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Abstract 20 

 Stock assessments, or population models developed to support fishery 21 

management decisions, require informative data to produce reliable estimates. 22 

However, resources available to collect these data are limited. Thus, information 23 

relating the effects of different data collection schema on stock assessment performance 24 

should be of interest to fishery managers. We used an existing dataset on the Thunder 25 

Bay Cisco stock to simulate various degrees of reduction in available data. We 26 

considered both cluster sub-sampling of biological data from the commercial fishery 27 

harvest (which determine the observed harvest age-composition) and reductions in the 28 

frequency of hydroacoustic surveys, in order to examine their effect on fits of an age-29 

structured stock assessment model for the Cisco stock. Our results indicate that 30 

reductions in the frequency of hydroacoustic surveys would have a greater effect on 31 

applied stock assessment performance for Thunder Bay Cisco than would reductions in 32 

biological sampling to randomly selected temporal clusters of the fishery harvest. 33 

Reduction in the frequency of the hydroacoustic survey resulted in different point 34 

estimates and larger estimated uncertainty for spawning biomass and M compared to 35 

the original assessment model. This was likely largely driven by increases in lag between 36 

the final year of the survey and the current year of the assessment. The lower influence 37 

of reduced biological sampling may be due to highly variable nature of Cisco 38 

recruitment, where large or “boom” year classes were still evident in the reduced 39 

biological samples, combined with information from survey age compositions. We 40 

suggest a priority be placed on performing hydroacoustic surveys with some regularity, 41 

such that when they are performed, they are done extensively to minimize uncertainty 42 
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(measurement error). The data subsampling approach used here could be used in many 43 

assessments to determine if a reduction in sampling of various types could be 44 

implemented without materially changing assessment results. 45 

Introduction 46 

 Stock assessment models are important tools used in fisheries research and 47 

management. They generally use a variety of data sources from a given fish stock to 48 

develop a population model and subsequently estimate managerial and ecological 49 

quantities of interest such as spawning biomass. Where assessment models can differ in 50 

the amount and type of data used, they all require informative data on a stock of interest 51 

to produce accurate or reliable estimates (Magnusson and Hilborn 2007). Uncertainty 52 

and bias in stock assessments result from a variety of factors, including model structure 53 

and assumptions, but among these perhaps the most basal factor is the quantity and 54 

quality of data available for an assessment. Without informative data, the importance of 55 

model structure and assumptions is reduced. Management agencies possess, however, a 56 

finite amount of monies for data collection programs. Thus, there is a need to determine 57 

how to efficiently allocate resources used for data collection, such that sufficient data of 58 

each needed type are collected in a robust (statistically sound), practical, and/or 59 

efficient way.  60 

Most stock assessments done in the United States are based on age-structured 61 

population assessment methods (Punt et al., 2017). When statistically fit, these models 62 

can be referred to as statistical catch-at-age assessment (SCAA) models, and are a form 63 

of integrated stock assessment. Such assessments rely on both indices of relative 64 

abundance (or less commonly estimates of absolute abundance), and information on the 65 
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magnitude and composition of the harvest. While these data sources tend to inform on 66 

different parameters, there is overlap, and the exact influence of different types of data 67 

can be complex as this is influenced by model structure (Francis et al. 2011, Lee et al. 68 

2014, Maunder and Piner 2015 & 2017). A very common data source utilized in age-69 

structured stock assessments is the observed age composition of the fishery harvest. 70 

These data provide critical information within SCAAs on the relative strength of 71 

different cohorts, the fishery selectivity of a species, and the natural mortality rate (M) 72 

of a species (Lee et al., 2011; Maunder and Piner 2015). The observed age composition of 73 

the catch is generally estimated from samples of the fishery harvest and thus its 74 

accuracy depends on both the quantity and the quality of the samples. For example, as 75 

the number of samples increases, they approach a population census (in this case the 76 

population is the fishery harvest). Whereas the quality of a sample depends on how 77 

representative it is of the fishery harvest, which can depend on how different 78 

observations are spread out in time, how they are spread out by fishing trip, etc. The 79 

highest quality sample may be a truly random sample of the harvested population, or a 80 

stratified random sample, however this is nearly impossible to carry out in practice. In 81 

reality, we don’t have a final pool of the harvested population at the end of the fishing 82 

season that we can randomly sample. Instead, management agencies must determine 83 

which days, which ports, and which vessels to sample. We refer to the sampling of these 84 

nested groups of fish (select ports, select boats, etc.) as cluster sampling.  85 

Due to the correlation among observations within clusters, in terms of space and 86 

time (i.e., characteristics of fish sampled from within clusters are not independent), a 87 

cluster sample is expected to contain less information on the biological characteristics, 88 
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such as age composition, of the harvested population than would the same number of 89 

fish in a simple random sample from the entire harvested population. Some have 90 

referred to use of such data without accounting for the non-independence as 91 

pseudoreplication (Hurlbert 1984; Millar and Anderson, 2004, Murie et al., 2012). For a 92 

practical example, take port sampling, where a biologist or technician travels to a port to 93 

collect fish from the harvest and obtain information on their biological characteristics 94 

such as length or age. The port could be the only or primary landing location for the 95 

fishery or there could be many such locations. At the port on a given sampling date only 96 

a fraction of the boats that land fish at that port will be available for sampling, and often 97 

only a subset of those will be sampled. The individual boats sampled at a port on a given 98 

day are likely to have similar catch composition characteristics relative to the overall 99 

fishery catch (e.g., they fish close to the port, or closer on some days, or on the same 100 

schools of fish), resulting in observed fish characteristics that are correlated in space 101 

and time. Further, the catch composition for a specific fishing trip is likely to differ from 102 

other fishing trips landed at the same port on the same day, in ways that cannot be 103 

explained by simple random sampling of fish from a common statistical population 104 

(e.g., the specific locations fished by each vessel could have differences in age 105 

compositions).   106 

Within assessment models, one can weight composition datasets according to 107 

their perceived quality using an effective sample size that is lower than the actual 108 

sample size (Maunder, 2011). This will ultimately affect model performance. In this 109 

study we were curious as to how cluster sampling of biological data from the fishery 110 

harvest not only affects this effective sample size of compositions (which can be 111 
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calculated in numerous ways, see Francis 2011, Truesdell et al. 2017), but also how it 112 

subsequently affects stock assessment performance. Given the importance of age 113 

composition data to age-structured stock assessments, understanding how the quantity 114 

and the quality of biological samples from the fishery harvest (through its effect on the 115 

estimated observed age composition) ultimately affects stock assessment performance 116 

can provide useful direction to management agencies on how to allocate their biological 117 

sampling programs.  118 

Indices of relative abundance or absolute estimates of abundance are critical to 119 

integrated assessments as they provide direct information on how abundance is 120 

changing over time (Francis 2011). Fishery-independent data have long been thought to 121 

be, and in some cases shown to be, important to stock assessment performance and 122 

accuracy (Chen et al., 2003; Magnusson and Hilborn, 2007; Ono et al., 2015). Fishery-123 

independent indices of abundance can be of critical importance in stock assessments, to 124 

supplement often uninformative fishery-dependent indices of abundance used in 125 

assessment models which may not be proportional to actual stock abundance due to a 126 

variety of factors (Harley et al., 2001; Hilborn and Walters, 1992, Ono et al., 2015). 127 

Fishery-independent age composition data can also provide valuable information to 128 

assessment models in the sense that they can have a different selectivity than that of the 129 

fishery and are often able to catch smaller or younger fish, providing the model 130 

additional information on recruitment and M (Fisch et al. 2019). The downside is that 131 

fisheries-independent survey data are very expensive to collect, as contrary to fishery 132 

dependent sampling, fishery-independent surveys require additional monies for field 133 

sampling (boat time, man hours, etc.) to collect fish that would otherwise not be 134 
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available. Thus determining how the frequency of fishery-independent surveys impacts 135 

stock assessment performance can provide useful information to management agencies.  136 

In the Thunder Bay commercial Cisco (Coregonus artedi) fishery, the Ontario 137 

Ministry of Natural Resources and Forestry (OMNRF) samples the first 10 Cisco from 138 

each gillnet set in the fishery. This results in an extensive dataset containing biological 139 

information not only from each day that harvest occurs but at an even finer scale from 140 

each gillnet that catches fish. Although not a truly random sample of the harvested 141 

population, this is substantially more intensive and spread out sampling than is typical 142 

for most cluster sampling of biological data from a fishery’s harvest. Additionally, since 143 

2005 the Thunder Bay Cisco stock has been surveyed annually using hydroacoustic gear, 144 

to provide an estimate of spawning stock size. In 2018, a SCAA model was developed for 145 

Thunder Bay Cisco, which was informed by each of these data sources in addition to the 146 

aggregate harvest of the fishery (Fisch et al., 2019). This extensive dataset on biological 147 

samples from the commercial fishery, together with fishery-independent surveys of 148 

spawning abundance, offers a valuable opportunity to simulate both cluster sampling of 149 

biological data from the fishery and reductions in the frequency of hydroacoustic 150 

surveys, and to observe how the reductions influence the stock assessment results. We 151 

focus on cluster sampling as previous analyses indicated that simply reducing number of 152 

ages by simple random subsampling had little influence on the information content of 153 

the composition data for the Thunder Bay fishery (Fisch and Bence, 2018). 154 

Data and its effect on stock assessment modeling is not a new subject, as many 155 

studies have examined the effect of different types and amounts of data on assessment 156 

model performance (Chen et al., 2003; He et al., 2016; Hulson et al., 2017; Magnusson 157 
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and Hilborn, 2007; Muradian et al., 2019; Ono et al., 2015; Wetzel and Punt 2011). 158 

These studies have focused on the effect of leaving entire data sources out (Chen et al., 159 

2003; Magnusson and Hilborn, 2007; Muradian et al., 2019), collecting certain data 160 

sources less frequently (e.g., every other year, second half of fishing history; Ono et al., 161 

2015; He e al., 2016), or the amount of data collected in a given year (Ono et al., 2015; 162 

He et al., 2016; Hulson et al., 2017; Wetzel and Punt, 2011). Fewer studies have directly 163 

examined the effect of both the amount of data collected and specifically how they were 164 

collected in relation to assessment model performance.   165 

In this study, we compare the performance of an applied stock assessment on 166 

Thunder Bay Cisco under different data collection scenarios. Our objectives for this 167 

analysis were twofold: 1) determine how cluster sampling of biological data from the 168 

fishery, through its effect on the observed harvest age composition, affects stock 169 

assessment performance, and 2) determine how the frequency of hydroacoustic surveys 170 

affect stock assessment performance. While focused on the Thunder Bay Cisco fishery, 171 

our results shed light on sampling strategies for other fisheries with some similar 172 

characteristics, and provide an example approach for evaluating how changes in 173 

sampling due to reductions in sampling effort could influence assessment results. 174 

Methods 175 

Thunder Bay Cisco 176 

Cisco are a pelagic planktivore native to the Laurentian Great Lakes. They form 177 

annual spawning aggregations during the month of November in nearshore bays and 178 

areas of western Lake Superior, where contemporary spawning stocks are primarily 179 

located (Stockwell et al., 2009). In Thunder Bay (Management Areas 1-4, Figure 1 Fisch 180 
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et al., 2019) the commercial Cisco fishery is largely a seasonal roe fishery, with most 181 

harvest occurring during the month of November using suspended gillnets (Ebener et 182 

al., 2008). Current management involves a limited entry fishery with aggregate quotas 183 

calculated as 10% of the estimated spawning biomass from hydroacoustic surveys.  184 

Model 185 

The original SCAA model developed in Fisch et al., (2019) is age- and sex-186 

structured, beginning at age 2 and forming a plus group at age 15. The model runs from 187 

1999 to 2015, to obtain estimates of quantities through the start of 2016. The SCAA is 188 

informed by four main sources of data; the total harvest, the age composition of the 189 

harvest, hydroacoustic surveys of spawning abundance, and the age composition of 190 

Cisco caught in additional gear deployed during the hydroacoustic surveys (mid-water 191 

trawls and multi-mesh gillnets; see Table 1 for specific years each data source was 192 

available for the original model). The model estimates M for males and females 193 

separately, treats hydroacoustic estimates of spawning stock size as absolute indices of 194 

abundance, and estimates recruitment through lognormal deviations about a median 195 

value (deviations are penalized in the likelihood). Variances of “abundance” data (i.e., 196 

hydroacoustic estimates) along with recruitment deviations were set relative to the 197 

variance of the harvest so that resulting variances for these data sources were 198 

compatible with prior expectations, consistent with recommendations from Francis 199 

(2011). The variance of the harvest was fixed at the median of its posterior distribution 200 

(-2.4 in log space) estimated in the original SCAA (Fisch et al., 2019), so as to be able to 201 

make comparisons across models. The model weights age composition data sources by 202 

iteratively reweighting effective sample sizes using method T3.4-TA1.8 of Francis (2011). 203 
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For more details on specifics of the assessment model, see Fisch et al. (2019). The only 204 

structural difference (other than fixing harvest variance) from the SCAA models used 205 

herein and the SCAA from Fisch et al., (2019) is the omission of aging error estimation 206 

within the current model, given Fisch et al., (2019) determined that (a) there was little 207 

aging error, and (b) the parameters determining aging error were very well determined.  208 

Overview 209 

Our overall approach was to fit the SCAA model to reduced datasets and assess 210 

model performance as the quantity and quality of data was reduced. Our main set of 211 

analyses consisted of fits to datasets for 15 dataset configurations. Herein, we use the 212 

term dataset configuration to denote a combination of data scenarios. We use the 213 

term data scenario to denote a data collection scheme for a specific type of data (e.g., 214 

sampling every other year of the hydroacoustic survey, or a version of cluster sampling 215 

biological data), and the term dataset to denote the actual data for a given data source 216 

used in a dataset configuration (this can change due to replicates, which differ from one 217 

another due to random data selection). The main dataset configurations included the 218 

full SCAA dataset (from Fisch et al., 2019), in addition to 14 reduced dataset 219 

configurations. We produced datasets for these 14 configurations by simulating cluster 220 

sampling of biological data from the fishery harvest in addition to leaving out select 221 

years of the hydroacoustic survey. Whenever the reduced dataset configuration involved 222 

a reduction in the number of fish providing biological data from the fishery harvest, this 223 

involved an element of randomness. Hence, for dataset configurations with cluster 224 

subsampling of the biological data, the SCAA model was fit to three replicate datasets 225 

with different random draws of the cluster subsampling, and hence different age 226 
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composition data. There were three different age composition scenarios. There was the 227 

full (original) age composition and scenarios with reduced age composition datasets 228 

produced by simulating two different levels of cluster sampling of biological data from 229 

the fishery harvest. This fishery can be viewed as having its landings come via a single 230 

port, with the majority of the harvest occurring in November. Thus, we broke the 231 

November fishery into quarters and simulated cluster sampling by randomly selecting 232 

one or two quarters of the fishing season each year. For hydroacoustic data, we had the 233 

full (original) hydroacoustic dataset and produced four reduced hydroacoustic datasets 234 

by leaving out select years of the survey, resulting in a total of five main hydroacoustic 235 

scenarios. For the hydroacoustic scenarios there is no distinction between the scenario 236 

and dataset as no randomness was involved in producing the reduced datasets. Thus, we 237 

ultimately had a total of 15 different “main” dataset configurations after the three age 238 

composition and 5 hydroacoustic scenarios. There were a total of 35 SCAA fits to 239 

different datasets because the 10 configurations that involved cluster subsampling of the 240 

biological data were fit using each of the associated triplicate age compositions.     241 

In addition to the main set of hydroacoustic scenarios, we considered three 242 

additional scenarios where the final year of the hydroacoustic survey data was always 243 

included in the dataset. These additional scenarios were intended to isolate the effect of 244 

sampling frequency from how recently a hydroacoustic survey had been conducted, and 245 

these scenarios were only paired with the full age composition (no cluster subsampling), 246 

adding three dataset configurations and datasets to which the SCAA model was fit. Thus, 247 

in total we considered 18 dataset configurations (15 “main” + 3 additional), and 38 248 

model fits. 249 
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Cluster Sampling 250 

In order to simulate cluster sampling of biological data from the fishery harvest, 251 

we split the number of days sampled in November each year into four parts of 252 

approximately equal duration, or quarters. For example, if harvest occurred (and thus, 253 

sampling) during every day in November in one year (30 days), then a quarter would 254 

last ~7 days for that year. Alternatively, if harvest occurred for only half of November in 255 

another year, then quarters would only span ~3 days each for that year. The total 256 

number of days was calculated from the first day sampled in November to the last day 257 

sampled in November (there could be days with no harvest in between). For one cluster 258 

sampling scenario, we randomly sampled two quarters in November each year and kept 259 

all the data collected within them. For another cluster sampling scenario, we randomly 260 

sampled only one quarter in November each year and kept all data collected within it. 261 

These two cluster sampling scenarios were termed Cluster Sample 2 (CS2) and Cluster 262 

Sample 1 (CS1), respectively. Our approach was to keep the data collected in the selected 263 

quarter or quarters, and remove the data collected outside of it. Thus, the random 264 

sampling is solely choosing which time periods (quarters) of data to keep, rather than 265 

the biological samples themselves within the quarters. For each cluster sampling 266 

scenario, in addition to removing data from non-sampled quarters (clusters), all data 267 

collected outside the month of November was omitted (not used in the model).  268 

For each cluster sampling dataset, processing akin to the original processing for 269 

the SCAA was performed, i.e., aging data were pooled by management area each year 270 

and sex-specific age-length keys were developed to estimate the observed age 271 

composition each year. Since we are randomly removing fish from the biological 272 
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database (through our simulation of cluster sampling), some of these fish will have been 273 

aged, thus we are reducing both the number of fish sampled and the number of fish aged 274 

each year. The number of fish sampled and aged in each year for each cluster sampling 275 

scenario (for the one replicate we present in the main text) can be found in Table 2. In 276 

many years the OMNRF aged a subsample of biological samples from the fishery harvest 277 

in order to develop an age-length key, aiming for 10 fish aged per 10mm length bin per 278 

management area per sex, while in some years all fish sampled were aged. Given our 279 

simulations of cluster sampling the fishery harvest randomly sample quarters (or 280 

clusters) in November each year, there is a possibility that results may be anomalous 281 

due to randomly picking particularly informative or conversely particularly 282 

uninformative samples. For this reason we produced three replicates of each cluster 283 

sampling scenario (using different random number seeds), resulting in six age-284 

composition datasets from cluster sampling of biological data (3x CS2 & 3x CS1), and 285 

seven age composition datasets altogether including the full age composition. 286 

Hydroacoustic Datasets 287 

Reduced hydroacoustic datasets were produced with two questions in mind. One, 288 

what happens to assessment performance as we reduce the frequency of hydroacoustic 289 

surveys to every other year, every third year, every fourth, etc.? Two, how does 290 

assessment performance decline as the final year of the hydroacoustic survey moves 291 

further and further away from the current year of the assessment? For our main set of 292 

scenarios we produced four different reduced datasets based on the hydroacoustic 293 

survey (Table 3): sampling every other year ending in 2014, every third year ending in 294 

2013, every fourth year ending in 2012, and every fifth year ending in 2010. These 295 
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scenarios were termed AC1 – AC4, respectively. We also developed an alternative to AC4 296 

that used data in the year 2011 instead of 2010. In an attempt to isolate the effect of the 297 

lag between the final year of the survey and the assessment year with the effect of the 298 

frequency of the survey, we developed three additional hydroacoustic datasets 299 

corresponding to scenarios that all included year 2015 of the survey. One sampled every 300 

other year, the other every third year, and the third every fifth year, termed HA2, HA3, 301 

and HA5 (Hydroacoustic-Alternate). The datasets for these additional hydroacoustic 302 

scenarios were only paired with the full composition dataset.  303 

Given that fishery independent age composition data used in the model were 304 

calculated from biological sampling that occurred during the hydroacoustic survey, 305 

when a year of the hydroacoustic survey is removed, we also left out the fishery-306 

independent age composition for that year. Specifics on how hydroacoustic data were 307 

collected and processed can be found in Fisch (2018).  308 

Model Running 309 

Models were first fit using penalized maximum likelihood to perform iterative 310 

reweighting of effective sample sizes (ESS) for age composition datasets (commercial 311 

fishery and fishery-independent age compositions) using method T3.4-TA1.8 of Francis 312 

(2011). Once effective sample sizes converged, Bayesian posteriors were generated with 313 

the ESSs fixed. MCMC chains were run for 20 million iterations, saving every 500th and 314 

burning in 2500 iterations from the final chain. Convergence was assessed based on 315 

chains of the model estimated parameters using Geweke’s diagnostic at an alpha level of 316 

0.01. Priors for model parameters can be found in Table 2 of Fisch et al., (2019). 317 

Comparison 318 
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We compared the SCAA fit to the full Thunder Bay dataset to model fits to 319 

reduced datasets by examining changes in point estimates and estimated uncertainty for 320 

quantities such as spawning biomass and M. Our metrics of estimated uncertainty 321 

included 95% highest posterior density (HPD) intervals and CVs of posterior 322 

distributions. We calculated two different CV metrics for spawning biomass; the mean 323 

CV of the posterior distributions of spawning biomass over the full time series and the 324 

CV of the posterior distribution for spawning biomass in 2015. We chose to focus on 325 

spawning biomass as this value may be used to calculate quotas in the future and thus is 326 

of management interest, and M as this is a parameter of ecological interest. We 327 

compared estimates of spawning biomass in 2015 instead of 2016 because the 2016 328 

spawning biomass estimate from the model does not include age 2s (model recruits), of 329 

which ~30% are generally mature in Thunder Bay. In addition, quotas are currently set 330 

based on hydroacoustic estimates of spawning stock size from the previous November, 331 

and this value most closely relates to the 2015 estimate. We believe results and 332 

conclusions would be similar had we used spawning biomass estimated in 2016.  333 

Results 334 

 Results did not differ greatly across model fits to replicates of the cluster 335 

sampling scenarios, thus for simplicity we present results for a single replicate herein. 336 

Figures related to cluster sampling replicates are in the supplemental files. For one 337 

specific data configuration, namely AC1-CS1, the MCMC chains for the SCAA model 338 

would not converge on a stable distribution at its reweighted effective sample size for 1 339 

out of the 3 datasets (replicates of cluster sampling scenarios). 340 
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 Effective sample sizes for fishery age composition data decreased as the 341 

information content (i.e., number of fish sampled, aged, and the quality of the sample) 342 

was reduced through cluster sampling (Table 4). This result occurred across all 343 

hydroacoustic data scenarios. Effective samples sizes for fishery-independent 344 

compositions were variable, however, they generally decreased from the full 345 

hydroacoustic dataset as select years of fishery-independent compositions were 346 

removed. 347 

Relative differences between point estimates of spawning biomass in 2015 for the 348 

original model and model subsets were variable (Table 4). Overall, the largest 349 

differences were attributed to reductions of hydroacoustic data rather than cluster 350 

sampling of biological data (Figures 1 & 2). Specifically, for the full hydroacoustic 351 

dataset, cluster sampling biological data from the fishery harvest did not change the 352 

point estimate of spawning biomass in 2015 by more than 2%. Similarly, for other 353 

hydroacoustic scenarios, the maximum change in spawning biomass estimates for 2015 354 

was 7%.  In contrast, large changes in estimates were attributable to the hydroacoustic 355 

scenario. For AC1 combined with each age composition scenario, point estimates of 356 

spawning biomass in 2015 were underestimated compared to the model fit to the full 357 

dataset by about 35%. For AC2, relative differences were modest once again, with no 358 

combination of AC2 and a given age composition scenario producing a difference 359 

greater than 4%. Combinations of AC3 and different age composition scenarios resulted 360 

in higher estimates of spawning biomass in 2015 compared to the fit to the full dataset, 361 

with the greatest difference being 25% (for AC3-CS1 model). Differences for model fits 362 

utilizing the AC4 dataset were again modest, but were the most variable within a 363 
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hydroacoustic scenario (ranging from -4% to +3%), with the largest relative difference of 364 

-4% resulting from a combination with the full composition scenario (i.e., AC4-Full 365 

Comp). The model fit to the alternative AC4 scenario, which was only combined with the 366 

full age composition and used observed data in 2011 instead of 2010 from the 367 

hydroacoustic survey, produced significant differences in spawning biomass throughout 368 

the time series and in 2015 compared to the model fit to the full dataset (2015 RD = 369 

200%, Supplemental Figure 3). In addition, this model resulted in substantial increases 370 

in estimated uncertainty for spawning biomass (in terms of 95% HPDs) compared to the 371 

model fit to the full dataset.  372 

There did seem to be some interactive effect between the level of harvest age-373 

composition sampling and the frequency of surveys on assessment model results during 374 

the earlier years covered by the assessment. In particular, while estimates of spawning 375 

biomass were similar in the final year for different age composition scenarios, estimates 376 

in the early years tended to vary more among the age composition scenarios for survey 377 

scenarios with less frequent sampling (Figure 1).  378 

 Estimated uncertainty as indicated by the width of 95% HPD intervals generally 379 

increased as models were fit to hydroacoustic survey from fewer years. This result was 380 

ubiquitous across cluster sampling scenarios (Figure 2). As the information content of 381 

the age composition decreased due to cluster sampling biological data from the harvest, 382 

estimated uncertainty increased marginally for most hydroacoustic datasets, although it 383 

actually decreased for the AC4 dataset (Figure 2 right panel). Another metric of 384 

estimated uncertainty, posterior distribution CVs, displayed similar results. Mean CVs 385 

for the posterior distributions of spawning biomass for the full time series increased as 386 
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hydroacoustic survey became less frequent, and as the last year of survey data became 387 

further from the current assessment year (Figure 3, Table 4). Posterior CVs for 388 

spawning biomass, just for 2015, also increased as the hydroacoustic survey became less 389 

frequent and the last year of survey became further away from the current year of the 390 

assessment (Figure 3). Each CV metric (mean over time series and 2015 estimate) 391 

increased as the information content of the composition data decreased through cluster 392 

sampling of the biological data compared to the full biological dataset. However, the CV 393 

metrics did not generally increase from the CS2 to CS1 scenarios for the full acoustic 394 

dataset and the AC4 dataset (Table 4, Figure 3). The increase in CV metrics from the fits 395 

using the full biological dataset to those using cluster sampling datasets was not as 396 

pronounced as the increase in CV metrics as hydroacoustic survey frequency was 397 

reduced.  398 

 For the alternate hydroacoustic scenarios (HA2, HA3, HA5), which were attempts 399 

to isolate the effect of reductions in frequency of the survey and the effect of lag between 400 

the last year of survey and the current year of the assessment, estimated uncertainty in 401 

terms of 95% HPD intervals for spawning biomass in 2015 increased from the model fit 402 

to the full dataset to HA2 and further to HA3, then decreased from HA3 to HA5 (Figure 403 

4 right panel). Point estimates of spawning biomass in 2015 varied with the largest 404 

difference (compared to the full model) attributed to the HA2 scenario. Mean CVs for 405 

full time series of spawning biomass were 0.28, 0.35, and 0.36, for the HA2, HA3, and 406 

HA5 scenarios, respectively. CVs for spawning biomass in the final year were 0.25, 0.29, 407 

and 0.33. For context, CV metrics (mean CV and CV in the final year) for spawning 408 

biomass for the model fit using the full dataset were 0.24 and 0.20. 409 
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Every model fit to reduced datasets estimated a higher 𝑀𝑀 for males than for 410 

females, consistent with the fit to the full dataset. Point estimates of 𝑀𝑀 were between 411 

0.27-0.36 for males and 0.21-0.31 for females. These estimates for each sex varied little 412 

as the information content within the age composition data was reduced through cluster 413 

sampling (Figure 5). More variability in point estimates of M was attributed to 414 

reductions in the frequency of the hydroacoustic survey, with the largest difference 415 

compared to the fit to the full dataset occurring when fitting to the hydroacoustic 416 

scenario AC1. Estimated uncertainty in terms of the width of HPD intervals increased as 417 

hydroacoustic survey frequency was decreased and in most cases also increased as the 418 

information content of the composition data was decreased. Estimated uncertainty in 419 

terms of the CV of the posterior distribution of M generally increased as years of the 420 

hydroacoustic survey were removed (Figure 5). Results for fits for the same 421 

hydroacoustic scenario, as the information content within the age composition of the 422 

fishery harvest was reduced through cluster sampling, were more variable although 423 

most often the CV of each M estimate increased as the information content of the 424 

composition data was decreased (exceptions being AC2-CS2 female estimate, AC3-CS2 425 

female estimate, and AC4-CS1 female estimate).    426 

Discussion 427 

 Overall, the effect of reduced frequency of the hydroacoustic survey on SCAA 428 

performance was much greater than reduced biological sampling through cluster 429 

sampling the fishery harvest. This is not necessarily an unexpected result, given 430 

hydroacoustic estimates of spawning biomass are treated as absolute estimates of 431 

abundance in the assessment models. Thus including or excluding select data points of 432 
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this survey will tend to “pull” the trend lines of spawning biomass up or down relative to 433 

the full assessment (based on which data points are left). However, what is surprising is 434 

how little reduced biological sampling of the fishery harvest affected assessment model 435 

performance. Although our simulations of cluster sampling biological data from the 436 

fishery harvest all produced substantial decreases in the perceived information content 437 

in the age composition datasets (based on re-weighted ESS), all of the models converged 438 

and produced similar point estimates in spawning biomass and M with only marginal 439 

increases in estimated uncertainty compared to models informed by the full age 440 

composition (conditional on hydroacoustic dataset). This may be a result of the highly 441 

variable, boom-or-bust recruitment patterns that have occurred in Cisco populations in 442 

western Lake Superior, where a large year class is produced followed by many years of 443 

effectively no recruitment (see Figure 6 in Fisch et al., 2019). For the Thunder Bay 444 

SCAA, there were 3-4 boom year classes evident over the 17 year time series. These 445 

boom year classes effectively drive the entire SCAA model in terms of selectivity, M, and 446 

recruitment (while the periodic abundance indices give an estimate of absolute scale). 447 

What may be occurring is that even if sampling is reduced or clustered (or both), given 448 

there are so few individuals in non-boom year classes, low information content age 449 

compositions may be sufficient. An additional reason why low information content in 450 

the harvest age composition data may be sufficient is because information on age 451 

compositions was also provided by the survey. Of course, some harvest composition 452 

data is necessary to fit a SCAA, as these data inform on model parameters (e.g., fishery 453 

selectivity) that other data sources provide little information. In addition, there is some 454 

threshold of ESS below which model failure will occur. By model failure we mean the 455 

model will not converge without making alterations such as fixing M, or just assuming 456 



21 
 

that age compositions are more informative than they really are (artificially increasing 457 

ESS). Having to make such changes (i.e., questionable assumptions) would mean that 458 

the resulting assessment was much less reliable. Thus, it is important to maintain a 459 

biological sampling program for the harvest that results in a sufficient effective sample 460 

size for age composition data to produce a reliable assessment model.  461 

This result, that some cluster sampling of biological data from the fishery harvest 462 

has a marginal effect on assessment performance, may not be widely generalizable 463 

across different species. Assessment model performance for a species with a different 464 

life history could be more affected by cluster sampling than Cisco. For example, He et 465 

al., (2016) found that rapidly growing species with clear signs of strong cohorts 466 

(referring to Bocaccio, Sebastes paucispinis), are likely to see less improvement in 467 

assessment results with increased age data than more slow growing species, or species 468 

for which recruitment is less variable. Our results are similar to those found in He et al., 469 

(2016) for Bocaccio, that decreases in the number of fish sampled from the commercial 470 

fishery have little effect on stock assessment performance, and quite likely for the same 471 

reasons as Cisco are also a fast growing species that show clear signs of strong cohorts. 472 

Similarly, Wetzel and Punt (2011) found that where the inclusion of length composition 473 

data dramatically improved assessment performance, increasing the amount of 474 

composition data only resulted in minimal improvements in performance. They went on 475 

to imply that their results may be different than those of a slow-growing, long-lived fish 476 

such as rockfish (Sebastes spp.). It may be that for species without as variable a 477 

recruitment pattern as western Lake Superior Cisco or slower growth, cluster sampling 478 

may indeed have a significant effect on assessment model performance and should be 479 
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avoided or minimized if possible. Although as a counter example, Hulson et al., (2017) 480 

found that age composition sample size had a greater impact on SCAA uncertainty for 481 

species with higher recruitment variability compared to those with lower recruitment 482 

variability. In addition, Ono et al., (2015) found that estimation performance for species 483 

examined across three life history types (cod-, flatfish-, and sardine-like species) did not 484 

qualitatively differ from the base case when the sample size of age and length 485 

composition data was reduced throughout the entire time series. Contradictions in 486 

results may be a function of the different magnitudes of recruitment variabilities in the 487 

different studies. Sardine (fast-growing species) in Ono et al., (2015) and Walleye 488 

Pollock (Gadus chalcogrammus) in Hulson et al., (2017) did not have as large a 489 

recruitment SD as those of Bocaccio in He et al., (2016) or Cisco in our study ( rσ ; 490 

Sardine = 0.73, Walleye Pollock = 0.70, Boccacio = 1, Cisco full model estimate = 4.5). 491 

Results and conclusions may also differ based the spatial scale or the timing of the 492 

fishery. Compared to many marine fisheries, the spatial scale of the Thunder Bay Cisco 493 

fishery is small, and it is effectively a one-month seasonal fishery. Cluster sampling may 494 

have a greater effect when the area of a fishery is larger, and for fisheries spread out over 495 

a larger time period. 496 

 As far as data collection decisions, in western Lake Superior it seems that priority 497 

should be given to collection of fisheries-independent hydroacoustic surveys for Cisco, 498 

even if this necessitated some reduction in biological sampling of the fishery. Previous 499 

studies noted the importance of fisheries-independent data to stock assessment 500 

performance (Chen et al., 2003; Ono et al., 2015; Wetzel and Punt, 2011), and our 501 

results support this view. Given we also removed select years of survey age composition 502 
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data along with the hydroacoustic data (in accordance with how it is collected in 503 

Thunder Bay), we cannot be certain that effects on assessment performance are more 504 

driven by one or the other. It could be that the survey age composition data are 505 

providing critical information on recruitment and M to supplement the fishery 506 

dependent age composition data, and thus its reduction results in poor assessment 507 

performance. We find it more plausible that the index of abundance is a larger driver of 508 

assessment performance than the survey age composition data because of its treatment 509 

within the model as an absolute abundance estimate. The general lack of sensitivity to 510 

some reduction in biological data from the harvest through cluster subsampling is 511 

encouraging given that the coverage in both time and space is less complete (than it was 512 

for Cisco in Thunder Bay) for most other stocks of Cisco and for other species of 513 

commercially harvested fish with highly variable recruitment. 514 

Given the importance of fishery-independent surveys to assessment performance, 515 

how often should surveys be done? In our study as both the frequency of the 516 

hydroacoustic survey was reduced and the lag between the final year of the survey and 517 

the year of the assessment increased (and years of survey age composition dropped), the 518 

performance of the assessment model decreased. When we attempted to separate these 519 

two factors using the so-called alternate hydroacoustic scenarios (HA2, HA3, & HA5), 520 

the lag between the final year of the survey and the year of the assessment seemed to 521 

have a greater effect on SCAA performance than the frequency of the survey. However, if 522 

the assessment is done annually, it is unavoidable that if the frequency of the 523 

hydroacoustic survey is reduced there will be years where the last year of the survey is 524 

not the current year of the assessment. We did see some substantial idiosyncratic 525 
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changes in assessment results related to the precise survey years used rather than the 526 

frequency. This highlights the role of chance or random variation in assessment results, 527 

which could pose a danger when conducting the hydroacoustic survey too infrequently. 528 

For example, our AC4 model that included hydroacoustic data in 2005 and 2011 529 

(instead of 2010) produced substantially greater differences in spawning biomass 530 

compared to the full model than did the original AC4 model. The hydroacoustic data in 531 

2011 was effectively ignored in the full model fit (see Figure 9 in Fisch et al., 2019), 532 

possibly due to high measurement error. With more years of data, the effect of outlier 533 

data points is reduced. Thus, if survey frequency is reduced, decreasing measurement 534 

error within years when the survey is done should become a priority. Overall, it is likely 535 

a reduction in hydroacoustic survey frequency to every other year or every third year 536 

would not have a great effect on Thunder Bay Cisco stock assessment performance. We 537 

recommend that hydroacoustic surveys be done with at least some regularity such that 538 

the assessment model has periodic data on absolute abundance to scale the population. 539 

Future studies could involve a simulation framework to assess the tradeoff in 540 

assessment performance of many surveys with a relatively high CV vs fewer surveys with 541 

a lower CV. 542 

An important aspect to note regarding our study is that our metrics of estimated 543 

uncertainty are almost surely underestimating the true uncertainty. Confidence 544 

intervals can underestimate true uncertainty due to constraints imposed by model 545 

structure and assumptions (He et al., 2016; MacCall, 2013; Mangel et al., 2013), e.g., by 546 

fixing a key parameter. For example, in our study we treat the hydroacoustic survey as 547 

an absolute estimate of abundance, or a survey with a catchability fixed at 1. This greatly 548 
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limits the model from an uncertainty perspective as it does not have a chance to explore 549 

the uncertainty in that parameter itself, which is likely large. In this study we solely 550 

manipulated the data going into the model and the weights for the age composition 551 

datasets (ESS). Thus, the model structure and assumptions remained intact such that 552 

any changes in model performance would be attributed solely as a function of the data 553 

input. We did observe increases in estimated uncertainty with more data for some of our 554 

models (specifically AC4 models), highlighting that model estimated uncertainty may 555 

not be the best metric in assessing assessment performance. This result is consistent 556 

with the general observation that estimated uncertainty can increase with more data, if 557 

those data tell a contradictory story about the targeted fishery (Schnute and Hilborn, 558 

1993; Schnute and Richards, 2001). A better gauge in our study regarding the 559 

robustness of an assessment in the face of a reduction in data availability is how similar 560 

the replicate results were to one another and the full assessment. We believe that a 561 

similar approach of examining how stock assessment results change as data are left out 562 

of the assessment can be generally instructive regarding potential changes in sampling 563 

designs. 564 

Finally, as a disclaimer we do not know how reliable estimates were for the stock 565 

assessment model fit to the full data set. We chose to analyze data from a real stock as 566 

opposed to generating it based on a simulated one so as to incorporate more realism 567 

into the study. The downside of this is that we do not know the true values for the 568 

system. While it is perhaps logically possible that the original assessment was highly 569 

biased or uncertain, we still think it was reasonable to focus on metrics such as point 570 
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estimates and estimated uncertainty compared to the full, original Thunder Bay SCAA, 571 

as we believe those were likely the most reliable estimates among the fits we considered. 572 
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Tables 670 

Table 1. Data source years for the original Thunder Bay assessment. Reproduced from 671 
Fisch (2018).  672 

 673 

674 

Year Hydroacoustic 
Survey 

Fishery 
Harvest 

Fishery Age 
Composition 

MWT Survey Age 
Composition 

Gillnet Survey 
Age Composition 

1999  X X   
2000  X X   
2001  X X   
2002  X X   
2003  X X   
2004  X X   
2005 X X X X  
2006  X X   
2007 X X X X  
2008 X X X X  
2009 X X X X X 
2010 X X X X  
2011 X X X   
2012 X X X   
2013 X X X  X 
2014 X X X  X 
2015 X X X X X 
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Table 2. Description of sampling of the commercial Cisco fishery for the original dataset 675 
and for each cluster sampling scenario (for the selected replicate for which results are 676 
presented in the main text). Subsampled column (Column 2) identifies which years 677 
utilized an age-length key in the original dataset (i.e., were ages subsampled or was the 678 
full sample aged?). Column 3 displays the number of Cisco sampled and aged in the 679 
original OMNRF database. Columns 4 and 5 of the table denote the cluster sampling 680 
scenarios described in methods.  The first number in columns 3-5 represents the 681 
number of Cisco sampled and the second represents the number aged (Number sampled 682 
– Number Aged). 683 

Year Subsampled Full Biological 
Dataset 

Cluster Sample 2 Cluster Sample 1 

1999 Yes 860 – 402  432 – 196 80 – 28 
2000 Yes 3241 – 594  327 – 222 169 – 101  
2001 Yes 1221 – 574 305 – 140 207 – 97 
2002 Yes 1147 – 676  336 – 201 120 – 64 
2003 Yes 1208 – 704  361 – 200 161 – 99 
2004 Yes 1091 – 527  393 – 199 247 – 136  
2005 Yes 661 – 280  220 – 79 56 – 19 
2006 Yes 644 – 378  157 – 103  37 – 28  
2007 Yes 839 – 330  248 – 105 107 – 45  
2008 No 654 – 654  220 – 220 146 – 146  
2009 No 638 – 637  190 – 190 60 – 60  
2010 Yes 500 – 219  299 – 124 171 – 72  
2011 No 563 – 562  140 – 140 100 – 100  
2012 No 478 – 477  100 – 100  79 –79  
2013 No 429 – 427  159 – 157 120 – 120   
2014 Yes 733 – 517  342 – 208 230 – 149  
2015 Yes 705 – 457  301 – 184 216 – 106  

 684 

Table 3. Hydroacoustic dataset scenarios. Hydroacoustic-Alternate (HA) scenarios were 685 
only paired with the full composition dataset to explore the effect of lag between final 686 
data year and current assessment year. An X denotes a year that contained data from 687 
the hydroacoustic survey.  688 

Year Full Model AC1 AC2 AC3 AC4 HA2 HA3 HA5 
2005 X X X X X X X X 
2006         
2007 X  X   X   
2008 X X  X     
2009 X     X X  
2010 X X X  X   X 
2011 X     X   
2012 X X  X   X  
2013 X  X   X   
2014 X X       
2015 X     X X X 

 689 

690 
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Table 4. Various statistics for each assessment model fit to datasets arising from the 691 
main set of configurations and the selected replicate age composition in the study. 692 
Columns 3-5 depict the effective sample size for each age composition dataset used in 693 
each fit of the assessment model (for the selected fishery age composition replicate). 694 
Column 6 depicts relative differences (RD) of the point estimate of spawning biomass in 695 
2015 for the fit using the full dataset compared to estimates for fits to the reduced 696 
datasets: (fit to data subset-fit to full dataset)/fit to full dataset. Columns 7 and 8 show 697 
the mean CV of the posterior distributions of spawning biomass over the time series and 698 
the CV of the posterior distribution of spawning biomass in the year 2015, respectively.  699 

Model Fishery 
ESS 

MWT 
ESS 

MMGN 
ESS 

2015 
SB RD 

Mean 
SB CV 

2015 
SB CV 

Full AC 
Full Comp 64 45 53 NA 0.24 0.20 

CS2 23 45 46 -1% 0.25 0.20 
CS1 14 40 34 -2% 0.25 0.20 

        

AC1 
Full Comp 62 29 11 -35% 0.34 0.32 

CS2 24 19 7 -37% 0.37 0.34 
CS1 15 26 11 -34% 0.37 0.36 

        

AC2 
Full Comp 62 35 70 -4% 0.35 0.40 

CS2 24 22 50 -4% 0.35 0.42 
CS1 15 29 58 -3% 0.37 0.44 

        

AC3 
Full Comp 60 25 NA 23% 0.39 0.46 

CS2 23 16 NA 22% 0.40 0.48 
CS1 14 20 NA 25% 0.43 0.51 

        

AC4 
Full Comp 60 28 NA -4% 0.53 0.61 

CS2 23 17 NA 3% 0.48 0.69 
CS1 15 22 NA -3% 0.49 0.66 

 700 

 701 

 702 

 703 

 704 

 705 

 706 

 707 

 708 
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Figures  709 

 710 

 711 

 712 

Figure 1. Point estimates (medians) of spawning biomass for the time series. Each row 713 
depicts the 15 main set of configurations with different hydroacoustic and composition 714 
scenarios. The three panels in the top row each relate to assessment models informed by 715 
a given fishery age composition dataset. Within the three panels on the top row each 716 
trend line depicts estimates from an assessment model informed by a given 717 
hydroacoustic dataset. The bottom row of plots is the opposite, where each panel depicts 718 
assessment models informed by different hydroacoustic datasets and within each panel 719 
the trend lines are estimates from assessment models informed by different fishery age 720 
composition datasets. Full AC, AC1, AC2, AC3, and AC4 refer to the hydroacoustic 721 
survey frequency scenario giving rise to that component of the data (Table 3). Full 722 
composition, Cluster sample 2, and Cluster sample 1 indicate whether the full age 723 
composition data were used or age composition datasets using just two or one randomly 724 
selected clusters per year.  725 
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 727 

Figure 2. Spawning biomass estimates in 2015 for the main set of scenarios and selected 728 
replicate for cluster subsamples. Points denote medians of the posterior distribution and 729 
arrows denote 95% HPD intervals. Panels present the same results in a different way. 730 
The left panel examines effects of decreases in hydroacoustic survey frequency 731 
independent of fishery age composition datasets while the right panel examines the 732 
opposite. The vertical x-axis titles in the left panel depict hydroacoustic scenarios and 733 
the horizontal x-axis titles represent different fishery age composition scenarios. The 734 
opposite is true in the right panel. FAC, AC1, AC2, AC3, and AC4 all refer to 735 
hydroacoustic datasets and Full, CS2, and CS1 refer to different composition datasets 736 
(CS2 = 2 random clusters per year , CS1 = 1 random cluster per year). FAC refers to the 737 
full hydroacoustic dataset, and AC1 through AC4 to increasingly less frequent surveys 738 
(Table 3). 739 

 740 
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 741 

Figure 3. CVs of spawning biomass for the main set of scenarios and the selected 742 
replicate for cluster samples. Top row presents the mean CV of posterior distributions of 743 
spawning biomass over the full time series while the bottom row solely presents the CV 744 
of the posterior distribution for spawning biomass in 2015. Each column is as described 745 
in Figure 2. X axis labels as for Figure 2. 746 

 747 
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 748 

Figure 4. Shown are medians and 95% HPD intervals for spawning biomass in the year 749 
2015. Each panel depicts a different combination of scenarios that gave rise to datasets 750 
that models were fit to. The left panel presents estimates from the assessment models 751 
informed by the full hydroacoustic dataset and three fishery age composition scenarios 752 
(and selected replicate). The middle panel presents estimates from the assessment 753 
models informed by the full fishery age composition dataset and various hydroacoustic 754 
datasets. The right panel presents estimates from the assessment models informed by 755 
the full fishery age composition dataset and various alternate hydroacoustic datasets. 756 
The alternate hydroacoustic datasets solely reduce the frequency of the hydroacoustic 757 
survey, while they maintain the final data year of 2015 (see methods). FAC refers to the 758 
full hydroacoustic dataset, whereas AC1 through AC4 and HA2 through HA5 indicate 759 
progressively less frequent surveys (Table 3).  760 

 761 
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763 
Figure 5. Estimated natural mortality rate (M) and associated estimated uncertainty 764 
within the assessment models for males and females for the main set of scenarios (and 765 
selected replicate). X axis is as defined in Figure 2. Show in the top row are medians 766 
(points) and 95% HPD intervals (arrows) for M for each sex. Shown in the bottom row 767 
are the CVs of the posterior distribution of M for each sex.  768 
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