Parameter estimation performance of a recapture-conditioned integrated tagging catch-at-age analysis model

Matthew T. Vincent ${ }^{\text {a,* }}$, Travis O. Brenden ${ }^{\text {b }}$, James R. Bence ${ }^{\text {b }}$
${ }^{a}$ Secretariat of the Pacific Community, Oceanic Fisheries Program, BP D5, Noumea, New Caledonia 98848
${ }^{b}$ Quantitative Fisheries Center, Department of Fisheries and Wildlife, Michigan State University, 375 Wilson Rd., UPLA Room 101, East Lansing, Michigan, USA, 48824-1101

Abstract

Recapture-conditioned models are infrequently used to analyze tag-recovery data, but have been proposed as an alternative to release-conditioned models for estimating movement from tagging studies when tag-loss processes (e.g., tag reporting, tag shedding) can be assumed constant and estimates of these processes are not available. Through simulations, we investigated the performance (bias and precision) of a recaptureconditioned integrated tagging catch-at-age analysis (ITCAAN) under varying model complexities and intermixing rates and compared the results to those from a release-conditioned ITCAAN. We also investigated how misspecification of natural mortality, parity in population productivities, tag shedding, and spatiallyvarying reporting rates affected model estimates. At low intermixing rates, estimates of total abundance and spawning population abundances were accurate and precise, with precision decreasing when natural mortality was estimated for the recapture-conditioned ITCAAN. Accuracy and precision of individual population abundances declined with higher intermixing rates, with the largest bias and lowest precision occurring when estimating relative reporting rates. Assuming reporting rates were spatially constant in the ITCAAN when they varied regionally in the operating model led to biased estimates of movement rates and population abundances for both ITCAANs; attempting to estimate relative reporting when reporting varied spatially greatly improved parameter estimates compared to assuming spatially constant reporting. When tag shedding was simulated to occur, the recapture-conditioned ITCAAN yielded unbiased estimates of total abundance without additional data on the tag-shedding rate, whereas the release-conditioned ITCAAN estimates were dependent on the quality of the tag-shedding estimates. For most scenarios investigated, the release-conditioned ITCAAN estimates were less biased and/or variable compared to the recaptureconditioned models. However, both models performed poorly in estimating population specific abundances for scenarios when intermixing rates were high and that assumed regionally constant reporting rates in the ITCAAN but varying rates in the operating model.

[^0]Keywords: tag integrated assessment, recapture-conditioned, tagging, catch-at-age, ITCAAN, simulation analysis

Introduction

Spatially-explicit population assessment models simultaneously estimate abundances, mortalities, and movement rates of populations that are exploited as mixed stocks during the fishing season (Goethel et al., 2011). Herein we define a population as an interbreeding group of fish that are self-sustaining and share similar life history characteristics. We define a stock as an exploited fishery unit delineated by region of harvest (Cadrin et al., 2004). Therefore, a mixed stock is comprised of individuals from two or more populations that are exploited as a single unit. Mixed stocks create overharvest risks for less productive populations depending on how stocks are managed (Ying et al., 2011; Guan et al., 2013; Hulson et al., 2013; Molton et al., 2013; Li et al., 2014). Integrated tagging and catch-at-age analysis (ITCAAN) models (Maunder, 2001; Goethel et al., 2015b; Vincent et al., 2017), which incorporate tag-recovery data within a statistical catch-at-age assessment model, are spatially-explicit assessments that can assess and help manage mixed stocks.

Two approaches are generally used to analyze tag-recovery data. The most common approach is for tag recoveries to be conditioned on the number of tags released (release-conditioned framework) (Brownie et al., 1987; Hoenig et al., 1998; Frusher and Hoenig, 2003; Latour et al., 2003; Jiang et al., 2007). We refer to this approach as a release-conditioned framework as this accurately describes the denominator of the recovery probability, but it has also been called the tag-conditioned model (McGarvey and Feenstra, 2002; McGarvey, 2009; McGarvey et al., 2010). The number and probability of tags never recovered are an important component of a release-conditioned framework. The probability of never recovering a tag is influenced by several tag-loss processes including tag reporting, tagging mortality, and tag shedding; these tag-loss processes must be accounted for in a release-conditioned framework to prevent biased parameter estimates (Hampton, 1997; Denson et al., 2002; Cowen et al., 2009; Brenden et al., 2010; Vandergoot et al., 2012). The other tagging framework is to condition tag recoveries on the total number of recoveries (McGarvey and Feenstra, 2002; McGarvey, 2009). To remain consistent with published literature, we refer to this method as the recapture-conditioned framework; however, the likelihood formula uses terminal tag recoveries (i.e. tags that were caught and returned to the tagging agency). The recapture-conditioned framework was proposed to eliminate the need to account for tag-loss processes (e.g., tag reporting) when estimating movement rates from tag-recovery data (McGarvey and Feenstra, 2002). Removing the need to account for tag-loss processes can be beneficial because studies to accurately estimate parameters associated with these
processes can be expensive and difficult to complete. The framework for the recapture-conditioned formulation was derived from the following property: when tag-loss processes such as tag reporting are constant, they cancel out of likelihood equations and therefore do not need to be estimated (McGarvey and Feenstra, 2002). However, the original tagging framework required external estimates of spatially explicit fishing mortality rates and implicitly assumed that tag-loss processes were constant both temporally and spatially. Whether the assumption of spatially and temporally constant tag-loss processes could be met empirically is questionable. If tag-loss processes are not spatially constant, they do not fully cancel out of the likelihood, and if not accounted for in the model could lead to biased parameter estimates. The recapture-conditioned framework can be reformulated to include a parameter for any tag-loss processes that is deemed to not be constant. However, simulation testing of such formulation of a recapture-conditioned tagging framework has not been conducted and the ability to estimate tag-shedding parameters, such as reporting rate, within a recapture-conditioned ITCAAN is unknown. The recapture-conditioned framework was intended to nullify the need to account for tag-loss processes required for a release-conditioned analysis. However, if some tagloss estimates are available and are shown to be spatially variable these parameters could be input into a reformulated recapture-conditioned framework. Additionally, it would be beneficial to know how sensitive recapture-conditioned models are to tag-loss processes that are not spatially or temporally constant.

The recapture-conditioned framework has been infrequently used for analyzing tag-recovery data, although see McGarvey and Feenstra (2002) and McGarvey (2009). There also has been limited application and simulation evaluation of ITCAANs that incorporate a recapture-conditioned framework, although see McGarvey et al. (2010). As a result of its limited use, it is not presently known how complex of a parameterization (e.g. natural mortality estimation) can be handled by recapture-conditioned ITCAANs. The model has also not been tested using an alternative formulation described above whereby a specific tag-loss process (e.g., reporting rate) is not assumed to be constant.

We conducted a simulation study to investigate the performance of a recapture-conditioned ITCAAN based on walleye (Sander vitreus) populations in the Laurentian Great Lakes of North America. Walleye have been found to be highly migratory both in the Great Lakes (Wang et al., 2007; Zhao et al., 2011; Vandergoot and Brenden, 2014; Hayden et al., 2014) and in inland systems (Smith et al., 1952; Rasmussen et al., 2002; Herbst et al., 2016). For both the Great Lakes and inland systems, appropriately addressing walleye migration has been identified as a management challenge (Brenden et al., 2015; Herbst et al., 2017). Walleye are economically important in the Great Lakes region and are exploited both commercially and recreationally (Fielder and Bence, 2014; Wills et al., 2016). Walleye spawn in rivers or on shallow reefs during early spring. After spawning, walleye disperse throughout the Great Lakes (Wang et al., 2007; Zhao et al., 2011; Vandergoot and Brenden, 2014; Hayden et al., 2014), but typically return annually to natal
regions to spawn (Stepien and Faber, 1998; Haponski and Stepien, 2014; Hayden et al., 2014; Wilson et al., 2017).

The largest walleye fisheries in the Great Lakes are in Lakes Erie and Huron, which are connected via Lake St. Clair and the Detroit and St. Clair Rivers. Walleye abundance in Lake Huron has been estimated to be between one and four million fish (Fielder and Bence, 2014). In Lake Erie, abundance of walleye in the eastern basin of the lake has been estimated on the order of tens of thousands of fish (Zhao et al., 2011), whereas abundance in Lake Erie's western basin is believed to be closer to tens of millions of fish (Wills et al., 2016). Tagging studies have found walleye migrating between Lakes Erie and Huron (Wang et al., 2007; Hayden et al., 2014; Vandergoot and Brenden, 2014). Intermixing rates of walleye from some spawning populations in Lake Erie's western basin to Lake Huron and the eastern basin of Lake Erie have been estimated at around 1 to 2\% (Wang et al., 2007; Fielder and Bence, 2014; Vandergoot and Brenden, 2014). This rate of intermixing may be low, but a considerable amount of the harvest in all regions may originate from the western basin population given region-specific differences in population abundances (McParland et al., 1999; Brenden et al., 2015). Reporting rates of tagged fish have been found to be fishery dependent, with commercial fishery reporting in Canadian waters being much lower than recreational fishery reporting in U.S. waters. Factors that can lead to spatially varying reporting rates include how well the tagging study is advertised, degree of apathy toward the tagging study, differing language between regions, or region specific relationships with the agency conducting the tagging study (Hoenig et al., 1998; Denson et al., 2002; Vandergoot et al., 2012), which can be associated with the nature of the fishery (e.g., commercial versus recreational). Interest in developing spatially-explicit models to assist with the management of Lakes Erie and Huron walleye has increased in recent years due to recognition of the movement between the lakes and the value of the respective fisheries (Fielder and Bence, 2014; Wills et al., 2016).

The purpose of this research was to evaluate the bias, precision, and robustness of model parameters for a recapture-conditioned ITCAAN for populations that display natal homing. Specifically, we investigated how bias and precision of parameter estimates were affected by the following: 1. whether movement, natural mortality, and/or reporting rates were estimated and how performance was affected by population intermixing levels; 2. spatial variability in reporting rates among regions and whether reporting rates were estimated in the ITCAAN or presumed to be constant; 3. misspecification of natural mortality when the parameter is treated as known within the recapture-conditioned ITCAAN; 4. tag shedding; and 5 . parity in productivities of the spawning populations. Vincent et al. (2017) conducted similar evaluations for a release-conditioned ITCAAN; consequently, we were also able to compare the performance between the two ITCAAN frameworks. We were motivated to explore the performance of both ITCAAN frameworks to spatially varying reporting rates because in our case study reporting rates are unlikely to be spatially constant. We were also
interested in how tag shedding and potential bias in external estimates of these rates would affect model estimates. The intention of this research was to provide information to fishery managers and scientist on how a recapture-conditioned ITCAAN performed when assumptions are violated and provide some guidance as to situations where a recapture- or release-conditioned ITCAAN may be preferable over the other approach.

Methods

An operating model generated the true dynamics of simulated fish populations and tagged cohorts. From this operating model, 40 year time series of observed data were simulated, which were then fit to a recapture-conditioned ITCAAN. For scenarios not previously evaluated by Vincent et al. (2017), we also fit a release-conditioned ITCAAN to the generated data. The operating model used in this research was identical to that presented in Vincent et al. (2017), but will be summarized here; equations and parameter values for the operating model are provided in the Supplementary Materials (available at: https://figshare.com/s/40f510c92539da065558). The operating model simulated the abundances and dynamics of four populations that intermixed among four regions. Fish were assumed to aggregate in their natal region at the beginning of each year to spawn (i.e., 100% spawning site fidelity was assumed). Fishing was assumed to not occur while fish were aggregated for spawning. Recruitment was simulated from populationspecific Ricker stock-recruitment functions with a first-order autoregressive process error. Values for the first-order autoregressive process for each population were randomly drawn from posterior distributions for Percidae (Thorson et al., 2014). Equilibrium stock sizes and productivities (i.e., stock-recruit steepnesses) were assumed to differ among the four populations for most scenarios (Table 1); values for these are reported in Supplementary Materials Table 2. The stock-recruit parameters for population 1 were based on Lake Huron walleye, while the stock-recruit parameters for populations 2, 3, and 4 were based on western, central, and eastern Lake Erie walleye, respectively.

After spawning, fish were assumed to instantaneously mix among the four regions using a box-transfer model (Goethel et al., 2011); after moving to an area, fish were assumed to remain for the rest of the year and were subject to fishing. The exploitation rates experienced by the mixed stocks were region-specific. Apical fishing mortality rates for the regions were generated using first-order autoregressive processes with regionally-unique means based on estimated fishing mortalities for Lakes Erie and Huron (Table 1; see Supplementary Materials Table 2). Region-specific catchability coefficients and lognormal multiplicative observation errors with CVs of 10% were used to simulate time series of fishing effort. The instantaneous natural mortality rate for all ages was assumed to be 0.32 year $^{-1}$ in all populations for the entire time series of the simulations. Age-specific selectivities for the fishery in each region were assumed to be temporally constant but regionally unique (Supplementary Materials Table 1). Observed region-specific annual harvest data (i.e.,
summed across populations) were generated from actual harvest multiplied by lognormal observation errors with CVs of 10% for the entire time series. Observed harvest age composition for each region and year was simulated from multinomial distributions that used the actual harvested age composition as the underlying proportions and assumed a sample size of 100 fish. Fishery-independent surveys were simulated to occur in the regions during October (i.e., during the intermixed period each year). Region-specific catchabilities and age-specific selectivities were used to simulate a survey catch per effort time series with multiplicative lognormal observation errors with CVs of 20%. Age-composition data for all years were also simulated for each survey from multinomial distributions based on the intermixed abundance present in October with sample sizes of 100 .

In the simulation, 2000 fish were tagged annually from each population at the beginning of the year when fish had returned to their associated spawning grounds. The simulation assumed that all recoveries of tagged fish were terminal recoveries and did not account for fishery agency encounters of tagged fish during surveys. Consequently, all releases of tagged fish were simulated to be newly tagged fish. Simulations with an abundance of less than 40000 fish for any of the four populations were excluded and replaced with a new simulation, because we believed it was unlikely that more than 5% of a population would be tagged in a particular year. The fate (i.e., survived, harvested, or died due to natural causes) of tagged fish each year were generated from multinomial distributions with expected proportions equal to the dynamics of the at-large populations (e.g., exploitation rate). Tag reporting was assumed to be imperfect (i.e., < 100%) for all simulations, with different assumed regional reporting rates for different scenarios (see Simulation Scenarios). The number of tags recovered were simulated using a binomial process based on the number of tagged fish harvested by the region specific fisheries and the regional reporting rate. The number of terminal recoveries of tagged fish were used in the likelihood function of the ITCAANs.

Unless otherwise specified, the operating model assumed no tag shedding occurred. For the three scenarios where tag shedding was assumed to occur, tag-retention probability was calculated using the following equation:

$$
\begin{equation*}
\Pi_{y, r}=\chi_{r} * e^{-\Omega_{r} * y} \tag{1}
\end{equation*}
$$

where Π is the proportion of tags retained, χ_{r} is the region-specific tag-retention rate immediately after tagging, Ω_{r} is the region-specific chronic shedding rate, and y is the number of years after release. The proportion of tags retained given the number of years after release was multiplied by the number of tags alive at the beginning of the year to simulate tag shedding (See Supplementary Materials for equations).

The data sources generated from the operating model were region-specific harvest in numbers, harvest age composition, region-specific mixed population survey catch per effort, survey age composition, number
of tags released each year, number of tags recovered by each fishery each year, and fishery effort per region. Both the operating and ITCAANs tracked the dynamics of walleye between the ages of 2 and 7, with the last age group in the model aggregating all fish age 7 and older. The operating model was programmed in R version 3.5.1 (R Core Team, 2016), whereas the ITCAAN was programmed in AD Model Builder version 12.0 (Fournier et al., 2012). A complete description and code for the operating and ITCAANs can be found in the Supplementary Materials (available at: https://figshare.com/s/40f510c92539da065558).

ITCAAN Models

Two ITCAANs were used in this research to evaluate their relative performance, a recapture-conditioned and a release-conditioned model. Parameters and equations for the recapture-conditioned ITCAAN are presented in the Supplementary Materials. In brief, the ITCAAN was structured to estimate the dynamics of four populations that intermix among four regions and display natal homing every year. Recruitment was estimated through a random-walk process for each region with the last two years of recruitment set equal to the mean for the previous three years. Annual fishery catchabilities were modeled using random-walk processes, but region-specific survey catchabilities were assumed constant through time. Selectivities for surveys and fisheries were estimated as age-specific parameters for ages 2 through 7 and assumed constant through time. Movement rates, including the proportion remaining in the natal region were estimated through a multinomial logit transformation that constrained movement rates to be between 0 and 1 (Vandergoot and Brenden, 2014). Catch and effort data were assumed to be lognormally distributed, whereas age composition data for the surveys and the fisheries and the tag-recovery data were assumed to be multinomially distributed.

The negative log likelihood equation for the tagging component of the recapture-conditioned ITCAAN, ignoring scaling constants, was:

$$
\begin{equation*}
L=-\sum_{l} \sum_{r} \sum_{y} \log \left(\frac{\widehat{d_{l, y, r}}}{\sum_{y} \sum_{r} \widehat{d_{l, y, r}}}\right) * d_{l, y, r} \tag{2}
\end{equation*}
$$

where d is the observed number of tags recovered and \widehat{d} is the model predicted number of tags recovered. The subscripts for d are the unique release event for each population and year (l), the year of recovery (y) and the region of recovery (r). The predicted number of tags recovered from a tagged cohort were calculated as:

$$
\begin{equation*}
\widehat{d_{l, y, r}}=\sum_{a} \hat{n}_{l, y, a} \Pi_{y, r} \widehat{T}_{p, r} \frac{\hat{F}_{y, a, r}}{\hat{Z}_{y, a, r}}\left(1-\widehat{S}_{y, a, r}\right) \widehat{\Upsilon_{r}} \tag{3}
\end{equation*}
$$

where $\hat{n}_{l, y, a}$ is the predicted number of tags alive in year y of age a from tag release group l that is year and population specific, $\Pi_{y, r}$ is the region-specific tag retention probability, $\widehat{T}_{p, r}$ is the predicted movement
rate from population p to region $r, \hat{F}_{y, a, r}$ is the predicted instantaneous fishing mortality rate, $\hat{Z}_{y, a, r}$ is the predicted instantaneous total mortality rate, $\hat{S}_{y, a, r}$ is the finite survival rate, and $\widehat{\Upsilon}_{r}$ are the region-specific reporting rates. This formulation of the recapture-conditioned likelihood is different from that originally presented by McGarvey and Feenstra (2002) in that it includes specific parameters for the tag-reporting and tag-shedding rates. This formulation allows for fishery-specific reporting rates, but if the reporting rates are fixed at a spatially constant value they cancel from the likelihood and the model estimates are identical to the original formulation. Similarly, the recapture-conditioned ITCAAN assumed that tag-retention probability equaled 1 for all scenarios and thus did not affect parameter estimates.

In a recapture-conditioned framework, actual reporting rates for the regions are not estimable because unique solutions do not exist given Equations (2) and (3). In other words, region-specific reporting rates of $10 \%, 20 \%, 30 \%$, and 40% would produce the same model fit (i.e., same likelihood) as region-specific reporting rates of $20 \%, 40 \%, 60 \%$, and 80%. In this research, we explored the estimability of relative reporting rates in a recapture-conditioned framework by fixing the reporting rate for region one to a value of 1.0 and then estimated the reporting rates for the remaining regions as bounded parameters between 0.01 and 100. The relative reporting rates formulation produces unique solutions, and in the above examples would equal $1.0,2.0,3.0$, and 4.0 if scaled relative to region 1 . For scenarios where reporting rates were not estimated but treated as fixed values, region-specific reporting rates were treated as relative values for the recapture-conditioned ITCAAN. For the recapture-conditioned ITCAAN, fixing the relative reporting rates equal among regions was equivalent to assuming that reporting rates canceled out of the likelihood equation.

Although release-conditioned ITCAAN results for many of the simulation scenarios were directly available from Vincent et al. (2017), we elected to refit the release-conditioned ITCAAN to the time series generated for this research to ensure consistency when comparing with recapture-conditioned ITCAAN results. The release-conditioned ITCAAN used for this study was identical to that described in Vincent et al. (2017), with two exceptions. First, the tagging shedding formulation in the release-conditioned ITCAAN used in this research incorporated an initial tag loss which was not previously included. Secondly, we scaled the negative \log likelihood for multinomially distributed random variables to equal zero when the data were fit perfectly. These changes were made to better represent the tag shedding processes present in the study system and to improve model convergence, but were otherwise not expected to affect parameter estimates. For the tag shedding scenarios that were not previously conducted by Vincent et al. (2017), the value of the tag retention probability input into the ITCAAN $\left(\Pi_{y, r}\right)$ were calculated using Equation (1) with different values of Ω. All other scenarios assumed $\Pi_{y, r}$ equaled 1 for all years after recapture.

ITCAANs were fit to data time series from the operating model by highest posterior density estimation, also referred to as maximum penalized likelihood estimation (Stewart et al., 2013). We assessed convergence
of the ITCAANs by whether the maximum gradient across all parameters was less than 0.05 and the model produced a positive-definite Hessian matrix. This cutoff for the maximum gradient was determined after preliminary results for the low-movement scenario showed that gradients smaller than this were infrequent and estimates were within the range of plausibility. Simulated datasets were fit by the ITCAANs until 1000 datasets had converged on estimates. Table 2 presents the number of simulations that were required to reach a sample size of 1000 and the number of simulations that failed to converge for either criteria.

Simulation Scenarios

Three groups of scenarios were investigated to examine performance of the recapture-conditioned ITCAAN and to compare its performance with a release-conditioned ITCAAN. The first group of scenarios evaluated the estimability of movement, natural mortality, and/or relative tag reporting rates under different levels of population intermixing. The second group of scenarios analyzed the influence of spatially varying reporting rates on parameter estimates when either estimating relative reporting rates or assuming the reporting rates were regionally constant (i.e., canceled out of likelihood for the recapture-conditioned model). The third group of scenarios evaluated the influence of misspecifying natural mortality in an ITCAAN, tag shedding, and the effect of equal productivities among populations. Model assumptions for each simulation scenario described below were identical for both the recapture- and release-conditioned ITCAANs unless otherwise stated and both models were fit to the same simulated data. The recapture-conditioned ITCAAN was formulated as reporting rates relative to region 1, whereas the release-conditioned ITCAAN estimated reporting rates for all regions. Therefore, we denote this difference throughout the paper with the notation "(relative) reporting rates".

Group 1: Estimation of Movement, Relative Reporting Rates, and Natural Mortality Under Varying Intermixing Rates

Simulations were conducted for a total of 20 scenarios to examine how ITCAAN performance was influenced by the intermixing rate of the simulated populations and the estimation of rates of movement, natural mortality, and/or tag reporting. Four assumed intermixing scenarios were crossed with five ITCAAN parameterizations. The four intermixing scenarios consisted of different rates of movement from natal region to each non-natal region. The examined rates were $1,5,10$, and 20% of the population. For example, under a 20% intermixing rate 40% of the populations remained in their natal region and 20% of the populations moved to each of the other three regions. The five ITCAAN parameterizations varied with regards to whether movements, natural mortality, and/or (relative) reporting rates were estimated as part of the model fitting process or fixed at the true values assumed in the operating model. The first parameterization assumed that movement, natural mortality, and (relative) reporting rates were fixed at their true values and this was
the only parameterization where movement rates were not estimated (MvFix). The second parameterization estimated movement rates, but assumed natural mortality and (relative) reporting rates were fixed at their true values (MRFix). The third parameterization estimated movement and natural mortality rates, but assumed (relative) reporting rates were fixed at their true values (RFix). The fourth parameterization estimated movement and (relative) reporting rates but fixed natural mortality at the true value (MFix). The final parameterization estimated movement, natural mortality, and (relative) reporting rates (NoFix). The results are labeled using the parameterization label of the ITCAAN followed by the intermixing rate in the operating model. For example, MFix20 refers to the ITCAAN parameterization where (relative) reporting rates and movement rates were estimated, but natural mortality was fixed in the ITCAAN and the operating model assumed a 20% intermixing rate.

Group 2: Regionally Varying Reporting Rates

The second group of scenarios investigated the influence of regionally varying reporting rates in the operating model on different treatments of reporting rates in the ITCAANs. All scenarios in this group assumed a 20% intermixing rate for the simulated populations and estimated natural mortality as part of the ITCAAN fitting process. We investigated two scenarios of spatially varying reporting rates in the operating model. The first scenario with reporting rates varying spatially (RV1) assumed that the reporting rates were the highest for regions where the natal populations were the least productive (Table 1). The second scenario with reporting rates varying (RV2) assumed that the reporting rate was the highest in regions where the natal populations were the most productive and decreased with decreasing productivity. For these two spatially varying reporting rate scenarios, we attempted to estimate relative reporting rates with the recaptureconditioned ITCAAN and reporting rates for each region with the release-conditioned ITCAAN (ITCAAN section). We also explored the consequence of assuming the reporting rates were constant in the ITCAANs under these two spatially varying reporting rate scenarios. For the recapature-conditioned ITCAAN we fixed the relative reporting rates for all regions to 1.0 , which is analogous to the original formulation employed by McGarvey and Feenstra (2002). For the release-conditioned ITCAAN we estimated a single reporting rate parameter that was shared among the four model regions. Scenarios in this group that estimated (relative) reporting rates were referred to as Est scenarios (e.g., RV1Est); we refer to simulations when (relative) reporting rates were assumed to be spatially constant as Const scenarios (e.g., RV1Const). Scenarios with spatially varying reporting rates were not included in the simulations conducted by Vincent et al. (2017) for a released-conditioned ITCAAN, therefore results from the simulations are described in greater detail than the other scenarios and without citation to Vincent et al. (2017).

The third group of simulations investigated the consequences of misspecifying natural mortality in the ITCAAN, the effect of assuming equal productivities among spawning populations in the operating model, and a simulated tag-shedding process. The tag-shedding scenario assumed an intermixing rate of 10%, while all other scenarios in this group assumed a 20% intermixing rate in the operating model. The first scenario examined the influence of misspecifying the natural mortality in the ITCAAN at 0.5 times the true value (i.e., 0.16). This scenario was referred to as SensU because it evaluated sensitivity to natural mortality that was specified to be less than (under) the true value. The second scenario in this group examined the effect of specifying the natural mortality in the ITCAAN at 1.5 times the true value (i.e., 0.48). This scenario was referred to as SensO because it evaluated the sensitivity of parameter estimates to specifying natural mortality to be greater than (over) the true value. For both the SensU and SensO scenarios, movement and (relative) reporting rates were estimated as part of the ITCAAN fitting process. The third scenario in this group evaluated how parity in productivities among the four populations affected ITCAAN parameter estimation. This scenario was referred to as EqProd to stand for equal productivities among populations. For this scenario, all populations were assumed to have the same stock-recruitment parameters in the operating model (i.e., Ricker parameters for population 2 in other scenarios), and movement, natural mortality, and (relative) reporting rates were estimated in the ITCAAN. The fourth through sixth scenarios in this group simulated the shedding of tags at rates that were specific to each region of release (Vandergoot et al., 2012; Supplementary Materials Table 2). These three scenarios assumed that natural mortality and reporting rates were known and fixed in the ITCAANs. The recapture-conditioned ITCAAN was not provided information regarding tag shedding within the model (i.e., assuming that a shedding experiment was not conducted) and is only presented under the ShedExact scenario. Three assumptions regarding the estimated accuracy of the tag-loss process parameters input into the release-conditioned ITCAAN were tested: exact knowledge of the parameters (ShedExact), chronic tag-shedding rates (Ω) were 20% overestimated (ShedOver), and chronic tag-shedding rates (Ω) were 20% underestimated (ShedUnder). The ShedExact scenario for the release-conditioned ITCAAN provided the true proportion of tags that retained their tags. The resulting proportion of tags retained calculated using Equation (1) was then used in the release-conditioned ITCAAN during estimation of parameters. The tag-shedding scenarios were not included in the simulations conducted by Vincent et al. (2017) for a released-conditioned ITCAAN, therefore results from the simulations are described in greater detail than the other scenarios and without citation to Vincent et al. (2017).

Performance Metrics

ITCAAN performance was evaluated by comparing parameter estimates to the true values generated by the operating model. Percent relative error ((estimate - true)/true* 100%) was calculated for all parameters, except movement which was calculated as actual error. Parameters that were age specific (e.g, selectivity, results shown in the Supplementary Materials) and year specific (e.g., abundance) calculated the relative error for all parameters in a converged simulation and then aggregated by region or population for plotting. For example, the boxplots of population abundance summarizes 40 years of error in abundance estimates times 1000 simulations. Error in movement rate estimates was assessed as actual error (estimate - true) to facilitate comparisons across scenarios, though relative errors of movement rates are presented in the Supplementary Materials. For the sake of brevity, we discuss the bias and precision of model estimates of total abundance (i.e., abundance summed over all populations), spawning population abundance, (relative) reporting rate, natural mortality, and movement rates. Performance of all other parameter estimates are presented in the Supplementary Materials. Parameters not presented in the manuscript either showed no bias in estimates or were biased similar to population abundances, though not always in the same direction. Medians of relative or actual errors were used to evaluate model bias and the interquartile ranges (IQRs) were used to evaluate precision. Bias and precision of parameter estimates were compared across scenarios to give a relative view of ITCAAN performance between the recapture- and release-conditioned frameworks. Only the results for the release-conditioned ITCAAN for the Group 2 and Group 3 tag-shedding scenarios are presented in detail because results of all other scenarios are described in Vincent et al. (2017); the presentation of results for all other scenarios is solely for comparing with results for a recapture-conditioned model. In addition to using estimation errors as a means to evaluate model performance, we also considered the number of simulations that failed to converge by the two selection criteria for each scenario as an indicator of model performance (Table 2).

Results

Model Performance

ITCAAN Model Convergence
Convergence of the ITCAANs varied depending on the intermixing level assumed in the operating model and the tagging framework (Table 2). A convergence rate greater than 90% was observed for simulation scenarios where the assumed intermixing rates were 5% or greater. For scenarios with intermixing greater than 5% and (relative) reporting rates fixed, the recapture-conditioned ITCAAN exhibited marginally better convergence properties because it was less likely to have a non-positive definite Hessian than the releaseconditioned ITCAAN (Vincent et al., 2017). For scenarios with intermixing greater than 5% and (relative)
reporting rates estimated, the recapture-conditioned ITCAAN exhibited worth convergence properties because it had more large maximum gradients compared to the release-conditioned ITCAAN (Vincent et al., 2017). Simulation scenarios with a 1% intermixing rate had between 74 and 86% of simulations converged for the recapture-conditioned ITCAANs, which was less than the convergence rate for a release-conditioned ITCAAN with similar scenarios (Vincent et al., 2017). Simulations at the 1% intermixing rate for the recapture-conditioned ITCAANs typically failed to converge due to a maximum gradient greater than 0.05 . The convergence rate of models decreased to approximately 80% for the recapture- and release-conditioned ITCAANs that assumed a spatially constant reporting rate when the operating model assumed the reporting rate was highest in the least productive natal regions (RV1Const; Table 2). However, convergence for the other configuration of spatially varying reporting rates (RV2Const) did not display such lack of convergence. A 100% convergence rate occurred for the equal productivity scenario for both ITCAANs.

Total Abundance Relative Error

Bias and precision of total abundance summed across all populations, as measured by median and IQR relative error respectively, varied among the simulation scenarios. Median relative errors in total abundance for the recapture-conditioned ITCAANs in Group 1 scenarios were between -0.17% and -8.33% suggesting a small but consistent negative bias in total abundance estimates, which was consistent with the releaseconditioned ITCAAN (Vincent et al., 2017). For the recapture-conditioned ITCAAN model in scenarios where natural mortality was estimated (i.e., RFix and NoFix scenarios), total abundance estimates had greater bias and variability (i.e., lower precision) compared to scenarios where natural mortality was fixed at the true value (i.e., MvFix, MRFix, and MFix; Figure 1). Scenarios in which relative reporting rates were estimated, but natural mortality was fixed for the recapture-conditioned ITCAAN (i.e., MFix) had levels of bias and precision similar to scenarios where both natural mortality and reporting rates were fixed (i.e., MRFix; Figure 1). For the recapture-conditioned ITCAAN scenarios in which natural mortality was estimated, the highest intermixing rates (i.e., 20\%) resulted in the lowest precision in total abundance estimates. Scenarios for the release-conditioned ITCAAN where reporting rates were estimated (i.e., MFix and NoFix) had greater bias and variability compared to scenarios where the reporting rate was fixed at the true value (Vincent et al., 2017). Total abundance estimates were most biased and variable for the releaseconditioned ITCAAN when both reporting rates and natural mortality were estimated (Vincent et al., 2017). For all Group 1 scenarios, the recapture-conditioned model performed worse in estimating overall abundance (i.e. higher bias and variability) compared to the release-conditioned model.

The influence of spatially varying reporting rates in the operating model on total abundance estimates depended on whether reporting rates were estimated as spatially variable or constant and whether a recapture-
or release-conditioned framework was assumed in the ITCAAN. When reporting rates varied spatially and were estimated (RV1Est and RV2Est), bias and precision of total abundance estimates in the recapture- and release-conditioned ITCAANs were similar to the RFix20 and NoFix20 scenarios. When reporting rates were assumed to be spatially constant in the recapture-conditioned ITCAAN median estimates were marginally above zero for the RV1Const scenario, but were more negatively biased for the RV2Const scenario; variability of total abundance estimates by the recapture-conditioned ITCAAN increased (i.e, precision decreased) for both these scenarios (Figure 1). The release-conditioned ITCAAN had a large positive bias and variability in total abundance estimates when a spatially constant reporting rate was estimated for both spatially varying scenarios (RV1Const and RV2Const; Figure 1). For scenarios that assumed spatially constant reporting rates, the IQRs of estimates from the recapture-conditioned ITCAAN were approximately two times larger than the RFix20 or NoFix20 scenarios, whereas the release-conditioned ITCAAN estimates were approximately five times larger than the NoFix20 scenario. Both ITCAAN frameworks performed better when estimating spatially variable reporting rates compared to estimating a spatially constant reporting rate for scenarios where the operating model simulated spatially varying reporting rates.

The misspecification of natural mortality at 0.5 times the true value resulted in an underestimation of the total abundance with a median relative error of approximately -50% for ITCAANs with either tagging framework. Conversely, setting natural mortality at 1.5 times the true value in the ITCAAN resulted in a positive bias in total abundance with a median relative error equal to 374% and 131% for the recapture- and release-conditioned ITCAANs, respectively (Vincent et al., 2017). Specifying natural mortality above the true value also resulted in the largest IQR in total abundance among the examined scenarios for the recaptureconditioned ITCAAN (Figure 1). When all populations were assumed to have equal productivity levels, total abundance estimates from the ITCAAN had bias similar to the NoFix20 scenario, but marginally better precision (Figure 1). Total abundance estimates were unbiased and precise for the recapture-conditioned ITCAAN in the scenario with tag shedding simulated to occur with both natural mortality and reporting rates fixed at the true value (ShedExact). The estimates for the release-conditioned ITCAAN in the tagshedding scenario was unbiased when provided the exact shedding rates, but were biased by 5% in the opposite direction of the 20% bias in the chronic tag-shedding rate.

Population Abundances Relative Error

Estimates of individual population abundances had larger median relative error bias and variability (relative error IQR) than estimates of total abundance. Abundance estimates of population 2, the most productive population, for Group 1 scenarios were generally negatively biased, while biases for all other populations were positive (Figure 2). As intermixing rates increased, the bias and variability of population abundance esti-
mates generally increased for recapture-conditioned ITCAANs. Among scenarios with low intermixing rates for the recapture-conditioned ITCAAN, the largest bias and variability in population abundance for populations 2 and 4 occurred when natural mortality was estimated (RFix and NoFix; Figure 2); for populations 1 and 3 , the largest bias and variability occurred in scenarios where reporting rates were estimated (MFix and NoFix; Figure 2). Scenarios of high intermixing, 10% and larger, for the recapture-conditioned ITCAANs were more biased and variable than the low intermixing scenarios and performed worst when reporting rates were estimated (MFix20 and NoFix2; Figure 2). For all scenarios in Group 1 the recapture-conditioned ITCAAN performed worse (less accurate and precise) than the release-conditioned ITCAAN.

Individual population abundances typically were most biased for Group 2 scenarios when reporting rates were assumed to be spatially constant (RV1Const and RV2Const). Bias and precision of individual population abundance estimates for models that estimated (relative) reporting rates under both spatially varying reporting rates scenarios (RV1Est and RV2Est) were similar to the NoFix20 scenario for both the recaptureand release-conditioned ITCAANs. The estimates of population abundance from the recapture-conditioned ITCAAN were more biased and variable compared to the release-conditioned ITCAAN when spatially varying reporting rates were estimated. However, the recapture-conditioned ITCAAN estimates were less biased and variable when a spatially constant reporting rate was assumed. For ITCAANs that assumed a spatially constant reporting rate (RV1Const and RV2Const), bias in individual population abundance estimates were greatly influenced by which region had the highest assumed reporting rate. When the highest reporting rates occurred in regions associated with the most productive populations (RV1Const), abundance estimates for populations 2 and 4 were severely underestimated, whereas abundance of population 3 was severely overestimated, median relative error approximately 5000% and 10000% for the recapture- and release-conditioned ITCAANs (Figure 3). Estimates of population 1 in the RV1Const scenario by the recapture- and releaseconditioned ITCAAN were both positively biased, but were less variable for the recapture-conditioned ITCAAN. When the highest reporting rates occurred in regions associated with the least productive populations (RV2Const) the recapture- and release-conditioned ITCAANs underestimated abundance of populations 2 and 3 , but greatly overestimated the abundance of populations 1 and 4 (Figure 3).

Incorrect specification of natural mortality had large consequences on population estimates for both tagging frameworks (Figure 3; Vincent et al., 2017). When natural mortality was specified at 0.5 times the true value in the ITCAAN (SensU), abundance estimates for population 1 and 3 were positively biased, whereas abundance estimates for population 2 were negatively biased for both tagging frameworks (Figure 3). Estimates of population 4 abundance for the SensU scenario were unbiased for the recapture-conditioned ITCAAN, but greatly positively biased for the release-conditioned ITCAAN. When natural mortality was set at 1.5 times the true value in the ITCAAN, the recapture-conditioned ITCAAN significantly overesti-
mated all population abundances (Figure 3). Population abundance estimated under this scenario for the release-conditioned ITCAAN were overestimated for all populations except population 4, but were a much lower magnitude compared to the recapture-conditioned ITCAAN (Vincent et al., 2017). When the productivities among the populations were equal, individual population abundance estimates were accurate and precise where precision was equal between populations for both tagging frameworks. Population abundance estimates for the equal productivities scenario were most variable for the recapture-conditioned ICTAAN model compared to the release-conditioned ITCAAN (Vincent et al., 2017). Bias and precision of estimates from the release-conditioned ITCAAN under tag-shedding scenarios were positive and similar among the scenarios for all populations except population 2. Estimates of population 2 were least biased when the release-conditioned ITCAAN was given tag-shedding rates under the true rates and most biased when given tag-shedding rates over the true value.

Natural Mortality and (Relative) Reporting Rates Relative Error

Natural mortality estimates for Group 1 scenarios were accurate (median generally within $\pm 5 \%$), but precision (relative error IQR) varied across scenarios (Figure 4). For the recapture-conditioned ITCAAN, the variability of relative error for natural mortality was relatively consistent for the $1 \%, 5 \%$, and 10% intermixing scenarios, but doubled for the 20% intermixing scenario. A negative bias in natural mortality estimates occurred when the intermixing rates were 20% for the recapture-conditioned ITCAAN. Estimation of relative reporting rates for the recapture-conditioned ITCAAN concurrently with natural mortality did not affect bias or precision of the natural mortality estimates, unlike the release-conditioned ITCAAN (Figure 4; Vincent et al., 2017). Estimates of natural mortality were much less precise and accurate for the recaptureconditioned ITCAAN than the release-conditioned ITCAAN (Vincent et al., 2017). For Group 2 scenarios, natural mortality estimates were comparably accurate when the (relative) reporting rates were estimated as spatially unique parameters (RV1Est and RV2Est) for both the recapture- and release-conditioned ITCAANs. When reporting rates were assumed spatially constant in the ITCAAN, a positive bias in natural mortality estimates occurred for both tagging frameworks in the scenario where reporting rates were the greatest in the region associated with the most productive population (RV1Const). Estimates of natural mortality from the recapture-conditioned ITCAAN in the scenario where reporting rates were the lowest in the region associated with the most productive population (RV2Const) were unbiased but the most variable among the investigated scenarios (Figure 4). Natural mortality estimates from the release-conditioned ITCAAN for the RV2Const scenario were very positively biased similar to the RV1Const scenario. For RV1Const and RV2Const scenarios, precision of natural mortality estimates was low compared to Group 1 scenarios for both tagging frameworks (Figure 4). Natural mortality estimates from the Group 3 scenario in which
spawning populations had equal productivities were similar in bias and precision to the NoFix20 scenario.
Bias and precision of relative reporting rates varied by intermixing rate scenario, region and tagging framework (Figure 4). For Group 1 scenarios, relative reporting rate estimates from the recapture-conditioned ITCAAN were mostly accurate for regions 2 and 4 across the evaluated intermixing levels; conversely, relative reporting rates for region 3 were negatively biased with the degree of bias increasing as the intermixing rate increased (Figure 4). For all regions, precision of the relative reporting rates improved with higher intermixing for the recapture-conditioned ITCAAN. Reporting rate estimates from the recapture-conditioned ITCAAN were more biased and variable compared to the release-conditioned estimates for regions 3 and 4 in except when intermixing rates were 20%. Conversely, reporting rate estimates for region 2 were less variable and biased for the recapture-conditioned model (Vincent et al., 2017).

For Group 2 scenarios, bias and precision of relative reporting rates varied depending on the spatial pattern of the reporting rates assumed in the operating and ITCAANs. When reporting rates varied spatially and were estimated as spatially independent parameters (R1Est and RV2Est), bias and precision of reporting rate estimates were consistent with the NoFix20 scenario for both ITCAAN frameworks. Estimates of reporting rates from the release-conditioned ITCAAN were unbiased for the region with the highest reporting rate but positively biased for all other regions, where estimates from all regions were highly variable. Misspecification of natural mortality both above and below the true value within the recapture-conditioned ITCAAN had comparatively little influence on estimates of relative reporting rates. Misspecification of natural mortality above or below the true value in the release-conditioned ITCAAN resulted in large bias in reporting rate estimates in the same direction (Vincent et al., 2017). Estimates of relative reporting rates were unbiased and accurate for the scenario that assumed 20% intermixing and equal productivities among populations.

Movement Rate Actual Error

For Group 1 scenarios, estimated movement rates from the recapture-conditioned ITCAAN were accurate and precise when reporting rates were fixed at the true values, with the most precise estimates at low intermixing rates (Figure 5). Movement rate estimates from the recapture-conditioned ITCAAN in scenarios where relative reporting rates were estimated were more variable and biased than when relative reporting rates were not estimated. Estimates of movement from both tagging frameworks for all regions were more variable as intermixing rates increased, but only estimates from the recapture-conditioned ITCAAN were more biased with increasing intermixing (Figure 5). Movement rate estimates from the recapture-conditioned ITCAAN were generally more biased and variable compared to the release-conditioned ITCAAN (Vincent et al., 2017).

Compared to the NoFix20 scenario, Group 2 scenarios with spatially varying reporting rates in the operating model and relative reporting rates estimated regionally in the recapture-conditioned ITCAAN (RV1Est and RV2Est) had similar bias and precision in movement rate estimates (Figure 6). Scenarios with spatially varying reporting rates in the operating model but assumed spatially constant reporting rates in the recapture-conditioned ITCAAN (RV1Const and RV2Const) resulted in large biases and variability in movement rate estimates. Movement rate estimates from the recapture-conditioned ITCAAN were less precise and accurate compared to the release-conditioned ITCAAN for most Group 2 scenarios (Figure 6).

Misspecification of natural mortality at 0.5 times the true value did not have a large effect on bias or precision of movement rates for either tagging frameworks. However, misspecifying natural mortality at 1.5 times the true value had a large effect on bias and precision of the movement rate estimates for the recapture-conditioned ITCAAN (Figure 6). Movement rates for all regions were accurate and precise when spawning populations were assumed to have similar productivity levels, where estimates from the recapture-conditioned ITCAAN were less precise (Figure 6; Vincent et al., 2017). Estimates of movement rates from the recapture-conditioned ITCAAN with tag shedding simulated were unbiased, but less precise than most other scenarios in the group due to the lower number of tag returns. Movement rate estimates for the release-conditioned ITCAAN were unbiased and very precise when provided the exact tag-shedding rate. However, movement estimates were biased when the release-conditioned ITCAAN was provided with incorrect tag-shedding rate with the direction of bias depending on the population and the direction of bias in the tag-shedding rates (Figure 6).

Discussion

Simulation studies are an essential tool for determining the effectiveness of models at estimating parameters and their ability to describe the dynamics of a system. Simulations analyses have been conducted for various ITCAANs, but previous analyses have mostly been conducted assuming a release-conditioned framework for tag-recovery data (Hulson et al., 2011, 2013; Goethel et al., 2015b; Vincent et al., 2017). This study analyzed the performance of a recapture-conditioned ITCAAN under an assumption of natal homing of the spawning populations and explored different model complexities of parameter estimation. Because similar simulation scenarios were conducted for a release conditioned ITCAAN (Vincent et al., 2017), we were also able to compare the performance between recapture- and release-conditioned ITCAANs. Our main purpose was to compare the performance of recapture- and release-conditioned ITCAANs under a range of intermixing scenarios and to investigate how well either tagging framework could account for spatially-varying reporting rates and tag shedding.

The quality of the data assumed in these simulation scenarios was high. The operating model simulated

8000 tags released annually for 40 years, which may be at the upper end of plausibility for the number of tags released for a prolonged period of time even for high-valued fisheries. Vandergoot and Brenden (2014) reported that on average 6100 walleye were tagged annually in Lake Erie between 1990 and 2017, with the number of tags released in some years exceeding 10000 (C.S. Vandergoot, USGS, personal communication); therefore, the tagging level assumed in our research was not outside the realm of possibility and is based on the study system our simulations were modeled after. The dynamics of tagged fish in the operating model were a simplistic representation of the processes that could happen in the real world and were constrained by numerous assumptions. First, the operating model simulated the fates of tagged fish through a multinomial process, yet overdispersion relative to a multinomial distribution in tag-recovery data is often observed (Bacheler et al., 2008; Vandergoot and Brenden, 2014; Hanselman et al., 2015; Mayakoshi and Kitada, 2016). This perfect match between the operating model and the estimation likelihood in the ITCAAN would lead to more precise estimates than is to be expected from real data. The operating model also assumed that tagged fish experienced the same dynamics as the rest of the population. If the dynamics the tagged cohorts experienced did not match the rest of the population, due to factors such as delayed mixing or altered behavior as a consequence of tagging, then parameter estimation would have been affected. Finally, tagged fish were simulated to move instantaneously and then remain sedentary for the remainder of the year. This is a common assumption when simulation testing ITCAANs (Hulson et al., 2013; Goethel et al., 2015b; Vincent et al., 2017), but it unlikely reflects actual fish movement. Additional evaluations of ITCAANs would benefit from loosening some of the restrictions above to determine how models perform with poorer-quality data and alternative ecological dynamics.

The estimation of movement rates by the recapture-conditioned framework was tested through simulations by McGarvey et al. (2010). Their simulation framework replicated the dynamics of southern rock lobster (Jasus edwardsii) in south Australia and consisted of two regions in which tagged lobsters were harvested. McGarvey et al. (2010) simulated tag-recovery data through an individual-based model using a daily time step with simulated releases occurring at dates of actual releases from empirical studies. Simulation of movement dynamics in the individual-based model was not clear, but we assume was based on an instantaneous movement assumption once during the year based on the estimation model. Likewise, McGarvey et al. (2010) did not indicate what reporting rate was assumed to generate tag-recovery data. Their simulation study found that the recapture-conditioned tag-recovery framework produced unbiased estimates of movement when mortality rates (both fishing and natural) were assumed at correct values. Conversely, they found estimating movement rates as simple proportions of recoveries of tagged fish in a new region divided by the total number of recoveries resulted in over-estimation of movement rates. McGarvey et al. (2010) did not test the estimation of other ITCAAN parameters, or the estimation of movement rates when
mortalities were not known precisely. The simulation framework used in this study was quite different from that of McGarvey et al. (2010). Our simulations consisted of four populations that intermixed between four regions and we fit an ITCAAN with estimated movement rates along with other model parameters that are important for management of intermixed fish stocks (e.g., abundances, mortalities). Tag recoveries were simulated using yearly time steps and movement was assumed to occur once at the beginning of the year. We also tested the effect that non-spatially constant reporting rates had on model performance and whether relative reporting rates could be estimated by the model and the influence of tag shedding on parameter estimates. Therefore, our study provides a broader overview of the bias and precision of movement rate estimates for a more complex population structure within a recapture-conditioned ITCAAN than has been previously tested.

McGarvey et al. (2010) used a recapture-conditioned ITCAAN to analyze empirical southern rock lobster harvest and tag-recovery data. The underlying population model was length structured and sex dependent for two regions. Estimates of movement and mortality rates were obtained from the recapture-conditioned ITCAAN. However, the authors noted that movement rate estimates from the recapture-conditioned ITCAAN differed from estimates obtained from a recapture-conditioned tagging framework that treated prior mortality estimates (from a catch-at-length model that did not incorporate movement) as known. In other words, the mortality and movement rate estimates changed when both processes were estimated simultaneously as opposed to independently, which is a predictable result. Additionally, different weightings of the tag-recovery data within the ITCAAN resulted in noticeably different fits to the harvest and catch per unit effort data. This research assumed the effective sample size of the multinomial distribution to model the tagrecovery data was equal to the number of tags recovered. Other simulation analyses have assumed different effective sample sizes of the tag-recovery data, such as equal to the effective sample size of the age composition (Goethel et al., 2015a) or equal to the number of tags released (Vincent et al., 2017). The weighting of tag-recovery data in an ITCAAN influences parameter estimates regardless of the tagging framework used, but guidelines for weighting of tagging data in an ITCAAN requires additional research. Techniques used for weighting effective sample size such as iterative weighting methods of age composition data (Truesdell et al., 2017) and size-structured models that integrate tagging information to estimate growth (Punt et al., 2017) may be a starting point for such future research.

We found that a recapture-conditioned ITCAAN performed adequately for some parameters under certain conditions, but poorly for other parameters under other conditions. Consistent with results from McGarvey et al. (2010), recapture-conditioned ITCAAN estimates were generally unbiased and precise when intermixing rates were low and relative reporting and natural mortality rates were correctly specified. Bias in individual population estimates at high intermixing rates was due to the large difference in abundances between the
populations; this bias was not present when populations were assumed to have the same productivities. A release-conditioned ITCAAN also had difficulties in estimating individual population abundances at high intermixing rates when there were large differences in abundances (Vincent et al., 2017). It became more difficult to obtain unbiased and precise estimates of individual population abundances for the recaptureconditioned ITCAAN as movement rates increased and as the estimation models became more complex. When tag shedding occurred, the recapture-conditioned model was able to provide unbiased estimates of movement and total population abundance without requiring external estimates of tag shedding. Conversely, the release-conditioned ITCAAN required an external estimate of tag shedding, which would necessitate additional experimentation, which could be costly. Additionally, if external estimates of tag-shedding rates were biased this could impose biases on other parameter estimates. The recapture-conditioned ITCAAN would be useful in situations where tag-loss processes such as tag shedding and tagging-induced mortality are not estimated and reporting rates can be assumed to be spatially constant. Abundance estimates will be biased if these tag-loss processes are not accounted for in release-conditioned ITCAANs. However, if these tag-loss processes are accurately estimated and natural mortality is estimated within the ITCAAN, then the release-conditioned ITCAAN will generally give more accurate and precise estimates than the recaptureconditioned ITCAAN. Additionally, if a reasonable value for natural mortality cannot be estimated by an ITCAAN then the release-conditioned ITCAAN would be preferred due to less sensitivity to misspecifying this parameter.

The recapture-conditioned ITCAAN investigated in this simulation study was very sensitive to assumptions regarding reporting rates. Actual reporting rates cannot be estimated in a recapture-conditioned ITCAAN, and we encountered difficulties in estimating relative reporting rates for different regions. In particular, the recapture-conditioned ITCAAN had difficulty estimating relative reporting rates particularly for the region that corresponded to the natal region where the smallest population spawned. Higher intermixing rates only exacerbated the difficulty in estimating relative reporting rates for this region and also resulted in biases in other model parameters such as movement rates. Estimation of relative reporting rates were not influenced by misspecification of natural mortality values in the ITCAAN and were most precise and accurate when populations were simulated under an assumption of equal productivity levels. The results of this simulation study suggest that recapture-conditioned ITCAANs are able to estimate relative differences in reporting rates between regions under certain conditions; however, estimation problems may arise when there are large differences among stock sizes and high intermixing rates. Estimates of population abundance from the recapture-conditioned ITCAAN were generally less accurate and precise compared to estimates from the release-conditioned ITCAAN. However, if it is necessary to assume for modeling purposes that reporting rates are spatially constant due to model convergence problems, it may be preferable
to use a recapture-conditioned ITCAAN as abundance estimates were less sensitive compared to the releaseconditioned ITCAAN. The challenges in estimating relative reporting rates is important given large biases resulted when reporting rates were assumed to be constant when they were not. The canceling of the reporting rates from the likelihood equations does not occur for the recapture-conditioned ITCAAN when tagged fish are captured by multiple fisheries with known differences in reporting rates (e.g., recreation and commercial fisheries). Therefore, a recapture-conditioned ITCAAN may not be the optimal assessment method for estimation of reporting rates when these parameters are spatially complex or are required for multiple fisheries. Additionally, the recapture-conditioned model was formulated for a single fishery scenario and cannot account for scenarios where reporting rates differ between fisheries because they do not cancel from the likelihood. We advise caution in using of the recapture-conditioned framework for scenarios with multiple fisheries until additional simulation testing is conducted to determine if this tagging framework can provide accurate estimates for multiple fisheries with disparate reporting rates.

The recapture-conditioned ITCAAN generally provided unbiased estimates of natural mortality, but when this parameter was estimated in the ITCAAN the precision of total abundance estimates decreased substantially. Additionally, the estimates of natural mortality became less precise as movement levels increased. Misspecification of natural mortality caused severe biases in abundance estimates, which were worse when specified above the true value. The recapture-conditioned likelihood has some information that contributes to the estimation of natural mortality, but the release-conditioned ITCAAN framework estimates were more accurate and precise (Vincent et al., 2017). Across Group 1 simulation scenarios, IQRs in total abundance estimates for the recapture-conditioned were larger than the IQRs observed in the release-conditioned ITCAAN.

In conclusion, a recapture-conditioned ITCAAN can produce accurate and precise parameter estimates under conditions of low movement, equal population productivities, and when tag-loss processes (e.g., reporting rates) are spatially constant as it was originally intended. The recapture-conditioned ITCAAN performed worse when attempting to estimate natural mortality and was generally outperformed by the release-conditioned ITCAAN. Furthermore, in situations where tag-loss processes are not spatially constant and when populations have highly varying productivity levels and high levels of intermixing, ITCAANs can produce highly biased and variable estimates of individual population abundance. This bias can be problematic given that some populations may be at risk of overharvest in mixed stock fisheries. Recaptureconditioned ITCAANs have some capacity to estimate relative reporting rates in situations where reporting rates vary spatially when movement rates are low. Attempting to estimate relative reporting rates within the ITCAAN may be the preferred approach to assuming reporting rates are spatially constant given the degree of bias and variability that was observed when this assumption was violated. However, the release-conditioned

ITCAAN generally provided less biased and more precise estimates of abundance when estimating reporting rates and natural mortality.

Acknowledgments

This work was partially funded by grant 2012.1250 from the Great Lakes Fishery Trust and 2013_BRE_44025 from the Great Lakes Fishery Commission. Additional funding support was provided by Supporting Partners of the Michigan State University Quantitative Fisheries Center. The authors acknowledge the support of Michigan State University High Performance Computing Center and the Institute for Cyber-Enabled Research. This is publication number 20XX-XX of the Quantitative Fisheries Center at Michigan State University.

References

Bacheler, N.M., Hightower, J.E., Paramore, L.M., Buckel, J.A., Pollock, K.H., 2008. An age-dependent tag return model for estimating mortality and selectivity of an estuarine-dependent fish with high rates of catch and release. Trans. Am. Fish. Soc. 137, 1422-1432. doi:10.1577/T07-254.1.

Brenden, T.O., Jones, M.L., Ebener, M.P., 2010. Sensitivity of tag-recovery mortality estimates to inaccuracies in tag shedding, handling mortality and tag reporting. J. Great Lakes Res. 36, 100-109. doi:10.1016/j.jglr.2009.09.002.

Brenden, T.O., Scribner, K.T., Bence, J.R., Tsehaye, I., Kanefsky, J., Vandergoot, C.S., Fielder, D.G., 2015. Contributions of Lake Erie and Lake St. Clair walleye populations to the Saginaw Bay, Lake Huron recreational fishery: evidence from genetic stock identification. N. Am. J. Fish. Manage. 35, 567-577. doi:10.1080/02755947.2015.1020079.

Brownie, C., Anderson, D.R., Burnham, K.P., Robson, D.S., 1987. Statistical inference from band recovery data - a handbook. Resource Publication No. 131, U.S. Fish and Wildlife Service.

Cadrin, S.X., Friedland, K.D., Waldman, J.R. (Eds.), 2004. Stock Identification Methods: Applications in Fishery Science. Elsevier Academic Press, Burlington, MA.

Cowen, L., Walsh, S.J., Schwarz, C.J., Cadigan, N., Morgan, J., 2009. Estimating exploitation rates of migrating yellowtail flounder (Limanda ferruginea) using multistate mark-recapture methods incorporating tag loss and variable reporting rates. Can. J. Fish. Aquat. Sci. 66, 1245-1255. doi:10.1139/F09-082.

Denson, M.R., Jenkins, W.E., Woodward, A.G., Smith, T.I.J., 2002. Tag-reporting levels for red drum (Sciaenops ocellatus) caught by anglers in South Carolina and Georgia estuaries. Fish. Bull. 100, 35-41. Available from http://hdl.handle.net/10827/10569 [accessed 28 November 2017].

Fielder, D.G., Bence, J.R., 2014. Integration of auxiliary information in statistical catch-at-age (SCA) analysis of the Saginaw Bay stock of walleye in Lake Huron. N. Am. J. Fish. Manage. 34, 970-987. doi:10.1080/02755947.2014.938141.

Fournier, D.A., Skaug, H.J., Ancheta, J., Ianelli, J., Magnusson, A., Maunder, M.N., Nielsen, A., Sibert, J., 2012. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim. Method. Softw. 27, 233-249. doi:10.1080/10556788. 2011 . 597854.

Frusher, S.D., Hoenig, J.M., 2003. Recent developments in estimating fishing and natural mortality and tag reporting rate of lobsters using multi-year tagging models. Fish. Res. 65, 379-390. doi:10.1016/j. fishres.2003.09.027.

Goethel, D.R., Legault, C.M., Cadrin, S.X., 2015a. Demonstration of a spatially explicit, tag-integrated stock assessment model with application to three interconnected stocks of yellow tail founder off of New England. ICES J. Mar. Sci. 72, 164-177. doi:10.1093/icesjms/fsu014.

Goethel, D.R., Legault, C.M., Cardin, S.X., 2015b. Testing the performance of a spatially explicit tagintegrated stock assessment model of yellowtail flounder (Limanda ferruginea) through simulation analysis. Can. J. Fish. Aquat. Sci. 72, 582-601. doi:10.1139/cjfas-2014-0244.

Goethel, D.R., Quinn, II, T.J., Cadrin, S.X., 2011. Incorporating spatial structure in stock assessment: Movement modeling in marine fish population dynamics. Rev. Fish. Sci. 19, 119-136. doi:10.1080/ 10641262.2011 .557451.

Guan, W., Cao, J., Chen, Y., Cieri, M., 2013. Impacts of population and fishery spatial structures on fishery stock assessment. Can. J. Fish. Aquat. Sci. 70, 1178-1189. doi:10.1139/cjfas-2012-0364.

Hampton, J., 1997. Estimates of tag-reporting and tag-shedding rates in a large-scale tuna tagging experiment in the western tropical Pacific Ocean. Fish. Bull. 95, 68-79. Available from http://fishbull. noaa.gov/951/hampton.pdf [accessed 28 November 2017].

Hanselman, D.H., Heifetz, J., Echave, K.B., Dressel, S.C., 2015. Move it or lose it: movement and mortality of sablefish tagged in Alaska. Can. J. Fish. Aquat. Sci. 72, 238-251. doi:10.1139/cjfas-2014-0251.

Haponski, A.E., Stepien, C.A., 2014. Genetic connectivity and diversity of walleye (Sander vitreus) spawning groups in the Huron-Erie corridor. J. Great Lakes Res. 40, 89-100. doi:10.1016/j.jglr. 2012.12.006.

Hayden, T.A., Holbrook, C.M., Fielder, D.G., Vandergoot, C.S., Bergstedt, R.A., Dettmers, J.M., Krueger, C.C., Cooke, S.J., 2014. Acoustic telemetry reveals large-scale migration patterns of walleye in Lake Huron. PLoS ONE 9, e114833. doi:10.1371/journal. pone. 0114833.

Herbst, S.J., Stevens, B.S., Hayes, D.B., Hanchin, P.A., 2016. Estimating walleye (Sander vitreus) movement and fishing mortality using state-space models: implication for management of spatially structured populations. Can. J. Fish. Aquat. Sci. 73, 330-348. doi:10.1139/cjfas-2015-0021.

Herbst, S.J., Stevens, B.S., Hayes, D.B., Hanchin, P.A., 2017. Influence of movement dynamics on walleye harvest management in intermixed fisheries in a chain of lakes. N. Am. J. Fish. Manage. 37, 467-479. doi:10.1080/02755947.2017.1280569.

Hoenig, J.M., Barrowman, N.J., Hearn, W.S., Pollock, K.H., 1998. Multiyear tagging studies incorporating fishing effort data. Can. J. Fish. Aquat. Sci. 55, 1466-1476. doi:10.1139/f97-256.

Hulson, P.J.F., Miller, S.E., Ianelli, J.N., Quinn, II, T.J., 2011. Including mark-recapture data into a spatial age-structured model: Walleye Pollock (Theragra chalcogramma) in the eastern Bering Sea. Can. J. Fish. Aquat. Sci. 68, 1625-1634. doi:10.1139/F2011-060.

Hulson, P.J.F., Quinn, II, T.J., Hanselman, D.H., Ianelli, J.N., 2013. Spatial modeling of Bering Sea Walleye Pollock with integrated age-structured assessment models in a changing environment. Can. J. Fish. Aquat. Sci. 70, 1402-1416. doi:10.1139/cjfas-2013-0020.

Jiang, H., Pollock, K.H., Brownie, C., Hightower, J.E., Hoenig, J.M., Hearn, W.S., 2007. Age-dependent tag return models for estimating fishing mortality, natural mortality and selectivity. J. Agric. Biol. Envir. Stat. 12, 177-194. doi:10.1198/108571107X197382.

Latour, R.J., Hoenig, J.M., Hepworth, D.A., Frusher, S.D., 2003. A novel tag-recovery model with two size classes for estimating fishing and natural mortality, with implications for the southern rock lobster (Jasus edwardsii) in Tasmania, Australia. ICES J. Mar. Sci. 60, 1075-1085. doi:10.1016/S1054-3139 (03) 00093-6.

Li, Y., Bence, J.R., Brenden, T.O., 2014. An evaluation of alternative assessment approaches for intermixing fish populations: a case study with Great Lakes lake whitefish. ICES J. Mar. Sci. 72, 70-81. doi:10.1093/ icesjms/fsu057.

Maunder, M.N., 2001. Integrated tagging and catch-at-age analysis (ITCAAN): Model development and simulation testing, in: Kruse, G.H., Bez, N., Booth, A., Dorn, M.W., Hills, S., Lipcius, R.N., Pelletier, D., Roy, C., Smith, S.J., Witherell, D. (Eds.), Spatial Processes and Management of Marine Populations, University of Alaska Sea Grant, Fairbanks, Alaska, USA. pp. 123-142.

Mayakoshi, Y., Kitada, S., 2016. Overdispersion in the estimation of salmon escapement by mark-recapture surveys and its related factors. Trans. Am. Fish. Soc. 145, 269-276. doi:10.1080/00028487.2015.1121922.

McGarvey, R., 2009. Methods of estimating mortality and movement rates from a single-tag recovery data that are unbiased by tag non-reporting. Rev. Fish. Sci. 17, 291-304. doi:10.1080/10641260802664841.

McGarvey, R., Feenstra, J.E., 2002. Estimating rates of fish movement from tag recoveries: Conditioning by recapture. Can. J. Fish. Aquat. Sci. 59, 1054-1064. doi:10.1139/f02-080.

McGarvey, R., Linnane, A.J., Feenstra, J.E., Punt, A.E., Matthews, J.M., 2010. Integrated recaptureconditioned movement estimation into spatial stock assessment: A South Australian lobster fishery application. Fish. Res. 105, 80-90. doi:10.1016/j.fishres.2010.03.006.

McParland, T.L., Ferguson, M.M., Liskauskas, A.P., 1999. Genetic population structure and mixed-stock analysis of walleyes in the Lake Erie-Lake Huron corridor using allozyme and mitochondrial DNA markers. Trans. Am. Fish. Soc. 128, 1055-1067. doi:10.1577/1548-8659(1999) 128<1055:GPSAMS>2.0.CO;2.

Molton, K.J., Brenden, T.O., Bence, J.R., 2013. Harvest levels that conserve spawning biomass can provide larger and more stable and sustainable yields in intermixed fisheries. Fish. Res. 147, 264-283. doi:10. 1016/j.fishres.2013.07.004.

Punt, A.E., Deng, R.A., Siddeek, M.S.M., Buckworth, R.C., Vanek, V., 2017. Data weighting for tagging data in integrated size-structured models. Fish. Res. 192, 94-102. doi:10.1016/j.fishres.2015.12.010.

R Core Team, 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. URL: http://www.R-project.org. ISBN 3-900051-07-0.

Rasmussen, P.W., Heisey, D.M., Gilbert, S.J., King, R.M., Hewett, S.W., 2002. Estimating postspawning movement of walleyes among interconnected lakes of northern Wisconsin. Trans. Am. Fish. Soc. 131, 1020-1032. doi:10.1577/1548-8659(2002) 131<1020:EPMOWA>2.0.CO; 2.

Smith, Jr, L.L., Butler, R.L., Krefting, L.W., 1952. Movement of marked walleyes, Stizostedion vitreum vitreum (Mitchill), in the fishery of the Red Lakes, Minnesota. Trans. Am. Fish. Soc. 81, 179-196. doi:10.1577/1548-8659(1951)81[179:MOMWSV]2.0.CO;2.

Stepien, C.A., Faber, J.E., 1998. Population genetic structure, phylogeography and spawning philopatry in walleye (Stizostedion vitreum) from mitochondrial dna control region sequences. Mol. Ecol. 7, 17571769. URL: http://dx.doi.org/10.1046/j.1365-294x.1998.00512.x, doi:10.1046/j.1365-294x. 1998.00512.x.

Stewart, I.J., Hicks, A.C., Tayloy, I.G., Thorson, J.T., Wetzel, C., Kupschus, S., 2013. A comparison of stock assessment uncertainty using maximum likelihood and Bayesian methods implemented with the same model framework. Fish. Res. 142, 37-46. doi:10.1016/j.fishres.2012.07.003.

Thorson, J.T., Jensen, O.P., Zipkin, E.F., 2014. How variable is recruitment for exploited marine fishes? A hierarchical model for testing life history theory. Can. J. Fish. Aquat. Sci. 71, 973-983. doi:10.1139/ cjfas-2013-0645.

Truesdell, S.B., Bence, J.R., Syslo, J.M., Ebener, M.P., 2017. Estimating multinomial effective sample size in catch-at-age and catch-at-sixe models. Fish.Res. 192, 66-83. doi:10.1016/j.fishres.2016.11.003.

Vandergoot, C.S., Brenden, T.O., 2014. Spatially varying population demographics and fishery characteristics of Lake Erie walleyes inferred from a long-term tag recovery study. Trans. Am. Fish. Soc. 143, 188-204. doi:10.1080/00028487.2013.837095.

Vandergoot, C.S., Brenden, T.O., Thomas, M.V., Einhouse, D.W., Cook, H.A., Turner, M.W., 2012. Estimation of tag shedding and reporting rates for Lake Erie jaw-tagged walleyes. N. Am. J. Fish. Manage. 32, 211-223. doi:10.1080/02755947.2012.672365.

Vincent, M.T., Brenden, T.O., Bence, J.R., 2017. Simulation testing the robustness of a multi-region tagintegrated assessment model that exhibits natal homing and estimates natural mortality and reporting rate. Can. J. Fish. Aquat. Sci. 74, 1930-1949. doi:10.1139/cjfas-2016-0297.

Wang, H.Y., Rutherford, E.S., Cook, H.A., Einhouse, D.W., Haas, R.C., Johnson, T.B., Kenyon, R., Locke, B., Turner, M.W., 2007. Movement of walleyes in Lakes Erie and St. Clair inferred from tag return and fisheries data. Trans. Am. Fish. Soc 136, 539-551. doi:10.1577/T06-012.1.

Wills, T., Robinson, J., Faust, M., Gorman, A.M., Belore, M., Cook, A., Drouin, R., MacDougall, T., Zhao, Y., Murray, C., Hosack, M., 2016. Report for 2015 by the Lake Erie walleye task group. Technical Report. Lake Erie Committee Great Lakes Fishery Commission. Available from http://www.glfc.org/ pubs/lake_committees/erie/WTG_docs/annual_reports/WTG_report_2016.pdf [accessed 28 November 2017].

Wilson, A.D., Hayden, T.A., Vandergoot, C.S., Kraus, R.T., Dettmers, J.M., Cooke, S.J., 2017. Do intracoelomic telemetry transmitters alter the post-release behavior of migratory fish? Ecol. Freshw. Fish 26, 292-300. doi:10.1111/eff. 12275.

Ying, Y., Chen, Y., Lin, L., Gao, T., 2011. Risks of ignoring fish population spatial structure in fisheries management. Can. J. Fish. Aquat. Sci. 68, 2101-2120. doi:10.1139/f2011-116.

Zhao, Y., Einhouse, D.W., MacDougall, T.M., 2011. Resolving some of the complexity of a mixed-origin walleye population in the east basin of Lake Erie using a mark-recapture study. N. Am. J. Fish. Manage. 32, 379-389. doi:10.1080/02755947.2011.571516.

Table 1: Regional reporting rates, average fishing mortality, unfished SSB (spawning stock biomass), and recruitment steepness specified in the operating model for investigated scenarios. EqProd stands for equal productivity scenario and RV1 and RV2 are scenarios with reporting rates spatially varying as shown below and see Table 2.

Parameter	Scenario	Region 1	Region 2	Region 3	Region 4
Steepness	EqProd	0.849	0.849	0.849	0.849
Steepness	All Other Scenarios	1.255	0.849	0.619	0.267
Unfished SSB	EqProd				
Unfished SSB	All Other Scenarios	1.778 E 6	5.903 E 7	1.412 E 6	1.285 E 7
Average Apical F	All Scenarios	0.438	0.194	0.232	0.194
Reporting Rate	RV1	30%	70%	10%	50%
Reporting Rate	RV2	50%	10%	70%	30%
Reporting Rate	All Others	50%	50%	50%	50%

Table 2: Model name abbreviations, operating and ITCAAN characteristics, and convergence rates of simulation scenarios to investigate the influence of parameterization and movement (Group 1), spatially varying reporting rate (Group 2), and misspecification of natural mortality or reporting rate, tag shedding, or equal productivity (Group 3), where movement is estimated unless noted. Converge rates are provided for release-conditioned ITCAANs rather than referencing results from Vincent et al. (2017) because the scaling of the negative log likelihoods for multinomially distributed random variables was expected to improve convergence performance.

Scenario Group	Abbrv.	ITCAAN			Operating model Intermixing	\# needed for 1000 verged	con-	NPD Hessian	Maximum Gradient >0.05
		Relative reporting	Natural mortality	Release or recapture					
1	MvFix1*	Known	Known	recapture	1%	1343		0	343
1	MvFix1*	Known	Known	release	1\%	1214		42	180
1	MRFix1	Known	Known	recapture	1\%	1268		0	268
1	MRFix1	Known	Known	release	1\%	1179		36	147
1	RFix1	Known	Est. RC	recapture	1\%	1300		0	300
1	RFix1	Known	Est. RC	release	1%	1221		44	173
1	MFix1	Est. Rel	Known	recapture	1%	1161		0	161
1	MFix1	Est. Rel	Known	release	1\%	1246		59	199
1	NoFix1	Est. Rel	Est. RC	recapture	1\%	1211		0	211
1	NoFix1	Est. Rel	Est. RC	release	1\%	1194		55	143
1	MvFix5*	Known	Known	recapture	5\%	1010		0	10
1	MvFix5*	Known	Known	release	5\%	1062		48	15
1	MRFix5	Known	Known	recapture	5\%	1017		0	17

Table 2 (cont'd)

	1	MRFix5	Known	Known	release	5%	1053	35	18
	1	RFix5	Known	Est. RC	recapture	5%	1010	0	10
	1	RFix 5	Known	Est. RC	release	5%	1075	52	23
	1	MFix 5	Est. Rel	Known	recapture	5\%	1095	36	95
	1	MFix 5	Est. Rel	Known	release	5%	1046	24	23
	1	NoFix5	Est. Rel	Est. RC	recapture	5%	1104	21	104
	1	NoFix5	Est. Rel	Est. RC	release	5%	1054	16	38
	1	MvFix $10{ }^{*}$	Known	Known	recapture	10\%	1004	3	4
	1	MvFix $10{ }^{*}$	Known	Known	release	10\%	1030	28	4
	1	MRFix10	Known	Known	recapture	10\%	1002	2	2
$\stackrel{\sim}{\sim}$	1	MRFix 10	Known	Known	release	10\%	1069	68	3
	1	RFix10	Known	Est. RC	recapture	10\%	1002	2	2
	1	RFix10	Known	Est. RC	release	10\%	1059	57	5
	1	MFix10	Est. Rel	Known	recapture	10\%	1061	42	60
	1	MFix10	Est. Rel	Known	release	10\%	1040	40	0
	1	NoFix10	Est. Rel	Est. RC	recapture	10\%	1057	37	55
	1	NoFix10	Est. Rel	Est. RC	release	10\%	1038	38	2
	1	MvFix 20 *	Known	Known	recapture	20\%	1010	10	8
	1	MvFix $20 *$	Known	Known	release	20\%	1080	80	11
	1	MRFix 20	Known	Known	recapture	20\%	1008	8	5
	1	MRFix 20	Known	Known	release	20\%	1087	87	6
	1	RFix 20	Known	Est. RC	recapture	20\%	1008	8	7

Table 2 (cont'd)

	1	RFix 20	Known	Est. RC	release	20\%	1107	107	8
	1	MFix20	Est. Rel	Known	recapture	20\%	1066	63	56
	1	MFix 20	Est. Rel	Known	release	20\%	1052	52	2
	1	NoFix 20	Est. Rel	Est. RC	recapture	20\%	1008	7	2
	1	NoFix 20	Est. Rel	Est. RC	release	20\%	1065	62	51
	2	RV1Const	Const	Est. RC	recapture	20\%	1154	123	144
	2	RV1Const	Const	Est. RC	release	20\%	1306	242	237
	2	RV1Est	Est. Rel	Est. RC	recapture	20\%	1006	6	6
	2	RV1Est	Est. Rel	Est. RC	release	20\%	1083	83	4
	2	RV2Const	Const	Est. RC	recapture	20\%	1014	13	11
¢	2	RV2Const	Const	Est. RC	release	20\%	1094	94	29
	2	RV2Est	Est. Rel	Est. RC	recapture	20\%	1001	1	1
	2	RV2Est	Est. Rel	Est. RC	release	20\%	1070	68	9
	3	SensU	Est. Rel	$0.5 \times$ True	recapture	20\%	1003	3	2
	3	SensU	Est. Rel	$0.5 \times$ True	release	20\%	1091	91	3
	3	SensO	Est. Rel	$1.5 \times$ True	recapture	20\%	1007	7	4
	3	SensO	Est. Rel	$1.5 \times$ True	release	20\%	1125	125	26
	3	EqProd	Est. Rel	Est. RC	recapture	20\%	1000	0	0
	3	EqProd	Est. Rel	Est. RC	release	20\%	1000	0	0
	3	TagExact	Known	Known	recapture	20\%	1008	8	7
	3	TagExact	Known	Known	release	20\%	1025	25	5
	3	TagOver	Known	Known	release	20\%	1023	23	4

Table 2 (cont'd)

3	TagUnder	Known	Known	release	20%	1008	3

Note: $\mathrm{NPD}=$ Not Positive-Definite; Known $=$ Fixed at true value; Est. = Estimated in ITCAAN; Rel $=$ Reporting rates relative to region $1 ;$ RC $=$ regionally constant; Const $=$ Reporting rates assumed regionally constant
*Movement Rate Fixed at True Value

Figure 1: Relative error (\%) of abundance summed across populations for a four region ITCAAN under different intermixing rates and parameter estimation assumptions (Group 1), spatially varying reporting rates (Group 2), and misspecification of natural mortality, tag shedding, and equal productivities (Group 3) for 1000 simulations. The grey colored boxplots on the left are for the recapture-conditioned ITCAAN and the white boxplots on the right are for the release-conditioned ITCCAN. The boxplot outlined in a thick line correspond to the y -axis on the right side of the bottom plot. Table 2 lists the model abbreviations and corresponding model components. Whiskers on the boxplots extend to 1.5 times the inter-quartile range or the most extreme relative error, whichever is less extreme. Relative errors outside the whisker range were not plotted.

Figure 2: Relative error (\%) of population abundance for a four region ITCAAN under different intermixing rates and parameter estimation assumptions for 1000 simulations. The grey colored boxplots on the left are for the recapture-conditioned ITCAAN and the white colored boxplots on the right are for the releaseconditioned ITCAAN. Boxplots outlined in thick lines corresponds to the y-axis on the right side of the figure. Table 2 lists the model abbreviations and corresponding model components. Whiskers on the boxplots extend to 1.5 times the interquatile range or the most extreme relative error, which ever is less extreme. Relative errors outside the whisker range were not plotted.

Figure 3: Same as Figure 2 but population abundance relative error (\%) for models under spatially varying reporting rates (Group2) and misspecification of natural mortality, tag shedding, or equal productivities (Group 3).

Figure 4: Same as Figure 2 but for relative error (\%) of (relative) reporting rates and natural mortality. Scenarios with a dot for natural mortality fixed the parameter at this value and scenarios without boxplots did not estimate that parameter. Reporting rates in region 1 for the recapture-conditioned model were fixed at a value of 1 .

Figure 5: Same as Figure 2 but actual error of movement rates of all populations to a harvest region.

Figure 6: Same as Figure 3 but actual error of movement rates of all populations to a harvest region.

[^0]: * Corresponding author

 Email address: mtvincen@vt.edu (Matthew T. Vincent)

