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Abstract. Estimating abundance and growth of animal populations are central tasks in ecology and nat-
ural resource management. Removal models for estimating abundance have a long history in applied ecol-
ogy, and recent developments provided hierarchical extensions that account for spatially replicated
sampling and heterogeneous capture probabilities. Measurement error is common to removal data col-
lected from many broad-scale monitoring programs, however, and a general framework for population
assessment using removal data in the presence of measurement error is lacking. We developed a hierarchi-
cal framework for estimating abundance and population trends from removal experiments that are repli-
cated in space and time that accommodates measurement error, as well as heterogeneity in capture
probability and animal density. We describe the model for variable-effort removal sampling and use it to
estimate region-specific abundance and population trends for wild turkeys (Meleagris gallopavo) in Michi-
gan, USA. We used a Bayesian approach for estimation and inference and fit models using daily hunter
harvest and effort estimates collected over 5 management regions for 14 annual hunting seasons. Our anal-
yses provide evidence for spatially heterogeneous capture probabilities among regions and turkey densi-
ties that were heterogeneous in both space and time, and show that populations increased slightly over the
study. Our framework provides a general approach for population assessment using removal data that are
collected over broad scales in resource management contexts (e.g., animal harvesting), facilitating formal
abundance estimation instead of reliance on unverified indices for tracking populations of managed spe-
cies. Thus, we provide a useful tool for monitoring programs to assess populations over broad scales, and
therefore inform decision makers about population status at spatial scales similar to those for which regu-
latory decisions are made.
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INTRODUCTION

Estimating abundance and population growth
are central tasks in ecology, conservation, and
natural resource management. Ecology has been
referred to as study of the distribution and

abundance of organisms (K�ery and Schaub
2012), and reliable information about population
size is central to understanding a broad array of
theoretical and applied concepts, including den-
sity dependence (Dennis 2002, Dennis et al. 2006,
Lebreton 2009), harvest theory (Ricker 1954,
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Schaefer 1954), extinction risks (Pimm et al.
1988), and biogeographic patterns and processes
(Brown 1984, Brown et al. 1996). Accurate abun-
dance estimates are also vital in the context of
conservation and natural resource management,
where they play a critical role in making and
evaluating the effectiveness of decisions (Wil-
liams et al. 2002, Nichols and Williams 2006).
Indeed, accurate information about population
size is generally treated as a prerequisite for deci-
sion-analytic procedures commonly advocated
for state-dependent decision making in conserva-
tion and resource management (Johnson et al.
1997, Kendall 2001, Martin et al. 2009). Yet esti-
mates of abundance, rather than just indices that
are assumed proportional to abundance, are
often challenging for management agencies to
generate at broad scales where decisions are
made because they are logistically difficult and
costly to obtain.

Removal models are a well-established frame-
work for estimating abundance of animal popu-
lations (Moran 1951, Zippin 1956, Borchers et al.
2002). Removal models are developed from sam-
pling designs (hereafter referred to as removal
experiments) under which individual animals
are captured and removed from a population
over successive occasions (hereafter referred to
as trials), where the population is assumed to be
closed to additions or other removals for the
duration of the experiment (over all trials). A
typical example records the number of animals
removed from a population over a series of days;
however, removal trials can be defined in other
discrete units (e.g., multi-day periods, single elec-
trofishing passes). Sampling intensity is often
assumed constant during each successive trial
(fixed-effort sampling; Moran 1951, Zippin 1956,
Dorazio et al. 2005), but models can be devel-
oped with variable sampling effort over trials
when data on that effort are available (DeLury
1947, Gould and Pollock 1997, St. Clair et al.
2013). Removal experiments thus measure
change in the absolute number of removals or
removal rates over time, and as the remaining
population is depleted, the expected number of
removals for each trial gets smaller. Moreover,
changes in both the observed and expected num-
ber of removals across trials provide the informa-
tion needed to estimate abundance at the
beginning of the experiment (DeLury 1947,

Moran 1951, Zippin 1956). Given the nature of
removal sampling, collection of data under such
designs is natural for harvested species. Removal
sampling is not limited to harvested animals,
however, as a removal itself can be broadly
defined. Consequently, removal designs are com-
monly employed to estimate local abundance in
applied ecological studies (e.g., electrofishing
surveys of stream fishes; Bohlin and Sundstrӧm
1977, Wyatt 2002).
Basic removal models have typically used a

multinomial or conditional binomial likelihood
to model the data generating process, and in
their original form assumed a constant capture
probability (Moran 1951, Zippin 1956, Borchers
et al. 2002). In reality, capture probabilities can be
heterogeneous among individual animals, over
trials within the same experiment, or among
experiments replicated in space and time (Lewis
and Farrar 1968, Bohlin and Sundstrӧm 1977,
Gould and Pollock 1997, Borchers et al. 2002,
Dorazio et al. 2005, M€antyniemi et al. 2005, St.
Clair et al. 2013). Hierarchical statistical models
have been used to accommodate many of these
heterogeneities, and to explicitly model the dis-
tribution of abundance and capture probabilities.
For example, M€antyniemi et al. (2005) developed
a model that accommodated heterogeneous cap-
ture probabilities among animals by assuming
the distribution of capture probabilities among
individuals followed a beta distribution. Others
explicitly modeled the distribution of capture
probabilities and abundance among sites, years,
or both for designs where entire experiments
were replicated (Dorazio et al. 2005, Royle and
Dorazio 2006, Rivot et al. 2008).
Despite recent advances, there often remain

practical limitations to the implementation of
removal models for estimating abundance at
broad spatial extents. With some exceptions (e.g.,
Rivot et al. 2008), there has been little considera-
tion of experiments that are replicated in time,
and data from individual years are often mod-
eled separately (St. Clair et al. 2013) despite the
possibility of information sharing among tempo-
ral replicates. Existing models also assume the
number of animals removed and sampling
efforts executed on each trial are perfectly
observed (Borchers et al. 2002). Perfect observa-
tion is not realistic for many broad-scale monitor-
ing programs collecting removal data,
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particularly for managed species where removals
occur through recreational or commercial harvest
and monitoring produces estimates of harvest
and effort from samples. Measurement error in
removal data results in overestimation of abun-
dance (Gould et al. 1997) and limits application
of removal models with many existing data sets.
Thus, a pragmatic framework for the analysis of
spatially and temporally replicated removal
experiments in the presence of measurement
error is needed. To address this need, we devel-
oped a hierarchical modeling framework for esti-
mating abundance and population growth when
removal data are not perfectly observed. In addi-
tion, we specifically sought to accommodate
attributes common to harvest monitoring pro-
grams implemented by resource management
agencies: variable-effort sampling, heteroge-
neous abundance and capture probabilities, and

sampling error in the measurement of both the
number of removals and removal effort. Here,
we describe a framework wherein models for
fixed-effort or perfectly observed data, as well as
models for removal experiments replicated in
either space or time, can be considered as special
cases. We demonstrate the methods to estimate
region-specific abundance and growth of wild
turkey (Meleagris gallopavo) populations in south-
ern Michigan, USA, and use simulation to evalu-
ate estimator performance under a variety of
scenarios.

METHODS

Model description
We developed models for replicated removal

experiments based on a model for variable-effort
sampling replicated over S sites and T years that

Fig. 1. Conceptual diagram of hierarchical removal model fit to wild turkey harvest data from Michigan, USA.
Boxes indicate observed quantities, whereas circles indicate parameters and latent variables or processes. Sub-
scripts denote animal group (i), removal trial (j), sites (s), and year (t), and p denotes a prior distribution for a ran-
dom quantity (priors for regression coefficients excluded for visual clarity). Symbol definitions are provided in
text, and further details of model structure are provided in Box 1.
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is extended to accommodate heterogeneity in
removal probability and animal density, and also
measurement error in removal data (Fig. 1;
Box 1). Several individual components of the
model we present were described elsewhere
(Borchers et al. 2002, Dorazio et al. 2005, Rivot
et al. 2008, St. Clair et al. 2013). However, our
goal was to synthesize these components and
extend the model to a flexible approach for anal-
ysis that accommodated imperfectly observed
data from spatially and temporally replicated
samples (under so-called metapopulation
designs; K�ery and Royle 2010).

We started with a conditional binomial like-
lihood model for removals (Borchers et al.
2002):

LðN; hÞ ¼
YT
t¼1

YS
s¼1

YJ
j¼1

Nj;s;t
yj;s;t

� �
pyj;s;tj;s;t ð1� pj;s;tÞNj;s;t�yj;s;t

(1)

where N is the vector of abundances at the start
of each trial (j), pj;s;t is the probability an individ-
ual animal present at the start of trial j in region s
and year t is removed during that trial, and h

represents a vector of parameters determining
the removal probabilities. Thus, Nj represents the
abundance of animals at the start of trial j and yj
is the number of animals removed on that trial,
where Nj ¼ Nj�1 � yj�1 for j > 1. Under vari-
able-effort sampling, we can model
pj;s;t ¼ 1� 1� uð Þej;s;t as a function of the magni-
tude of sampling effort (St. Clair et al. 2013),
where u is the per-unit-effort removal probabil-
ity and ej;s;t is a forcing variable representing the
sampling intensity. As such, 1� u represents the
probability of not removing an animal for one
unit of effort, and 1� uð Þej;s;t is the probability of
not removing an animal given all ej;s;t units of
effort. With this model for pj;s;t, h in equation 1
only has one element, the per-unit-effort removal
probability (u).
Eq. 1 is easily extended when heterogeneity in

removal probability or animal density exists
among animal groups (e.g., age or sex classes;
see example below):

LðN; hÞ ¼
YT
t¼1

YS
s¼1

YJ
j¼1

YI
i¼1

Ni;j;s;t

yi;j;s;t

� �
pyi;j;s;ti;j;s;t

ð1� pi;j;s;tÞNi;j;s;t�yi;j;s;t

(2)

for I animal groups, where pi;j;s;t ¼ 1� 1� uið Þej;s;t .
In this context the primary goal of modeling is to
estimate the initial abundances of each animal
group for each site (s) and year (t), Ni;1;s;t, and the
per-unit-effort removal probability for each ani-
mal group ui. Total abundance at the start of each
removal sequence is the sum of abundance across
all groups (Ns;t ¼

P
i
Ni;1;s;t). Lastly, un-modeled

heterogeneity in removal probability is widely
known to affect performance of closed-population
abundance estimators (Moran 1951, Bohlin
and Sundstrӧm 1977, Gould and Pollock 1997,
Borchers et al. 2002, M€antyniemi et al. 2005,
St. Clair et al. 2013). To address this, additional
structure in ui can be modeled explicitly using
the logistic function (e.g., for space, time, or trial-
level covariates), as is well established in capture-
recapture (Pollock et al. 1984, Huggins 1989, Alho
1990, Royle and Link 2002, Royle and Dorazio
2006).
In their basic form, Eqs. 1 and 2 assume no

specific structure to the number of animals in the
population at the start of removal sampling (i.e.,
Ni;1;s;t are unconstrained). Rather than estimating

Box 1. Summary of model components for hierarchical
removal model fit to wild turkey harvest data from
Michigan, USA. Subscripts refer to animal groups (i),
trials (j), sites (s), and years (t).

Model structure and distributions
Observation models
y�i;j;s;t �Poisson yi;j;s;t

� �
e�j;s;t �Poisson ej;s;t

� �
Removal and abundance process models
yi;j;s;t �Binomial Ni;j;s;t; pi;j;s;t

� �
pi;j;s;t ¼ 1� 1� ui;j;s;t

� �ej;s;t

Ni;1;s;t �Poisson di;s;tAs;t
� �

Capture probability and density models
logit ui;j;s;t

� �
¼ b0 þ b1Agei þ b2jþ bs þ gt

log di;s;t
� � ¼ a0 þ a1Agei þ a2tþ a3Agei � tþ as þ ct

Priors and hyper-priors
ej;s;t �Uniform 0; 8000ð Þ
gt �Normal 0;r2

g

� �
r2
g �Uniform 0; 0:4ð Þ

ct �Normal 0;r2
c

� �
r2
c �Uniform 0; 1ð Þ

b0 �Cauchy 10ð Þ
bk �Cauchy 2:5ð Þ
a0 �Normal 0; 1ð Þ
ak �Normal 0; 1ð Þ
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initial abundances for each removal experiment
as unconstrained, we modeled the distribution of
initial abundance as an inhomogeneous Poisson
process (Dorazio et al. 2005, Royle and Dorazio
2006, Rivot et al. 2008):

Ni;1;s;t �Poisson li;s;t
� �

(3)

li;s;t ¼ di;s;t � As;t (4)

where di;s;t is the density of animals from group i
at the start of sampling at site s, and As;t repre-
sents the area sampled for a given site and year
(Rivot et al. 2008, St. Clair et al. 2013). The hierar-
chical structure of Eqs. 3 and 4 provides a con-
straint on the values of Ni;1;s;t and also provides a
flexible framework for modeling spatial–tempo-
ral heterogeneity in animal density using log-lin-
ear regression (Royle and Dorazio 2008, St. Clair
et al. 2013).

We modeled a stochastic observation process
to accommodate imperfect observation of vari-
able-effort removal data. Eqs. 1–4 treat removals
and effort as known without error and are appli-
cable when perfect observations are feasible (e.g.,
stream electrofishing surveys, harvest with
mandatory reporting). Yet in many practical
applications, especially for managed populations
where removals are coming from recreational or
commercial harvest, observations of yi;j;s;t and
ej;s;t are estimated from samples and therefore
depart from their true values due to measure-
ment error. Thus, we augment the basic model
with an observation model that treats true values
of removal and effort on each trial (yi;j;s;t and ej;s;t)
as imperfectly observed latent variables whose
values determine the expectations of the
observed data. Under this model, the true value
of effort generates the true removal on each trial
through a latent first-order Markov process (Eq.
1 or 2), which in turn determines the expectation
of the observed removal for trial j. Specifically,
we use a Poisson observation model to represent
measurement error in the observed values of
removal (y�i;j;s;t) and effort (e�j;s;t):

y�i;j;s;t �Poisson yi;j;s;t
� �

(5)

e�j;s;t �Poisson ej;s;t
� �

: (6)
.Eqs. 5 and 6 can approximate many applications
where over- and underestimation of removal and
effort are both plausible, and the observation

models could also be adapted for specific appli-
cations if additional information on the measure-
ment process were available.
Lastly, we employ a Bayesian paradigm for all

model fitting and inference in order to facilitate a
straightforward and flexible framework for
application. The equations and distributional
assumptions about the data and parameters ulti-
mately determine the posterior distribution of
parameters of interest, upon which inferences
will be made (Box 1). Conceptually, the joint pos-
terior distribution, given the observed data, is
proportional to the joint likelihood of the data
and the latent states multiplied by the relevant
prior distributions:

f N;u; djy�; e�
� �

/ f y�; e�jy; e
� �

f yjN;u; e
� �

f Njdð Þp eð Þp u
� �

p dð Þ
(7)

where p eð Þ, p u
� �

, and p dð Þ represent the prior
distributions for true sampling efforts, per-unit-
effort capture probability parameters, and ani-
mal density parameters, respectively. More
specifically, Eqs. 5 and 6 specify probability dis-
tributions for the observed data given the latent
removal and sampling effort (f ðy�; e�jy; eÞ). Eqs. 3
and 4 give probability distributions for initial
abundance given density (f Nj; dð Þ), and Eqs. 1
and 2 describe how likely a sequence of
latent true removals are, conditioned on the
initial abundances, per-unit-effort capture proba-
bilities, and latent values of true sampling effort
(f ðyjN;u; eÞ). In practice, the joint distributions
and priors of Eq. 7 become functions of addi-
tional parameters when structure in u or d is
modeled using hierarchical regression (Box 1).

Example using wild turkey harvest data
We fit hierarchical removal models to a wild

turkey (hereafter turkey) dataset from southern
Michigan, USA (Appendix S1). Turkeys are a
popular game species in North America and are
managed to provide recreational hunting oppor-
tunities (Healy and Powell 2000, Harris 2010).
The regulatory framework in Michigan consists
of 2 discrete annual hunting seasons, with male-
only harvests during spring and either-sex har-
vests in the fall of each year (Kurzejeski and Van-
gilder 1992, Healy and Powell 2000). Male-only
spring harvest is considerably larger than fall
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either-sex harvest in Michigan. Estimates of daily
harvest and hunter effort across the spring hunting
season contain measurement error but enable
development of variable-effort removal models
(Appendix S1). We developed models using esti-
mates of male-only harvest and hunter effort from
recreational spring hunting, and consequently esti-
mated abundance and growth for the male seg-
ment of the population. Male-focused monitoring
is the current status quo of turkey management
(Kurzejeski and Vangilder 1992, Lint et al. 1995,
Healy and Powell 2000), as it remains challenging
to collect reliable data from females.

We fit removal models using data replicated
over 5 geographic sites for a period of 14 yr
(2002–2015; Appendix S1: Fig. S1). The 5 sites
(hereafter regions) are regions used to manage
spring harvest, where individual regions range
in size from 6739 to 16,148 km2 (Appendix S1:
Table S1). Hunting occurs each spring from mid-
April through the end of May, and hunting sea-
sons varied annually in length (range 39–45 d;
Appendix S1: Table S2) but were consistent
among regions each year. Each hunter is legally
allowed to harvest one male turkey each spring,
but hunter efforts varied among regions and also
by day within each hunting season
(Appendix S1: Fig. S2, Table S2). Peaks in effort
occurred at the beginning of the season and on
weekends thereafter but at a reduced magnitude
(Appendix S1: Fig. S2, Table S3). Estimates of
daily harvest and effort constitute a spatially and
temporally replicated but imperfectly observed
removal sample from each region and year,
where individual days and the number of hun-
ters per day represented removal trials and sam-
pling efforts (Appendix S1).

We fit multiple models to reflect hypothesized
heterogeneity in removal probability and turkey
density (Appendix S2: Table S1). The most com-
plicated capture probability model we consid-
ered contained age-group effects (juvenile and
adult male turkeys) and within-experiment
trends over removal trials (u changes linearly
over a hunting season), a categorical spatial effect
representing differences among regions (removal
trial sites), and an annual random intercept to
reflect yearly changes in removal probability:

logit ui;j;s;t

� �
¼ b0 þ b1Agei þ b2jþ bs þ gt (8)

where gt �Normal 0;r2
g

� �
and Agei is a binary

variable indicating juvenile or adult turkeys. In
addition, we considered models with reduced
versions of Eq. 8, without the annual effect (gt),
and without the site effect (both with and with-
out gt), resulting in 4 total capture probability
models. Both heterogeneity in removal probabil-
ity among individual animals and behavioral
responses to initial removal create a pattern of
declining removal probability over trials as more
easily captured animals are removed, resulting
in negatively biased abundance estimates if not
accounted for (Moran 1951, Bohlin and Sund-
strӧm 1977, Gould and Pollock 1997, Borchers
et al. 2002, M€antyniemi et al. 2005, St. Clair et al.
2013). Our use of the within-experiment time
trend effect (b2j) was intended to capture such a
pattern if it existed, as has been successfully
demonstrated elsewhere (Schnute 1983, Hayes
et al. 2007, K�ery and Royle 2010). We expected a
decline in removal probability over trials if indi-
vidual heterogeneity or behavioral responses to
removal were present. We also considered 4
hypothesized models of turkey density, where all
density models included effects for age-group
and linear time trends describing changes in den-
sity over the duration of the study, as well as an
interaction term that allowed for age-specific
trends in abundance over time. The most compli-
cated density model also included a categorical
spatial effect and annual random intercepts to
reflect hypothesized spatial–temporal hetero-
geneity in average turkey density:

log di;s;t
� �¼a0þa1Ageiþa2tþa3Agei�tþasþct

(9)

where ct �Normal 0;r2
c

� �
. We also considered

models with reduced versions of Eq. 9, without
the annual effect (ct), and without the site effect
(both with and without ct). We fit 16 total models
(4 removal � 4 density; Appendix S2: Table S1)
and ranked their relative support using the
deviance information criteria (DIC; Spiegelhalter
et al. 2002).
We used weakly informative Cauchy priors for

all logit-scale regression coefficients (Gelman
et al. 2008), normal priors for all log-scale coeffi-
cients, and uniform priors for all random effect
variance parameters (Gelman et al. 2014; Box 1).
Because per-unit effort capture probabilities are
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close to zero for the levels of effort observed in
this study, we used a Cauchy prior with
scale = 10 for the logit-scale intercept parameter,
which produces a u-shaped distribution on the
real probability scale that is appropriate when
mean probabilities are close to zero or one
(Appendix S2: Fig. S1; Gelman et al. 2008). Simi-
larly, we used Cauchy priors with scale = 2.5 for
additional logit-scale regression coefficients,
which produces a distribution on the real proba-
bility scale with more support for intermediate
values (Gelman et al. 2008). We used standard
normal priors for log-scale fixed effects coeffi-
cients because when exponentiated these produce
realistic priors for the density of male turkeys
(Appendix S2: Fig. S2), which rarely exceeds 5
birds per km2 in excellent habitats (Vangilder
1992). We used uniform priors for all logit-
(Uniform 0; 0:4ð Þ) and log-scaled (Uniform 0; 1ð Þ)
random-intercept variances to restrict their distri-
butions to plausible values, as variances
approaching the upper bounds of these distribu-
tions result in unrealistically large changes to
removal probabilities and densities, respectively
(Appendix S2). Lastly, because true daily efforts
are unobserved latent states when measurement
error is included, prior distributions are also
needed for daily efforts for all sites, trials, and
years (note that priors for latent removals are
specified indirectly through model structure). We
assumed a uniform prior for daily hunter effort
that was sufficiently broad so-as to encompass all
plausible values (Uniform 0; 8000ð Þ), given the
daily efforts that were observed (e.g.,
Appendix S1: Fig. S2; Table S3).

We generated Markov Chain Monte Carlo
(MCMC) samples to make inferences from poste-
rior distributions of turkey abundance and popu-
lation trends. We generated MCMC samples
using JAGS (version 4.0.1; Plummer 2003) called
from within R (version 3.2.0; R Core Team 2015)
using the R2jags package (Su and Yajima 2015).
For each model, we retained 200,000 MCMC
samples from each of 3 chains (600,000 total pos-
terior samples) after an initial burn-in period of 2
million samples and assessed convergence using
multivariate Gelman-Rubin statistics (Gelman
and Rubin 1992) and trace plots of structural
parameters (see Data S1 for an example JAGS
model statement). In addition to monitoring
structural model parameters and initial

abundances for each region and year, we also
generated MCMC samples from posterior distri-
butions of finite rates of population change (i.e.,
kt ¼ Nt=Nt�1) and annual harvest rates
(ht ¼ Harvest=Nt).
Lastly, to understand the implications of

model structure for inferences, we conducted a
sensitivity analysis using alternative parameteri-
zations of the top model. Specifically, we sought
to determine whether accommodating measure-
ment error in the form of an explicit observation
model was necessary for inferences from these
data, and also the effect of assuming that regio-
nal (site-level) abundances shared no structured
stochastic dependencies (i.e., abundances not
constrained by a hierarchical structure). Thus, we
re-fit the top model without measurement error,
assuming daily harvest and effort were perfectly
observed. We also fit models where there was no
explicit structure used to constrain the spatial
distribution of turkey abundance, but instead
only vague a priori information about popula-
tion size (but still retaining the removal probabil-
ity model identical to the original model). The
unstructured abundance model assumed discrete
uniform priors for initial abundance at the start
of each removal experiment and thus placed less
constraint on estimates of local abundance
(Appendix S2: Table S2). The model with
unstructured abundance was fit both including
and excluding measurement error, and sensitiv-
ity of abundance and population growth esti-
mates was assessed among these alternative
parameterizations.

Simulating model performance
We simulated data generation, model fitting,

and parameter estimation to determine the abil-
ity of our hierarchical models to accurately esti-
mate population sizes and trends. We simulated
harvest data using observed estimates of region-
specific hunter efforts as true effort, the top
model from analyses described above as the data
generating model, and posterior mean estimates
of parameters from the top model as true values
for generating harvest data. We simulated imper-
fectly observed removal data for each of the 5
management regions under 2 scenarios of tempo-
ral replication: (1) one year of sampling, and
therefore no temporal replication, and (2) 10 con-
secutive years of sampling. Performance of
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removal models is known to be sensitive to frac-
tion of the population removed, where larger
removals result in improved accuracy (Zippin
1956, Gould and Pollock 1997, Dorazio et al.
2005, St. Clair et al. 2013). Thus, we also simu-
lated 6 scenarios where cumulative removal rates
were altered through changes to the number of
removal trials and daily hunter effort. We consid-
ered scenarios where the number of removal tri-
als (i.e., days of hunting) was approximately
equal to (40 d), one half of (20 d), or one quarter
of (10 d) the length of turkey hunting seasons in
southern Michigan. We replicated each of these
scenarios over 2 scenarios of hunter effort: (1)
high effort, where true region-specific daily hun-
ter efforts were those observed in Michigan, or
(2) low effort, where true region-specific daily
efforts were half of those observed.

To understand performance of simplified and
less constrained versions of the model relative to
the model structure described above, we repli-
cated model fitting and parameter estimation for
all 12 simulation scenarios described above using
4 different model parameterizations: (1) using
the true data generating model with a hierarchi-
cal Poisson abundance structure and measure-
ment error in harvest and effort data (i.e., model
correctly specified), (2) the correct density model
with a hierarchical Poisson abundance structure
but excluding measurement error (i.e., making
an assumption that data were perfectly observed
but the model was otherwise correctly specified),
(3) the unstructured abundance model including
measurement error, and (4) the unstructured
abundance model excluding measurement error
(Appendix S2: Table S2). Thus, we assessed per-
formance of removal models under 48 combina-
tions of the temporal replication of experiments,
number of removal trials, magnitude of hunter
efforts on each trial, and estimation model struc-
ture (Appendix S3: Table S1). For each fitted
model, we assessed convergence and relative
error ( estimate� truthð Þ=truth) of region-specific
and total estimates of abundance and the finite
rate of population growth over the entire study
(only for scenarios with temporal replication;
k ¼ N10=N1). We used posterior means as point
estimates of abundance and population growth,
used the average relative error for each scenario
to indicate bias, and also determined the fraction
of 95% credible intervals that contained the true

values of abundance and finite rates of change
for each scenario. We replicated data generation
and parameter estimation 100 times for each sce-
nario, and additional simulation details are pro-
vided in Appendix S3.

RESULTS

The top model estimated that turkey abun-
dance in southern Michigan was stable-to-in-
creasing over the study, despite short-term
annual fluctuations (Fig. 2). Total abundance
peaked at 52,911 males in 2008, which was fol-
lowed by a short-term decline and then growth
to 49,410 males in 2015 (Fig. 2). The best model
included a time effect that shifted average turkey
density annually, spatial heterogeneity in density
among regions, and age-specific density trends
over the study (Appendix S2: Table S1, Figs. S4,
S6). This model also estimated a larger removal
probability for adult males than juveniles and
spatial heterogeneity in removal among manage-
ment regions, but little change in removal proba-
bilities across trials within a hunting season
(Appendix S2: Figs. S5, S7–S8). Estimates of pop-
ulation growth from the top model were

Fig. 2. Region-specific and total population trajecto-
ries for male turkey populations (2002–2015) in south-
ern Michigan, USA. Posterior mean estimates are
provided by solid lines, whereas dashed lines indicate
percentile-based 95% credible intervals (equal tail
probabilities).
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synchronous among management regions but
varied annually despite the spatial heterogeneity
in turkey density (Fig. 3). Estimated annual pop-
ulation growth for the entire study area ranged
from a low of 0.81 in 2010–2011 to a high of 1.16
in 2011–2012 (Fig. 3). Moreover, estimated
annual harvest rates ranged from a low of 0.27
for juvenile males in region ZA to a high of 0.79
for adult males in region ZB (Appendix S2:
Fig. S9). Estimated harvest rates were generally
larger for adult males than juveniles, but the
magnitude and temporal trends of harvest rates

were region specific and affected by patterns of
hunter effort (Appendix S1: Table S2).
Sensitivity analyses demonstrated that abun-

dance estimates were generally robust when a
model was used to describe spatial–temporal
structure in turkey density, whereas ignoring
measurement error changed the scale of abun-
dance estimates when an unconstrained abun-
dance model was used (Fig. 4). Estimates of
abundance and population growth were similar
when the hierarchical density model was used to
constrain abundance, irrespective of the inclu-
sion of measurement error in the fitted model
(Fig. 4). However, differences in estimates were
more pronounced when abundance lacked an
explicit structure (i.e., when only constrained
through vague uniform priors), and the model
lacking both measurement error and an abun-
dance model estimated smaller turkey abun-
dance relative to the other three
parameterizations (Fig. 4). Despite differences in
the absolute scale of abundance estimates, both
models with unconstrained abundance shared
similar estimates of population growth over
time, irrespective of inclusion of measurement
error (Fig. 4b), and these population growth esti-
mates were more variable than the models that
included a Poisson abundance model. Region-
specific estimates of abundance and population
growth usually showed similar sensitivity to
model structure, but the magnitude of differ-
ences in estimates among models varied by
region (Appendix S2: Figs. S10–S11).
Simulation results demonstrated that when

specified correctly our model produced estimates
of abundance and population growth that were
approximately unbiased at the sample sizes and
levels of hunter effort observed in this study
(Table 1). Simulations assuming 10 yrs of repli-
cated removal experiments also suggested that
the model with an abundance hierarchy but
ignoring measurement error produced similar
abundance estimates as the true data generating
model that included measurement error, with a
larger proportion of model fits resulting in con-
vergence (Table 2). However, the model includ-
ing measurement error had better coverage of
credible intervals, which was 95% for all man-
agement regions (Table 1). The corresponding
models without measurement error resulted in
credible interval coverage less than 95%

Fig. 3. Annual estimates of the finite rate of change
(k) for male turkey populations in individual regions
and the entire southern Michigan, USA, study area for
2002–2015. (a) Regionally, (b) all regions combined.
Dots indicate posterior mean point estimates, whereas
whiskers represent percentile-based 95% credible
intervals (equal tail probabilities).
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(range = 0.84–0.89). Reducing hunter effort by
half resulted in worse performance for models
including an abundance hierarchy, with fewer
model fits converging and larger magnitude of
bias (Tables 1–2). The model including measure-
ment error still had reasonable credible interval
coverage under the reduced effort scenario (0.90–
0.95 for models that converged); however, the
model ignoring measurement error had
degraded coverage (0.63–0.74). Despite the bias
of estimated abundance, estimates of population
trends from the base hierarchical abundance
models under low effort scenarios were approxi-
mately unbiased. Moreover, reducing the num-
ber of removal trials degraded performance and
reliability of the models with an abundance
structure, with decreased rates of convergence
and increased bias of abundance estimates
(Appendix S3: Tables S2–S3).

Simulations also demonstrated that when the
unstructured abundance model was assumed in
the presence of measurement error, abundance
estimates were biased for all scenarios (Table 1).
Convergence was achieved for all models fit
assuming an unstructured abundance model;
however, these models severely overestimated
abundance, and abundance estimates more than
twice truth were common. Unstructured models
that included measurement error resulted in
more severe positive bias for abundance

estimates than unstructured models that simply
ignored measurement error, and these biases
were typically made worse by reducing hunter
effort or the number of removal trials (Table 1,
Appendix S3: Tables S2–S3). Despite their inabil-
ity to accurately estimate absolute abundance,
unstructured models (both including and exclud-
ing measurement error) were able to estimate
population trends over time reasonably well
when hunter effort was high (i.e., at levels
observed in this study). Nonetheless, negative
bias emerged for population growth estimates
with unstructured models when hunter effort or
the number of removal trials was reduced
(Appendix S3: Table S3). Lastly, performance was
poor for all model structures fit to data without
temporal replication (i.e., only one year of data),
where failed convergence, biased abundance esti-
mates, or both were observed under all scenarios
(Appendix S3: Table S4).

DISCUSSION

We developed a hierarchical framework for
estimating animal abundance and population
growth from replicated but imperfectly observed
removal experiments. This framework synthe-
sizes existing removal methods and extends the
models to accommodate measurement error in
sampling intensity and the number of removals

Fig. 4. Differences in estimates of abundance (N) and of finite rate of population change (k) for turkeys in
southern Michigan arising from corresponding models accounting for (ME) and ignoring measurement
error (No-ME) in daily hunter effort and harvest data, and using different hierarchical structures for the distribu-
tion of abundance (Poisson: Base; no hierarchy: Unstructured). This figure demonstrates sensitivity of estimates
to changes in model structure.
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per trial via an explicit observation process. Esti-
mates for our example with wild turkeys in
Michigan, USA, suggested stable-to-increasing
populations despite spatial–temporal fluctua-
tions in turkey density. Sensitivity and simula-
tion analyses demonstrated these estimates were
robust and approximately unbiased at the levels
of hunter effort observed. Simulations also
demonstrated that accuracy of abundance esti-
mates was sensitive to inclusion of a model to
explicitly account for heterogeneity in density
and abundance, implying weak ability to

determine the absolute scale of abundance in the
presence of measurement error if heterogeneous
density was not modeled directly but instead
abundances were unconstrained (e.g., the com-
mon approach where removal data from individ-
ual years are analyzed separately; St. Clair et al.
2013). Broad-scale estimates of population
growth from our model were also robust and rel-
atively insensitive to model parameterization.
Moreover, the framework we describe is flexible
and additional data or prior information could
be used by tailoring the models to attributes of

Table 1. Results of simulation study used to assess performance of posterior mean estimates of abundance (N̂)
and finite rate of change (k̂ ¼ N̂t¼10=N̂t¼1) for removal studies replicated over a ten-year period.

Metric and simulation scenario† Convergence

Region

ZA ZB ZC ZE ZF Total

N̂
High effort
Measurement error

Poisson 0.79 0.03 0.05 0.04 0.04 0.04 0.04
Unstructured 1.00 2.03 4.89 4.59 2.03 2.08 2.73

No measurement error
Poisson 0.89 0.02 0.03 0.02 0.02 0.03 0.02
Unstructured 1.00 1.85 3.97 3.77 1.84 1.89 2.36

Low effort
Measurement error

Poisson 0.38 �0.09 �0.08 �0.08 �0.08 �0.08 �0.08
Unstructured 1.00 2.25 5.21 5.03 2.40 2.18 3.01

No measurement error
Poisson 0.68 �0.12 �0.10 �0.11 �0.10 �0.11 �0.11
Unstructured 1.00 2.16 5.10 4.97 2.33 2.09 2.93

k̂
High effort
Measurement error

Poisson 0.79 �0.01 0.01 �0.02 0.00 0.02 0.00
Unstructured 1.00 0.02 0.01 �0.02 �0.01 0.01 0.00

No measurement error
Poisson 0.89 �0.01 0.01 �0.01 0.00 0.01 0.00
Unstructured 1.00 0.01 0.00 �0.03 �0.02 �0.01 �0.01

Low effort
Measurement error

Poisson 0.38 �0.03 0.00 �0.04 �0.01 0.01 �0.01
Unstructured 1.00 �0.02 �0.03 �0.12 0.00 �0.06 �0.05

No measurement error
Poisson 0.68 �0.02 0.00 �0.04 �0.01 0.01 �0.01
Unstructured 1.00 �0.02 �0.03 �0.12 0.00 �0.06 �0.05

Notes: The fraction of simulated model fits that resulted in convergence (Convergence) as well as average relative error of
abundance estimates from year 10 are presented by turkey management region (Region), and for all regions combined (Total).
Results are presented for simulation scenarios defined by the magnitude of hunter effort (High, Low), the hierarchical structure
of the fitted abundance model (Poisson, Unstructured), and the presence of measurement error in fitted model (Measurement
error, No measurement error), for the simulation scenario where the number of trials in each removal experiment was equal to
40 d of hunting.

† Mathematical details of each model structure and simulation scenario are described in Appendix S2: Tables S1–S2, and
Appendix S3.
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specific study systems and monitoring pro-
grams.

The hierarchical model we describe provided
estimates that were robust and approximately
unbiased in the presence of measurement error
under sample sizes and removal rates observed
in our study. The model used an inhomogeneous
Poisson process to explicitly model changes in
density and induce stochastic dependence on the
distribution of abundances, and provided esti-
mates of abundance and population growth that
were approximately unbiased. Surprisingly, this

model also produced abundance estimates that
were robust to measurement error in the removal
data, even when it was ignored by excluding the
observation model. The Poisson distribution has
been used by numerous authors to provide struc-
ture and constraint to local abundance estimates
arising from studies under a metapopulation
design (Dorazio et al. 2005, Royle and Dorazio
2006, 2008, Rivot et al. 2008, K�ery and Royle
2010, St. Clair et al. 2013). Our results imply such
models can be used to constrain abundance esti-
mates to realistic values and ameliorate the bias

Table 2. Results of simulation study used to assess performance of posterior mean estimates of abundance (N̂)
and finite rate of change (k̂ ¼ N̂t¼10=N̂t¼1) for removal studies replicated over a 10-yr period.

Metric and simulation scenario†

Region

ZA ZB ZC ZE ZF Total

N̂
High effort
Measurement error

Poisson 0.95 0.95 0.95 0.95 0.95 0.95
Unstructured 0.00 0.00 0.00 0.00 0.00 0.00

No measurement error
Poisson 0.88 0.84 0.89 0.87 0.87 0.89
Unstructured 0.00 0.00 0.00 0.00 0.00 0.00

Low effort
Measurement error

Poisson 0.95 0.95 0.95 0.95 0.95 0.90
Unstructured 0.00 0.00 0.00 0.00 0.00 0.00

No measurement error
Poisson 0.63 0.74 0.66 0.69 0.68 0.66
Unstructured 0.00 0.00 0.00 0.00 0.00 0.00

k̂
High effort
Measurement error

Poisson 0.94 0.99 0.97 1.00 0.91 1.00
Unstructured 0.97 1.00 0.99 1.00 1.00 0.99

No measurement error
Poisson 0.80 0.93 0.94 0.91 0.78 0.85
Unstructured 0.92 0.95 0.87 0.83 0.97 0.88

Low effort
Measurement error

Poisson 0.89 1.00 0.74 1.00 1.00 0.97
Unstructured 0.98 0.96 0.55 1.00 0.81 0.59

No measurement error
Poisson 0.76 0.97 0.34 0.96 0.97 0.78
Unstructured 0.86 0.87 0.29 0.97 0.53 0.26

Notes: The fraction of simulated model fits that resulted in 95% credible intervals that contained the true abundance or finite
rate if change (for model fits that converged) are presented by turkey management region (Region), and for all regions com-
bined (Total). Results are presented for simulation scenarios defined by the magnitude of hunter effort (High, Low), the hierar-
chical structure of the fitted abundance model (Poisson, Unstructured), and the presence of measurement error in fitted model
(Measurement error, No measurement error), for the simulation scenario where the number of trials in each removal experi-
ment was equal to 40 d of hunting.

† Mathematical details of each model structure and simulation scenario are described in Appendix S2: Tables S1–S2, and
Appendix S3.
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that typically results from measurement error in
removal data. This appears to be a novel finding
with respect to removal models, as we are not
aware of other studies evaluating the implica-
tions of measurement error when a hierarchical
model is used to represent deterministic (i.e.,
covariate effects) and stochastic structure in
regional abundance for spatially replicated
removal experiments. However, excluding the
observation model did result in overestimation
of precision in the presence of measurement
error. Thus, there remain tangible benefits of
using the more complicated model that includes
an explicit observation process, as it resulted in a
more reliable assessment of uncertainty.

Absent a model inducing structure on the dis-
tribution of density and abundance, the implica-
tions of measurement error for estimating
abundance via removal methods were substan-
tial. Eliminating the model for abundance
resulted in greater sensitivity of estimates to
observation model structure (i.e., including and
excluding an observation process), and also
greater variability of estimates over time for tur-
key populations in Michigan (i.e., no shrinkage;
Royle and Link 2002). The effect of measurement
error on estimator performance when abundance
was effectively unconstrained, except by a vague
prior, was to inflate abundance estimates sub-
stantially. Similarly, Gould et al. (1997) demon-
strated positive bias in abundance estimates
when removal data from single experiments
were subject to measurement error, and found
this directional bias was consistent over an
order-of-magnitude change in the true abun-
dance. Collectively, these results imply that esti-
mating the absolute scale of abundance via
removal models is more difficult when removals
and effort are not perfectly observed, that inap-
propriate scaling caused by measurement error
results in large positive bias in abundance esti-
mates if ignored, and that without the structure
induced by appropriately modeling spatial–tem-
poral changes in density, the estimators are sus-
pect.

Our analyses demonstrate that estimation
problems induced by measurement error can be
ameliorated when information is shared among
replicated experiments and the systematic
changes to animal density are explicitly modeled.
Estimation challenges for closed-population

abundance estimators with latent states are well
described in the literature (e.g., mixture models
in capture–recapture; Coull and Agresti 1999,
Dorazio and Royle 2003). Estimation challenges
are commonly used to justify modeling abun-
dance hierarchically under metapopulation
designs as we did in this study (Royle and Dora-
zio 2006, 2008, Royle et al. 2007, K�ery and Royle
2010), which acts along with prior distributions
to regulate parameter estimates derived from
posterior distributions under a Bayesian para-
digm (Hooten and Hobbs 2015). This effectively
allows researchers to mathematically constrain
abundance estimates to biologically plausible
ranges. This is done via use of hierarchical struc-
tures and prior distributions on animal abun-
dance and density, respectively, as we did in this
study to prevent unrealistically large densities of
turkeys. This approach is defensible for applica-
tion of complex hierarchical models in ecology,
as one is using what is already known to develop
constraints on parameters in order that they
remain biologically feasible (Hooten and Hobbs
2015). Moreover, comparison of posterior and
prior distributions from our example analyses
(Appendix S2) clearly shows the data were suffi-
cient for estimating abundance under the model
that included both an abundance hierarchy and
an explicit observation process. Thus, while the
hierarchical model acted to constrain abundance
to plausible values, the data were also informa-
tive about spatial–temporal changes in turkey
abundance within the constraints of the model.
Despite the sensitivity of abundance estimator

performance to inclusion of an explicit den-
sity model, estimates of population growth were
more robust to model structure. Our simulations
demonstrated that all of the model parameteriza-
tions considered were able to reasonably esti-
mate decadal-scale population trends in the
presence of measurement error at the observed
sample sizes and removal rates. Even models
with unstructured regional abundances that
overestimated the scale of abundance for a given
year could reliably depict the finite rate of
change over a 10-yr period (i.e., positive bias in
abundance was consistent over time). That is,
simulations showed that the models were cap-
able of reliably estimating long-term lambda
even when estimates of absolute abundance were
biased. Thus, assessing long-term population
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trends may be easier than accurately scaling
abundance when removal data are imperfectly
observed. Few studies have considered models
for temporally replicated removal experiments
(but see Rivot et al. 2008), and their usefulness
for assessing population trends for managed spe-
cies appears to be underappreciated. Although
trends provide less information to decision mak-
ers than absolute abundance (Nichols and Wil-
liams 2006), we believe the reliable trend
estimates produced by our model are more infor-
mative and useful for decision making than tra-
ditional indices (e.g., catch-per-unit effort) used
to monitor species like the wild turkey, as the
models can explicitly account for changes to both
animal density and per-unit-effort removal prob-
ability. Moreover, estimates of population trends
are often used by practitioners to inform natural
resource management decisions (e.g., when
adjusting harvest regulations), as estimates of
absolute abundance can lack context to stake-
holders and decision makers without compara-
ble historical information on population size.

We demonstrated reasonable performance for
hierarchical removal models that accommodate
measurement error under conditions similar to
those observed for our example, but performance
was sensitive to the fraction of the population
removed and the availability of replicated data.
Reducing the fraction of the population
removed, manifested through reduction to either
the magnitude of sampling effort or the total
number of removal trials, degraded performance
considerably. Under these conditions, the models
often failed to converge and bias of abundance
estimates increased. These issues are widely rec-
ognized in the literature on capture–recapture
and removal models, where performance is
tightly linked to the overall fraction of the popu-
lation sampled (Zippin 1956, Gould and Pollock
1997, Coull and Agresti 1999, Dorazio and Royle
2003, Dorazio et al. 2005, M€antyniemi et al. 2005,
St. Clair et al. 2013). Our simulations indicate
that problems associated with removing only a
small fraction of the population will likely mani-
fest themselves through failed model conver-
gence. In this light and given the wide variety of
contexts for which removal models may be
applied, we suggest it wise to use simulation to
assess estimator performance for specific applica-
tions when removal data are subject to

measurement error. In addition, larger samples
of simulated parameter estimates would benefit
future studies. We chose to simulate a large num-
ber of scenarios (48), which came at the expense
of large numbers of iterations of data generation
and model fitting per scenario (100) due to com-
putational limitations and demands of model fit-
ting. While we believe this was adequate for
assessment of central tendency and bias of esti-
mators, we acknowledge that more simulation
replicates would be useful to provide improved
assessment of precision and coverage of credible
intervals.
While simulations indicated reasonable perfor-

mance for removal experiments replicated in
space and time similar to our example dataset,
our models were data hungry and did not per-
form reliably in the face of measurement error
when spatially replicated removal experiments
were not also replicated in time. This suggests
substantial replication is likely a prerequisite for
applying these models, which could limit
their application. In many applied settings, spa-
tial replicates are fixed and represent the entire
area of interest (e.g., a set of management
regions). Additional replication of such experi-
ments can only come in time, and our simula-
tions suggest this replication is necessary.
However, it is not entirely clear what amount of
temporal replication will be necessary for reliable
application of the model under different levels of
spatial replication. It seems likely that replicated
observations of the removal processes and infor-
mation sharing among experiments is what is
needed, and thus the necessary amount of tem-
poral replication may depend on the number of
spatial replicates, and vice versa. In other con-
texts, the number of spatial replicates could be
much larger and require less temporal replication
for reliable inferences. Thus, while the reliable
performance of models required considerable
replication of removal data, we expect the neces-
sary amount of replication to depend on the con-
text of the study. This further supports our
suggestion that simulation-based assessment of
estimator performance for specific applications is
wise when removal data are subject to measure-
ment error.
Although models for removal data affected by

measurement error have some limitations, the
hierarchical framework described provides a
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high degree of flexibility that can enable further
tailoring of models to specific species and sam-
pling protocols. In our example, we focused on
relatively simple model structures to describe spa-
tial–temporal heterogeneity in removal and ani-
mal density (fixed effects and iid normal random
intercepts), yet the framework is flexible enough
to accommodate a variety of model structures. For
example, this could include logit- or log-scale mul-
tivariate normal effects that induce a correlation
structure on realized values of density and
removal probability (Royle and Link 2002, Royle
and Dorazio 2006, 2008), or conditional auto-re-
gressive models to induce spatial correlation
among regions (Lichstein et al. 2002, Webster et al.
2008). In addition, alternative observation models
could be tailored to the characteristics of specific
monitoring programs. For instance, one might be
able to use sampling theory (Cochran 1977) to
derive observation-error variances for estimated
removal data under specific survey designs,
instead of assuming the variance-mean relation-
ship of a Poisson distribution. Lastly, given the
variety of contexts for which removal models are
applied, extensions for sampling specific taxo-
nomic groups may also be possible, where exam-
ples include the analysis of removal data from
avian point counts and stream electrofishing sur-
veys with measurement error due to species
misidentification. Consequently, the framework
described here provides a flexible starting point
for fine-tuning population assessment for a variety
of species using imperfectly observed data arising
from removal sampling protocols.

Lastly, our analyses indicated male turkey
populations in Michigan were stable-to-increas-
ing, with heterogeneous density among manage-
ment regions that also varied annually, and
heterogeneous per-unit-effort removal probabili-
ties by animal group and among regions. We
estimated fluctuations in abundance consistent
with known dynamics of turkey populations,
where previous authors suggested population
fluctuations of up to 40% annually are possible
(Kurzejeski and Vangilder 1992, Healy and Pow-
ell 2000). These large annual fluctuations were
synchronous across southern Michigan despite a
smaller magnitude of spatial heterogeneity in
density, which is again consistent with earlier
work suggesting broad-scale synchrony in tur-
key abundance is common (Fleming and Porter

2007). Higher removal probabilities for adult
males than for juvenile males were also antici-
pated, as multiple studies reported that adult
males are more vulnerable to harvest than juve-
niles (Vangilder 1992, Healy and Powell 2000,
Chamberlain et al., 2012). Previous research also
suggested harvest rates for males might vary
among management regions (Diefenbach et al.
2012), which would be expected even in the
absence of spatially heterogeneous capture prob-
abilities given variation of hunter effort in space
(Clawsen et al. 2015, Stevens et al. 2020).
We suspected a priori that removal probability

would decline over the hunting season due to
capture heterogeneity among individual animals,
behavioral responses to harvest, or some combi-
nation of these and other factors, yet we found
little evidence of this pattern. It is possible that
other parameterizations could better portray sys-
tematic shifts to capture heterogeneity over a
hunting season. For example, a categorical effect
over trials could capture behavioral shifts of ani-
mals during the hunting season (i.e., early season
vs late season), or linear trends over the season
may be modeled as a function of cumulative
hunter effort (and therefore cumulative exploita-
tion) up to a given trial, instead of declining at a
constant rate over trials. Nonetheless, our esti-
mates appear robust and indicate turkey popula-
tions in Michigan are stable. This directly
contradicts, at least for our study region, a wide-
spread belief that turkey populations in the east-
ern USA are in decline (Kobilinsky 2018). Such
beliefs are often based on monitoring turkey
populations using raw harvest or catch-per-unit
effort indices that do not account for spatial–tem-
poral changes in both density and removal prob-
ability. Thus, we provide assessment tools that
enable a more refined understanding of popula-
tion trends for harvested species like wild tur-
keys, which in this case facilitated a shifting
perception of the status of populations across the
study region. In the context of removal via com-
mercial or recreational harvest, our models also
provide the ability to estimate abundance and
exploitation rates arising from a given set of
management regulations, both of which are use-
ful for simulation-based assessment of sustain-
able harvest strategies (Quinn and Collie 2005,
Deroba and Bence 2008, Punt et al. 2016). Our
models therefore provide value beyond the
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assessment of status and should further enable
rigorous assessment of management decisions
for target species.
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