"This is a pre-copyedited, author-produced version of an article accepted for publication in ICES Journal of Marine Science following peer review. The version of record He, J.X., J.R. Bence, C.P. Madenjian, and R. M. Claramunt. 2020. Dynamics of lake trout production in the main basin of Lake Huron. ICES Journal of Marine Science 77(3):975:987 is available online at: https://doi.org/10.1093/icesjms/fsaa030"

Dynamics of lake trout production in the main basin of Lake Huron

Ji X. He, James R. Bence, Charles P. Madenjian, Randall M. Claramunt

J. X. He Michigan Department of Natural Resources, Lake Huron Fisheries Research Station, 160 East Fletcher Street, Alpena, Michigan 49707, USA (hej@michigan.gov)
J. R. Bence Michigan State University, 13 Natural Resources Building, East Lansing, Michigan 48824, USA (bence@msu.edu)
C. P. Madenjian. U. S. Geological Survey, Great Lakes Science Center, 1451 Green Road, Ann Arbor, Michigan 48105, USA (cmadenjian@usgs.gov)
R. M. Claramunt. Michigan Department of Natural Resources, Fisheries Division, 8258 South Ayr Road, Alanson, MI 49706 (ClaramuntR @ michigan.gov)

Corresponding author:

Ji X. He (hej@michigan.gov; 989-356-3232 x2573; fax: 989-356-1951)

Abstract

:

To inform lake trout (Salvelinus namaycush) fishery management in Lake Huron that has undergone rapid ecosystem changes, we quantified lake trout production dynamics by coupling age-structured stock assessment and fish bioenergetics models. Our approach revealed the connection between piscivore production and prey consumption, included growth compensation to reproduction losses, and allowed comparisons between long-term dynamics of fishery harvests and fish production. We found that despite the collapse of alewives, a major non-native pelagic prey fish, lake trout production appeared to be sustainable. To a certain degree, the effect of recent recruitment declines on lake trout production was offset by release of harvest pressure from subadult lake trout, and reduction of fishing and sea lamprey induced mortality on adult lake trout. Evidence for sustainability also included the finding that no changes in average ratios of annual production to beginning-of-the-year biomass. Juvenile P:B ratio remained as high as 2.1. The effect of growth declines on adult and subadult production was offset by reduction in population mortality. Body growth and condition did not continue to decline when lake trout became more and more reliant on round goby as food, and the dynamics of total consumption of prey fish continued to be recipient controlled.

Key Words: Fish production, Fisheries and ecosystem management, Salmonids, Stock assessment, Bioenergetics models

Introduction

Fish production is the ecological process that determines sustainable fishery yield (Mertz and Myers 1998). Fish production also plays a major role in structuring fish and invertebrate communities (Downing and Plante 1993). The production of apex predators in a food web, i.e., the piscivore production in an aquatic ecosystem, is crucial to shaping ecosystem structures and functions (Estes et al. 2010, 2011). Thus, when fishery harvests have substantial impacts on fish production (Repel et al. 2015), fishery management is also ecosystem management (Larkin 1996). These connections between fishery harvest and fish production can be further elucidated by studying dynamics of fish production.

Production of a fish population is typically formulated as a time-averaged measure with the concept that, to maintain a steady state, the combination of natural mortality and fishing mortality should equal the production to biomass (P:B) ratio (Mertz and Myers 1998). For an age structured fish population, this $\mathrm{P}: \mathrm{B}$ ratio is the average growth rate weighted by biomass ratio of each age group to total population biomass:

$$
P=\sum_{a g e}^{\max } \bar{B}_{a} \cdot G_{a}
$$

where P stands for production, B_{a} stands for biomass of an age group, and G_{a} stands for growth rate of average individual fish in an age group. The ratio of annual production to the average biomass within a year is also believed to be approximately a constant for a fish species in a food web and habitat (Randall and Minns 2000; Hays et al. 2007).

The practice of fishery management, however, is more often about managing fisheries in a changing environment, where the average biomass within a year does not necessarily represent a balance between growth and mortality rates, and the ratio of annual production to the average biomass within a year does not necessarily represent the
turnover rate of a fish population. Thus, fishery management is much less about maintenance of a steady state, but more about adjusting to changes in stock size, such as stock depletion and recoveries, as well as to major changes in ecosystem structures and functions, e.g., regime shifts (Beamish et al. 1999; Scheffer et al. 2001).

To address this management challenge, we recognize two alternative options for the measure of biomass to be defined. Recall that annual production is a summation of daily production while fish abundance declines through a year. With the conventional measure of average biomass within a year (Ricker 1946; Chapman 1971; Repel et al. 2015), the $\mathrm{P}: \mathrm{B}$ ratio is always equal to the average growth rate of body mass. An alternative measure is beginning-of-the-year biomass. We used the alternative measure in this paper, to make $\mathrm{P}: \mathrm{B}$ ratio adequately reflecting the process that, for a given level of recruitment, annual production can be altered by changes in body growth or changes in population mortality. A time-invariant average $\mathrm{P}: \mathrm{B}$ ratio will indicate sustainability of the energy flows that are driven by environmental changes and can be altered also by fishery management and fishing mortality.

In the main basin of Lake Huron in North America, lake trout (Salvelinus namaycush) is the native top piscivore in cold water, and sustainability of lake trout production represents stability of the lake ecosystem (DesJardine et al. 1995). In the middle of the last century, the lake trout population collapsed (Hile 1949), due to predation by the invasive sea lamprey (Petromyzon marinus) and the fishery harvest that failed to be adaptive to the change that had a major impact on lake trout population dynamics. Since then, the loss of piscivore predation pressure on the prey fish community is regarded as a benchmark of decreases in ecosystem stability (Smith et al. 1968; Estes et al. 2010). Concurrent with the control of sea lamprey abundance, a major
salmonine stocking program has helped to rebuild the lake trout population, along with the introduction of Pacific salmons to the lake (Eshenroder et al. 1995; Whelan and Johnson 2004; Claramunt et al. 2013). Recruitment of wild lake trout was rare when lake trout abundance was not sufficiently high, and the prey fish community was dominated by alewives (Alosa pseudoharengus). The detrimental impacts of alewives on lake trout natural reproduction and wild recruitment have been well recognized (Walters and Kitchell 2001; Madenjian et al. 2008a; Riley et al. 2011). By 2003, concurrent with the disruption of pelagic food web due to decreases in nutrient loads, and invasion and proliferation of dreissenid mussels, piscivore abundance and predation pressure continued to increase. These conditions led to a crash in the alewife population (Riley et al. 2008; Barbiero et al. 2011; He et al. 2015), followed by lake wide increases in recruitment of wild lake trout, but also major declines in post-stocking survival of hatchery stocked lake trout yearlings (He et al. 2012; Johnson et al. 2015).

Major piscivores in the main basin of Lake Huron also include walleye (Sander vitreus), and Chinook salmon (Oncorhynchus tshawytscha). The main basin walleye mostly come from Saginaw Bay, and about 50\% of Saginaw Bay walleye feed in the main basin (Hayden et al. 2014; Fielder and Bence 2014). Chinook salmon used to be the dominant piscivore since the 1970s and contributed over 70% of total piscivore biomass in the 1980s. After the collapse of alewives, however, Chinook salmon contribution to total piscivore biomass decreased to only about 13% (He et al. 2015), and more than 80% of Lake Huron Chinook salmon started to consume prey fish in Lake Michigan before they returned and spawned in the tributaries to Lake Huron (Clark et al. 2016). Lake trout has resumed its place as the keystone piscivore in the main basin of Lake Huron. The contribution by lake trout to total piscivore biomass and total consumption of prey
fish increased from below 20% in the 1980 s to near 50% by 2002 and over 70% by 2010 (He et al. 2015).

With all of these profound changes in the ecosystem, fishery managers have become concerned that lake trout abundance might have exceeded carrying capacity of the lake even though the abundance is still below the historical level prior to the collapse in the middle of the 20th century. Fishery management, however, has continued to build on the early recommendation that a maximum annual mortality of $40-45 \%$ was sustainable for lake trout in North America, including the Great Lakes (Healey 1978; Nieland et al. 2008). Madenjian et al. (2013) have reviewed the most recent trophic shift in Lake Huron. He et al. (2015) have described the shift as from a pelagic energy pathway to a benthic energy pathway. From previous investigations, He et al. (2015) have also suggested that recent abundance declines of pelagic prey fish, such as the alewife and rainbow smelt (Osmerus mordax), may not be the end of non-stationary variations of Lake Huron food web. Thus, an evaluation of Lake Huron carrying capacity for lake trout can be confounded by profound changes over time in the ecosystem.

The real challenge to managing fisheries in Lake Huron is indeed the continued ecosystem change. We interpret the carrying capacity concern as a question about sustainability of lake trout population and lake trout fisheries. Such sustainability is influenced by both environmental change and fisheries management (Larkin 1996). Our objective in this paper is to determine what are the major impacts of recent ecosystem changes on lake trout, and to understand how the production of adult lake trout has been developed and sustained during the recent rapid ecosystem changes.

Materials and methods

We estimated annual production by coupling age structured stock assessment and fish bioenergetics models. In comparison with commonly used methods, such as the Instantaneous Growth Rate Method and the Increment Summation Method (Ricker 1946; Chapman 1971; Newman and Martin 1983; Hayes et al. 2007), our approach has three major advantages. The first is to realize the close connection between fish production and prey consumption. The second is to explicitly take account of growth changes within a year and growth compensation to reproduction losses. The third is not to assume a steady state from very limited sampling events. We quantified long-term dynamics of fish production and made direct comparisons between annual fishery harvests and fish production.

Building on the previous development (He et al. 2015, 2016), we focused on the time period from 1985 through 2016. Data sources included commercial and recreational fisheries, and fishery independent surveys. The commercial fishing effort and lake trout harvests were dominated by large-mesh gillnetting, and additional harvests from trap nets and small-mesh gillnets were added to total annual catch in stock assessment (Brown et al. 1999; Brenden et al. 2013). The recreational fishing effort and lake trout catch were estimated from Michigan waters since 1985 (Su and Clapp 2013; Su and He 2013). The fishery independent surveys used graded-mesh gill nets and were conducted in late April through June, from the mouth of St. Marys River at northern end of the lake to the port of Port Sanilac near southern end of the lake (He 2019). Hundreds of lake trout samples from each of the three data sources every year had their ages assigned. For hatchery stocked lake trout without a coded-wire tag, age assignments were based on a six-year cycle of fin clips before 2012, and a combination of fin-clip and a maxilla or otolith
method in recent years. Scales were used in early years to estimate ages of juvenile wild lake trout, and maxillae or otoliths were used in recent years to estimate ages of all wild lake trout (Wellenkamp et al. 2015). Biomass-based diet compositions were measured periodically from lake trout samples of commercial gillnetting and recreational fisheries, and every year since 1996 from samples of fishery independent annual surveys (Diana 1990; Dobiesz 2003; Madenjian et al. 2006; Roseman et al. 2014). In this study, following He et al. (2015), all measures from individual fish were summarized for three lake trout size groups: $<400 \mathrm{~mm}, 400-600 \mathrm{~mm}$, and $>600 \mathrm{~mm}$, although the differences between the last two size groups were almost negligible in the most recent years (e.g., Katie Kierczynski and Brian Roth, Michigan State University, unpublished data).

He et al (2015) have provided a schematic presentation of our models. Below and in the subsections followed, we describe specifics of each model component for the synthesis of production dynamics. The main basin of Lake Huron was divided into two regions (He 2019). For the descriptions of lake wide status and trends, we summarized population biomass, production, and total consumption from modeling syntheses conducted in each of the two regions. We also rederived growth indices by fitting growth and length-mass models using lake-wide data without distinguishing the two regions as we did when fitting the models to derive inputs for stock assessment and lake trout bioenergetics models. The growth and length-mass models were based on data from annual fishery independent spring surveys that the survey design aimed at making sample distribution closely reflecting lake trout distribution in the lake (He 2019).

Time-varying status of average individual lake trout

Body mass at age was used for applying the fish bioenergetics model, and for calculating biomass. The body mass was calculated from body length at age, using a power function with time varying coefficient and exponent (He et al. 2008):

$$
\begin{equation*}
W_{y, a}=a_{y} \cdot L_{y, a}{ }^{b_{y}} \tag{1}
\end{equation*}
$$

where the length at age ($L_{y, a}$) was from a von Bertalanffy growth function (VBGF) with time-varying parameters. The time-varying VBGF was fitted to length-at-age data and described how cohort-specific growth changed every year (He and Bence 2007):

$$
\begin{align*}
L_{y, a}= & L_{y-1, a-1}+\left(L_{y, \infty}-L_{y-1, a-1}\right)\left(1-e^{-k_{y, a}}\right) \quad a>g+1 \tag{2a}\\
& k_{y, a}=-\ln \left(\rho_{y, a}\right) \tag{2b}\\
& \rho_{y, a}=\frac{L_{y, \infty}-L_{y-a+g+1, g+1}}{L_{y, \infty}-L_{y-a+g, g}} \tag{2c}
\end{align*}
$$

where the Ford-Walford slope ρ and growth coefficient k were determined by asymptotic length L_{∞} and body lengths (L) at the two youngest ages, g and $g+1$ (He and Stewart 2002). The body lengths (L) at the two youngest ages were estimated to vary among year classes, and the asymptotic length L_{∞} was estimated to vary among years.

The average total length at an age and year was estimated against observations of individual total length at the age and year (He and Bence 2007). The average body mass at an age and year was estimated against observations of individual body mass at the age and year (He et al. 2008). The model implementation and the evaluation of model estimates in a Bayesian framework were also reported in He et al. (2016). We used the models to describe total length and body mass at age 2 and older based on data from fishery independent annual spring gillnetting surveys (He 2019). Total length at age 1 was assumed to be a constant over years at a value of 120 mm , and the over-year vector
of average body mass at age 1 was calculated based on the model estimated time-varying length-mass relationships.

Maturity schedules were determined by body size and body growth at age, based on analyses of logistic regression (Appendix 1) with fishery independent survey data up to 2010 (Bence et al. 2010). Annual sample sizes of recent data were not adequate for updating the analyses but allowed us to conduct empirical calculation for some age groups. Based on the empirical calculation available, we assumed that lake trout maturity schedule in recent years did not change from previous predictions of the latest model.

Time-varying growth parameters were used also as indices to track lake trout responses to ecosystem changes. Length at beginning of ages 2 and 3 were growth indices for juveniles (age 1-2) that depend on consumption of invertebrates. After age 3, length at age is determined by cohort-specific growth histories and year-specific growth potential (Equations 3). Thus, asymptotic length and the body mass at a length of 700 mm were indices for adult and subadult lake trout that depend on consumption of prey fish. In this paper, we emphasized the body mass at 700 mm of total length because its turning point corresponded to the 2003 collapse of alewives, and only adult growth indices were influenced by declines in the alewife and rainbow smelt abundances (He and Bence 2007; He et al. 2008, 2016).

Time-varying status of lake trout population

Age-specific abundance and mortality were needed for estimating annual production and consumption of prey fish, and for calculating population biomass and $\mathrm{P}: \mathrm{B}$ ratios. The abundance and mortality matrices were estimated from statistical catch at age
assessments. The total instantaneous mortality Z was year- and age-specific, and the value was equal to the sum of four sources of mortality.

$$
\begin{equation*}
Z_{y, a}=F_{c_{y, a}}+F_{r_{y, a}}+M_{s_{y, a}}+M_{b_{a}} \tag{3}
\end{equation*}
$$

Background natural mortality $\left(M_{b_{a}}\right)$ for age 3 and older was estimated as a constant, using a log scale prior mean of \ln (0.1) from Brenden et al. (2011). The sea lamprey induced mortality rates ($M_{s_{y, a}}$) was estimated from wounding rate

$$
\begin{equation*}
M_{s_{y, a}}=\omega_{L_{y, a}} \frac{1-p_{s}}{p_{s}} \tag{4}
\end{equation*}
$$

where, ω is the number of wounds per fish in spring each year (April-June), and p_{s} is the probability that a fish survives an attack (Madenjian et al. 2008b). Wounding rate was observed specific to lake trout with a given length at year and age ($L_{y, a}$) and was estimated as a logistic function of body length (Rutter and Bence 2003). The estimated value was converted to year and age-specific rates based on annual distribution of length at a given age.

Commercial fishing mortality $\left(F_{c y, a}\right)$ and recreational fishing mortality $\left(F_{r y, a}\right)$ differed from each other in the measure of fishing effort, as well as catchability and selectivity. Equations 5-7 below were applied separately by fishery, although the subscript for fishery is suppressed. In general, a fishing mortality $\left(F_{y, a}\right)$ was calculated as a product of annual fishing effort $\left(E_{y}\right)$, catchability $\left(q_{y}\right)$, and age-specific selectivity $\left(S_{y, a}\right)$:

$$
\begin{equation*}
F_{y, a}=E_{y} \cdot q_{y} \cdot S_{y, a} \tag{5}
\end{equation*}
$$

Fishing efforts were taken from fishery data. Catchability was estimated as a first order autoregressive process, reflecting changes in fish distribution over years along with changes in the food web:

$$
\begin{equation*}
q_{y}=e^{\overline{\ln q}+\rho\left(\ln q_{y-1}-\overline{\ln q}\right)+\varphi_{y}} \tag{6}
\end{equation*}
$$

where $\overline{\ln q}$ is the average of \log scale catchability q, ρ is the autocorrelation coefficient, and ψ is the deviation from the autoregressive process on log scale and was assumed to follow a normal distribution with a mean of zero. Note that when ρ equals zero, the process on \log scale will be reduced to an average plus white noise error, and when ρ equals 1.0, the process on log scale will be simplified as a random walk (Schnute 1994).

Selectivity was estimated as a normal function of log scale body length at age:

$$
\begin{equation*}
S_{y, a}=\frac{1}{\sigma_{y} \sqrt{2 \pi}} \exp \left(-\frac{\left(\ln \left(L_{y, a}\right)-\mu\right)^{2}}{2 \sigma_{y}{ }^{2}}\right) \tag{7}
\end{equation*}
$$

where, σ_{y} is the standard deviation in year y that determines the shape of a dome-shaped function of \log scale fish length. $L_{y, a}$ is the mean length at age a in year y. When the log scale body length is equal to μ, selectivity is at the peak of the dome-shaped curve. The peak parameter was estimated on \log scale $\mu=e^{\ln (\mu)}$ and the shape parameter σ_{y} was modeled to change over year as random walk (Equation 6 with $\rho=1$).

Population numbers at year and age were projected with the assumption of exponential mortality

$$
\begin{equation*}
N_{y+1, a+1}=N_{y, a} e^{-z_{y, a}} \tag{8}
\end{equation*}
$$

The maximum age was set as 30 based on observations from fisheries and surveys, and recruitment was estimated at age 3 , as a random walk:

$$
\begin{array}{ll}
N_{y, 3}=e^{\ln \left(N_{y_{1}, 3}\right)} & \text { if } \mathrm{y}=\mathrm{y}_{1} \\
N_{y, 3}=e^{\ln \left(N_{y-1,3}\right)+\varphi_{y}} & \text { if } \mathrm{y}>\mathrm{y}_{1} \tag{9b}
\end{array}
$$

where ψ is a deviation that describes how much the log scale recruitment changes each year from the previous year. Those log scale deviations were assumed to follow a normal distribution with zero mean.

Overall, the estimation of number and mortality at age and year, along with estimation of fishery parameters, were based on modeling fits to annual harvests of commercial and recreational fisheries, catch per unit effort of the fishery independent surveys, and age composition from each of these three data sources. The model implementation and evaluation in a Bayesian framework was first reported in Sitar et al. (1999). Since then, the original model was improved and evaluated continuously, and was used in fishery management annually, particularly in the 1836 Treaty ceded waters (United States v. Michigan. 2000; Truesdell and Bence 2016). Note that the fits to age composition allowed the model to track every year class and estimate recruitment. Each of the three data sources also included hatchery-versus-wild composition based on finclips applied to all hatchery stocked lake trout. Our model also fitted the wild-ratio-atage data with the assumption that adult and subadult mortalities were the same for hatchery stocked and wild lake trout, and the wild ratio should be the same over years and ages (age 3 and older) for a given year class. Thus, the estimates of recruitment at age 3 were allocated between hatchery stocked and wild lake trout.

To characterize long-term rehabilitation of the lake trout population and the development of lake trout fisheries, we also calculated average age of fishery harvest lake wide. An average age was calculated first separately for commercial and recreational fishery in northern and southern Lake Huron, and standard deviation was estimated by using the assessment model that fitted age composition for each fishery every year. The average age of overall fisheries lake wide was calculated as a harvest-number weighted average age, and its standard error was the square-root of the sum of variances of the components.

Numbers at ages 1 and 2 were not estimated directly from the recent catch-at-age assessments. In some of earlier years, when recruitment was mostly from hatchery stocking of age-1 lake trout, the mortality rates at age 1 and 2 were estimated as size dependent based on Gislason et al. (2010), plus the estimated random effects of stocking event. Based on those early assessments, we assumed in the current study that the survival rate from age 2 to age 3 was a constant of 0.75 and the survival rate from age 1 to age 2 was a constant of 0.40 , and thus the numbers at ages 1 and 2 were back calculated from number at age 3. Potential deviation from the assumed average survival rates will not influence the estimates of over-year patterns of juvenile abundance, biomass, production, and food consumption (mostly invertebrates), because the vector of recruitments at age 3 was estimated from the assessment model.

Implementation of fish bioenergetics model of lake trout

Daily growth ($\Delta W_{y, a, d}$) and daily food consumption ($C_{y, a, d}$) were estimated from simulation of lake trout bioenergetics model that was used to fit body mass changes from one year and age to the next year and age. Structures, parameters, and implementation of the lake trout bioenergetics model have been well documented (Stewart et al. 1983; He and Stewart 1998, Madenjian and O'Connor 1999), although a new evaluation and synthesis with the recent Bayesian framework on parameter and estimate uncertainty is desirable. Environmental variables for applying the model to Lake Huron lake trout were taken from He et al. (2015), along with samples and data analyzed in more recent years using the same methods. It was assumed that lake trout use of thermal habitats (temperature profile within a year) did not change over time. At each daily step of the model simulation, diet composition was assigned based on the initial body length for the
day that was calculated from initial body mass based on the time-varying length-mass relationships (Equation 1). Invertebrates contributed a large proportion to the diet of lake trout $<400 \mathrm{~mm}$, and prey fish contribution to the diet was modeled as linear functions of body length for lake trout in this size group. As detailed in He et al (2015) and citations therein, there were changes in energy density of lake trout and major prey fish species over time, although there was no evidence to suggest further changes after 2010.

The synthesis of production dynamics

Our coupling of population dynamics and fish bioenergetics did not use a constant population trajectory or a constant individual growth trajectory. Elements of the dynamic processes, such as mortality and growth, were cohort specific in a time-varying environment. Our models tracked these elements of all cohorts from one year and age to the next year and age. For computation and data fitting of the time-varying growth model, the time-varying length-mass model, the statistical catch-at-age assessments, and the bioenergetics simulation of every age and year interval, we used AD Model Builder (Fournier et al 2012; He et al. 2015, 2016).

Annual summary as described below was done for each of three age groups: juvenile (ages 1-2), subadults (ages 3-5) and adults (age 6+), because fish production and $\mathrm{P}: \mathrm{B}$ ratio are typically dependent on body size and whether a fish is reproducing. Age-0 lake trout were not included, because the estimation of age-0 abundance, production and food consumption would require another large set of investigations. We included reproduction in the calculation of production. We followed the assumption that male to female ratio was $1: 1$, and mature lake trout on average lost 6.8% of body mass at spawning on the 20th of October (Stewart et al. 1983). This loss to reproduction was
recompensed when body mass was simulated to grow from one year and age to the next year and age. The biomass was summarized on the 1 st of May, which was also day 1 for annual summaries of production and food consumption, because fishery independent data were collected from the annual spring surveys (He 2019).

From the estimates of number $\left(N_{y, a}\right)$ and body mass $\left(W_{y, a}\right)$ at year and age, biomass at the beginning of a year $\left(B_{\mathrm{y}}\right)$ was calculated as:

$$
\begin{equation*}
B_{y}=\sum_{a g e} N_{y, a} \cdot W_{y, a} \tag{10}
\end{equation*}
$$

Annual production $\left(P_{y}\right)$ and annual food consumption $\left(C_{y}\right)$ were summarized from daily growth of body mass ($\Delta W_{y, a, d}$) and daily food consumption $\left(C_{y, a, d}\right)$ as estimated from simulations of lake trout bioenergetics model:

$$
\begin{align*}
& P_{y}=\sum_{\text {age }} \sum_{d=1}^{365} N_{y, a, d} \times \Delta W_{y, a, d} \tag{11}\\
& C_{y}=\sum_{\text {age }} \sum_{d=1}^{365} N_{y, a, d} \times C_{y, a, d} \tag{12}
\end{align*}
$$

The number at age every day in a year ($N_{y, a, d}$) was calculated with the assumption that total mortality (Z) was a constant over time for a given age within a year:

$$
\begin{equation*}
N_{y, a, d}=N_{y, a} \times e^{\left(-\frac{d a y}{365}\right) \times z_{y, a}} \tag{13}
\end{equation*}
$$

We assumed normal distribution for biomass, production and total consumption. The variance of a summary of biomass, $V(\widehat{B})$, was calculated as:

$$
\begin{equation*}
V(\widehat{B})=\sum_{a g e}\left[\bar{w}_{a}^{2} V\left(\widehat{N}_{a}\right)+\widehat{N}_{a}^{2} V\left(\bar{w}_{a}\right)-V\left(\widehat{N}_{a}\right) V\left(\bar{w}_{a}\right)\right] \tag{14}
\end{equation*}
$$

where the variance of an estimated number at age, $V\left(\widehat{N}_{a}\right)$, for age 3 and older, was from SD report of the assessment model. The variance of average body mass at age, $V\left(\bar{w}_{a}\right)$, for age 2 and older, was from SD report of the length-mass relation model. For
calculating standard deviation and variance of some model components and some overall estimates (Table 1), we also applied the general variance property that, with a constant b :

$$
\begin{equation*}
s d(b X)=|b| s d(X) \tag{15}
\end{equation*}
$$

Overall, very similar approximations of variances were used also in Bence et al. (2016).

Results

Biomass and body mass

A major turning point was that juvenile biomass dramatically declined in 2003 (Figure 1). The peak of juvenile biomass in 2001 led to the peak of subadult biomass in 2003, and the peak of adult biomass in 2006-2007. Prior to 2008, over 77% of variation in adult biomass was explained by juvenile biomass with a five-year time lag, and over 88% of the variation was explained by subadult biomass with a three-year time lag. The 2003 sharp decline in juvenile biomass was closely followed by rapid decline in subadult biomass, but a large decline in adult biomass did not occur until 2014, although the 95\% probability interval for the estimates of adult biomass increased since 2003.

The timing of the turning point was also approximated by the timing of a substantial decline in body mass at 700 mm of total length, and no density effect on this measure of condition was detected (Figure 1d). In the plot of the body mass of a $700-\mathrm{mm}$ lake trout versus biomass of adult and subadult lake trout, the slopes were negligible (p > 0.6), when two intercepts were estimated separately for two time periods. AIC comparison did not support the use of a single regression line (-22 vs -36), in comparison with the use of two intercepts or averages for each of the two periods of years, which were sufficiently different from one another ($\mathrm{p}<0.0002$) to warrant a horizontal line fit for the period of 1985-2001 and a second horizontal line fit for the period of 2002-2016.

Consumption and $P: B$ ratios

After the collapse of alewives, annual total consumption continued to be the same linear function of the biomass of adult and subadult lake trout (Figure 2a), and the same linear function of adult and subadult production (Figure 2b). Thus, the decline in total consumption (Figure 2c) was recipient controlled, rather than donor controlled, although the contribution of major prey fish changed (Figure 2d). The total annual consumption was mostly of alewives and rainbow smelts before 2003, then mostly rainbow smelt and round goby (Neogobius melanostomus), and almost exclusively goby after 2014. The total annual consumption of rainbow smelt showed substantial variations since 2003.

Most of variation in lake trout production was explained by lake trout biomass, and the ratio of annual production to beginning-of-the-year biomass did not change after the alewife collapse ($\mathrm{p}>0.1$; Figure 3). For adult lake trout (age > 5), biomass explained 79% of variation in production, and the $\mathrm{P}: \mathrm{B}$ ratio averaged 0.22 . For subadults (ages 3-5), biomass explained 67% of variation in production, and the $\mathrm{P}: \mathrm{B}$ ratio averaged 0.46. For juveniles (ages 1-2), over 74% of variation in production was explained by biomass, and the average $\mathrm{P}: \mathrm{B}$ ratio was as high as 2.1.

Based on the average age of fishery harvests (Figure 3d), adult and subadult production and $\mathrm{P}: \mathrm{B}$ ratios were influenced by fishery harvests. Juvenile production and $\mathrm{P}: \mathrm{B}$ ratio were influenced only by the natural mortality. Sea lamprey predation also did not influence juvenile production and P:B ratio because juvenile body size was small and sea lamprey predation rate depends on lake trout size.

The time-invariant average $\mathrm{P}: \mathrm{B}$ ratios for adult and subadult lake trout implied substantial reduction in fishing and sea lamprey induced mortalities. Otherwise, adult
and subadult production and $\mathrm{P}: \mathrm{B}$ ratios should reflect the negative impact of substantial declines in body growth and condition (e.g., Figure 1d). Among-year variations of adult P:B ratio substantially increased after 2002 (Figure 3a), which was associated with the fact that fishery harvest became mostly from adult lake trout after 2002 (Figure 3d). This was consistent with the findings that a large decline in adult biomass was delayed until 2014, but uncertainty of biomass estimates increased since 2003 (Figure 1a-c).

Production and fishery harvest

Juvenile, subadult, and adult production showed distinct patterns over time (Figure 4). The dynamics of subadult production followed the dynamics of juvenile production, which peaked in 2000. Both subadult and adult productions, as well as fishery yield, steadily declined to the lowest point by 1992, when fishery harvest was mostly from subadult lake trout, and fishery yield was about the same as subadult production. From 1992 through the early 2000s, when fishery yield from subadult lake trout was far less than subadult production, adult biomass and production steadily increased. The peak of adult production was in 2010, 3-4 years after the peak of adult biomass. This was because adult production included reproduction, adult mortality was sufficiently low, and lake trout older than age 6 had higher maturity and fecundity.

During 2004-2016, subadult production decreased to a very low level, but the pressure of fishery harvest was released from subadult lake trout. Adult production remained relatively stable and even continued to increase slowly, when fishery yield was less than adult production. The extended long period of low juvenile and subadult production, however, plus the occasionally excessive harvest, appeared to have delayed effect on adult production.

Discussion

Impacts of food-web changes and sustainability of lake trout production

There were complex interactions in the fish community along with rapid changes in the food web. Prior to the ultimate collapse of alewives in 2003, the alewife population blocked the recruitment and production of wild lake trout (Walters and Kitchell 2001; Madenjian et al. 2008a; Riley et al. 2011), but abundant alewives and rainbow smelts also functioned as a predation buffer during the events of hatchery stocking to protect hatchery-stocked age-1 and age-0 lake trout (Johnson et al. 2015). After the alewife collapse, the increases in recruitment of wild lake trout so far did not fully compensate the loss of stocked recruitment (He 2019). Also, following the major declines in the abundance of pelagic prey fish such as alewives and rainbow smelt since the middle 1990s, the growth and body condition of adult and subadult lake trout substantially declined (He and Bence 2007; He et al. 2008, 2016).

Lake trout adult biomass and production continued to increase after the collapse of alewives in 2003. Adult biomass reached its peak in 2006-2007, adult production peaked in 2010, and lake wide large declines did not occur until 2013-2014. Prior to 2008, increases in adult biomass were mostly explained by strong year classes of hatchery-stocked recruitment. Thereafter, the effect of recruitment decline was offset to a certain degree by reduction in mortality, including the nearly complete release of harvest pressure from subadult lake trout, and reduction of fishing and sea lamprey induced mortality of adult lake trout.

Lake trout production appeared to be sustainable as evidenced also by the lack of changes in average $\mathrm{P}: \mathrm{B}$ ratios. The effect of growth decline on adult and subadult
production was fully offset by reduction in population mortality, while body growth and body condition did not continue to decline when lake trout became more and more reliant on round goby as food. Potential density effects on lake trout growth were still negligible, and the dynamics of total consumption continued to be recipient controlled, rather than donor controlled.

The lesson is that fishery management may not have much control on environmental changes, but has major impact on mortality, and thus on fish production. Prior to 2000, based on Johnson et al. $(2004,2015)$, lake trout age range from fisheries was 3-13 years, model estimated annual mortality at the age of peak selectivity was in the range $45-63 \%$ in southern Lake Huron and $45-83 \%$ in northern Lake Huron. Since 2000, lake trout age range from fisheries rapidly increased to 3-24 years, annual mortality at the peak selectivity was in the range $32-45 \%$ in southern Lake Huron, and $26-30 \%$ in northern Lake Huron, far below the maximum limit of $40-45 \%$ that was believed to be sustainable when the recruitment and growth of lake trout were relatively stable. The large reduction in mortality, particularly in northern Lake Huron, was because of reduction in sea lamprey induced mortality and effective fishery regulation that was a combination of harvest quota and the establishment of no-fishing zones and large areas of no commercial fishing zones (He 2019).

A large decline in adult biomass finally occurred in 2014, after a delay of more than 10 years. Thus, aggressive control of sea lamprey induced mortality and fishing mortality will continue to be crucial for maintaining and further expanding the biomass and production of adult lake trout. A serious concern is whether the fixed harvest control rule, i.e., annual mortality of $40-45 \%$, will continue to be closely implemented in the future. Relaxation of the harvest control will likely lead to a downward trend in adult
biomass and production, unless recruitment increases to such a level as to fully compensate for the expected increase in fishing mortality. Our findings also imply that the annual mortality might need to be further reduced unless substantial increases in recruitment occur soon.

The juvenile P:B ratio was not influenced by fishing and sea lamprey induced mortality and the ratio remained as high as 2.1. From this result, we expect that natural reproduction and wild recruitment will continue to increase. We also caution managers to proceed with care in making decisions to fully terminate lake trout stocking, because changes in Lake Huron food web are still ongoing, the dynamics of lake trout recruitment is uncertain, and a constant source of recruitment has been a key factor for the success of lake trout rehabilitation in Lake Huron. We recommend that stocking success in the current food-web condition can be improved with adequate use of temporal and spatial heterogeneity of the food-web and habitat conditions. In Lake Huron, commercial fishing efforts were still mostly driven by the harvests of lake whitefish (Coregonus clupeaformis), rather than lake trout. The hatchery component of lake trout recruitment may contribute substantially to protecting wild lake trout from fishery harvests, by reducing migration of wild lake trout along the gradient of lake trout density, and reducing the population sink in southern Lake Huron where the strength of wild recruitment has become much weaker than northern Lake Huron (He 2019).

Managing fisheries with non-stationary ecosystem variations

It is well known that a sustainable fishery yield should be less than fish production (Leach et al. 1987; Downing and Plante 1993; Mertz and Myers 1998), but this principle has not been used routinely in fishery management. Applications of the
surplus production model were not built on the reality that fish populations are age structured (Polacheck et al. 1993; Prager 2002; Maunder 2003), and practical harvest control rules were developed and applied mostly based on stock-recruitment relationship (Mace 1994; Deroba and Bence 2008; Rothschild and Jiao 2009). When an ecosystem undergoes major changes in structure and function, and recruitment variations are nonstationary, general guidance for using a consistent management strategy to conduct a timely fishery regulation is much less clear (Jiao 2009), because the near future recruitment is essentially unknown, and recognizing a new ecosystem and stockrecruitment regime always requires time. While we cannot exhaust all different approaches to evaluating how production and biomass relate to each other, we agree with that evaluating production versus stock size is an informative complement to the evaluation of sustainable harvests based on stock-recruitment relationships (Jacobson et al. 2001; MacCall (2002).

From our model development and application, we described fish population dynamics in terms of production, not just in number and biomass. The results have allowed us to directly compare fishery harvest to lake trout production in the main basin of Lake Huron. When the average age of annual harvest is 5 and younger, if the fishery yield is less than 50% of the recent three-year average of subadult production, adult biomass and production should increase rapidly. When the average age of annual harvest is 6 and older, if the fishery yield is less than 50% of the recent three-year average of adult production, adult biomass and production should be stable or continue to increase. Note that in the above two scenarios, fish production is already influenced by fishing mortality and sea lamprey predation mortality. The potential of maximum production can be quantified through simulations with a range of combinations of natural mortality
and sea lamprey induced mortality. The simulations could also include potential density dependent growth when a relationship is supported by data (e.g. Lorenzen and Enberg, 2001). Regardless of the status of an ecosystem, the principle that fishery harvest should be less than fish production can be routinely implemented in fishery management.

Acknowledgments

This study was funded with financial support from the Great Lakes Restoration Initiative, and the Federal Aid in Sport Fish Restoration Program F-61 to Michigan Department of Natural Resources, Fishery Division, Study 230522, at Lake Huron Research Station and is publication number 2020-06 of Michigan State University Quantitative Fisheries Center. We thank Stephen Lenart of MDNR Fisheries Division, Trible Coordination Unit, for providing a review of a previous version of the manuscript. Use of trade, product, or firm names does not imply endorsement by the U.S. Government.

References

Barbiero, R. P., Lesht, B. M., and Warren, G. J. 2011. Evidence for bottom-up control of recent shifts in the pelagic food web of Lake Huron. Journal of Great Lakes Research 37:78-85.

Beamish, R. J., Noakes, D. J., McFarlane, G. A., Klyashtorin, L., Ivanov, V. V., and Kurashov, V. 1999. The regime concept and natural trends in the production of Pacific salmon. Canadian Journal of Fisheries and Aquatic Sciences 56:516-526.

Bence, J. R., Nye, N., and He, J. X. 2010. Responses of lake trout and Chinook salmon to unprecedented declines in major prey fish abundance in Lake Huron. Final Report, Great Lakes Fish and Wildlife Restoration Act, FWS Agreement No. 301815G124. Quantitative Fisheries Center, Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan.

Bence, J. R., Madenjian, C. P., He, J. X., Fielder, D. G., Pothoven, S. A., Dobiesz, N. E., Johnson, J. E., Ebener, M. P., Cottrill, R. A., Mohr, L. C., and Koproski, S. R. 2016. Reply to comments by Riley and Dunlop on He et al. (2015). Canadian Journal of Fisheries and Aquatic Sciences 73:865-868.

Brenden, T. O., Bence, J. R. Lantry, B. F., Lantry, J. R., and Schaner, T. 2011. Population Dynamics of Lake Ontario Lake Trout during 1985-2007, North American Journal of Fisheries Management 31: 962-979.

Brenden, T. O., Brown, R. W., Ebener, M. P., Reid, K., and Newcomb, T. J. 2013. Great Lakes commercial fisheries: historical overview and prognosis for the future. In Great Lakes Fisheries Policy and Management, pp 339-397. Ed. by N. J. Leonard, C. P. Ferreri, and W. W. Taylor. Michigan State University Press, East Lansing, Michigan.

Brown, R. W., Ebener, M., and Gorenflo, T. 1999. Great Lakes commercial fisheries: historical overview and prognosis for the future. In Great Lakes Fisheries and Policy Management: A Binational Perspective, pp. 307-354. Ed. by W. W. Taylor and C. P. Ferreri. Michigan State University Press, East Lansing.

Chapman, D. W. 1971. Production. In Methods for assessment of fish production in fresh waters. IBP Handbook 3. pp 199-214. Ed. by W. W. Ricker, Blackwell Scientific Publications, Oxford, UK.

Claramunt, R. M., Madenjian, C. P., and Clapp, D. F. 2013. Pacific salmonines in the Great Lakes basin. In Great Lakes Fisheries Policy and Management, pp 609650. Ed. by N. J. Leonard, C. P. Ferreri, and W. W. Taylor. Michigan State University Press, East Lansing, Michigan.

Clark Jr., R. D., Bence, J. R., Claramunt, R. M. Johnson, J. E. Gonder. D. Legler, N. D., Robillard, S. R., and Dickinson, B. D. 2016. A Spatially Explicit Assessment of Changes in Chinook Salmon Fisheries in Lakes Michigan and Huron from 1986 to 2011. North American Journal of Fisheries Management 36:1068-1083.

Deroba, J. J. and Bence, J. R. 2008. A review of harvest policies: understanding relative performance of control rules. Fisheries Research 94:210-223.

DesJardine, R. L., Gorenflo, T. K., Payne, R. N., and Schrouder, J. D. 1995. Fishcommunity objectives for Lake Huron. Great Lakes Fishery Commission. Special Publication 95-1. 38 p. Ann Arbor, Michigan.

Diana, J.S. 1990. Food habits of angler-caught salmonines in western Lake Huron. Journal of Great Lakes Research 16:271-278.

Dobiesz, N.E. 2003. An evaluation of the role of top piscivores in the fish community of the main basin of Lake Huron. Ph.D. dissertation, Michigan State University, East Lansing, Michigan.

Downing, D. A. and Plante, C. 1993. Production of fish populations in lakes. Canadian Journal of Fisheries and Aquatic Sciences 50:110-120.

Eshenroder, R. L., Payne, N. R., Johnson, J. E., Bowen, C., and Ebener, M. P. 1995. Lake trout rehabilitation in Lake Huron. Journal of Great Lakes Research 21(Supplement 1): 108-127.

Estes, J. A., Peterson, C. H., and Steneck, R. 2010. Some effects of apex predators in higher-latitude coastal oceans. In Trophic Cascades: Predators, Prey, and the Changing Dynamics of Nature, pp. 37-53. Ed. by J. Terborgh and J. A. Estes. Island Press, Washington DC.

Estes, J. A., Terborgh, J., Brashares, J. S., Power, M. E., Berger, J., Bond, W. J., Carpenter, S. R., Essington, T. E., Holt, R. D., Jackson, J. B. C., Marquis, R. J., Oksanen, L., Oksanen, T., Paine, R. T., Pikitch, E. K., Ripple, W. J., Sandin, S. A., Scheffer, M., Schoener, T. W., Shurin, J. B., Sinclair, A. R. E., Soulé, M. E., Virtanen, R., and Wardle, D. A. 2011. Trophic downgrading of planet Earth. Science 333:301-306.

Fielder, D. G., and Bence, J. R. 2014. Integration of auxiliary information in statistical catch-at-age (SCA) analysis of the Saginaw Bay stock of walleyes in Lake Huron. North American Journal of Fisheries Management 34: 970-987.

Fournier, D. A., Skaug, H. J., Ancheta, J., Ianelli, J., Magnusson, A., Maunder, M. N., Nielsen, A., and Sibert, J. 2012. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optimization Methods and Software 27: 233-249.

Gislason, H., Daan, N., Rice, J. C., and Pope, J. G. 2010. Size, growth, temperature and the natural mortality of marine fish. Fish and Fisheries 11: 149-501.

Hayden, T. A., Holbrook, C. M., Fielder, D. G., Vandergoot, C. S., Bergstedt, R. A., Dettmers, J. M., Krueger, C. C., Cooke, S. J. 2014. Acoustic Telemetry Reveals Large-scale Migration Patterns of Walleye in Lake Huron. PLoS ONE 9(12): e114833. doi:10.1371/journal.pone. 0114833

Hayes, D. B., Bence, J. R., Kwak, T. J. and Thompson, B. E. 2007. Abundance, biomass, and production estimation. In Analysis and interpretation of freshwater fisheries data, pp. 327-374. Ed. by C. S. Guy and M. L. Brown. American Fisheries Society, Bethesda, Maryland.

He J. X. 2019. Regions and Sub-regions of Lake Trout in the Main Basin of Lake Huron. Journal of Aquatic Research and Marine Sciences 2019: 97-105.

He, J., and Stewart, D. J. 1998. Ontogeny of energetic relationships and potential effects of tissue turnover: a comparative modeling study on lake trout. Canadian Journal of Fisheries and Aquatic Sciences 55: 2518-2532.

He, J. X., and Stewart., D. J. 2002. A stage-explicit expression of the von Bertalanffy growth model for understanding age at first reproduction of Great Lakes fishes. Canadian Journal of Fisheries and Aquatic Sciences 59:250-261.

He, J. X., and Bence, J. R. 2007. Modeling annual growth variation using a hierarchical Bayesian approach and the von Bertalanffy growth function, with application to lake trout in southern Lake Huron. Transactions of American Fisheries Society 136: 318-330.

He, J. X., Bence, J. R., Johnson, J. E., Clapp, D., and Ebener, M. P. 2008. Modeling variation in mass-length relations and condition indices of lake trout and Chinook salmon in Lake Huron: a hierarchical Bayesian approach. Transactions of American Fisheries Society 137: 801-817.

He, J. X., Ebener, M. P., Riley, S. C., Cottrill, A., Kowalski, A., Koproski, S., Mohr, L., and Johnson, J. E. 2012. Lake trout status in the main basin of Lake Huron, 1973-2010. North American Journal of Fisheries Management 32:402-412.

He, J. X., Bence, J. R., Madenjian, C. P., Pothoven, S. A., Dobiesz, N. E., Fielder, D. G., Johnson, J. E., Ebener, M. P., Cottrill, R. A., Mohr, L. C., and Koproski, S. R. 2015. Coupling age-structured stock assessment and fish bioenergetics models: a system of time-varying models for quantifying piscivory patterns during the rapid trophic shift in the main basin of Lake Huron. Canadian Journal of Fisheries and Aquatic Sciences 72:7-23.

He, J. X., Bence, J. R., Roseman, E. F., Fielder, D. G., and Ebener, M. P. 2016. Using time-varying asymptotic length and body condition of top piscivores to indicate ecosystem regime shift in the main basin of Lake Huron: a Bayesian hierarchical modeling approach. Canadian Journal of Fisheries and Aquatic Sciences 73:10921103.

Healey, M. C. 1978. The dynamics of exploited lake trout populations and implications for management. The Journal of Wildlife Management 42: 307-328.

Hile, R. 1949. Trends in the lake trout fishery of Lake Huron through 1946. Transactions of American Fisheries Society 76: 121-147.

Jacobson, A. D., DeOliveira, J. A. A., Barange, M., Cisneros-Mata, M. A., Félix-Uraga, R., Hunter, J. R., Kim, J. Y., Matsuura, Y., Ñiquen, M., Porteiro, C., Rothschild, B., Sanchez, R. P., Serra, R., Uriarte, A., and Wada. T. 2001. Surplus production, variability, and climate change in the great sardine and anchovy fisheries. Canadian Journal of Fisheries and Aquatic Sciences 58:1891-1903. Jiao, Y. 2009. Regime shift in marine ecosystems and implications for fisheries management, a review. Reviews in Fish Biology and Fisheries 19: 177-191.

Johnson, J. E., He, J. X., Woldt, A. P. Ebener, M. P., and Mohr, L. C. 2004. Lessons in rehabilitation stocking and management of lake trout in Lake Huron. In American Fisheries Society Symposium 44, Propagated fish in resource management, pp. 157-171. Ed. by M. J. Nickum, P. M. Mazik, J. G. Nickum, and D. D. MacKinlay. American Fisheries Society. Bethesda, Maryland.

Johnson, J. E., He, J. X., and Fielder, D. G. 2015. Rehabilitation stocking of walleyes and lake trout: restoration of reproducing stocks in Michigan waters of Lake Huron. North American Journal of Aquaculture 77: 396-408.

Larkin, P. A. 1996. Concepts and issues in marine ecosystem management. Reviews in Fish Biology and Fisheries 6:139-164.

Leach, J. H., Dickie, L. M., Shuter, B. J., Borgmann, U., Hyman, J., and Lysack, W. 1987. A review of methods for prediction of potential fish production with application to the Great Lakes and Lake Winnipeg. Canadian Journal of Fisheries and Aquatic Sciences 44 (Supplement 2): 471485.

Lorenzen, K., and Enberg, K. 2001. Density-dependent growth as a key mechanism in the regulation of fish populations: evidence from among-population comparisons. Proceedings Royal Society of London B. 269: 49-54.

MacCall, A. D. 2002. Use of known-biomass production models to determine productivity of West Coast groundfish stocks. North American Journal of Fisheries Management 22:272-279.

Mace, P. M. 1994. Relationships between common biological reference points used as thresholds and targets of fisheries management strategies. Canadian Journal of Fisheries and Aquatic Sciences 51:110-122.

Madenjian, C.P., and O'Connor, D.V. 1999. Laboratory evaluation of a lake trout bioenergetics model. Transactions of American Fisheries Society 128: 802-814. Madenjian, C.P., Holuszko, J.D., and Desorcie, T.J. 2006. Spring-summer diet of lake trout on Six Fathom Bank and Yankee Reef in Lake Huron. Journal of Great Lakes Research 32:200-208.

Madenjian, C. P., O’Gorman, R., Bunnell, D. B., Argyle, R. L., Roseman, E. F., Warner, D. M., Stockwell, J. D., and Stapanian, M. A. 2008a. Adverse effects of alewives on Laurentian Great Lakes fish communities. North American Journal of Fisheries Management 28: 263-282.

Madenjian, C. P., Chipman, B. D. and Marsden, J. E. 2008b. New estimates of lethality of sea lamprey (Petromyzon marinus) attacks on lake trout (Salvelinus namaycush): implications for fisheries management. Canadian Journal of Fisheries and Aquatic Sciences 65: 535-542.

Madenjian, C. P., Rutherford, E. S., Stow, C. A., Roseman, E. F., and He, J. X. 2013. Trophic shift, not collapse. Environmental Sciences and Technology. 47: 1191511916.

Maunder, M. N. 2003. Is it time to discard the Schaefer model from the stock assessment scientist's toolbox? Fisheries Research 61:145-149.

Mertz, G., and Myers, R. A. 1998. A simplified formulation for fish production. Canadian Journal of Fisheries and Aquatic Sciences 55:478-487.

Newman, R. M., and Martin, F. B. 1983. Estimation of fish production rates and associated variances. Canadian Journal of Fisheries and Aquatic Sciences 40:1729-1736.

Nieland, J. L., Hansen, M. J., Seider, M. J., and Deroba, J. J. 2008. Modeling the sustainability of lake trout fisheries in eastern Wisconsin waters of Lake Superior. Fisheries Research 94:304-314.

Polacheck, T., Hilborn, R., and Punt, A. E. 1993. Fitting surplus production models: comparing methods and measuring uncertainty. Canadian Journal of Fisheries and Aquatic Sciences 50: 2597-2607.

Prager, M. H. 2002. Comparison of logistic and generalized surplus-production models applied to swordfish, Xiphias gladius, in the north Atlantic Ocean. Fisheries Research 58:41-57.

Randall, R. G., and Minns, C. K. 2000. Use of fish production per unit biomass ratios for measuring the productive capacity of fish habitats. Canadian Journal of Fisheries and Aquatic Sciences 57:1657-1667.

Ricker, W.E. 1946. Production and utilization of fish populations. Ecol. Monograph 16: 373-391.

Riley, S. C., Roseman, E. F., Nichols, S. J., O'Brien, T. P., Kiley, C. S., and Schaeffer, J. S. 2008. Deepwater demersal fish community collapse in Lake Huron. Transactions of American Fisheries Society 137:1879-1890.

Riley, S. C., Rinchard, J., Honeyfield, D. C., Evans, A. N., and Begnoche, L. 2011. Increasing thiamine concentrations in Lake Trout eggs from Lakes Huron and Michigan coincide with low Alewife abundance. North American Journal of Fisheries Management, 31:1052-1064.

Roseman, E. F., Schaeffer, J. S., Bright, E., and Fielder, D. G. 2014. Diets of angler caught piscivores in Lake Huron reflect community-level changes following foodweb paradigm shift. Transactions of American Fisheries Society 143:1419-1433.

Rothschild, B. J. and Jiao Y. 2009. The structure of complex biological reference points and the theory of replacement. Transactions of American Fisheries Society 138: 949-965

Rutter, M. A., and Bence, J. R. 2003. An improved method to estimate sea lamprey wounding rate on hosts with application to lake trout in Lake Huron. Journal of Great Lakes Research 29(Supplement 1): 320-331.

Rypel, A. L., Goto, D., Sass, G. G., and Vander Zanden, M. J. 2015. Production rates of walleye and their relationship to exploitation in Escanaba Lake, Wisconsin, 19652009. Canadian Journal of Fisheries and Aquatic Sciences 72: 834-844.

Scheffer, M., Carpenter, S., Foley, J. A., Folke, C., and Walkerk, B. 2001. Catastrophic shifts in ecosystems. Nature 413:591-596.

Schnute, J. T. 1994. A general framework for developing sequential fisheries models. Canadian Journal of Fisheries and Aquatic Sciences 51:1676-1688.

Sitar, S. P., Bence, J. R., Johnson, J. E., Ebener, M. P., and Taylor, W. W. 1999. Lake trout mortality and abundance in southern Lake Huron. North American Journal of Fisheries Management 19: 881-900.

Smith, S. H. 1968. Species succession and fishery exploitation in the Great Lakes. Journal of The Fisheries Research Board of Canada 25: 667-693.

Stewart, D.J., Weininger, D., Rottiers, D.V., and Edsall, T.A. 1983. An energetics model for lake trout, Salvelinus namaycush: application to the Lake Michigan population. Canadian Journal of Fisheries and Aquatic Sciences 40: 681-698.

Su, Z., and Clapp, D. 2013. Evaluation of Sample Design and Estimation Methods for Great Lakes Angler Surveys, Transactions of the American Fisheries Society 142:234-246.
Su, Z. , and He, J. X. 2013. Analysis of Lake Huron recreational fisheries data using models dealing with excessive zeros. Fisheries Research 148:81-89

Truesdell, S. B., and Bence, J. R. 2016. A review of stock assessment methods for lake trout and lake whitefish in 1836 Treaty Waters of Lake Huron, Lake Michigan and Lake Superior. Michigan State University, Quantitative Fisheries Center, Technical Report T2016-01. East Lansing, Michigan.

United States v. Michigan. 2000. Consent Decree. Case No. 2:73 CV 26.
Walters, C., and Kitchell, J. F. 2001. Cultivation/depensation effects on juvenile survival and recruitment: implications for the theory of fishing. Canadian Journal of Fisheries and Aquatic Sciences 58: 39-50.

Whelan, G. E., and Johnson, J. E. 2004. Successes and failures of large-scale ecosystem manipulation using hatchery production: the upper Great Lakes experience. In American Fisheries Society Symposium 44, Propagated fish in resource management, pp. 3-32. Ed. by M. J. Nickum, P. M. Mazik, J. G. Nickum, and D. D. MacKinlay. American Fisheries Society. Bethesda, Maryland.

Wellenkamp, W., He, J. X., and Vercnocke, D. 2015. Using maxillae to estimate ages of Lake Trout. North American Journal of Fisheries Management 35:296-301.

sd (bX)	b	Source of $\mathbf{s d} \mathbf{(X)}$
SD of number at age 2	$1 / 0.75$	SD of number at age 3 from SD report of statistical catch at age assessment SD of number at age 2 as calculated above
SD of number at age 1	$1 / 0.40$	SD of mean body mass in year (y+1) from SD report of time-varying length- mass model
SD of body mass at age 1	year-specific P:B ratio	SD of beginning-of-the-year biomass from Equation 14
SD of annual consumption	year-specific C:B ratio	SD of beginning-of-the-year biomass from Equation 15

Table 1. Calculations using the general variance property of Equation 15 which relates the standard deviation of a quantity $b X$ to the standard deviation for X. The first three calculations were inputs to the summary using Equation 14. The values of 0.75 and 0.4 were assumed annual survival rates.

Appendix 1 A summary of Bence et al. (2010). Changing patterns of maturity schedules of lake trout in Lake Huron.

The probability of maturity (P) was modeled using a logistic relationship:

$$
P=\frac{1}{1+\exp (-Z)}
$$

where Z is a linear predictor function:

$$
Z=a+b_{1} X_{1}+b_{2} X_{2}+\ldots+b_{k} X_{k}
$$

and the Xi are the values of predictor variables such as fish age or length. This is the standard model and assumed distribution for logistic regression, and parameter estimation was accomplished using the R statistical programming language and the glm function with the "binomial family" specified. We considered alternative models that included different subsets of the predictor variables and we evaluated these alternative models based on Akiake's Information Criterion (AIC). We used MDNR Spring gillnetting survey database that provided biological data on over 56 thousand individual fish from 1976 through 2008. Biological data that are routinely collected include age, length (mm), mass (kg), and maturity status, although not all variables were recorded for each fish.

Our first set of logistic regressions considered maturity to be a function of fish age (year), total length (mm), body mass (kg), and condition factor (unitless). The analysis only included fish samples that had no missing values for the Base4 variables (male $n=24,442$; female $n=21,475$). For each sex, we evaluated all possible models with different combinations of predictor variables.

Our second set of analyses added three region-and-year specific average growth variables to the best model from the Base 4 analysis. These average growth variables included the increment in length (LI), the increment in body mass (WI), and the instantaneous growth rate of body mass (G). Average length at age was based on a fitted
time-varying von Bertalanffy model (He and Bence 2007). Average body mass was calculated by applying a mass versus length power function, where the coefficient and exponent of the relationship were also allowed to vary over time for each region (He et al. 2008). Only observations that had non-missing values for the ADD3 variables were used, so sample sizes were further reduced from BASE4 analyses (male $n=24,027$; female $\mathrm{n}=21,131$).

A third set of logistic regressions were referred as "ADD6" that added six region-and-year specific average growth variables to the best model from the Base4 analyses. In addition to LI, WI, and G in "ADD3", we further considered changes in the average growth. For example:

$$
L I 2_{a, y}=L I_{a-1, y-1}-L I_{a, y}
$$

WI2 and G2 were defined similarly. We considered all possible combinations of the six growth variables (LI, WI, G, LI1, WI2, G2). Only observations that had non-missing values for all 10 potential predictor variables were used, so sample sizes were further reduced (male $\mathrm{N}=22,668$; female $\mathrm{N}=19,897$).

The best models from the BASE4, ADD3, and ADD6 groups produced qualitatively similar predictions of how maturity schedules have changed over time. Our analyses also provided a more comprehensive understanding of the relationship between maturity schedule and predictor variables (Table A1). When considering only variables available from individual measurements (BASE4 analyses), the best model contained all four variables (fish age, length, mass, and condition factor) for both sexes, and this model was far superior over any of those reduced models ($\Delta \mathrm{AIC}>40$). Estimated coefficients for length, age, and condition were all positive for both sexes, as was expected, indicating that longer and older fish that were heavy for their length had a greater probability of
mature (table below). Somewhat counter-intuitively, the coefficient for body mass was negative. It should be kept in mind, however that this is the effect of mass in concert with other variables. When considering models with average growth variables (ADD3 analyses), the model included all three growth variables added was superior over any of reduced models $(\Delta \mathrm{AIC}>13)$. Increment in length and increment in body mass had negative coefficients whereas the coefficient for instantaneous growth in body mass was positive. Given that instantaneous growth rates tend to be largest for smaller fish and vary the most for these fish, this differential response allows smaller versus larger fish to respond to growth conditions in different ways. When considering models that included changes in growth variables (ADD6 analyses), there were multiple competitive models, with $\Delta \mathrm{AIC}<10$. From the best (lowest AIC) model, G was only included for males, as was seen in the ADD3 model. The coefficient for WI2 was positive for both sexes. The coefficient for LI2 was positive for females. For males the coefficient was nominally negative, but its magnitude was small and uncertain (SE about the same as estimate).

To construct matrices of mature proportion at age over time, our approach was to first calculate average values of the probability of maturation for each age and year on a management unit and sex basis using the best logistic model (from ADD6). These results were supplemented by similar estimates based on the best ADD3 model for age 2.

Proportions mature for age-1 were assumed to be zero and proportions mature for ages 13 and older were assumed to be 1.0. A few anomalous values based on small sample sizes were treated as though missing. The resulting matrix had missing values that were filled in by using averages from adjacent years, or interpolation over gaps of several years. Once this preliminary matrix was generated for each sex it was smoothed by using a
three-year centered average (with first and last year using the average of first three or last three years, respectively).

| Males | | | | | Females |
| :--- | ---: | ---: | :--- | ---: | ---: | ---: |
| Best BASE4 model | | | | | |
| | Estimate | SE | | Estimate | SE |
| Intercept | -30.327 | 1.135 | Intercept | -23.831 | 1.269 |
| Age | 0.453 | 0.023 | Age | 0.921 | 0.026 |
| L | 0.047 | 0.002 | L | 0.029 | 0.002 |
| W | -2.185 | 0.183 | W | -1.037 | 0.171 |
| C | 5.625 | 0.383 | C | 3.043 | 0.448 |

Best ADD3 mode

	Estimate	SE		Estimate	SE
Intercept	-30.25	1.166	Intercept	-22.426	1.271
Age	0.252	0.037	Age	0.605	0.041
L	0.05	0.002	L	0.031	0.002
W	-2.262	0.187	W	-1.011	0.17
C	6.4	0.381	C	3.702	0.432
LI	-0.023	0.003	LI	-0.021	0.004
WI	-1.36	0.179	WI	-1.694	0.193
G	1.785	0.215	G	1.351	0.325

Best ADD6 model

	Estimate	SE		Estimate	SE
Intercept	-28.413	1.272	Intercept	-20.216	1.288
Age	0.282	0.04	Age	0.431	0.046
L	0.048	0.002	L	0.03	0.002
W	-1.879	0.205	W	-0.866	0.173
C	5.99	0.418	C	3.693	0.44
LI	-0.017	0.004	LI	-0.022	0.003
WI	-2.969	0.214	WI	-2.012	0.233
G	0.37	0.324	LI2	0.021	0.003
LI2	-0.0011	0.0013	WI2	1.545	0.199
WI2	3.242	0.22	G2	-0.558	0.228

Table A1. Parameter estimates from best logistic regression models for lake trout chosen by AIC. L is fish total length (mm), W is fish mass (kg), C is condition factor, LI is growth in length, WI is growth in mass, and G is instantaneous growth in mass. Changes in growth are denoted by a " 2 " after corresponding growth variable.

Figure captions

Figure 1. Dynamics of beginning-of-the-year biomass and a decline in adult body mass:
a) Juvenile biomass (ages 1-2). b) Subadult biomass (ages 3-5). c) Adult biomass (age > 5). d) Body mass at total length of 700 mm plotted against beginning-of-theyear biomass of adult and subadult lake trout. In the plots a-c), dots and solid lines are average estimates of the biomass, dashed lines are 95% probability intervals. In panel d), dots represent average estimates of the body mass prior to 2002, open circles represent average estimates of the body mass for the rest of years, the distance between a pair of gray bars represents 95% probability intervals of an annual estimate, and horizontal lines represent the average within a period of years or the intercept of a regression line with the slope equal to zero.

Figure 2. Annual total consumption by lake trout. a) The relationship between annual consumption and beginning-of-the-year biomass of adult and subadult lake trout. b) The relationship between annual consumption and annual production of adult and subadult lake trout. In both panels a-b, dots represent average estimates of annual consumption prior to 2003. Open circles represent the average estimates after 2002. The regression line in each panel was based on all estimates in the time series. c) Average estimates of annual consumption (dots and solid line) with 95% probability intervals (dashed lines). d) Annual consumption of prey fish partitioned among prey fish species, including alewives (alew), rainbow smelt (smlt), sculpins (sclp), and other fish species (other), which includes sculpins, sticklebacks, and coregonines.

Figure captions (continued)

Figure 3. The relationships between annual production and beginning-of-the-year biomass of a) adult, b) subadult, and c) juvenile lake trout. Dots represented average estimates of annual production prior to 2003. Open circles represent those after 2002. The regression line in each panel was based on all estimates in the time series. Also, d) The average age of lake wide fishery harvests (diamonds and the solid line) with 95% probability intervals (dashed lines).

Figure 4. Average estimates of annual production (dots and solid lines) with 95% probability intervals (dashed lines). a) Juvenile (age 1-2) production. b) Subadult (age 3-5) production compared with fishery yield mostly from subadult lake trout (open squares and the line). c) Adult (age > 5) production compared with fishery yield mostly from adult lake trout (open circles and the line).

