate when stock size is high). When a control rule 71 

is implemented as part of a harvest policy, regulations can be set to roughly target a 72 

harvest (e.g., number of licenses or bag limits), and regulations can be supplemented by 73 

hard closures when the control rule specifies a limit (i.e., total allowable catch (TAC)). 74 

Harvest control rules can be part of a harvest policy, and the focus herein is on control 75 

rules that aim to set catch limits. These control rules generally fall into three separate 76 

categories; constant exploitation rate, constant catch, and constant escapement rules, in 77 

addition to variants of each aimed to correct perceived weaknesses (Deroba and Bence 78 

2008). Constant exploitation rate rules aim to set catch limits to a constant proportion 79 

of stock size (Walters and Martell 2004). This builds in an inherent feedback system; as 80 

the stock declines, the harvests tend to also decrease, and vice versa. Constant catch 81 

rules set a limit of catch at some constant level regardless of stock size, valuing the 82 

stability in allowable catch. Constant escapement rules set catch limits at all biomass 83 

over some predetermined level, which is generally chosen to ensure sufficient levels of 84 

spawning stock remain in the population to provide for adequate replacement. Variants 85 

of these control rules can include the addition of thresholds, either biomass-based or 86 

exploitation rate-based, that aim to decrease exploitation rate or harvest at low stock 87 

sizes. Tuning or policy parameters refer to the specific exploitation rate, constant catch 88 

limit, or escapement level used to define a given harvest control rule and dictate the 89 

limit of harvest given the estimated state of the system. Policy parameters can also 90 
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include biomass or exploitation rate thresholds that define variants of the three types of 91 

harvest control rules. Previous work has not led to general conclusions regarding what 92 

harvest control rule is best for given objectives and fishery dynamics (Deroba and 93 

Bence, 2008), so it is important to consider a suite of different harvest control rules and 94 

policy specific parameters of interest to stakeholders within the MSE. 95 

Cisco, Coregonus artedi, currently support a roe fishery in Thunder Bay, Ontario, 96 

and are managed via a constant exploitation rate control rule, where the TAC is set to 97 

10% of the estimated spawning stock biomass. The full harvest policy includes 98 

estimation of the spawning biomass through hydroacoustic surveys, and allocation of 99 

the TAC among a fixed set of license holders. While constant exploitation rate control 100 

rules can sometimes effectively achieve objectives (Walters and Martell 2004, Deroba 101 

and Bence 2008), the specific exploitation rate of 10% put into place in Thunder Bay has 102 

not been evaluated using MSE. Rather, it was chosen based on a recommendation for 103 

Lake Superior stocks based on exploitation rates seen as sustainable for long-lived Lake 104 

Superior fish stocks such as Lake Trout, Salvelinus namaycush, Lake Whitefish, 105 

Coregonus clupeaformis, and Lake Sturgeon, Acipenser fulvescens (Ebener et al. 2008, 106 

Stockwell et al. 2009). Whereas precautionary approaches to management are an 107 

important first step, such as setting conservative exploitation rates based on longer-108 

lived species, the use of a harvest control rule tailored to cisco, obtained through a MSE 109 

that explicitly accounts for uncertainties related to cisco recruitment and assessment, 110 

could allow Lake Superior fisheries managers to better achieve objectives. No MSEs 111 

have previously been conducted for Cisco in the Laurentian Great Lakes. In addition, 112 

Cisco dynamics are characterized by extreme boom or bust recruitment, and 113 
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development followed by use of a stock-recruitment relationship capturing this within a 114 

MSE was an important and somewhat novel aspect of this study. 115 

 We conducted a simplified MSE of the Thunder Bay cisco stock, projecting the 116 

stock into the future under a variety of different harvest control rules using a stochastic 117 

simulation model. Our objectives for this analysis were twofold: 1) determine whether 118 

the current exploitation rate of 10% promotes sustainability of Thunder Bay cisco, and 119 

2) evaluate the performance of alternative harvest control rules at meeting cisco fishery 120 

objectives. Here we present results from a stochastic simulation model that attempts to 121 

account for uncertainty in the recruitment process, the assessment process, and the sex-122 

specific nature of cisco harvest while evaluating alternative harvest control rules and 123 

tuning parameters. Success of different policies in achieving objectives was based on 124 

performance metrics, which were developed in consultation with agency personnel 125 

involved in advising agencies on fishery management. Such involvement of those 126 

engaged in the management process is often advised but less often practiced (Punt et al., 127 

2016). 128 

[A] Methods  129 

[C] Harvest Control Rules and Policy Parameters 130 

 In preparation for this study, we presented our proposal and solicited input at the 131 

Lake Superior Technical Committee (LSTC) meeting in Sault Ste. Marie, Ontario, in July 132 

2016. The LSTC consists of fishery biologists from agencies around Lake Superior, their 133 

purpose being to advise upper-level managers on the status of stocks and the means by 134 

which to achieve fishery objectives. Specifically, at this meeting we inquired which type 135 

of harvest control rules the LSTC would like us to consider and also which performance 136 
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metrics were most important (i.e., “what are the objectives for the fishery?”). Based on 137 

input from the committee, we considered two main types of harvest control rules; 138 

constant exploitation rate and constant catch rules. We explicitly considered two 139 

variants of each control rule in addition to their standard formulation (Figure 1). For 140 

constant exploitation rate, we considered the following: 141 

1) Constant U (CU), a simple constant exploitation rate control rule where the 142 

catch limit is proportional to spawning stock biomass (Figure 1A).  143 

2) Constant U Threshold 1 (CUT1), defined as a constant exploitation rate until a 144 

threshold spawning stock biomass (SBT) is reached, at which point the 145 

exploitation rate linearly declines as a function of spawning stock biomass until 146 

both are zero (Figure 1B).  147 

3) Constant U Threshold 2 (CUT2), defined as a constant exploitation rate until 148 

an upper threshold spawning stock biomass (SBUT) is reached, at which point 149 

exploitation rate linearly declines as a function of spawning stock biomass and 150 

becomes zero at some lower threshold of spawning stock biomass (SBLT; Figure 151 

1C).  152 

For constant catch control rules, we considered: 153 

1) Constant Catch (CC), where the catch limit is constant regardless of spawning 154 

stock size (Figure 1D).  155 

2) Conditional Constant Catch 1 (CCC1), defined as constant catch until some 156 

threshold exploitation rate (UT) is reached, a point at which the control rule 157 
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reverts to a constant exploitation rate at the predetermined threshold (Figure 1E; 158 

Clark and Hare 2004, Deroba and Bence 2008).  159 

3) Conditional Constant Catch 2 (CCC2), defined as constant catch until a 160 

threshold spawning stock biomass (SBT) is reached, at which point the catch limit 161 

is reduced to a new lower limit of constant catch (CL, Figure 1F).  162 

The variants of the CU rule aim to produce a compensatory response by gradually 163 

decreasing fishing mortality below a threshold. Meanwhile, variants of the CC rule aim 164 

to keep catch relatively stable while attempting to avoid high fishing mortality rates at 165 

low spawning stock sizes. 166 

We considered spawning stock biomass thresholds (SBT, SBUT) of 20, 30, 40, and 167 

50% of unfished spawning stock biomass, and lower spawning stock biomass thresholds 168 

for CUT2 (SBLT) of 20 and 30% of unfished spawning stock biomass. We decided not to 169 

go lower than 20% of unfished spawning stock biomass as a threshold for CUT1 and 170 

CUT2, in accord with a general recommendation to cease fishing stocks that fall below 171 

that biomass (Thompson, 1993). This is also in agreement with numerous studies that 172 

have suggested that spawning biomass should be maintained between 20-50% of 173 

unfished spawning biomass (Clark, 1991; Fujioka et al., 1997; Quinn et al., 1990). We 174 

considered exploitation rates for CU, CUT1, and CUT2 of 0.05, 0.10, 0.15, 0.20, and 175 

0.25, and constant catch limits (C) of 100,000 kg, 150,000 kg, 200,000 kg, 250,000 kg, 176 

and 300,000 kg. We chose exploitation rates and catch limits based on their proximity 177 

to the current constant exploitation rate (0.10) and to mean harvest levels over the past 178 

17 years (163,015 kg, SD=26,548), respectively. Low catch limits may not be 179 

economically viable for fishers, and very high catch limits may exceed the current 180 
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fishery capacity, as might high exploitation rates. We considered threshold exploitation 181 

rates at which CCC1 would revert to CU (UT) of 0.15, 0.20, and 0.25. For CCC2 the lower 182 

catch limits (CL) put in place when spawning stock biomass is estimated to be below the 183 

SBLT thresholds were half of the catch limits (e.g., if the constant catch limit above the 184 

threshold was 100,000 kg a year, CL would be 50,000 kg). In total, we simulated 51 185 

different harvest control rule combinations (Table 1).  186 

[C] Performance Metrics 187 

 Performance metrics the LSTC wanted us to consider included the magnitude of 188 

stock size, the probability of stock collapse, the magnitude of yield, and the variability in 189 

yield. The committee also noted that they were primarily interested in the performance 190 

of these metrics over a 50yr time span. For this reason, performance metrics included 1) 191 

the median spawning biomass in the final 5 years (Final SB; as a % of unfished level), 2) 192 

the percent of years the spawning biomass was below 20% of unfished spawning 193 

biomass (hereafter termed “risk” for brevity), 3) the average harvest (per year), and 4) 194 

the absolute annual variation in yield (AAV). AAV was calculated as in Punt et al. 195 

(2008): 196 
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Where yH   denotes harvest in a given year. These metrics were summarized in terms of 198 

the medians, 25th and 75th percentiles of their distributions over simulations.  199 



10 
 

Many of the harvest control rules and performance metrics are defined in terms 200 

of spawning stock biomass (SB): 201 

∑∑ >=
s a

saasayy wmmFishPNSB ,,, )250(  202 

where saw ,  is sex-specific average weight at age of a cisco estimated using a von-203 

Bertalanffy function and a weight-length regression, and )250( mmFishP a >  is defined as 204 

the probability that a cisco of a given age is greater than 250 mm; each of which was 205 

derived in Fisch et al. (2019). We assume that fish greater than 250 mm in length are 206 

mature, as cisco of this size caught in Thunder Bay generally are (Yule et al., 2008). We 207 

chose this definition of spawning biomass to align with how the current control rule 208 

allocates TAC of cisco in Thunder Bay (biomass of cisco > 250 mm).  209 

We defined the estimated unfished spawning stock biomass, used in many 210 

control rules, as the median over simulations of the median spawning biomass over the 211 

final 950 years after running the simulation model for 1000 years with no harvest. For 212 

our performance metrics, some of which are defined in terms of unfished spawning 213 

biomass (risk and Final SB), we utilized a “true” unfished spawning biomass value 214 

specific to each individual simulation (each of 1000 run above). Simulations of harvest 215 

control rules then contained the same random number seed as simulations of the 216 

unfished scenario, so as to match individual simulations with their respective “true” 217 

unfished level for calculation of performance metrics. The single estimate of unfished 218 

spawning stock size (given a distribution for the frequency of boom recruitment years – 219 

see Recruitment section) used in the control rules was derived conditioned on the 220 

historical dynamics and data. Given that each individual simulation used different 221 
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stock-recruitment and other demographic parameters (see Model section), each had 222 

different “true” unfished stock sizes (used in performance metrics), which differed from 223 

the estimated unfished stock size used in the control rules. Thus, our approach accounts 224 

for uncertainty in the estimate of the unfished biomass used in the control rule. This 225 

said, the estimate is in the center of the distribution of the “true” spawning biomasses 226 

used in the simulations. Our sensitivity analyses explore the consequences of changes 227 

that shift the distribution of unfished spawning biomasses, without shifting the estimate 228 

used in the control rule.   229 

[C] Model 230 

We developed a stochastic projection model (SPM) based on an integrated 231 

Statistical Catch-at-Age Assessment (SCAA) model developed in Fisch et al. (2019). For 232 

each control rule, 1000 simulations of the SPM were run to obtain distributions of 233 

performance metrics. The SPM is age- and sex-structured, beginning at age 2 and 234 

forming a plus group at 15. The SCAA model ends in 2015 and thus the SPM spans from 235 

2016-2056 (50yr time horizon): 236 
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where sayN ,,  is the number of cisco age a  of sex s  in year y , yR  is recruitment in year 238 

y , sM  is the natural mortality for sex s  (drawn from the SCAA posterior distribution 239 

for each simulation), and sayF ,,  refers to fishing mortality for a given year, age, and sex 240 

combination. We began each simulation by drawing from the posterior distribution of 241 
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sex-specific abundance at age in 2015 from the SCAA. A list of parameters in the SPM 242 

can be found in Table 2.  243 

[C] Recruitment  244 

Recruitment of cisco, at least over the past several decades in Lake Superior, has 245 

been characterized by a highly variable, boom-or-bust pattern where a large year class is 246 

produced, followed by successive years of little or no recruitment (Stockwell et. al, 2009; 247 

Fisch et al., 2019 - Figure 3). In the SPM, we modeled this process by drawing from a 248 

Bernoulli distribution each year that determined whether a given year would be boom or 249 

bust. The parameter for this Bernoulli distribution was drawn for each simulation from 250 

a uniform distribution with bounds l  and u : ],[ ulU . If a given year within a simulation 251 

was characterized as a boom year, a stock-recruit (SR) function was applied; if 252 

characterized as bust, the model drew a recruitment value from a lognormal distribution 253 

derived using recruitment estimates for bust years that were drawn from the posterior 254 

distribution of the SCAA for each simulation. For boom years, we derived the SR 255 

function based on the Ricker functional form (Ricker, 1975) using point estimates 256 

(medians) of the posterior distribution of recruitment and stock size estimates in the 257 

SCAA as data. Projected recruitment is then:  258 

yy eeSR S
yy

εβα 2
2

−−
−=  259 

             ),0(~ 2
ry N σε  260 

Where α  and β  are parameters of the SR model, which we drew at random for each 261 

simulation of the SPM from the posterior distribution, and yε  are multiplicative 262 
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deviations invoking stochastic recruitment over time within a simulation. We fixed rσ  263 

at a value of 0.683 based on a meta-analysis of recruitment deviation from Thorson et 264 

al. (2014) for the order Salmoniformes. This was done due to the large value of 265 

estimated rσ  within the SR function (because of sparse data), which had the effect of 266 

producing many unrealistically high projected recruitments when initially used in the 267 

SPM. In an attempt to avoid using assessment output as data, we initially tried to 268 

estimate a SR function within the SCAA however found that the model would not 269 

converge on a solution. The derivation of the SR function can be found in the appendix. 270 

Our stock-recruitment equation contains no bias adjustment, because parameters were 271 

estimated based on analysis of log scale data. 272 

Given uncertainty in what level of recruitment constitutes a boom or a bust year, 273 

and because the SR function and bounds of the uniform distribution are defined by this, 274 

we specifically explored two different recruitment scenarios. These scenarios are 275 

hereafter termed 7yr and 4yr (Figure 2), characterized by how we define what 276 

constitutes a boom year. The 7yr scenario treats years in the SCAA that had a median 277 

recruitment (age-2 abundance) over 200,000 as boom years (7/17 years in the SCAA fit 278 

this criteria), while the 4yr scenario treats years that had a median recruitment (age-2 279 

abundance) over 1 million as boom years (4/17 years in the SCAA fit this criteria). We 280 

based the bounds of the uniform distribution for each recruitment scenario on the 281 

perceived frequency of boom year classes over a period from 1985-2015 using 282 

observations from both the SCAA (Fisch et al., 2019) and Figure 15 in Yule et al., (2006). 283 

These bounds were defined as U(0.25,0.40) for the 7yr scenario, based on evidence 0f 284 

~9-11 boom year classes over the 30 year period, and U(0.15,0.25) for the 4yr scenario, 285 
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based on evidence of ~6 boom year classes over the 30 year period. For each simulation 286 

we placed recruitment values in the SCAA that were not characterized as boom 287 

recruitment years in the bust category and used them to derive a lognormal distribution 288 

of bust recruitments.  289 

 [C] Fishing Mortality 290 

 Our approach to setting fishing mortality rates for each year of the simulation 291 

was to set fishing rates so the resulting harvest matched a value obtained by applying 292 

the control rule to the assessed spawning biomass (see Assessment Error below). Some 293 

complexity is added because we are modeling dynamics as sex specific and although 294 

cisco harvest is dominated by female fish (mean from 1999-2015 = 81%), there is inter-295 

annual variation (SD = 5%). Our approach was to stochastically simulate the sex ratio of 296 

the fishing intensities (fully selected fishing mortality) each year, and then solve for the 297 

fishing intensity of females (and given the ratio, the fishing intensity of males) that 298 

produced the desired harvest. The sex ratio of fishing intensities is defined as:   299 

fymy

myr
y ff

f
f

,,

,

+
=  300 

Where r
yf  denotes the fishing intensity ratio in a given year, myf ,  is male fishing 301 

intensity, and fyf ,  is female fishing intensity. We drew fishing intensity ratios for all 17 302 

years of the SCAA for each simulation in the SPM and used them to define a beta 303 

distribution. We defined each beta distribution by two shape parameters, 304 
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µµµq , where µ  and 2σ  are the mean and 305 

variance of the ratio of fishing intensities pulled from the posterior distribution of the 306 
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SCAA for each simulation. We used the corresponding beta distribution for each 307 

simulation to draw fishing intensity ratios for each year within the SPM. We solved for 308 

fishing intensity for a given sex/year combination in each simulation using Newton-309 

Raphson iterations given a desired harvest for that year and simulation:  310 
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where as  refers to age-specific cisco fishery selectivity (parameters that define selectivity 313 

function were drawn from the SCAA posterior distribution), ,a sW  refers to sex-specific 314 

average weight-at-age of commercially caught cisco, and yH  denotes harvest in a given 315 

year and is defined based on a control rule. We solved for female fishing intensity in a 316 

given year and calculated male fishing intensity using the fishing intensity ratio and 317 

female fishing intensity:  318 
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,    319 

We set a maximum fishing mortality rate of 3 to limit unrealistic scenarios that could 320 

have fishers catching nearly every fish in a given year.  321 

[C] Assessment Error  322 

 We assume within the SPM that a stock assessment will be performed every year 323 

to estimate spawning stock biomass (which defines catch limits, as opposed to using 324 
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hydroacoustic surveys). We simulated assessment estimation error within the SPM 325 

through an autoregressive process  326 

2
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Where yBŜ  denotes the assessed spawning biomass and ySB  is the true spawning 328 

biomass. We specified ρ  and eσ  as 0.7 and 0.22, assuming a lognormal assessment 329 

error with a CV of about 0.22. We based this on the CV of spawning biomass in the final 330 

year of the SCAA (~0.22). We explored alternate values of rho and sigma331 

( )0.9, 0.4eρ σ= = to assess the sensitivity of results to levels of assessment error. Similar 332 

procedures have been done in previous harvest policy projections (Irwin et al. 2008; 333 

Punt et al. 2008; Deroba and Bence 2012). We did not model implementation error 334 

within the SPM, given license holders rarely, if ever, go over their individual quotas. 335 

Thus, assuming fishers meet their quotas (unless the fishing mortality rate limit of 3.0 is 336 

reached) is likely a conservative assumption. 337 

[C] Sensitivity Analyses 338 

 We examined sensitivity to the bounds of the uniform distribution for the 339 

probability of a boom year class by shifting the distribution ±  0.05 for each recruitment 340 

scenario. Several of the control rules we considered use estimated unfished spawning 341 

stock biomass, and this value (determined based on running the SPM for 1000 years 342 

with no harvest) depends on the distribution for the probability of boom years. 343 

Therefore, we explored two alternate scenarios for estimating unfished spawning 344 

biomass when shifting the distribution for boom years. First, we re-calculated the 345 
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estimate of unfished spawning biomass used in the control rule based on the shifted 346 

uniform distributions, and second we set the estimate of unfished spawning biomass 347 

used in the control rule at the value calculated using the baseline uniform distribution 348 

bounds. The first scenario represents a case where the change in estimated unfished 349 

spawning biomass was accounted for in the control rule. The second scenario explores 350 

the situation where managers erroneously specify the unfished spawning biomass when 351 

the frequency of boom years was shifted, i.e., the shifts represent a situation where 352 

system productivity was both different and miss-specified in the control rule. For the 353 

first scenario, where unfished spawning biomass used in the control rules is recalculated 354 

according to the shift, we compare results with the baseline model, evaluating how a 355 

change in the frequency of boom recruitments (that is accounted for in terms of the 356 

change in estimated unfished spawning biomass) influenced outcomes. For the second 357 

scenario, we make two comparisons. First, by comparing with the first scenario (where 358 

the recruitment distribution was also shifted but estimated unfished spawning biomass 359 

was recalculated to account for this), we isolate the effect of miss-specifying unfished 360 

spawning biomass in the control rule. Second, by comparing with the baseline model we 361 

evaluated how a mistaken characterization of recruitment productivity influences our 362 

view on the performance of different harvest policies. Sensitivity runs related to 363 

different levels of assessment error, productivity, and estimated unfished spawning 364 

biomass solely included the 4yr recruitment scenario.     365 

[A] Results  366 
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 Estimated unfished spawning biomass for the 4yr and 7yr recruitment scenarios 367 

were 4,453,000 kg and 4,420,000, respectively. Results in text and Table 1 are 368 

presented as medians of distributions over simulations. 369 

[B] Recruitment Scenario 370 

Rankings for performance metrics among harvest control rules were largely 371 

robust to recruitment scenarios. However, absolute values did differ, with results 372 

reflecting the increased productivity for the 7yr scenario (i.e., higher yield, lower risk, 373 

higher Final SB, and lower AAV). For this reason, hereafter in text we present the results 374 

solely for the 4yr recruitment scenario, with results for the 7yr recruitment scenario in 375 

Table 1 and supplemental figures 4-7. 376 

[B] Average Yield 377 

 Constant exploitation rate and its variants (CU, CUT1, CUT2) outperformed 378 

constant catch rules in terms of the maximum (over policy parameters) average yield 379 

over the 50yr simulation period (Figure 3). Within CU control rules, as we would expect, 380 

average yield was lowest for the 0.05 rate. As exploitation rate increased from 0.05 to 381 

0.10-0.25 however, an asymptote was reached at about 250,000 kg of yield per year 382 

(Table 1, Figure 3). While the median (over simulations) average yield for CU reached an 383 

asymptote, the spread of the 25-75 quantile range slightly increased as exploitation rate 384 

increased from 0.05-0.25. Variants of the CU rule (CUT1 and CUT2) had higher average 385 

yields than their CU counterparts with similar exploitation rates (Figure 3). The largest 386 

average yield across all control rule scenarios (331,208 kg per year) resulted from the 387 

CUT2 rule with an exploitation rate of 0.20 that declined linearly to zero between 50% 388 

and 30% of unfished spawning stock biomass (Policy 1.3.10, Table 1, Figure 3). The 389 
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constant catch control rules, even at their highest catch limits (300,000 kg per year), 390 

were only able to produce average yields of around 185,000 kg per year. In fact, when 391 

we increased catch limits above 300,000 kg (up to 850,000 kg) within CC, an asymptote 392 

in average yield was reached at around 230,000 kg per year. When thresholds were 393 

included in constant catch control rules (CCC1 and CCC2), yield did not increase 394 

compared to CC rules with similar catch limits and in fact slightly decreased in almost 395 

all cases (exception is policy 2.1.3 vs 2.2.3; Table 1, Figure 3).   396 

[B] Risk (% of years SB < 20% unfished level) 397 

 Where CU rules did not show much difference in yield at 0.10-0.25 exploitation 398 

rates, they exhibited large differences in risk. As exploitation rate increased within the 399 

CU control rule from 0.05-0.25, the amount of risk more than tripled from 18% of years 400 

having a SB below 20% of the unfished level at an exploitation rate of 0.05 to 66% of 401 

years under an exploitation rate of 0.25 (Table 1, Supplemental Figure 2). For reference, 402 

under the unfished scenario (where SPM was run with no harvest), risk was 10%. The 403 

inclusion of thresholds in constant exploitation rate control rules greatly decreased risk 404 

within a given exploitation rate. For CUT1 rules, risk decreased both compared to the 405 

respective CU rule with the same exploitation rate and within the CUT1 rule as the 406 

threshold was increased from 20-50% of unfished SB. Risk was further decreased with 407 

the inclusion of a lower threshold SB within the CUT2 rules. That is, for exploitation 408 

rates of 0.10 and 0.20, risk was lower for the CUT2 rule than for its CUT1 and CU 409 

counterparts. For an exploitation rate of o.10, risk was 33% for CU, 24% at its lowest in 410 

CUT1, and 20% at its lowest in CUT2 (Policies 1.1.2, 1.2.8, and 1.3.5; Table 1). A similar 411 

result occurred for exploitation rates of 0.20, where under CU risk was 58%, 42% at its 412 



20 
 

lowest under CUT1, and 34% at its lowest under CUT2 (Policies 1.1.4, 1.2.16, and 1.3.10; 413 

Table 1). 414 

 Within CC rules, risk increased from 22% at a catch limit of 100,000 kg a year to 415 

53% at a catch limit of 300,000 kg a year. Risk decreased with the inclusion of 416 

exploitation rate thresholds for CCC1 policies. Within CCC1, risk increased as the 417 

threshold exploitation rate increased. For each limit of catch, the use of biomass 418 

thresholds under the CCC2 rule decreased risk compared to CC control rules. In 419 

addition, within CCC2 risk generally decreased as threshold SB levels increased. For 420 

example, under a catch limit of 200,000 kg a year (CC risk=41%), including a biomass 421 

threshold at 20% of unfished SB decreased risk to 34% and including a biomass 422 

threshold at 30% of unfished SB decreased risk to 31%. The lowest risk level over all 423 

control rules was therefore under a CCC2 rule with the lowest catch limit, 100,000 kg, 424 

and a threshold of 30% of the unfished spawning biomass at which point the catch limit 425 

would be cut in half (Policy 2.3.2, risk=18%).   426 

[B] Absolute Annual Variation in Yield (AAV) 427 

 AAV was considerably smaller for the constant catch control rules compared to 428 

constant exploitation rate rules (Table 1, Supplemental Figure 3). For example, a CC rule 429 

with a catch limit of 200,000 kg a year (Policy 2.1.3) had an AAV of 0.06 while a CU rule 430 

with an exploitation rate of 0.15 (Policy 1.1.3) had an AAV of 0.33. Also, the inclusion of 431 

a threshold within any rule (CUT1 & CUT2 as compared to CU and CCC1 & CCC2 as 432 

compared to CC) increased AAV for all policies. Within constant exploitation rate 433 

control rules, AAV increased as exploitation rate increased. Within CUT1, AAV 434 

increased as threshold biomass levels increased over all exploitation rates. The inclusion 435 
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of a lower threshold biomass at which exploitation rate would become zero (for CUT2) 436 

increased AAV further compared to CUT1 and CU control rules, and AAV increased as 437 

both upper and lower SB thresholds increased.   438 

 For constant catch control rules, AAV increased as catch limit increased, from 0 439 

at 100,000 kg a year (Policy 2.1.1) to 0.11 at 300,000 kg a year (Policy 2.1.5). The 440 

inclusion of threshold exploitation rates for CCC1 increased AAV compared to CC 441 

policies with similar catch limits. For example, a CC rule with a catch limit of 250,000 442 

kg a year (Policy 2.1.4) had an AAV of 0.09 while a CCC1 rule with a catch limit of 443 

250,000 kg per year and a threshold exploitation rate of 0.15 (Policy 2.2.4) had an AAV 444 

of 0.14. Within CCC1, AAV generally decreased as the threshold exploitation rate 445 

increased for a given catch limit. The inclusion of biomass thresholds for CCC2 policies 446 

also increased AAV compared to CC policies with similar catch limits. Within CCC2, 447 

AAV generally increased as biomass thresholds increased.  448 

[B] Spawning Biomass at the end of the simulation period (Final SB) 449 

 Spawning biomass at the end of the simulation period, defined as the median 450 

spawning biomass for the final 5 years of each simulation (Final SB, presented as a 451 

percentage of unfished SB), was similar among base harvest control rules (CU & CC, 452 

Figure 4). However, the spread of the Final SB for constant catch control rules was 453 

much greater than that of the constant exploitation rate control rules.  454 

Within CU rules, Final SB decreased as exploitation rate increased, from 69% of 455 

the unfished level at an exploitation rate of 0.05 (Policy 1.1.1) to 7% at an exploitation 456 

rate of 0.25 (Policy 1.1.5). For any given exploitation rate, adding a SB threshold within 457 

CUT1 increased Final SB, and CUT2 rules involving an additional lower threshold 458 
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further increased Final SB. For example, a CU rule with an exploitation rate of 0.10 459 

produced a Final SB 37% of the unfished level (Policy 1.1.2) while a CUT2 rule with an 460 

exploitation rate of 0.10, an upper SB threshold of 50% of unfished SB, and a lower SB 461 

threshold of 30% of unfished SB produced a Final SB of 54% of the unfished level 462 

(Policy 1.3.5, Table 1). Within CUT1 rules of a given exploitation rate, Final SB generally 463 

increased as threshold biomass increased. Similarly, within CUT2 rules given a level of 464 

exploitation rate, Final SB generally increased as both upper and lower SB thresholds 465 

increased.  466 

 Within the CC control rule, Final SB declined as catch limits increased, from 66% 467 

of the unfished level at 100,000 kg a year (Policy 2.1.1), to 14% at 300,000 kg a year 468 

(Policy 2.1.5). The inclusion of threshold exploitation rates for CCC1 increased Final SB, 469 

and within CCC1 Final SB decreased as threshold exploitation rate increased. For all 470 

catch limits, the inclusion of SB thresholds within CCC2 rules increased Final SB levels 471 

compared to CC rules with similar catch limits. Final SB also increased as SB threshold 472 

increased within CCC2 rules.  473 

[B] Sensitivity 474 

 Results were largely robust to higher levels of assessment error ( )0.4eσ = in 475 

addition to increased levels of autocorrelation ( )0.9ρ = , as the ranking of performance 476 

metrics among harvest control rules changed little when these parameters were changed 477 

compared to the baseline model results (Supplemental figures 8-15). For AAV, absolute 478 

values were higher among all constant exploitation rate control rules for 0.4eσ = , and 479 

lower for 0.9ρ = , compared to the baseline model (Supplemental figures 10 & 14).  480 
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Under scenarios where bounds of the uniform distribution defining the 481 

probability of a boom year class are shifted up or down by 0.05, estimates of unfished 482 

spawning biomass for use in the control rules were 6,209,000 and 2,795,000 kg, 483 

respectively (for the 4yr scenario). For these scenarios, where a new estimate of 484 

unfished spawning biomass calculated according to the shift in the frequency of boom 485 

recruitments was used in the control rules, the shift had little influence on how the 486 

different control rules ranked with regard to the performance metrics (compared to the 487 

baseline; Supplemental figures 16-23). However, absolute values of the performance 488 

metrics did change substantially from the baseline model, as might be expected given we 489 

are comparing scenarios with different actual distributions of productivity. Specifically, 490 

when the uniform distribution for boom years was shifted downward by 0.05, yield and 491 

Final SB decreased for almost all control rules compared to the baseline model. In 492 

addition, AAV and risk increased for constant catch rules compared to the baseline 493 

model (Supplemental Figures 17-18). For the more productive counterpart (bounds of 494 

the uniform increased by 0.05), the opposite occurred in that Final SB and yield 495 

increased, and risk and AAV decreased compared to the baseline model, however this 496 

time over all control rules (not just constant catch, Supplemental Figures 20-23). 497 

When we shifted the bounds of the uniform distribution defining the probability 498 

of a boom year class up or down 0.05 and the estimate of unfished spawning biomass 499 

used in the control rule came from the baseline model (this estimate was toward the low 500 

end or high end of the distribution of “true” unfished spawning biomass values, 501 

respectively, rather than being at the center of the distribution), the failure to adjust the 502 

estimate of the unfished biomass had little influence on the relative ranking of 503 
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performance metrics among control rules, and absolute changes were relatively modest, 504 

in contrast to when we compared scenarios for which actual frequencies of boom year 505 

classes had changed. Here we are comparing scenarios with the same assumptions 506 

about actual boom year classes, but with this either being accounted for not accounted 507 

for in the estimate of unfished spawning biomass used in the control rule (Supplemental 508 

Figures 24-31). When the probability of a boom year class was shifted down by 0.05, but 509 

the estimate of unfished spawning biomass used in the control rule was based on the 510 

baseline model, changes to when the shift was accounted for in the estimation of 511 

unfished spawning biomass were increased AAV, decreased risk, and increased Final SB 512 

for control rules with biomass-based thresholds (Supplemental figures 25-27). When the 513 

probability of a boom year class was shifted upward by 0.05 and the estimate of 514 

unfished spawning biomass was based on the baseline model, the opposite occurred. 515 

There was an increase in risk, a decrease in AAV, and a decrease in Final SB for control 516 

rules with biomass based thresholds (Supplemental Figures 29-31), in comparison with 517 

when the shift was accounted for in the estimate of spawning biomass used in the 518 

control rule.  519 

When the absolute values for these scenarios were compared instead to the 520 

baseline results (i.e., evaluating the combined effect of the shift and failure to account 521 

for it by changing the estimate of unfished spawning biomass), the scenario where the 522 

uniform distribution is shifted upward by 0.05 exhibited greater average harvest, lower 523 

risk, lower AAV, and greater Final SB (Supplemental Figures 32-35). The opposite 524 

occurred for the scenario where the uniform distribution was shifted downward by 0.05 525 

(i.e., lower harvest, greater AAV, and lower Final SB compared to baseline; 526 
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Supplemental Figures 36-39), with the exception that risk was lower many CUT1 and 527 

CUT2 rules (Supplemental Figure 37). 528 

[A] Discussion 529 

To address the first objective—to determine whether the current 10% exploitation 530 

rate promotes sustainability of the Thunder Bay cisco fishery—we must specify what 531 

constitutes “sustainability” of cisco in Thunder Bay. One simple way to look at 532 

sustainability is to observe the distribution of SB each year over the time series and 533 

determine whether it is stable near the end, i.e., does the population distribution crash 534 

or is it on a downward trajectory? In this case the 10% rate is “sustainable”, as the 535 

trajectory over the 50yr time period for the 4yr recruitment scenario is seemingly stable 536 

at a median estimate of around 1.5 million kg of SB (Figure 5). 537 

A more robust way to explore the sustainability question may be to examine it in 538 

terms of maintaining SB above a threshold to ensure sufficient replenishment.  Many 539 

studies have presented arguments for maintaining SB above certain thresholds in fish 540 

populations, often arguing for maintenance of >20% of unfished spawning stock size 541 

(Beddington and Cooke, 1983; Quinn et al., 1990; Clark 1991; Francis 1993; Goodyear, 542 

1993; Hollowed and Megrey, 1993; Leaman, 1993; Thompson, 1993; Caddy and Mahon, 543 

1995; Fujioka et al., 1997). If we utilize this criterion, the current 10% exploitation rate is 544 

usually “sustainable”, as the SPM projects a median Final SB of 37% and 64% of the 545 

unfished level for the 4yr and 7yr scenarios respectively. This “sustainability” 546 

designation is largely insensitive to reduced productivity in terms of the probability of a 547 

boom year class. For example, when the SPM is re-run with bounds of the uniform 548 

distribution defining the probability of a boom year class shifted down by 0.05, Final SB 549 
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is 29% of the unfished level (estimated using new bounds) under the 4yr recruitment 550 

scenario.   551 

 In terms of our second objective, determining whether the 10% CU control rule 552 

can be improved upon to both promote sustainability and meet fishery objectives, the 553 

answer is more complicated. Within the framework of the CU control rule and levels of 554 

exploitation we considered, the answer is no, as the current 10% rate effectively 555 

maximizes yield, maximizes Final SB, and minimizes both risk and AAV compared to 556 

higher exploitation rates. However, the adoption of a CUT1 or CUT2 rule will slightly 557 

increase yield, greatly decrease risk, and increase Final SB. It is also possible that slight 558 

improvements could be obtained by more fine evaluation of exploitation rates between 559 

0.05 and 0.15. These results are similar to those found by Deroba and Bence (2012) for 560 

Lake Whitefish, Coregonus clupeaformis, in 1836 treaty waters of the Laurentian Great 561 

Lakes. The tradeoff lies in the AAV, where adoption of a CUT2 rule will increase year-to-562 

year variation in yield most, followed by CUT1 rules compared to the current CU control 563 

rule. This is due to the compensatory mechanism within these control rules that aims to 564 

change exploitation rate below biomass thresholds. This difference averages around a 565 

~0.04 increase in AAV from CU to CUT1 and a ~0.08 increase from CU to CUT2 under 566 

an exploitation rate of 0.10. If stakeholders are indifferent to this increase in AAV, and 567 

rather more interested in magnitude of yield, decrease in risk, and increase in the Final 568 

SB, a CUT2 rule is likely most appropriate for cisco in Thunder Bay. Conversely, if 569 

stakeholders are more interested in low variation in yield as a performance metric, a 570 

constant catch rule may be more appropriate. Constant catch rules greatly outperformed 571 

in terms of this metric, however at large costs in terms of increased risk and decreased 572 
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Final SB when achieving the same yield as exploitation rate-based rules. Out of the 573 

constant catch rules, CCC2 was most effective in decreasing risk, increasing Final SB, 574 

while not costing much in yield and AAV compared to CC rules with similar catch limits. 575 

If constancy in yield is held in high regard, as it may allow for more optimal planning of 576 

each fishing season (hiring of deck hands or processors, appropriate number of nets and 577 

plant processing capacity, etc.), then adoption of a constant catch control rule with a 578 

threshold of the CCC2 type will most appropriately meet fishery objectives.   579 

 Other than AAV, results were largely insensitive to changes in the level and 580 

correlation of assessment error. Not surprisingly, when the magnitude of assessment 581 

error was higher, AAV increased. This suggests that when low inter-annual variation in 582 

yield is valued highly, greater investment in assessment would be justified. The 583 

insensitivity of other performance metrics to assessment error has been noted in similar 584 

studies (Irwin et al., 2008; Punt et al., 2008; Deroba and Bence, 2012), where in others 585 

it has proved consequential (Katsukawa 2004), largely in the direction of increased 586 

assessment error decreasing the performance of control rules involving biomass 587 

thresholds. It may be that the levels of assessment error we simulated ( eσ =0.4) are not 588 

high enough to decrease the improvement of threshold-based control rules over those 589 

without thresholds. One could imagine that as assessment error increases to infinity, 590 

control rules based on changing exploitation or catch as a function of the assessed value 591 

would diminish in performance. Our approach to simulating assessment error via 592 

distributions instead of performing a full stock assessment simulation every year in the 593 

SPM was primarily driven by time constraints for analysis. The lack of sensitivity of 594 

metrics other than AAV to assessment error suggests that results are likely robust to this 595 



28 
 

simplifying assumption. In future work, more detailed treatment of assessment error 596 

could prove beneficial. For example, our simulations assumed a stock assessment would 597 

be performed every year for the stock. Additional simulations contrasting when the 598 

control rule is applied to hydroacoustic estimates of abundance or based on past 599 

estimates when the survey could not be done (how TAC is currently set), versus when it 600 

is applied to model-based assessments would inform on the value of model-based 601 

assessments.  602 

Although relative comparison of the harvest control rules was largely unchanged 603 

under different recruitment hypotheses/scenarios, the specific policy parameters that 604 

produce the “best” results (defined in terms of the various performance metrics) did 605 

change among these scenarios. For example, one could obtain the same levels of risk 606 

with higher exploitation rates or catch limits under the 7yr scenario, likely due to the 607 

increased frequency of “boom” year classes in the 7yr scenario. Given the uncertainty 608 

regarding recruitment, we suggest basing specific harvest policy decisions on the 4yr 609 

scenario, given that the policies and specific policy parameters for that scenario would 610 

produce reasonable performance for more productive scenarios. This subject is relevant 611 

once again when discussing sensitivity to changed productivity in terms of the 612 

probability of a boom year class. These sensitivity runs, which involved shifting the 613 

uniform distribution defining the probability of a boom year class up or down by 0.05 614 

largely resulted in the same relative performance across all harvest control rules. 615 

Although not surprisingly, absolute values differed when the frequency of boom year 616 

classes changed, potentially resulting in different conclusions as to which specific 617 

control rule meets sustainability criteria. Nevertheless, under reduced productivity, for 618 
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example due to less frequent boom year classes, a CUT2 rule at an exploitation rate of 619 

0.10 can still achieve a final SB > 20% of the unfished level.  620 

Importantly, the distributions of performance metrics that were achieved were 621 

generally robust to using an estimate of unfished spawning that was based on incorrect 622 

assumptions, provided the comparison was between scenarios with the same actual 623 

probabilities of boom year classes. Thus, at least based on our study, the issue with 624 

getting the estimate of unfished stock size incorrect has more to do with this being 625 

connected to incorrectly assessing the productivity of the stock and thus the sustainable 626 

exploitation, rather than sensitivity of stock dynamics and fishery outcomes to the 627 

estimated unfished spawning biomass used in the control rule. Similar to the results 628 

reported here, Irwin et al. (2008) also found for a policy like CUT2, the precise biomass 629 

at which exploitation began to be reduced was not critical to gaining the benefits of 630 

making exploitation rate dependent on stock size. 631 

The reliability of estimated unfished biomass levels has been discussed in 632 

previous studies, where life history characteristics of a species and temporal 633 

autocorrelation in recruitment have been shown to alter estimation performance 634 

(Haltuch et al., 2008, 2009). Haltuch et al., (2008) found that for all methods of 635 

estimating unfished biomass examined, performance was generally poorer in the 636 

presence of high recruitment variability, which cisco clearly exhibit. If the specification 637 

of a specific unfished biomass based on the SPM is of concern to managers, an 638 

alternative is to set it based on some low objective value, e.g., no harvest below 500,000 639 

kg of spawning biomass. Given the lack of sensitivity of results we saw to the threshold 640 

used, this could retain some desirable characteristics of threshold policies (decreased 641 
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risk, increased Final SB) while not having to rely on correctly estimating the unfished 642 

level of the stock.   643 

Our study is not without caveats and assumptions. A critical assumption we made 644 

was that the probability of a boom year class is static through time. The dominant theory 645 

in the literature as it pertains to what is driving these sporadic boom recruitment years 646 

for cisco is one of match-mismatch, where abiotic and biotic factors are hypothesized to 647 

line up once every few years to allow for large cisco recruitment events (Myers et al., 648 

2015). Further simulations are necessary that take into account the potential effects of 649 

changing environmental conditions (e.g., climate change) on cisco recruitment in 650 

assessing the relative performance of harvest control rules.  651 

In addition, our stock-recruitment function was quite uncertain. The input data 652 

came from stock assessment results (potential issues discussed in Maunder and Punt, 653 

2013; Thorson et al., 2013; Brooks and Deroba, 2015) and provided only 4-7 years of 654 

data on recruitment and stock size for boom years. Given the scarcity of data and 655 

particularly data near the origin, we relied on published priors for recruits per unit 656 

spawning stock near the origin (Myers, 1999) and variation in recruitment given stock 657 

size (Thorson et al., 2014). While these priors are based on the same taxonomic family 658 

and order as cisco, respectively, most stocks used in constructing the priors were 659 

anadromous salmon, which exhibit very different life histories and reproductive 660 

strategies compared to cisco. Other uncertain aspects of the SR function such as the 661 

assumption of no depensation could also not be addressed with the available data. 662 

It is important to note that the current control rule in Thunder Bay is defined as a 663 

function of the biomass of fish > 250mm. In Minnesota waters, the control rule is 664 
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defined in terms of the biomass of fish > 305mm. For this study we followed the 665 

Thunder Bay convention in defining spawning biomass as cisco > 250mm given these 666 

individuals are generally mature (Yule et al., 2006; Yule et al., 2008). If the results of 667 

this comparison are to be used in determining harvest policies and control rules in other 668 

cisco harvesting regions, the implication of different definitions for spawning biomass 669 

should be considered. 670 

In summary, we have shown in this study that the current exploitation rate of 671 

0.10 on Thunder Bay cisco is sustainable (given certain criteria). We have also simulated 672 

the effects of a variety of alternate harvest control rules for managing cisco and found 673 

that, compared to the current control rule, the inclusion of biomass thresholds within 674 

CUT1 or CUT2 control rules can greatly decrease risk and increase yield and spawning 675 

biomass at the end of the time series, at a cost of increased year-to-year variation in 676 

yield. Finally, if constancy in year-to-year yield is held in the highest regard, we have 677 

shown that constant catch control rules greatly outperform constant exploitation rate 678 

control rules in terms of this performance metric for cisco in Thunder Bay, and the 679 

inclusion of biomass thresholds within CCC2 rules decreases risk and increases Final SB 680 

at little cost to yield and AAV.  681 
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[A] Appendix 691 

The SR function used to project recruitment in the case of a boom year was 692 

derived using spawning biomass (mature female kg) and recruitment data from median 693 

point estimates of the posterior distribution of the SCAA (Fisch et al., 2019). Given 694 

spawning biomass and recruitment are on a 2 year lag (i.e. SCAA has recruitment in 695 

1999 and 2000) we calculated spawning biomass in 1997 and 1998 by hindcasting from 696 

the estimated 1999 stock abundance using natural mortality and harvest in 1997-1998. 697 

Due to the scarcity of stock-recruitment data (either seven or four data points for each 698 

recruitment scenario), we placed an informative prior on the log alpha parameter based 699 

on the family Salmonidae in Myers et al. (1999): 2log( ) ~ (1.43,0.05 )Nα . The recruitment 700 

estimates then had to be standardized  701 

)1(~
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M
Fyy eSSBRRR −
= −=  702 

Where yR~ are the standardized recruitments, yR  are the recruitment medians from the 703 

SCAA, 0=FSSBR  is spawning biomass (mature female kg) produced per recruit in the 704 

unfished condition, and M  is the female natural mortality point estimate from the 705 

SCAA (median). The Ricker model is then fit as  706 
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Where SB denotes spawning biomass, calculated as the weight of mature females. This 708 

model was run for 10 million iterations saving every 500th and burning in 2500 of the 709 

final iterations. When used in the SPM we must back transform α~   710 

)1(0

~

M
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−

= −
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α  711 

The recruitments for boom years are then projected by:    712 
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Tables 867 

Table 1. Performance metrics for the 4yr and 7yr recruitment scenarios (4yr | 7yr). 868 
Values are presented as medians over simulations. Yield (kg) denotes mean yield over 869 
the 50 year time span. Risk is calculated as the percentage of years SB is below 20% of 870 
the unfished level. AAV measures inter-annual variation in yield as defined in methods. 871 
Final spawning biomass is the median SB of the last 5 years in a simulation (as a 872 
percentage of unfished). Catch limits in the policy parameters column for constant catch 873 
control rules are presented in 100,000 kg (i.e. 100k=100,000 kg). Each policy has a 874 
specific code identifier (e.g., 1.1.1). 875 

Harvest 
Policy Policy Parameters Yield (kg) Risk (%) AAV Final SB (%) 

Unfished 
0.0 No Harvest 0 10 | 2 0 103 | 104 

CU 
1.1.1 U=0.05 179610 | 195337 18 | 6 0.27 | 0.24 69 | 84 

1.1.2 U=0.10 250044 | 317580  33 | 12 0.30 | 0.27 37 | 64 

1.1.3 U=0.15 257663 | 375958 46 | 22 0.33 | 0.30 19 | 44 

1.1.4 U=0.20 248780 | 373577 58 | 34 0.35 | 0.31 11 | 25 

1.1.5 U=0.25 238140  | 355979 66 | 44 0.36 | 0.32 7 | 16 

CUT1 
1.2.1 U=0.05, SBT=20% 180994 | 195673 18 | 6 0.28 | 0.25 72 | 85 

1.2.2 U=0.05, SBT=30% 183038 | 195247 16 | 6 0.29 | 0.25 72 | 85 

1.2.3 U=0.05, SBT=40% 183557 | 194102 16 | 4  0.30 | 0.26 73 | 85 

1.2.4 U=0.05, SBT=50% 181905 | 191941 16 | 4  0.31 | 0.27 74 | 87 

1.2.5 U=0.10, SBT=20% 258631 | 319321 30 | 10 0.32 | 0.28 41 | 67 

1.2.6 U=0.10, SBT=30% 264863 | 322671 28 | 10 0.34 | 0.29 44 | 68 

1.2.7 U=0.10, SBT=40% 267653 | 321487 26 | 10 0.35 | 0.30 47 | 70 

1.2.8 U=0.10, SBT=50% 271273 | 320127 24 | 8  0.36 | 0.30 48 | 71 

1.2.9 U=0.15, SBT=20% 273220 | 381148 42 | 20 0.36 | 0.31 24 | 48 

1.2.10 U=0.15, SBT=30% 286030 | 386772 40 | 18  0.38 | 0.32 27 | 51 

1.2.11 U=0.15, SBT=40% 295870 | 389956 38 | 16  0.39 | 0.33 30 | 53 

1.2.12 U=0.15, SBT=50% 298069 | 389650 36 | 14  0.40 | 0.34 32 | 55 

1.2.13 U=0.20, SBT=20% 269039 | 395099 52 | 30  0.39 | 0.33 17 | 34 

1.2.14 U=0.20, SBT=30% 283014 | 404402 48 | 26  0.41 | 0.35 19 | 39 

1.2.15 U=0.20, SBT=40% 294209 | 414013 46 | 24  0.43 | 0.36 22 | 41 
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Table 1. (cont’d)      
1.2.16 U=0.20, SBT=50% 303101 | 423362 42 | 22 0.44 | 0.37 24 | 44 

1.2.17 U=0.25, SBT=20% 268231 | 389017 58 | 38  0.41 | 0.35 13 | 25 

1.2.18 U=0.25, SBT=30% 280698 | 403476 55 | 34  0.44 | 0.36 15 | 30 

1.2.19 U=0.25, SBT=40% 292118 | 415541 52 | 30  0.46 | 0.38 18 | 33 

1.2.20 U=0.25, SBT=50% 301277 | 424750 48 | 28  0.47 | 0.40 19 | 36 

CUT2  
1.3.1 U=0.10, SBUT=30%, 

SBLT=20% 273723 | 323895 24 | 8  0.36 | 0.30 49 | 71 

1.3.2 U=0.10, SBUT=40%, 
SBLT=20% 276220 | 321185 23 | 8 0.37 | 0.31 50 | 71 

1.3.3 U=0.10, SBUT=50%, 
SBLT=20% 277347 | 317480 22 | 8  0.38 | 0.32 52 | 72 

1.3.4 U=0.10, SBUT=40%, 
SBLT=30% 279039 | 318711 22 | 8 0.38 | 0.32 52 | 72 

1.3.5 U=0.10, SBUT=50%, 
SBLT=30% 281826 | 316467 20 | 6 0.39 | 0.33 54 | 74 

1.3.6 U=0.20, SBUT=30%, 
SBLT=20% 307403 | 431024 40 | 22  0.46 | 0.38 25 | 43 

1.3.7 U=0.20, SBUT=40%, 
SBLT=20% 320252 | 433642 38 | 20 0.47 | 0.39 28 | 45 

1.3.8 U=0.20, SBUT=50%, 
SBLT=20% 327631 | 436614 36 | 16 0.49 | 0.41 30 | 48 

1.3.9 U=0.20, SBUT=40%, 
SBLT=30% 330235 | 439541 36 | 16 0.49 | 0.41 31 | 48 

1.3.10 U=0.20, SBUT=50%, 
SBLT=30% 331208 | 439614 34 | 14 0.51 | 0.43 33 | 50 

CC 
2.1.1 C=100k 99838 | 99999 22 | 4  0 | 0 66 | 83 

2.1.2 C=150k 138120 | 149997 30 | 8  0.04 | 0 44 | 73 

2.1.3 C=200k 160114 | 198216 41 | 12  0.06 | 0.01 31 | 62 

2.1.4 C=250k 176635 | 235566 48 | 19 0.09 | 0.03 20 | 51 

2.1.5 C=300k 186973 | 262570 53 | 26 0.11 | 0.05 14 | 37 

CCC1 
2.2.1 C=200k, UT=0.15 155714 | 186374 30 | 10  0.10 | 0.05 44 | 72 

2.2.2 C=200k, UT=0.20 158828 | 190935 35 | 10  0.09 | 0.04 37 | 66 

2.2.3 C=200k, UT=0.25 160393 | 193955 38 | 12  0.08 | 0.03 34 | 65 

2.2.4 C=250k, UT=0.15 173246 | 219183 36 | 12  0.14 | 0.07 36 | 66 

2.2.5 C=250k, UT=0.20 175738 | 225113 40 | 14 0.12 | 0.06 29 | 59 

2.2.6 C=250k, UT=0.25 175358 | 229304 44 | 16  0.11 | 0.05 25 | 57 

CCC2  
2.3.1 C=100k, SBT=20%, 

CL=50k 91009 | 97003 18 | 4  0.04 | 0.02 75 | 87 
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Table 1. (cont’d)      
2.3.2 C=100k, SBT=30%, 

CL=50k 86995 | 93998 18 | 4 0.05 | 0.04 77 | 89 

2.3.3 C=150k, SBT=20%, 
CL=75k 130166 | 143999 26 | 8  0.06 | 0.02 55 | 77 

2.3.4 C=150k, SBT=30%, 
CL=75k 124215 | 139497 24 | 6  0.07 | 0.04 62 | 80 

2.3.5 C=200k, SBT=20%, 
CL=100k 158593 | 189925 34 | 10 0.08 | 0.04 37 | 67 

2.3.6 C=200k, SBT=30%, 
CL=100k 153871 | 181997 31 | 8 0.09 | 0.05 42 | 71 

2.3.7 C=250k, SBT=20%, 
CL=125k 175178 | 227671 42 | 14 0.10 | 0.04 26 | 57 

2.3.8 C=250k, SBT=30%, 
CL=125k 172548 | 219998 38 | 12 0.11 | 0.06 30 | 62 

2.3.9 C=300k, SBT=20%, 
CL=150k 187017 | 259610 50 | 22 0.12 | 0.06 17 | 46 

2.3.10 C=300k, SBT=30%, 
CL=150k 183659 | 253198 46 | 16 0.13 | 0.07 21 | 52 
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Table 2. Parameters of the SPM, including their treatment over simulations and source.   891 

Parameter Description Treatment Source 

Sex-specific abundance at 

age , ,( a y sN , to begin SPM )  

Drawn from SCAA posterior 

for each simulation 
Fisch et al., (2019) 

Sex-specific natural 

mortality ( )sM  
Drawn from SCAA posterior 

for each simulation 
Fisch et al., (2019) 

Fishing intensity sex ratios 

( )r
yf  

Drawn from SCAA posterior 

for each simulation 
Fisch et al., (2019) 

Fishery selectivity ( )as  
Drawn from SCAA posterior 

for each simulation 
Fisch et al., (2019) 

Weight-at-age of all cisco 

,( )a sw  
Constant over simulations Fisch et al., (2019) 

Weight-at-age of 

commercially caught cisco 

,( )a sW  

Constant over simulations Fisch et al., (2019) 

Probability cisco age a  is 

larger than 250mm, 

( 250 )aP Fish mm>  

Constant over simulations Fisch et al., (2019) 

Assessment error 

parameters , eρ σ  
Constant over simulations 

eσ - CV of 2015 SCAA SB (Fisch et al., 

2019). ρ - similar MSEs (Irwin et al. 

2008; Punt et al. 2008; Deroba and 

Bence 2012) 

Ricker stock-recruitment 

parameters ,α β  

Drawn from posterior 

distribution of SR function 

for each simulation 

Function derived using SCAA output 

(Fisch et al., 2019) as data 

Ricker stock-recruitment 

parameter rσ  
Constant over simulations Thorson et al., (2014) 

Bernoulli probability of 

boom year class, p  

Drawn from U(0.15,0.25) 

and U(0.25,0.40) (4yr and 

7yr) for each simulation 

Frequency of boom years from (Fisch et 

al., 2019) and Yule et al., (2006) 

Lognormal distribution of 

bust year recruitments 

Recruitment values to derive 

distribution drawn from 

SCAA posterior for each 

simulation 

Fisch et al., (2019) 
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Figures 892 

 893 

Figure 1. Harvest control rules considered in this analysis and associated policy 894 
parameters.  895 
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 900 

Figure 2. SR curves for each recruitment scenario, which apply to boom years. “Data”, 901 
medians of the posterior distribution of the SCAA, are plotted as points. The 7yr 902 
scenario SR curve uses all “data” points while the 4yr scenario was solely fit to the filled 903 
points. The curves represent the expected recruitment given stock size for the posterior 904 
median of the Ricker stock-recruitment parameters, whereas each simulation used a 905 
draw of stock-recruitment parameters from that distribution. The dotted line depicts the 906 
predicted SR curve for the 4yr scenario and the solid line depicts the predicted SR curve 907 
for the 7yr scenario. Spawning Biomass is defined as millions of female kg.  908 

 909 
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 910 

Figure 3. Summary of the distributions of average harvest over the simulation period for 911 
each respective control rule. Shown are medians (horizontal bar) and 25-75 quantiles 912 
(box). Labels specify policy parameters that make up each control rule (CU = “U”; CUT1 913 
= “U SBT”; CUT2 = “U SBUT-SBLT”; CC = “C”; CCC1 = “C UT”; CCC2 = “C SBT”). 914 
Exploitation rates are presented as decimals and biomass thresholds as percentages. For 915 
CUT2 control rules, a label of “0.10 50-20%” describes a control rule that has an 916 
exploitation rate of 0.10 above 50% of the estimated unfished spawning biomass, while 917 
that rate linearly declines below that threshold to 0 at 20% of the estimated unfished 918 
spawning biomass. Catch limits are described in 100,000 kg (i.e. 100k = 100,000 kg).  919 
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 920 

Figure 4. Summary of the distributions of final spawning biomass for each respective 921 
control rule, with final spawning biomass defined as the median of the last 5 years 922 
spawning biomass in each simulation, characterized as a percentage of the unfished 923 
level. Shown are medians (horizontal bar) and 25-75 quantiles (box). Labels specify 924 
policy parameters that make up each control rule (CU = “U”; CUT1 = “U SBT”; CUT2 = 925 
“U SBUT-SBLT”; CC = “C”; CCC1 = “C UT”; CCC2 = “C SBT”). Exploitation rates are 926 
presented as decimals and biomass thresholds as percentages. For CUT2 control rules, a 927 
label of “0.10 50-20%” describes a control rule that has an exploitation rate of 0.10 928 
above 50% of the estimated unfished spawning biomass, while that rate linearly declines 929 
below that threshold to 0 at 20% of the estimated unfished spawning biomass. Catch 930 
limits are described in 100,000 kg (i.e. 100k = 100,000 kg).  931 
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 932 

Figure 5. Spawning biomass for the projection of the current harvest control rule, a 10% 933 
exploitation rate. Shown are medians (horizontal bar) and 25-75 quantiles (box).  934 
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