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ABSTRACT  34 

1. Despite the wide application of meta-analysis in ecology, some of the traditional 35 

methods used for meta-analysis may not perform well given the type of data 36 

characteristic of ecological meta-analyses. 37 

2. We reviewed published meta-analyses on the ecological impacts of global climate 38 

change, evaluating the number of replicates used in the primary studies (𝑛𝑖) and the 39 

number of studies or records (k) that were aggregated to calculate a mean effect size. 40 

We used the results of the review in a simulation experiment to assess the 41 

performance of conventional frequentist and Bayesian meta-analysis methods for 42 

estimating a mean effect size and its uncertainty interval. 43 

3. Our literature review showed that 𝑛𝑖 and k were highly variable, distributions were 44 

right-skewed, and were generally small (median 𝑛𝑖 =5, median k=44). Our 45 

simulations show that the choice of method for calculating uncertainty intervals was 46 

critical for obtaining appropriate coverage (close to the nominal value of 0.95). When 47 

k was low (<40), 95% coverage was achieved by a confidence interval based on the 48 

t-distribution that uses an adjusted standard error (the Hartung-Knapp-Sidik-49 

Jonkman, HKSJ), or by a Bayesian credible interval, whereas bootstrap or z-50 

distribution confidence intervals had lower coverage. Despite the importance of the 51 

method to calculate the uncertainty interval, 39% of the meta-analyses reviewed did 52 

not report the method used, and of the 61% that did, 94% used a potentially 53 

problematic method, which may be a consequence of software defaults. 54 

4.  In general, for a simple random-effects meta-analysis, the performance of the best 55 

frequentist and Bayesian methods were similar for the same combinations of factors 56 

(k and mean replication), though the Bayesian approach had higher than nominal 57 
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(>95%) coverage for the mean effect when k was very low (k<15). Our literature 58 

review suggests that many meta-analyses that used z-distribution or bootstrapping 59 

confidence intervals may have over-estimated the statistical significance of their 60 

results when the number of studies was low; more appropriate methods need to be 61 

adopted in ecological meta-analyses.  62 

 63 

RESUMEN 64 

1. A pesar del uso generalizado del meta-análisis en el área de Ecología, algunos de los 65 

métodos de análisis tradicionalmente utilizados pueden dar resultados no ideales dado 66 

el tipo de datos que los caracteriza.  67 

2. En este trabajo se realizó una revisión de los meta-análisis publicados sobre los 68 

impactos ecológicos del cambio climático global, evaluando el número de réplicas 69 

utilizadas en las publicaciones originales (𝑛𝑖) y el número de estudios o registros (k) 70 

que fueron agrupados para calcular un tamaño de efecto promedio. Se utilizaron los 71 

resultados de la revisión en un experimento de simulación para evaluar el desempeño 72 

de métodos frecuentistas convencionales y métodos Bayesianos para estimar un 73 

tamaño de efecto promedio y su intervalo de incertidumbre. 74 

3. La revisión de la literatura demostró que 𝑛𝑖 y k fueron muy variables, con 75 

distribuciones sesgadas, y con valores en general bajos (mediana 𝑛𝑖 =5, mediana 76 

k=44). Nuestras simulaciones muestran que la elección del método para calcular un 77 

intervalo de incertidumbre fue crítica para obtener una cobertura apropiada (alrededor 78 

del valor nominal de 0.95). Cuando k fue bajo (<40), obtuvimos una cobertura de 79 

95% utilizando un intervalo de confianza basado en la distribución t de student que 80 

usa un ajuste por el error estándar (llamada Hartung-Knapp-Sidik-Jonkman, HKSJ), 81 
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o utilizando un intervalo de credibilidad Bayesiano, mientras que los intervalos de 82 

remuestreo o con una distribución Normal tuvieron cobertura baja. A pesar de la 83 

importancia del método utilizado para calcular el intervalo de incertidumbre, 39% de 84 

los meta-análisis revisados no reportaron el método utilizado y, de los 61% que si lo 85 

reportaron, 94% usaron uno de los métodos potencialmente problemáticos, lo que 86 

puede ser una consecuencia de la configuración por defecto de los programas 87 

informáticos utilizados para meta-análisis.  88 

4.  En general, para un meta-análisis simple con efectos aleatorios, el desempeño del 89 

mejor método frecuentista y el método Bayesiano fueron similares para las mismas 90 

combinaciones de factores  (k y número de réplicas promedio), aunque el método 91 

Bayesiano tuvo cobertura mayor de la nominal (>95%) para el efecto promedio 92 

cuando k fue muy bajo (k<15). Nuestra revisión sugiere que muchos de los meta-93 

análisis que utilizaron una distribución Normal o intervalos de remuestreo pueden 94 

haber sobreestimado la significancia estadística de sus resultados cuando el número 95 

de estudios fue bajo. Otros métodos más apropiados deberían ser usados para meta-96 

análisis en Ecología.  97 
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INTRODUCTION 98 

Meta-analysis uses statistical techniques to quantitatively summarize information from 99 

different studies and is highly influential in the contemporary practice of science. To conduct 100 

a meta-analysis an investigator gathers summary statistics from each study to calculate an 101 

effect size, with the goal of computing an overall effect size (and its uncertainty) and 102 

exploring the factors contributing to variation in effect sizes (Nakagawa, Noble, Senior, & 103 

Lagisz, 2017). The use of meta-analysis in ecology has been growing rapidly since the 1990s, 104 

and has proven particularly useful in discerning general patterns by comparing information 105 

from different species, study sites, and systems (Cadotte, Mehrkens, & Menge, 2012). Advice 106 

on best methodological practices for meta-analysis is widespread in disciplines with a longer 107 

history of meta-analytic research (e.g. medical sciences) but is lagging behind in ecology 108 

(Gates, 2002). This can be problematic because ecological meta-analyses have specific 109 

challenges not necessarily typically in other disciplines.  110 

One pervasive characteristic of ecological meta-analyses is the high heterogeneity 111 

(i.e., large among-study variation in effect sizes). Senior et al. (2016) analyzed 86 meta-112 

analyses in ecology and evolution and found that the among-study variation averaged 92% 113 

of the total variance. In contrast, a review of 509 meta-analyses in medicine found that there 114 

was no detectable among-study variation in 50% of the studies (Higgins, Thompson, & 115 

Spiegelhalter, 2009). Ecological studies also differ from many other disciplines in the typical 116 

level of within-study replication, which is fewer than 10 replicates per study (Hillebrand & 117 

Gurevitch, 2014). Such low levels of replication will influence the precision of the estimates 118 

of effect size from the primary studies (Langan, Higgins, & Simmons, 2016). Importantly, 119 

the low level of replication typical of ecological studies is outside the range used in most 120 

simulation studies designed to assess meta-analytic methods, which typically range from 121 
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dozens to hundreds (Langan et al., 2016). Thus differences between ecology and other 122 

disciplines potentially limit the insights ecologists can gain from existing simulations that 123 

compare different meta-analytic methods. 124 

Specific advice for conducting ecological meta-analyses include suggestions on the 125 

type of meta-analytic model and effect size calculation to use (Gurevitch & Hedges, 1999; 126 

Osenberg, Sarnelle, Cooper, & Holt, 1999; Lajeunesse, 2015), and how to deal with non-127 

independence (Gurevitch & Hedges, 1999; Noble, Lagisz, O’dea, & Nakagawa, 2017; Song, 128 

Peacor, Osenberg, & Bence, 2020). For example, a random-effects model is often 129 

recommended for ecological meta-analysis over a fixed-effects model (Gurevitch & Hedges, 130 

1999), and multi-level models are increasingly being used to incorporate the non-131 

independence commonly found in ecological meta-analyses (Nakagawa & Santos, 2012). A 132 

topic addressed in the medical literature that has received little attention in ecology (but see 133 

Adams, Gurevitch, & Rosenberg, 1997) is the choice of confidence interval (CI) used to 134 

estimate the mean effect size in a meta-analysis (Hartung & Knapp, 2001; Sidik & Jonkman, 135 

2003, Sánchez-Meca & Marín-Martínez, 2008). 136 

Simulation studies have shown that when the number of studies (k) in the meta-137 

analysis is low, the CIs for a mean effect size calculated using a normal approximation are 138 

too narrow, leading to coverage below the nominal level (i.e., a 95% CI should include the 139 

true value 95% of the time) (Brockwell & Gordon, 2001; Sánchez-Meca & Marín-Martínez, 140 

2008). To avoid this problem, meta-analyses in the medical literature often use the HKSJ 141 

(Hartung-Knapp-Sidik-Jonkman; Hartung & Knapp, 2001; Sidik & Jonkman, 2003) method, 142 

which is based on a t-distribution and can achieve good coverage even when k is small 143 

(Inthout, Ioannidis, & Borm, 2014). Bootstrap techniques have been recommended for 144 

estimating CIs for means in ecological meta-analyses, due to its robustness to departures 145 
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from normality (Adams et al., 1997). On the other hand, boot-strapped CIs can lead to poor 146 

coverage when estimating the among-study variance (Viechtbauer, 2007).  147 

Bayesian methods, and the credible interval, offer an alternative approach to 148 

estimating uncertainty in meta-analyses. Although Bayesian methods may have a steep 149 

learning curve, they offer advantages in handling hierarchical models, for incorporating prior 150 

information, and for dealing with missing data (Ogle, Barber, & Sartor, 2013). Bayesian 151 

meta-analytic techniques produce a posterior distribution of the mean effect size and 152 

associated variance terms. Estimates of uncertainty, including credible intervals, can be 153 

directly obtained from the posterior distributions, offering an easier to interpret alternative to 154 

the frequentist-based CI (Kruschke & Liddell, 2008).  155 

Our main goal is to compare the performance of traditional and Bayesian methods to 156 

measure the uncertainty around the estimation of a mean effect in the context of ecological 157 

meta-analysis. To achieve this goal, we conducted a two-pronged study. First, we reviewed 158 

published ecological meta-analyses to characterize the types of confidence interval used in 159 

ecological meta-analyses, the number of replicates used in the primary studies (𝑛𝑖) included 160 

in published meta-analyses, and the number of studies (k) that were aggregated to calculate 161 

a mean effect size. Second, we used the 𝑛𝑖 and k found in our literature review to inform the 162 

range of parameter values to use in conducting simulation experiments relevant to ecological 163 

meta-analyses. In particular, we determined the typical levels of 𝑛𝑖, k, and the among-study 164 

variance and then varied them systematically in our simulation studies. We then evaluated 165 

performance of frequentist and Bayesian meta-analysis methods when applied to the 166 

simulated data, especially with respect to their ability to estimate the true mean effect and 167 

among-study variance, and their quantification of uncertainty intervals (i.e., confidence or 168 

credible intervals). Based on our findings, we generate recommendations on the methods to 169 
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measure uncertainty that perform best for ecological meta-analysis and highlight how simple 170 

choices (sometimes overlooked by the investigators) can affect the results of meta-analyses.  171 

 172 

MATERIALS AND METHODS 173 

Literature review to assess characteristics of ecological datasets 174 

Literature search. We searched the Core Collection of the ISI Web of Science database in 175 

March 2017; the search string for TOPIC included ([“meta-analy*” OR “metaanaly*” OR 176 

“meta analy*”] AND [“climate change” OR “global change”]). We only included articles 177 

and reviews within the “Ecology”, “Environmental Sciences”, “Biodiversity Conservation” 178 

and “Plant Sciences” categories. The search resulted in 581 citations; the PRISMA diagram 179 

detailing the screening process is provided in Figure S1. After abstract screening, we checked 180 

the full text of the 205 articles published between 2013 and 2016. Of these, 96 papers satisfied 181 

the inclusion criteria for the final analysis.  182 

Criteria for inclusion. We focused on narrow sense meta-analyses: i.e., those that used a 183 

quantitative meta-analytic method to combine effect sizes that compared a control and a 184 

treatment group. We excluded studies that 1) only cited published meta-analyses, 2) reviewed 185 

meta-analytic methods, but did not perform a meta-analysis, 3) were identified as meta-186 

analysis by the authors but did not use a meta-analytic model or did not calculate effect sizes, 187 

4) used the correlation between two variables as an effect size, and 5) were not “biological 188 

meta-analyses” (as defined in Nakagawa et al., 2017), such as studies related to human health 189 

or human behavior.  190 
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Information extracted. For each paper we extracted the number of studies (k) from the text, 191 

figure captions, figures, and supplementary materials. Here we define a “study” as yielding 192 

an estimate of an effect, so that a given primary paper could generate multiple effects and 193 

thus multiple studies. The k values were determined at three levels, 1) overall: i.e., the total 194 

k collected by the authors (e.g., if they conducted meta-analyses on different response 195 

variables, then we summed the k across these variables); 2) analysis: i.e., the total k used in 196 

a particular analysis (e.g., if an analysis examined variation among four levels of a moderator, 197 

then we summed up the number of studies in each level); and 3) category: i.e., the k included 198 

in each category of a categorical analysis. In some cases, authors calculated mean effect sizes 199 

for different categories separately and only compared the categories using confidence 200 

intervals (i.e., there was no integrated analysis incorporating a category effect). In this case, 201 

we considered each’s categories’ k to apply at the “analysis” level. 202 

When available, we also recorded the number of replicates (𝑛𝑖) in the original studies. 203 

If the level of replication was unequal for the control and treatment groups, we recorded the 204 

average. Finally, from each meta-analysis, we also recorded the inferential paradigm used 205 

(frequentist vs. Bayesian) and the method used to obtain confidence intervals for the 206 

frequentist approaches (e.g., non-parametric bootstrap, normal-based, KHSJ, etc.).  207 

Simulation Experiments 208 

Our literature review showed that 67% of the reported primary studies had less than ten 209 

replicates. In addition, the review of meta-analyses in ecology and evolution by Senior et al. 210 

(2012) showed that among-study variation was important, and typically large, in ecological 211 

studies. Given these characteristics of ecological data, we simulated data in a full-factorial 212 

design that considered the following levels: mean number of replicates n = {3, 5, 10, 15, 20, 213 

30}, number of studies k = {5, 10, 15, 25, 35, 50}, and among-study variance 𝜎𝑎𝑚𝑜𝑛𝑔
2  = {0.1, 214 
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0.25, 0.5, 1, 2, 5}. We simulated 2,000 replicated meta-analyses for each combination of n, 215 

k, and 𝜎𝑎𝑚𝑜𝑛𝑔
2 . We then evaluated the performance of four meta-analytic methods applied to 216 

the simulated data: three frequentist approaches that differed in how they calculated 217 

confidence intervals for a mean effect and a Bayesian approach.  218 

Simulating raw data for a study. We first determined the number of replicates for study i 219 

(𝑛𝑖) based on a random draw from a Poisson distribution: 220 

                   𝑛𝑖
∗~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑛 − 2) (Eq. 1) 

  𝑛𝑖 = 𝑛𝑖
∗ + 2    (Eq. 2) 

where 𝑛 is the mean number of replicates representative of ecological meta-analyses. We 221 

subtracted 2 to sample from the Poisson and added 2 to the simulated 𝑛𝑖
∗ to make the 222 

minimum number of replicates for each simulated study equal 2 rather than 0. For each study, 223 

we assumed equal number of replicates for the control and treatment groups.  224 

Individual observations (𝑗 = 1, 2, … , 𝑛𝑖) for the control and treatment groups were 225 

generated from a lognormal distribution (LN) such that for study i and observation j: 226 

 𝑦𝐶𝑖𝑗
~𝐿𝑁(0, 𝜎𝑟𝑒𝑝

2 )  (Eq. 3)  227 

 𝑦𝑇𝑖𝑗
~𝐿𝑁(0 + 𝜇 + 𝜀𝑖 , 𝜎𝑟𝑒𝑝

2 )  (Eq. 4)  228 

where 𝜎𝑟𝑒𝑝
2  is the among-replicates variation, 𝜇 is the true overall effect, and 𝑦𝐶𝑖𝑗

 and 𝑦𝑇𝑖𝑗
 229 

are the simulated observations for study i and observation j of the control and treatment 230 

group, respectively. We set the among-replicate variation equal to 1 for both the control and 231 

treatment. For convenience, we set the location parameter for the control group equal to zero, 232 

resulting in median (𝑦𝐶) = 1. For the treatment group in study i, we set median (𝑦𝑇)= 𝜇 + 𝜀𝑖, 233 
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where  is the overall true treatment effect (hereafter, true effect size) and 𝜀𝑖 is the random 234 

effect associated with study i. We simulated 𝜀𝑖 as: 235 

 𝜀𝑖~ 𝑁(0, 𝜎𝑎𝑚𝑜𝑛𝑔
2 )   (Eq. 5)  236 

Thus, the true effect size from any given study departs from  due to its random effect 237 

(determined by 𝜀𝑖), while the estimated effect size differs from the true effect size due to 238 

within-study sampling error (i.e., as influenced by 𝑛𝑖 and 𝜎𝑟𝑒𝑝
2 ). The range of values used for 239 

𝜎𝑎𝑚𝑜𝑛𝑔
2  were chosen to produce a similar distribution of I2 (the proportion of variation among 240 

effect sizes not explained by sampling error) to that reported by Senior et al. (2016) for meta-241 

analyses in ecology and evolution (I2 simulation results are presented in Figure S2).  242 

Estimating the effect size and within-study variance. Using the raw data simulated from 243 

each study, we computed the observed effect size for study i as the log response ratio (lnRRi), 244 

which is widely used in ecology (Nakagawa & Santos, 2012) and it is often a reasonable 245 

approximation of ecological phenomena (Osenberg, Sarnelle, & Cooper, 1997): 246 

 𝑙𝑛𝑅𝑅𝑖 = ln (
�̅�𝑇𝑖

�̅�𝐶𝑖

)  (6) 247 

where �̅�𝑇𝑖
 and �̅�𝐶𝑖

 are the sample means of the treatment and control groups, respectively.  248 

The expected sample means for each treatment in a simulated study are 𝐸 (𝑦𝐶𝑖𝑗
) =249 

exp (
𝜎𝑟𝑒𝑝

2

2
) and 𝐸 (𝑦𝑇𝑖𝑗

) = 𝑒𝑥𝑝 (𝜇 + 𝜀𝑖 +
𝜎𝑟𝑒𝑝

2

2
). Thus, the log of the ratio of the expected 250 

values for the treatment and control groups is 𝜇 + 𝜀𝑖, corresponding to what we call the true 251 

study-specific effect size. 252 

We calculated the estimated within-study variance of the log ratio (Eq. 1 in Hedges, 253 

Gurevitch, & Curtis, 1999) (𝜎𝑤𝑖𝑡ℎ𝑖𝑛𝑖

2 ) as: 254 



13  

 𝜎𝑤𝑖𝑡ℎ𝑖𝑛𝑖

2 =
𝑆𝐷𝑇𝑖

2

𝑛𝑇𝑖
∙�̅�𝑇𝑖

2 +
𝑆𝐷𝐶𝑖

2

𝑛𝐶𝑖
∙�̅�𝐶𝑖

2  (7)  255 

where 𝑆𝐷𝑇 and 𝑆𝐷𝐶  are the sample standard deviations of the treatment and control groups, 256 

respectively, and 𝑛𝑇𝑖
= 𝑛𝐶𝑖

= 𝑛𝑖 are the simulated number of replicates in study i. 257 

 258 

Meta-analytic approaches 259 

Given that we simulated independent data to highlight how the choice of uncertainty interval 260 

affects the estimation of a mean effect, we used a standard random-effects model (Gurevitch 261 

& Hedges, 1999). We comment on how our results may change with a multi-level 262 

(hierarchical) model in the Discussion section. We assume the simulated effect size for study 263 

i (lnRRi, calculated from Eq. 6) follows a normal distribution with mean 𝜃𝑖 (the true effect 264 

for study 𝑖) and within-study variance 𝜎𝑤𝑖𝑡ℎ𝑖𝑛𝑖

2 :  265 

 𝑙𝑛𝑅𝑅𝑖~ 𝑁(𝜃𝑖 , 𝜎𝑤𝑖𝑡ℎ𝑖𝑛𝑖

2 )  (8)  266 

 𝜃𝑖~𝑁(𝜇, 𝜎𝑎𝑚𝑜𝑛𝑔
2 )  (9)  267 

We assume 𝜎𝑤𝑖𝑡ℎ𝑖𝑛𝑖

2  is known, as calculated via Eq. 7. Likewise, the true study-specific effect 268 

size, 𝜃𝑖, is assumed to follow a normal distribution with mean 𝜇 (the true overall effect) and 269 

among-study variance, 𝜎𝑎𝑚𝑜𝑛𝑔
2  (which is sometimes referred to as 𝜏2 in other meta-analytic 270 

papers).  271 

We compared different methods to construct confidence intervals (CIs) for a mean 272 

effect (at the analysis level) within the frequentist methods versus Bayesian credible 273 

intervals. For the frequentist-based analyses, we compared: a) a CI based on a z-distribution, 274 

which is a large sample approximation, b) a weighted CI based on the Hartung-Knapp-Sidik-275 

Jonkman (HKSJ) method, which does not assume a large sample and instead uses a t-276 
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distribution, and c) bootstrap methods. For the Bayesian-based analysis, we calculated the 277 

highest posterior density (HPD) credible interval.  278 

Frequentist approaches. We applied the random-effects model described by Eqs. 8 and 9 279 

with inverse variance weights using the “rma” function in the R package metafor 280 

(Viechtbauer, 2010), and estimated 𝜎𝑎𝑚𝑜𝑛𝑔
2  with the default REML method. To calculate the 281 

z-distribution CI, we used the default settings for the random-effects model in metafor, which 282 

returns a 95% CI for  based on the normal distribution. To apply the HKSJ CI, we set the 283 

option knha=T in metafor. The resulting CI for  is based on both a refined estimate of 284 

𝜎𝑎𝑚𝑜𝑛𝑔
2  and a Student’s t-distribution (Hartung & Knapp, 2001; Sidik & Jonkman, 2003), 285 

which accounts for the fact that 𝜎𝑎𝑚𝑜𝑛𝑔
2  is estimated and not known. For the bootstrapped CI, 286 

we estimated the bias-corrected non-parametric bootstrapped 95% CI for both  and 𝜎𝑎𝑚𝑜𝑛𝑔
2  287 

via the boot package in R (Canty & Ripley, 2017). Since the choice of HKSJ or z-distribution 288 

for the  CI does not affect the estimation of 𝜎𝑎𝑚𝑜𝑛𝑔
2 , in both cases we used metafor’s 289 

function “confint” to obtain the CI for 𝜎𝑎𝑚𝑜𝑛𝑔
2  (“confint” applies a Q-profile method in 290 

combination with REML).  291 

Bayesian approach. We used a “hybrid” Bayesian framework to implement the random-292 

effects model (Eqs. 8 and 9) in which we treat 𝜎𝑤𝑖𝑡ℎ𝑖𝑛
2  as known; whereas a fully Bayesian 293 

model may treat 𝜎𝑤𝑖𝑡ℎ𝑖𝑛
2  as unknown (this hybrid model is comparable to the “empirical 294 

Bayes” method discussed in Schmid & Mengersen, 2013). Initial explorations with full and 295 

hybrid models gave qualitatively similar results and we only include the hybrid model in our 296 

analysis. 297 
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We specified relatively non-informative priors for the unknown quantities (e.g.,  and 298 

𝜎𝑎𝑚𝑜𝑛𝑔
2 ). For the mean effect size, , we specified a conjugate normal prior with a mean of 299 

zero and large variance: N(0, 10000). Given that even diffuse priors for 𝜎𝑎𝑚𝑜𝑛𝑔
2  can influence 300 

the posterior for 𝜎𝑎𝑚𝑜𝑛𝑔
2 , particularly under small group size (Gelman, 2006), we explored 301 

five different priors for 𝜎𝑎𝑚𝑜𝑛𝑔
2  (Supporting Information Figures S12-15). For the final 302 

analysis, convergence statistics and computational speed led us to focus on the Uniform(0,10) 303 

prior for the standard deviation (𝜎𝑎𝑚𝑜𝑛𝑔). 304 

The Bayesian meta-analyses were implemented in JAGS with the rjags R package 305 

(Plummer, 2018). For each model, we ran three parallel Markov chain Monte Carlo (MCMC) 306 

sequences for 200,000 iterations, and discarded the first 100,000 iterations as the burn-in 307 

period. We used the �̂� convergence diagnostic (Gelman & Rubin, 1992) to evaluate 308 

convergence of the MCMC sequences to the posterior. For the final simulations, we only 309 

included runs that had �̂� < 1.1, and checked that the proportion of discarded runs was lower 310 

than 1%. Using post-burn-in MCMC samples, we computed posterior means for quantities 311 

of interest (e.g.,  and 𝜎𝑎𝑚𝑜𝑛𝑔
2 ) as point estimates. We computed 95% credible intervals as 312 

HPD intervals for both  and 𝜎𝑎𝑚𝑜𝑛𝑔
2  using the “HPDinterval” function in the coda package 313 

(Plummer, 2006). 314 

Implementation and Assessment of the Meta-analysis Approaches 315 

We ran all the analyses and simulations in the R environment (R Core Team, 2019); code is 316 

provided in the Supporting Information. For each simulated dataset, we estimated  and 317 

𝜎𝑎𝑚𝑜𝑛𝑔
2  via the frequentist and Bayesian methods described above. We summarized the 318 

results from the 2,000 replicated meta-analyses for each combination of factors (n, k, 𝜎𝑎𝑚𝑜𝑛𝑔
2 ) 319 
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and modeling approaches (i.e., frequentist and Bayesian methods to measure uncertainty). 320 

The results for the model performance associated with estimating 𝜎𝑎𝑚𝑜𝑛𝑔
2   are presented in 321 

Figures S7-10. 322 

We evaluated model performance using: coverage, width of the uncertainty intervals, 323 

bias, and efficiency. We estimated coverage for both  and 𝜎𝑎𝑚𝑜𝑛𝑔
2  as the proportion (out of 324 

the 2,000 simulation replicates) of calculated 95% uncertainty intervals (CIs for the 325 

frequentist methods and credible interval for the Bayesian approach) that included the 326 

corresponding true value. Ideally, coverage should equal the nominal value of 0.95 (95%). 327 

CIs for these “coverage proportions” were computed using the “binom.confint” function in 328 

the R binom (Sundar, 2014) package, with the method “wilson” (Agresti & Coull, 1998).  329 

We summarized the perceived uncertainty for  and 𝜎𝑎𝑚𝑜𝑛𝑔
2 as the mean width of the 330 

95% uncertainty intervals for the 2,000 intervals for each scenario, and assessed how well 331 

the mean width was estimated using a 95% CI based on a t-distribution. All else being equal, 332 

smaller uncertainty is a desirable feature, but not if it is accompanied by a reduction in 333 

coverage below the nominal level.  334 

To evaluate bias, we calculated the mean difference between the point estimates for 335 

 and 𝜎𝑎𝑚𝑜𝑛𝑔
2  and their true values based on the 2,000 simulation replicates, and report a 336 

95% CI for this estimate based on the t-distribution. Ideally, bias should be centered on zero.  337 

Finally, to quantify the efficiency of the point estimates, we calculated the root mean 338 

squared error (RMSE) between the estimated and true values for  and 𝜎𝑎𝑚𝑜𝑛𝑔
2 as: 339 

 𝑅𝑀𝑆𝐸 = √
∑ (�̂�𝑠−𝑎𝑡𝑟𝑢𝑒𝑠)

2𝑁𝑠𝑖𝑚
𝑠=1

𝑁𝑠𝑖𝑚
  , (10) 340 
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where 𝑎 =  or 𝜎𝑎𝑚𝑜𝑛𝑔
2 , �̂� is the point estimate from each model, 𝑎𝑡𝑟𝑢𝑒 is the true value used 341 

in the simulations, and 𝑁𝑠𝑖𝑚 is the number of simulations.  342 

 343 

RESULTS 344 

Literature review to assess characteristic of ecological datasets 345 

Of the 96 meta-analyses that satisfied our criteria (Table S1), 95 and 26 provided information 346 

on the number of studies (k) and number of replicates (𝑛𝑖) associated with the original dataset, 347 

respectively. Only three meta-analyses used a Bayesian approach. The majority of meta-348 

analyses were published in Global Change Biology (23), followed by Agriculture Ecosystems 349 

& Environment (7) and Ecology (6) (Figure S3 displays the full list). The quality of reporting 350 

varied, and is discussed in more detail in the Supporting Information. We also provide 351 

additional information on k and 𝑛𝑖 (by taxa, environment, and topic) in the Supporting 352 

Information (Table S2, Figures S4-S5). 353 

Number of studies. The number of studies (k) used to estimate an effect was highly skewed 354 

at the three levels we considered: overall, analysis, and category (Figure 1). The overall k 355 

ranged from 25 to 32,567 (Figure 1A upper panel), with a median of 273 and with relatively 356 

few (12%) including more than 1,000 studies. For most papers, however, analyses were 357 

performed for different response variables or different moderators, and the k used for a 358 

particular analysis was considerably lower (Figure 1A middle panel), ranging from k = 1 (for 359 

a paper that presented all possible comparisons, even when one potential analysis was 360 

represented by only a single study) to k = 8,474, with a median of k = 44 (i.e., 50% of meta-361 

analysis included 44 or fewer studies); 16% had k ≤ 10. The number of studies included 362 
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within categories ranged from k = 1 to 1,430, with a median of 16; 36% had k ≤ 10 (Figure 363 

1A lower panel). 364 

Number of replicates. The distribution of the reported number of replicates in the original 365 

studies (𝑛𝑖) cited by the climate change meta-analyses was highly skewed, ranging from ni = 366 

1 to 21,600, with most studies having only a few replicates; the median was 5 (Figure 1B). 367 

The strong skewness in these data led us to inspect some of the original publications from 368 

which exceptionally large 𝑛𝑖 values were reported. We found publications in which 𝑛𝑖 values 369 

were likely misreported or greatly inflated by pseudoreplication (details in Table S3 and 370 

Figure S6). 371 

Analytic method to estimate the uncertainty interval for a mean effect. In 38.5% of the 372 

papers reviewed, the method used to calculate the frequentist-based CI for the mean effect 373 

was not mentioned (Figure 2). Of the papers reporting how the CI was calculated, the 374 

majority used bootstrapped or z-distribution CIs; only three papers used credible intervals 375 

(Bayesian method), and a few used a combination of methods (Figure 2). No papers reported 376 

using HKSJ method. Of the papers that did not specify the method, nine used Metawin (which 377 

defaults to a t-distribution for the parametric CI, without the KHSJ refinement); 12 papers 378 

used the packages meta or metafor in R (which default to a z-distribution); and two used the 379 

Comprehensive Meta-Analysis software (which defaults to a z-distribution). Assuming these 380 

23 papers used the software defaults, then 31 papers used a z-distribution, and nine used a t-381 

distribution but without the KHSJ refinement. Thus, bootstrapped and z-distribution CIs 382 

likely comprise the vast majority of approaches, with KHSJ CIs being entirely absent from 383 

our dataset. 384 

 385 
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Simulation experiments: estimation of a mean effect 386 

The number of studies, k, used to estimate a mean effect size, , substantially affected the 387 

coverage of the frequentist methods, but this effect of k depended on the type of method used 388 

to estimate the 95% CIs (Figure 3A). For example, z-distribution CIs for  had coverage 389 

lower than the nominal level when k < 40, and coverage was appreciably lower for k < 20 390 

(Figure 3A). Similarly, bootstrapped CIs had lower than nominal coverage when k < 40 391 

(Figure 3A). In contrast, KHSJ CIs had close to nominal coverage over all values of k (Figure 392 

3A). The Bayesian credible interval generally showed coverages around 95%, but when k = 393 

5, coverage was >95% (Figure 3A). 394 

Coverage can be smaller than nominal levels either because of bias or because the 395 

width of the uncertainty interval is inappropriately narrow (i.e., uncertainty is 396 

underestimated). The three frequentist methods for computing CIs for  used the same 397 

approach for obtaining point estimates and had minimal bias centered on zero (Figures S11 398 

A,C,E). Thus, the observed differences in coverage for  resulted from differences in the 399 

width of the uncertainty interval (Figure 3B). The Bayesian credible interval was generally 400 

wider than the frequentist-based CIs, and of the frequentist CIs, the KHSJ CI tended to be 401 

the widest; when k was small, the z-distribution and boot-strapped CIs were ~1/3 smaller than 402 

they should be based upon the more appropriate KHSJ CI (Fig. 3B). 403 

Increasing the mean number of replicates (n) in the primary studies did not greatly 404 

affect coverage (Figure 3B), the width of the uncertainty interval (Figure 3E), bias (Figure 405 

S11C), or RMSE (Figure S11D) for  . Our results were likely produced because the among-406 

study variation dominated within-study variation over the range of levels considered for the 407 

simulation factors (as determined by the review by Senior et al., 2016).  408 
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Increasing the among-study variance (𝜎𝑎𝑚𝑜𝑛𝑔
2 ) increased the width of the uncertainty 409 

interval for  (Figure 3F), but had only small effects on coverage (Figure 3C). Bias in the 410 

estimation of  was negligible and unaffected by an increase in 𝜎𝑎𝑚𝑜𝑛𝑔
2  (Figure S11E), but 411 

the error in the estimation increased with the increase in heterogeneity (RMSE, Figure S11F). 412 

 413 

DISCUSSION 414 

Our literature review shows that ecological meta-analyses are highly variable in terms 415 

of how many studies (k) are included in the meta-analysis and the number of replicates 416 

reported in the original publications (𝑛𝑖). Despite this high variability, both across and within 417 

meta-analyses, k and 𝑛𝑖 tend to be low. The high frequency of meta-analyses with 418 

comparatively few studies (k  44 in 50% of meta-analyses reviewed) is not unique to 419 

ecology; even lower number of studies are pervasive in medical research (Kontopantelis, 420 

Springate, & Reeves, 2013) where there has been an effort to develop methods that improve 421 

the performance of meta-analyses in such scenarios (Inthout et al., 2014). Furthermore, our 422 

simulations show that the method used to calculate an uncertainty interval greatly influences 423 

how often the interval includes the true mean effect and is very important for producing 424 

intervals with close to correct coverage when k is low. Despite its importance, a large 425 

proportion of the ecological meta-analyses we reviewed (38%) did not report the type of 426 

uncertainty interval used, and the ones that did report their methods used intervals that are 427 

problematic when k is low. 428 

Low coverage of the z-distribution confidence interval (CI) when the number of 429 

observations (in the meta-analysis context, the number of studies, k) are low is well known 430 

in classical statistical contexts as well as in meta-analyses (Hedges et al., 1999; Brockwell & 431 
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Gordon, 2001; IntHout et al., 2014). In meta-analyses, however, approaches typically default 432 

to assuming large k and thus justify the application of the z-distribution. In ecology, this 433 

large-sample approach is often unwarranted (Figure 1A). Furthermore, bootstrapped CIs are 434 

also well known to be problematic with small k (Hesterberg, 2015), although ecological meta-435 

analyses tend to prioritize the potential for non-normal distributions over concerns about 436 

small k (Adams et al., 1997) – based upon our results, such prioritization may be misplaced.  437 

When k is low, the CI for a mean effect size () based on the z-distribution is too 438 

narrow. Some practitioners have addressed this problem by not calculating CIs when k is 439 

very small (e.g.: Augusto, Delerue, Gallet-Budynek, & Achat, 2013). Others have resorted 440 

to using bootstrapped CIs (e.g.: Thébault, Mariotte, Lortie, & MacDougall, 2014). Given that 441 

bootstrapped CIs also had poor coverage when k < 40, this approach appears to be ill-advised. 442 

In our review, nearly half of the mean effect sizes used in an individual analysis were 443 

calculated with k < 40 effect sizes, where the choice of method for computing uncertainty 444 

intervals matters. As a result, many effects declared as significant probably should not have 445 

been. This is exemplified in a review of medical meta-analyses from the Cochrane Database, 446 

where of the 315 meta-analyses that yielded significant effects with the z-distribution CI, 447 

only 79 were significant using the HKSJ CI (Inthout et al., 2014). 448 

The default option for frequentist CIs for  varies among software packages. For 449 

example, a t-distribution CI (but without the HKSJ refinement) is Metawin’s default, whereas 450 

the z-distribution is the default in the Comprehensive Meta-Analysis software and in the R 451 

packages meta and metafor (metafor is one of the most common software packages currently 452 

in use by ecologists). For those planning to conduct a random-effects meta-analysis using 453 

frequentist methods, we advise use of the HKSJ CI, which employs both a weighted estimator 454 

of the variance for the overall effect size and a t-distribution for its associated CI (this can be 455 
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set up in metafor using the option knha= T). Sánchez-Meca and Marín-Martínez (2008) 456 

report that the HKSJ method outperforms the simple CI-based on the t-distribution. However, 457 

in some scenarios, coverage could be as low as 90% even using the HKSJ CI, for example, 458 

when heterogeneity is high, k < 10, and the number of replicates varies greatly among studies 459 

(Inthout et al., 2014). In our simulations that did not include highly uneven number of 460 

replicates, we showed that HKSJ CI’s and the Bayesian credible intervals provide accurate 461 

(or at least conservative, >95%) coverage and performed best. We encourage researchers to 462 

be aware of the software defaults when calculating an uncertainty interval, and to report the 463 

method used. 464 

The climate change meta-analyses showed exceedingly high variation in the number 465 

of replicates reported (𝑛𝑖), spanning five orders of magnitude, but the majority of values were 466 

low. In fact, 𝑛𝑖 < 10 in 67% of the cases, and 𝑛𝑖  5 in 51% of the cases we reviewed. This 467 

pattern may be similar in other fields of ecology (Table S2, Figures S4, S5). For example, a 468 

competition meta-analysis found ni ranging from 1 to 1,455, with a median of 10 (Gurevitch 469 

et al., 1992). To obtain a more accurate estimate of , some authors specify a minimum 𝑛𝑖 to 470 

calculate mean effect sizes (Gurevitch et al., 1992; Schirmel et al., 2016). Such censuring 471 

might improve confidence interval performance by reducing variation in replication among 472 

studies (Inthout et al. 2014) but at the high cost of discarding important information. While 473 

one would in general expect better estimates with more replication, our simulation 474 

experiment did not show important effects of the mean number of replicates on the estimation 475 

of and inferences about . A similar insensitivity to the number of replicates  has been 476 

observed in other studies (Sánchez-Meca & Marín-Martínez 2008), although we included 477 

fewer replicates than most other simulations. Variation in replication among studies, should 478 

produce variation in within-study variance, especially when the number of replicates is small. 479 
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However, in our simulations among-study variation was much larger than within-study 480 

variation, consistent with the characteristics of ecological meta-analyses (Senior et al., 2016), 481 

minimizing the role of variation in the number of replicates.  482 

When the number of replicates reported (𝑛𝑖) was unusually high, we checked a few 483 

of the original papers cited in each meta-analysis. Upon revisiting 17 of the original 484 

publications, we found at least 15 cases in which 𝑛𝑖 was misreported (Table S3). This 485 

manifested in different ways. Some meta-analyses reported the total 𝑛𝑖 in an experiment 486 

instead of the number of replicates per treatment. In other cases, authors reported the total 𝑛𝑖 487 

from repeated measurements or the numbers of individuals rather than the number of true 488 

replicates (e.g., plots or cages). There were also cases in which we were unable to verify the 489 

origin of the number reported in the meta-analysis. An incorrect  𝑛𝑖 decreases the sampling 490 

variance for that effect size, which affects the weights and also the estimation of the overall 491 

heterogeneity (Noble et al., 2017). Researchers conducting a meta-analysis should be 492 

cautious when extracting data from the original studies to avoid misreporting (or inflating) 493 

the number of replicates. Publication of the data and code used to conduct a meta-analysis 494 

would also be useful to inform research on best practices for meta-analysis. 495 

In our simulations using a random-effects model, the performance in the estimation 496 

of the among-study variance (𝜎𝑎𝑚𝑜𝑛𝑔
2 ) was better when the true 𝜎𝑎𝑚𝑜𝑛𝑔

2 was high (Figures 497 

S4-7). In agreement with Viechtbauer (2007), we observed that the Q-profile CI method for 498 

𝜎𝑎𝑚𝑜𝑛𝑔
2  performed better than the bootstrap method (Figures S7-10). The Bayesian method 499 

performed best, but had coverage above the nominal level when the number of studies was 500 

low (k < 20). Bayesian methods led to higher perceived uncertainty in such cases, which 501 

could be real, but this could also be a consequence of positive bias in the 𝜎𝑎𝑚𝑜𝑛𝑔
2  estimates, 502 

which was more pronounced for the Bayesian methods when k < 20. In this scenario, one 503 
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approach to improve coverage is to use priors for 𝜎𝑎𝑚𝑜𝑛𝑔
2 that perform better when k is low 504 

(Gelman, 2006). Another solution is to specify more informative priors for 𝜎𝑎𝑚𝑜𝑛𝑔
2 based on 505 

a synthesis of past publications (Higgins et al., 2009). One reason to desire good estimation 506 

of 𝜎𝑎𝑚𝑜𝑛𝑔
2  is because overestimation of this variance component can lead to higher perceived 507 

uncertainty in the estimate of . An additional reason is that the estimates of 𝜎𝑎𝑚𝑜𝑛𝑔
2 represent 508 

real variation in effects and could be of importance in risk assessment.  509 

In the initial explorations with the full Bayesian model, the MCMC chains for  510 

converged quickly, but they converged more slowly for 𝜎𝑎𝑚𝑜𝑛𝑔
2 , often falling into a “zero 511 

variance trap” (Gelman, 2004) when the true among-study variance was close to zero. In 512 

general, convergence and mixing problems were most frequent for low k and low 𝜎𝑎𝑚𝑜𝑛𝑔
2 . 513 

While low 𝜎𝑎𝑚𝑜𝑛𝑔
2 is rare in ecology, low k is not. Of the priors we explored (Supporting 514 

Information Figures S12-15), the folded-t and the uniform prior for the standard deviation 515 

performed best when k was low (we chose the uniform prior for the final simulations because 516 

it ran slightly faster). In our simulations, the hybrid Bayesian model exhibited the practical 517 

advantages of the Bayesian methods (e.g., produces full posteriors and direct evaluation of 518 

uncertainty without approximating assumptions, among others), and was easy (and faster) to 519 

implement than the full model. On the other hand, a full Bayesian approach may be more 520 

useful for multi-level models that include missing data, hierarchical structures, and/or 521 

covariate effects (Ogle et al., 2013), and could benefit from informative priors for 𝜎𝑎𝑚𝑜𝑛𝑔
2 , 522 

particularly when k is low. 523 

Our study simulated independent effect sizes. Often though, observed effect sizes are 524 

not independent (e.g., multiple observed effect sizes might be obtained from a single 525 

published article). As observed effect sizes within a group might respond similarly (due to 526 
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similar methods, or similar environmental conditions), some of the among-study variation 527 

could be common to all members of a group or subgroup. Multi-level (hierarchical) models 528 

can be used to account for this. We believe that our results, including the insensitivity of our 529 

results to n, would not be materially altered in such situations, assuming the among-study 530 

variation still dominates the within-study variation. There are some challenges to be faced, 531 

however, when applying our results to more complex multi-level models. In particular, 532 

although the R package metafor has a function that handles multi-level models (rma.mv), the 533 

KHSJ adjustment is not available in this context, and the best that can be done with metafor 534 

is to construct t-based confidence intervals of the mean (also referred to as conditional t-test). 535 

For multi-level models, these t-based confidence intervals have inflated error rates (Luke, 536 

2017; Song et al., in press), although they do outperform normal-based confidence intervals 537 

(Song, personal communication). Song et al. (in press) speculated that the inflated error rates 538 

of t-based confidence intervals resulted from not accounting for uncertainty in estimated 539 

variances. Methods exist for adjusting tests and confidence intervals to account for 540 

uncertainty in estimated variances in multi-level models, such as the Kenward-Rogers 541 

adjustment, or simulation of null distributions (Halekoh & Hojsgaard, 2014), but to our 542 

knowledge these have not been implemented in any readily available software for conducting 543 

meta-analyses.  544 
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 685 

FIGURE LEGENDS 686 

Figure 1. Results from the literature review of ecological meta-analyses: A) distribution of 687 

the number of studies (k) reported for overall, analysis, and category levels; the median k is 688 

indicated in each panel; B) distribution of the number of replicates used in the original studies 689 

(  𝑛𝑖), as reported in each meta-analysis; the median 𝑛𝑖 is indicated with a dashed line. Note 690 

that the x-axes are on a log scale. 691 

 692 

Figure 2. Types of uncertainty intervals reported by the ecological meta-analyses. In some 693 

cases, more than one type of uncertainty interval was reported. 694 

 695 

Figure 3. Coverage and the width of the 95% uncertainty interval for different methods used 696 

to estimate the mean effect size () in a meta-analysis as a function of the number of studies 697 

(A, D), the mean number of replicates (B, E), and the among-study variance (C, F). The 698 

dashed horizontal line in panels A, B, and C indicates the nominal value of 95%. Different 699 

colors denote the method used to estimate the uncertainty interval. Error bars provide the 700 

95% CI. 701 

 702 

SUPPLEMENTARY FIGURE LEGENDS 703 
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 704 

Figure S1. PRISMA diagram. 705 

Figure S2. Mean I2 as a function of the true (simulated) among-study variance for different 706 

combinations of the mean number of replicates, 𝑛𝑖, and number of studies, k, in the simulated 707 

datasets. 708 

Figure S3. Number of climate-change meta-analyses reviewed, summarized by journal in 709 

which each was published, between 2013 and 2016. 710 

Figure S4. Results from the exploratory literature search on sub-disciplines of ecological 711 

meta-analyses. A) distribution of the number of studies (k) by sub-discipline; B) distribution 712 

of the number of replicates (𝑛𝑖) used in the primary papers, as reported in each meta-analysis. 713 

Replication was not reported in any meta-analyses for ocean acidification. Note that the x-714 

axes are on a log scale. 715 

Figure S5. Additional results for the climate/global change meta-analysis. Variability on the 716 

median number of studies at the analysis level (A) and the median number of replicates (B) 717 

by type of organism (or variable) measured, type of environment, and meta-analysis topic. 718 

Figure S6. Distribution of the number of replicates, 𝑛𝑖, in the original studies for each of the 719 

26 meta-analysis publications in our review that provided the original data. The boxplots 720 

represent the median (thick vertical line), the 25th and 75th percentiles (box), the upper 721 

whisker extends from the box to the larger value no further than 1.5xIQR, and the lower 722 

whisker extends from the box to the smallest value at most 1.5xIQR. Extreme values that 723 

exceed the whiskers are plotted individually as solid points. 724 
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Figure S7. Performance measures of the estimation of the among-study variance as a 725 

function of the number of studies (left column), the number of replicates in the original 726 

studies (middle column) and the simulated among-study variance (right column). 727 

Performance was assessed using coverage (A, B, C), perceived uncertainty (width of the 728 

uncertainty interval) (D, E, F), bias (G, H, I), and RMSE (J, K, L). Error bars provide the 729 

95% CI for panels A-I. Please note different scales in the y-axis for bias and width of the 730 

uncertainty interval. Simulation parameters: 𝑛 = 5, 𝑘 = 25, σamong
2 = 0.5, except for the 731 

cases in which that parameter was varied. 732 

Figure S8. Performance measures of the estimation of the among-study variance as a 733 

function of the number of studies (left column), the number of replicates in the original 734 

studies (middle column) and the simulated among-study variance (right column). 735 

Performance was assessed using coverage (A, B, C), perceived uncertainty (width of the 736 

uncertainty interval) (D, E, F), bias (G, H, I), and RMSE (J, K, L). Error bars provide the 737 

95% CI for panels A-I. Please note different scales in the y-axis for bias and width of the 738 

uncertainty interval. Simulation parameters: 𝑛 = 5, 𝑘 = 25, 𝜎among
2 = 2, except for the cases 739 

in which that parameter was varied. 740 

Figure S9. Performance measures of the estimation of the among-study variance as a 741 

function of the number of studies (left column), the number of replicates in the original 742 

studies (middle column) and the simulated among-study variance (right column). 743 

Performance was assessed using coverage (A, B, C), perceived uncertainty (width of the 744 

uncertainty interval) (D, E, F), bias (G, H, I), and RMSE (J, K, L). Error bars provide the 745 

95% CI for panels A-I. Please note different scales in the y-axis for bias and width of the 746 
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uncertainty interval. Simulation parameters: 𝑛 = 20, 𝑘 = 25, 𝜎among
2 = 2, except for the 747 

cases in which that parameter was varied. 748 

Figure S10. Performance measures of the estimation of the among-study variance as a 749 

function of the number of studies (left column), the number of replicates in the original 750 

studies (middle column) and the simulated among-study variance (right column). 751 

Performance was assessed using coverage (A, B, C), perceived uncertainty (width of the 752 

uncertainty interval) (D, E, F), bias (G, H, I), and RMSE (J, K, L). Error bars provide the 753 

95% CI for panels A-I. Please note different scales in the y-axis for bias and width of the 754 

uncertainty interval. Simulation parameters: 𝑛 = 20, 𝑘 = 25, 𝜎among
2 = 0.5, except for the 755 

cases in which that parameter was varied. 756 

Figure S11. Bias and RMSE from the estimation of a mean effect in 2000 replicated meta-757 

analyses as a function of the number of studies (A, B), the mean number of replicates in the 758 

original studies (C, D), and the among-study variance (E, F). Simulation parameters: 𝑛 =759 

5, 𝑘 = 25, 𝜎among
2 = 2, except for the cases in which that parameter was varied.  Error bars 760 

provide the 95% CI for panels A-E.  761 

Figure S12. Number of replicates yielding bad �̂� (�̂�  1.1) for different combinations of 762 

priors, true among-study variance, mean number of replicates, and number of studies. 763 

Figure S13. Median of the posterior distribution of the among-study variance for all the 764 

different priors tested, number of replicates, number of studies, and true among-study 765 

variance. A) 𝑛 = 5; B) 𝑛 = 25. The vertical dashed line in each panel indicates the true 766 

among-study variance. 767 
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Figure S14. Median of the posterior distribution of the among-study variance for the four 768 

priors with the best performance (i.e., Uniform (0, 10), Uniform (0, 100), Gamma, Folded-769 

t), number of replicates, number of studies, and true among-study variance. A) 𝑛 = 5; B) 770 

𝑛 = 25. The vertical dashed line in each panel indicates the true among-study variance. 771 

Figure S15. Median of the posterior distribution of the among-study variance for the four 772 

priors with the best performance (i.e., Uniform (0, 10), Uniform (0, 100), Gamma, Folded-773 

t), when the number of studies was low (k = 5). A) 𝑛 = 5; B) 𝑛 = 25. The vertical dashed 774 

line in each panel indicates the true among-study variance. 775 
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