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 2 

Bioenergetics and food web models are tools available for understanding and projecting the 33 

impacts of aquatic species invasions on food web structure and energy allocation of an 34 

ecosystem. However, uncertainty is inherent in modeling the impact of invasive species in novel 35 

ecosystems, as assumptions must be made about physiological responses to novel environments 36 

and interactions with existing (native and non-native) species. Here we use the four major 37 

Chinese carps (FMCC) in the Laurentian Great Lakes as a case study to categorize and describe 38 

the suite of uncertainties inherent in projecting the impact of invasive species with bioenergetics 39 

and food web models. We approach this case study in a decision analytic framework, describing 40 

structural uncertainties, environmental variation, partial observability, partial controllability, and 41 

linguistic uncertainty. Finally, we review and give suggestions for how the use of methods 42 

including adaptive management, scenario planning, sensitivity analyses, and value of 43 

information, as well as efforts to ensure clarity in language and model structure, can enable 44 

modelers and managers to reduce and account for key uncertainties and make better decisions for 45 

the control of invasive species. 46 

 47 
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Introduction 50 

Understanding how ecosystems might change following the establishment of invasive 51 

species is a core component of invasive species risk assessment and necessary to decide whether 52 

species management (i.e., prevention, eradication, or control) is warranted. The predominant 53 

mechanism by which invasive species exert effects on other species appears to be predation and 54 

competition for prey resources (Mills et al., 1993; Sturtevant et al., 2019; Zhang et al., 2019). At 55 

the extreme, species invasions can drastically change food web structure and function (e.g., 56 

Willson et al., 2011). Therefore, methods to identify the ecological impact of invasive species 57 

must be capable of determining how species assimilate prey in new environments and the 58 

impacts of this consumption on the food web as a whole.  59 

The ecological impacts of invasive species are often evaluated after invasions have 60 

occurred, which hinders preventative decision making. Forecasting tools are urgently needed to 61 

gauge how the recipient community could change in response to a new invader, which would 62 

help to prioritize management responses and resources. Two major approaches to forecasting 63 

ecological impacts of invasive species are to: (1) project individual or population level 64 

consumption by the invader on existing prey species (Cooke and Hill, 2010; Dick et al., 2014; 65 

Jackson et al., 2015) and (2) project direct and indirect effects of the invader on existing species 66 

by accounting for predator–prey interactions in the food web (Zhang et al., 2019). 67 

Bioenergetics (Kitchell et al., 1974; Ney, 1993; Winberg, 1956) and food web models 68 

(Zhang et al., 2019, 2016) describe the flow of energy (consumption and growth) between 69 

species and their environment under different ecological conditions. In particular, bioenergetics 70 

models estimate how much somatic growth can be supported by thermal conditions and prey 71 

availability and may therefore help determine whether sufficient prey exists to support an 72 

invasive species, as well as the consequences of consumption on prey resources (Johnson et al., 73 

2005). Food web models explain how changes in consumption and trophic relationships shift 74 

energy flows within a community, allowing the direct and indirect impacts of invasive species to 75 

be better understood (Kao et al., 2018, 2016, 2014; Zhang et al., 2019). Using these two tools 76 

may therefore provide a comprehensive evaluation of potential invasions. However, both 77 

bioenergetics and food web models are complex, leading to considerable uncertainty in 78 

parameterization and interpretation.  79 

When dealing with potential invasions, uncertainty can hinder our understanding of the 80 

probable effects of species on the ecosystem, as well as our ability to make decisions about how 81 
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to minimize these effects via prevention or control (Robinson et al., this issue). Most uncertainty 82 

is attributed to our limited knowledge about the invasive species and their adaptive potential in 83 

new environments. To fundamentally reduce uncertainty, modeling should be carried out with 84 

input from and feedback to field studies and invasive species managers. This review will serve as 85 

a way for modelers to communicate with biologists and managers by classifying and 86 

summarizing uncertainties associated with ecological models.  87 

Efforts to project the potential impacts of the four major Chinese carps (hereafter FMCC; 88 

bighead carp [Hypophthalmichthys nobilis], silver carp [H. molitrix], black carp 89 

[Mylopharyngodon piceus], and grass carp [Ctenopharyngodon idella]) on food webs of the 90 

Laurentian Great Lakes illustrate how reducing and accounting for critical uncertainties will 91 

increase the utility of the models for understanding potential effects and making informed 92 

decisions. The FMCC present high invasion risk to the Great Lakes (Cudmore et al. 2017, 2012; 93 

Drake et al., 2020), with grass carp already extant and reproducing in the Lake Erie basin 94 

(Embke et al., 2016). FMCC have invaded the Mississippi River system with silver carp 95 

becoming a dominant species in many river reaches (see Chapman et al., this issue for a review 96 

of the status of each species in North America). Species-specific bioenergetics and food web 97 

models have been developed, or are under development, to estimate the ecological dynamics of 98 

FMCC in the Great Lakes basin and account for the different trophic positions and feeding 99 

strategies (planktivorous, herbivorous, molluscivorous) of each species. While current models 100 

have provided significant insight, a more complete treatment of the uncertainty inherent in these 101 

models is needed to evaluate model projections and prioritize future research needs. The FMCC 102 

are an ideal example to emphasize the generality of uncertainty for any novel invader, as they 103 

have similar life histories, but each species will capitalize on different prey resources, and thus, 104 

pose different food web impacts. Determining how uncertainties within the models change 105 

projections within the recipient community is urgently needed to refine the scope and scale of 106 

potential ecological effects.  107 

Model uncertainty is complex and includes numerous components. We first describe a 108 

typology of uncertainties that can influence bioenergetics and food web models. This framework, 109 

which is rooted in decision analysis, lends structure to delineating uncertainties in terms of 110 

reducibility, system understanding, inaccuracies in observation, and incomplete influence of 111 

control actions on an invader. We then review and give suggestions for how efforts to evaluate 112 

these uncertainties in terms of value of information, scenario planning, and sensitivity analyses 113 
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can highlight key uncertainties that must be reduced to increase the utility of models for decision 114 

support and risk assessments. Throughout, we use projecting the ecological effects of FMCC in 115 

the Great Lakes as a case study to demonstrate model uncertainties and how they may be 116 

handled; however, these generalities are pertinent for how we handle modeling of new species in 117 

new environments.  118 

 119 

Typology of Uncertainties in Bioenergetics and Food Web Modeling 120 

There are five components of a decision analytic framework that can be used to 121 

categorize uncertainties in bioenergetics and food web modeling. Williams (1997) describes four 122 

uncertainties related to information used to model population processes when making harvest 123 

management decisions: structural uncertainty, environmental variation, partial observability, and 124 

partial controllability. In addition, Regan et al. (2002) included another common and important 125 

type of uncertainty: linguistic uncertainty. Categorizing uncertainties in this manner can help to 126 

identify general solutions for similar types of uncertainties. Below we describe each of the five 127 

categories of uncertainty in bioenergetics and food web modeling for the risk assessment of 128 

FMCC in the Great Lakes and discuss whether they can be resolved with more research effort 129 

(i.e., epistemic uncertainties) or are unresolvable and can only be accounted for (i.e., aleatory 130 

uncertainties). The information we describe is summarized in Table 1. 131 

 132 

Structural Uncertainty 133 

Structural uncertainty, or process uncertainty, refers to uncertainty regarding the 134 

biological and ecological processes of the system being modeled (Peterman, 2004; Williams, 135 

1997). Structural uncertainty can be expressed as either functional uncertainty, in which discrete 136 

models describe different hypotheses about states of knowledge, or parametric uncertainty, in 137 

which there is a large range of potential parameter values. Both of these forms of structural 138 

uncertainty are important in bioenergetics and food web models, particularly for invasive species 139 

like the FMCC, for which there are limited data to predict their behavior and effects in a new 140 

habitat. Functional uncertainties exist with regard to the effects of anthropogenic and 141 

environmental drivers in the present and future, such as climate change and land use change, as 142 

well as trophic interactions among the FMCC and between the FMCC and existing species. 143 

Parametric uncertainties exist in myriad forms for both food web and bioenergetics models, 144 

stemming from a lack of information about basic parameters for all species and uncertainty about 145 
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parameter estimates for invasive species in novel habitats. Below we describe several aspects of 146 

these uncertainties for the FMCC in the Great Lakes, focusing on climate change, land use 147 

change, trophic interactions, and general parametric uncertainties for the two model types. 148 

 149 

Effects of climate change  150 

Climate change is expected to make the Great Lakes’ thermal environment more 151 

favorable for the survival and establishment of FMCC (Alsip et al., 2020; Coulter et al., 2018). 152 

However, the influence of these large lakes on regional climate (Notaro et al., 2013), with their 153 

high interannual meteorological variation and complex hydroclimatic linkages (Gronewold et al., 154 

2015; Lenters et al., 2013; Xue et al., 2017), can hinder projection of the effects of climate 155 

change at time scales relevant for the ecological modeling of FMCC establishment and impacts. 156 

Effects of climate change on Great Lakes aquatic habitats may result in a deeper thermocline, 157 

warmer surface waters, a longer period of summer stratification, and milder winters (Brandt et 158 

al., 2002; Brooks and Zastrow, 2002; Collingsworth et al., 2017; McCormick and Fahnenstiel, 159 

1999); these changes would provide favorable thermal habitat for the growth of FMCC. To date, 160 

several bioenergetics models indicate growth potential, overwinter survival, and consumption 161 

rates of bighead, silver, and grass carps will increase under warming scenarios if food is not 162 

limiting (Alsip et al., 2020; Coulter et al., 2018; van der Lee et al., 2017). Thus, accounting for 163 

and, if possible, reducing the uncertainty in climate warming effects on the thermal environment 164 

is important to projecting FMCC growth dynamics for a given year in the near to distant future.  165 

Changes to the thermal environment and precipitation and wind patterns under a 166 

projected future climate may change the species composition and productivity of primary and 167 

secondary producers across the Great Lakes (Brinker et al., 2018; Mandrak, 1989; Reavie et al., 168 

2017). These projected changes in prey availability may differentially affect consumption and 169 

growth of FMCC and should be accounted for in modeling efforts. Bighead and silver carp, 170 

together known as the bigheaded carps, primarily feed on both phytoplankton and zooplankton, 171 

grass carp feed on benthic macrophytes, and black carp are primarily molluscivorous but also 172 

feed on other benthic organisms. Therefore, we expect each FMCC species to respond differently 173 

to changes in productivity related to climate change. For example, in oligotrophic areas, 174 

increased temperature could increase macrophyte growth, but in more eutrophic areas shading by 175 

algae may reduce light penetration and macrophyte growth, leading to site-specific differences in 176 

grass carp population dynamics. Similarly, increases in temperature and precipitation may also 177 
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increase the relative abundance of cyanobacteria biomass and the magnitude and frequency of 178 

harmful algal blooms (HABs) in eutrophic areas like Western Lake Erie or Green Bay, Lake 179 

Michigan (Michalak et al., 2013; Paerl and Huisman 2008). Increases in cyanobacteria may 180 

provide more food for bigheaded carps but would reduce mussel filtration (Vanderploeg et al., 181 

2009), and thus may indirectly affect black carp by reducing dreissenid mussel biomass (Drake 182 

et al. 2020). In future modeling efforts, reducing structural uncertainty regarding climate effects 183 

on primary and secondary production in different habitats of the Great Lakes and the consequent 184 

effects on FMCC energetics will improve understanding of when and where ecological impacts 185 

will be greatest, and help prioritize prevention and control efforts. 186 

In addition to the FMCC, other invasive species may be affected by climate change, 187 

resulting in greater uncertainty in bioenergetics and food web model outcomes. In the absence of 188 

HABs, increases in water temperature will increase filtration rates of dreissenid mussels, which 189 

could decrease available biomass of phytoplankton and zooplankton, thereby decreasing 190 

potential production of bigheaded carps while providing increased biomass of dreissenid mussels 191 

for black carp production. Conversely, filtration by bigheaded carps could reduce plankton 192 

biomass before it becomes available to dreissenid mussels. Alsip et al. (2020) used a biophysical 193 

model linked to a bioenergetics model to project that climate warming, by extending the 194 

stratification period, would reduce the time that dreissenid mussels could access prey throughout 195 

the whole water column, increasing the length of the growing season of bigheaded carps in Lake 196 

Michigan. Increases in water clarity and light resulting from dreissenid mussel filtration would 197 

stimulate the growth of aquatic plants, benefitting grass carp growth in nearshore habitats. 198 

Uncertainty in range expansion of other aquatic invasive species may have unknown or 199 

uncertain effects on the establishment of FMCC. For example, in northern areas of the Great 200 

Lakes, climate change has the potential to increase the abundance and food consumption of 201 

parasitic sea lamprey (Petromyzon marinus), as well as thermal habitat overlap between sea 202 

lamprey and the FMCC, potentially resulting in greater predation rates on FMCC adults. In 203 

southern areas of the Great Lakes, effects of climate change on sea lamprey are less certain, as 204 

temperatures may become unfavorable for its reproduction or growth (Lennox et al., 2020). 205 

Although future species invasions are difficult to predict, a better understanding of potential 206 

interactions among the FMCC and existing invasive species in the Great Lakes, similar to the 207 

work of Alsip et al. (2020), will reduce some of this structural uncertainty. 208 

 209 
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Land use change 210 

Modeling physiological, community, or ecosystem responses to land use change is often 211 

obscured by uncertainties about the progression of the rate and type of change, and the resulting 212 

effects on the biophysical environment that drive modeled processes. Using information from 213 

land use and human population models to inform ecological models can help resolve 214 

uncertainties in the aquatic ecosystem response to changes in land use and land management. 215 

Understanding how changes in land use will affect the availability of food or alter the thermal 216 

environment is necessary to project habitat quality and FMCC bioenergetics into the future. For 217 

example, annual US phosphorus loads are forecasted to increase by 3.4–5.8% from 2010 to 2040 218 

without accounting for the effect of climate change on hydrology (LaBeau et al., 2014), which 219 

could increase the frequency of large runoff events and thereby increase annual loads even more 220 

(Bosch et al., 2014; Michalak et al., 2013). This is particularly important for the planktivorous 221 

bigheaded carps for which simulation studies have demonstrated that growth is notably 222 

responsive to differences in phosphorus loads under different scenarios for Lakes Michigan 223 

(Alsip et al., 2020) and Erie (Zhang et al., 2016). In contrast, increases in large runoff events and 224 

urbanization that lead to increased sedimentation and turbidity in nearshore waters might 225 

negatively affect the biomass or quality of macrophytes and mussels as food for grass and black 226 

carps. Finally, an increase in frequency of runoff events may increase spawning success for all 227 

FMCC (Kolar et al., 2007; Kočovský et al. 2012), resulting in increased recruitment and 228 

population growth. Therefore, isolating the different effects of land use change (e.g., increased 229 

phosphorus loads, sedimentation, changes to water temperature and hydrology) on survival, 230 

growth, and establishment of each carp species can improve understanding of how expected 231 

changes in land use could influence invasion risk. 232 

 233 

Trophic interactions 234 

Uncertainty about the diet of invaders in novel environments also presents a challenge for 235 

improving model projections. Planktivorous bigheaded carps are capable of surviving on diets 236 

dominated by detritus or cyanobacteria, including Microcystis (Anderson et al., 2016; Vörös et 237 

al., 1997; Zhang et al., 2016), making them highly adaptable to new environments. Accounting 238 

for this dietary breadth in modeling efforts demonstrated a > 4-fold increase in the volume of 239 

suitable habitat available for bigheaded carps compared to when they were restricted to feeding 240 

on phytoplankton alone (Alsip et al., 2019). Food items previously incorporated into models for 241 
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bigheaded carps include detritus/dreissenid biodeposits, Microcystis, green algae, and 242 

macrozooplankton (Alsip et al., 2019; Anderson et al. 2017, 2015; Cooke and Hill, 2010). Future 243 

models of bigheaded carps should also include microzooplankton (e.g., rotifers, copepod nauplii, 244 

and dreissenid veligers) in carp diets as they made up about 74% of total zooplankton biomass in 245 

Lake Michigan (Thomas et al., 2017).  246 

There is general uncertainty about whether or how black and grass carps will show 247 

preference for prey based on the quantity and quality of food items in the Great Lakes. For 248 

bioenergetics model simulations, reliable prey abundance estimates are necessary to develop 249 

credible projections of carp biomass and impact. Although estimates for benthos biomass are 250 

available for the Great Lakes, macrophyte biomass and species composition are poorly sampled, 251 

which could ultimately affect decisions for the control of these species (Robinson et al., this 252 

issue). In addition, uncertainty about black carp prey preferences has implications for the 253 

response of the food web components that are consumed (Smyth et al., 2020). 254 

Whether the FMCC consume fish larvae also is highly uncertain. Although there are no 255 

field observations of the FMCC eating fish eggs or larvae, these invasive carps would occupy 256 

areas that are spawning and nursery habitats for many native fishes. Moreover, black carp have 257 

been observed to consume larval fishes in controlled laboratory experiments, although there is no 258 

conclusive evidence they will consume larval fishes in natural environments (Hung et al., 2014). 259 

Alewife (Alosa pseudoharengus) serve as an example of the potential for invasive species to 260 

have unanticipated effects on larval fishes. Alewife were not reported to consume larval fishes in 261 

their native habitat, but in the Great Lakes, their consumption of larval fishes can significantly 262 

decrease the recruitment of many fish species (Mason and Brandt, 1996; Dettmers et al., 2012; 263 

Kao et al., 2014; Madenjian et al., 2008). Incorporating potentially novel foods, such as larval 264 

fishes (e.g., Zhang et al., 2016), into future models is needed to evaluate the implications of these 265 

uncertainties on the establishment and impact of FMCC in the Great Lakes. 266 

In addition to consumption of existing prey species by non-native species, the adaptation 267 

of existing predators to new prey resources also affects the potential abundance of non-native 268 

species. Uncertainty in this adaptation, however, obscures projections related to the probability 269 

and rate of proliferation of a new invader. Existing predators first must recognize the new species 270 

as prey, which creates a time lag between invader establishment and the onset of predation by 271 

existing species. The length of this time lag depends on the behavior of the new species, its 272 

abundance relative to existing prey, and detection by the predator (Abrams and Matsuda, 2004). 273 
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Moreover, predators switching their diet to the FMCC may facilitate co-existence of some 274 

competing species, such as bigheaded carps and existing planktivores (Abrams and Matsuda, 275 

2004; Murdoch, 1969; Murdoch et al., 1975).  276 

Uncertainty in occurrence and strength of these trophic interactions is most important for 277 

models that attempt to project FMCC population growth, asymptotic population size, and effects 278 

on Great Lakes food webs. For example, many piscivores in Lake Erie are generalists and 279 

opportunists (Johnson et al., 2005). The reproducing population of grass carp in western Lake 280 

Erie (Embke et al., 2016) may constitute a new prey source for these predators, as has been 281 

observed for round goby (Neogobius melanostomus; Foley et al., 2017). However, the rapid 282 

growth in body size of FMCC juveniles creates uncertainty in the potential for similar changes in 283 

Great Lakes piscivore diets (see Cudmore et al., 2017, 2012; Drake et al., 2020). In addition, 284 

some predators are known to feed on bigheaded carps in their introduced range of the Illinois and 285 

Upper Mississippi Rivers. Mesocosm studies indicate largemouth bass (Micropterus salmoides) 286 

preferred bighead carp over silver carp or native prey fishes (Sanft et al., 2018), while additional 287 

predator diet studies and mesocosm experiments suggest silver carp is less preferred than native 288 

prey fishes (Wolf and Phelps, 2017). Adult bigheaded carps have been found in stomachs of 289 

large blue catfish (Ictalurus fircatus; Locher, 2018), whereas several smaller native predators 290 

such as white bass (Morone chrysops), shortnose gar (Lepisosteus platostomus), and flathead 291 

catfish (Pylodictis olivaris) will readily consume juvenile silver carp when they are abundant 292 

(Anderson, 2016). Reducing uncertainty associated with predation on FMCC by Great Lakes 293 

species would improve our understanding of the degree to which predation affects establishment 294 

probability and the levels of achievable FMCC biomass.  295 

Modeling bioenergetics of invasive species and their impacts on food webs requires 296 

accounting for indirect trophic interactions and cascading effects in a large, complex ecosystem, 297 

which leads to highly uncertain outcomes. Managers must account for these uncertainties when 298 

considering methods to control and mitigate the effects of these species. For example, grass carp 299 

will consume aquatic macrophytes that provide spawning or nursery habitat for native species 300 

like centrarchids, esocids, percids, and numerous imperiled species (Cudmore et al., 2017; van 301 

der Lee et al., 2017). These effects would be most severe in wetland habitats such as Lake St. 302 

Clair and other large, shallow embayments that currently support macrophytes and wetland 303 

fishes. Dead benthic macrophytes are an important source of detritus for benthic invertebrates in 304 
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nearshore habitat, so grass carp expansion could lead to bottom-up control on the production of 305 

benthos that may serve as prey for benthivores.  306 

If bigheaded carps are introduced to the Great Lakes, their consumption could reduce the 307 

biomass and size of zooplankton prey for planktivorous larval, juvenile, and adult fishes (e.g., 308 

alewife), thereby reducing their growth and recruitment (Minder and Pyron, 2018; Sampson et 309 

al., 2009). A decrease in alewife would negatively affect biomass of Chinook salmon 310 

(Oncorhynchus tshawytscha), which rely on alewife for prey (Dettmers et al., 2012; Kao et al., 311 

2016, 2018). Alewife also prey on fish early life stages (Mason and Brandt, 1996) and cause 312 

thiamine deficiency syndrome, which leads to early life mortality in lake trout (Salvelinus 313 

namaycush; Czesny et al., 2009). If competition for plankton by bigheaded carps causes a 314 

decline in alewife populations, recruitment of some predator species, such as lake trout and 315 

walleye (Sander vitreus), could increase. However, bigheaded carps had only minor negative 316 

effects on native age-0 fish in the Illinois River, perhaps because abundant age-0 bigheaded 317 

carps might release age-0 native fish from predation pressure (DeBoer et al., 2018).    318 

The FMCC have complementary diets, and in China, are raised together in aquaculture 319 

ponds where they feed on different prey types, at different depths, and thus avoid competition 320 

(Lin, 1982). However, interactions among these species in introduced habitats present potential 321 

uncertainties. The bigheaded carps feed on plankton, but finer gill raker spacing of silver carp 322 

relative to bighead carp allow it to access smaller particles (Kolar et al., 2007). In North 323 

American rivers, silver carp appear to be in better condition and more abundant than bighead 324 

carp where the two co-occur in high densities, implying that silver carp are a superior competitor 325 

for plankton in mesotrophic and eutrophic riverine ecosystems (DeBoer et al., 2019). However, 326 

silver carp’s higher energy density requires them to consume more energy than bighead carp to 327 

achieve similar growth. This implies that, all else being equal, silver carp need to consume more 328 

per gram body weight to grow than do bighead carp (Alsip et al., 2019). In food-rich 329 

environments, this would be a successful strategy as prey abundance would not limit silver carp 330 

growth. However, in the food-limited habitats of the Great Lakes, fishes that can survive on less 331 

food would likely be more successful. Furthermore, typical species-specific differences in gill 332 

raker morphology among the bigheaded carps may change when bighead x silver carp hybrids 333 

are produced in the wild. Resulting hybrids can exhibit significant differences in gill raker 334 

morphology (Mozsár et al., 2017) that could affect foraging efficiency and, thus, add an 335 

additional layer of uncertainty.  336 
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The interactions between black carp and other FMCC could be affected by the ability of 337 

black carp to consume dreissenid mussels (reviewed in Nico et al. 2005). Black carp 338 

consumption of large numbers of dreissenid mussels could increase the availability of primary 339 

production, which is now sequestered by the mussels, to zooplankton and would benefit 340 

bigheaded carps. Such consumption by black carp is unlikely to occur at a lake-wide scale 341 

because of cold bottom temperatures in some lakes, but it could occur in isolated patches of 342 

warmer preferred temperatures (Drake et al., 2020; Smyth et al., 2020). On the other hand, 343 

reduced dreissenid filtration could result in decreased light availability for benthic macrophytes, 344 

which would limit food availability to grass carp. Potential interactions between grass and black 345 

carps may be weaker when benthic macrophytes are abundant, but then may intensify after 346 

benthic macrophytes are greatly reduced and grass carp begin to consume an increasing 347 

proportion of the benthos. These uncertainties should be accounted for in bioenergetics modeling 348 

efforts, as these potential interspecific interactions could affect FMCC performance in new 349 

environments. 350 

 351 

Parametric uncertainty in food web models 352 

A food web model can potentially include hundreds of parameters. As such, the largest 353 

source of uncertainty in these models involves estimating parameters such as biomass, 354 

consumption rate, and diet composition (e.g., Christensen and Walters, 2004). For example, 355 

uncertainties in fish biomass estimates could include estimating abundance from catch-per-unit-356 

effort data, converting fish abundance into biomass with averaged individual weight, spatial and 357 

temporal averages, and fishing gear catchability. Sensitivity analyses could be conducted to 358 

determine the effect of parametric uncertainty on model outputs and to understand where efforts 359 

are best placed to reduce parametric uncertainty.  360 

Recently, Rutherford et al. (in press) used Ecopath with Ecosim (EwE) food web models 361 

(Christensen and Walters, 2004; Heymans et al., 2016) to investigate potential food web effects 362 

of bigheaded carps across habitats in Lakes Michigan, Huron, and Erie. The simulated effects of 363 

bigheaded carps were highly sensitive to the values set for prey vulnerability, a parameter in the 364 

EwE model which integrates many characteristics of the recipient ecosystem that may affect prey 365 

consumption by predators. These characteristics include restrictions of predator or prey 366 

spatiotemporal distributions through predation avoidance, habitat limitations, agonistic behavior, 367 

and physical transport (Ahrens et al., 2012). Prey vulnerability is difficult to measure in the field 368 
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and tends to be a calibrated parameter. Rutherford et al. (in press) borrowed values of plankton 369 

prey vulnerability from reference planktivorous fishes in the model ecosystem, which likely 370 

underestimated prey availability to bigheaded carps because invasive species tend to have better 371 

feeding efficiency (Cuthbert et al., 2019). Thus, studies that compare feeding efficiency between 372 

the FMCC and their food competitors in the same environment would improve estimation of 373 

vulnerability and, consequently, biomass and food web impact of the FMCC.   374 

 375 

Parametric uncertainty in bioenergetics models 376 

In bioenergetics models, parametric uncertainty has largely resulted from a lack of 377 

species-specific parameters and physiological functions. Compared with well-established 378 

bioenergetics models (e.g., lake trout; Stewart et al., 1983), current bioenergetics models of 379 

bigheaded carps lack species-specific parameters for egestion, excretion, and specific dynamic 380 

action (Alsip et al., 2019; Anderson et al., 2017, 2015). Parameter borrowing is a common 381 

approach when species-specific information is not available, but finding bioenergetics model 382 

parameters of a surrogate fish can be difficult (Ney, 1993). For example, allometric relationships 383 

of egestion and excretion for bioenergetics models of bigheaded carps were borrowed from 384 

brown trout (Salmo trutta; Elliot, 1976), which can be problematic as bigheaded carps do not 385 

have true stomachs like brown trout (Kolar et al., 2007). For the grass carp bioenergetics model 386 

that includes more species-specific parameters, van der Lee et al. (2017) used a Monte Carlo 387 

approach to investigate effects of parametric uncertainty and found that consumption estimates 388 

were particularly sensitive to variation in parameters associated with respiration and egestion.  389 

Further investigation of respiration parameters is warranted to reduce uncertainty in 390 

FMCC bioenergetics models, as respiration accounts for a species’ greatest energetic loss, and 391 

consumption requirements for bigheaded carps, and likely other FMCC, are quite sensitive to 392 

adjustments in respiration parameters (Cooke and Hill, 2010). While there are numerous reports 393 

on grass carp oxygen consumption and derived allometric relationships for respiration (reviewed 394 

in van der Lee et al., 2017), there is only one set of reported respiration parameters and 395 

allometric relationships for each of bighead and silver (Hogue and Pegg 2009), and black carps 396 

(Lv et al. 2018; Smyth et al. 2020). Comparing respiration parameters for FMCC between 397 

studies can help resolve uncertainties in metabolism. Further, reducing uncertainty in activity 398 

costs could refine understanding of the ability of FMCC to maintain weight while moving 399 

through colder and less productive regions in the Great Lakes.  400 
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There also is great uncertainty in the parameters describing foraging and filtration 401 

efficiency for FMCC in the Great Lakes. For example, parameters in the model currently used to 402 

approximate bighead and silver carp filtration rate as a function of fish weight were derived from 403 

juvenile bigheaded carps (Smith, 1989). Recent bioenergetics models have extrapolated this 404 

relationship to project growth potential of adult bigheaded carps (4.35–5.48 kg) in Great Lakes 405 

habitats (Alsip et al., 2020, 2019; Anderson et al., 2017, 2015; Cooke and Hill, 2010). 406 

Additionally, prey- and size-specific foraging rates and filtration efficiencies have not been 407 

incorporated into bighead and silver carp bioenergetics models, but experimental work that 408 

estimates retention efficiencies, like that of Smith (1989), could be useful. Measuring filtration 409 

and retention efficiencies, along with evaluating the effect of size-specific foraging rates on 410 

growth potential, should be included in future bioenergetics modeling efforts for bigheaded 411 

carps. This is particularly important for reducing uncertainties in growth potential in open water 412 

habitats of the Great Lakes where bigheaded carps will be more food limited. 413 

The large geographic ranges of the FMCC lead to wide ranges of parameter values 414 

reflecting their broad physiological tolerances and plasticity, as well as the various methods and 415 

motivations that were behind the research reporting these values (Cooke, 2016). With 416 

increasingly wide ranges for parameter values, parameter estimation becomes more uncertain. To 417 

address this, Cooke (2016) stated that researchers should account for genotypic variation and 418 

phenotypic plasticity among geographically distinct populations. For example, bighead and silver 419 

carp spawning patterns in the Wabash River, Indiana, differed from other parts of the world 420 

(Coulter et al., 2013). Recent evidence also suggests that genetic variation and differential gene 421 

expression can occur at even finer spatial scales (Jeffrey et al., 2019; Stepien et al., 2019). 422 

Therefore, the improvement of future models of the FMCC used for Great Lakes risk 423 

assessments is dependent on parameter refinement that focuses on deriving physiological 424 

parameters from North American populations.  425 

 426 

Environmental Variation  427 

Environmental variation, also described as natural variation (Peterman, 2004), includes 428 

variation in any abiotic and biotic component and/or ecosystem process that is external to FMCC 429 

modeling but can theoretically influence model outcomes. Variations in the abiotic environment, 430 

including episodic changes in weather (e.g., random variation in climate, in contrast to long-term 431 

climate change) and heterogeneity in the aquatic habitat (e.g., lake bottom features or water 432 
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temperature), may influence variation in the biotic environment, and both can directly influence 433 

FMCC modeling. For example, episodic changes in temperature can directly influence FMCC 434 

physiological processes, whereas the heterogeneity of light penetration may indirectly affect 435 

FMCC model outcomes by altering the distribution and abundance of prey. Although this type of 436 

uncertainty cannot be reduced, it must be accounted for in modeling efforts (Williams, 1997).  437 

Environmental variation involves temporal or spatial differences in ecosystem 438 

components (e.g., distribution of animals and water temperatures) or processes (e.g., predation 439 

and consumption; nutrient and energy cycles) and depends on the spatial and temporal scale of 440 

observation. Most ecosystem components and processes underlying bioenergetics and food web 441 

models exhibit some form of environmental variation, including temperature, primary 442 

production, prey availability and energy density, consumption, and trophic transfer efficiency 443 

(e.g., Smyth et al., 2020; van der Lee et al., 2017). Therefore, the ability of bioenergetics and 444 

food web models to reflect current conditions and project future conditions depends on the 445 

degree of environmental variation within an ecosystem, the extent to which models can account 446 

for such variation, and whether future conditions will exhibit the same type of variation.  447 

Several authors have shown that the projected establishment and impact of the FMCC in 448 

the Great Lakes are influenced by environmental variation. The temperatures experienced by the 449 

FMCC will differ based on the location of an introduced population, the behavioral 450 

thermoregulation of each species, as well as randomness in thermal regime, all of which will 451 

drive the timing and intensity of life history processes. Among-year and spatial climate 452 

variability will influence temperature-dependent processes in grass and black carps, including the 453 

onset of spawning; young-of-year recruitment, growth, and overwinter survival; and, the length 454 

of the cold-water period over which grass and black carps limit consumption (Jones et al., 2017; 455 

Smyth et al., 2020). Therefore, accounting for temporal and spatial variation in realized thermal 456 

use, and other temperature-dependent processes, could be an important source of uncertainty 457 

when projecting FMCC impacts in the Great Lakes (e.g., van der Lee et al., 2017).  458 

Environmental variation can also manifest as spatial and temporal differences in the 459 

availability of prey, with implications for the consumption and impact of FMCC in different 460 

habitat areas. For example, the area of food availability provided to bigheaded carps by 461 

cyanobacteria blooms in Lake Erie could encompass several hundred to several thousand 462 

kilometers, depending on the year of observation (Anderson et al., 2015). These differences, 463 

combined with increasing phytoplankton availability during the study period, suggested that a 464 
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small adult bighead carp could attain 20–81% of body weight in a year based on consumption in 465 

open waters of the western basin (Anderson et al., 2015). Phytoplankton availability also has 466 

been shown to differ between open waters and coastal embayments in Lake Michigan, raising 467 

uncertainty about the ability of bighead carp to maintain weight in the open waters of Lake 468 

Michigan (Anderson et al., 2017). The potential for bighead carp to exhibit positive growth in 469 

open-water areas of the Great Lakes will differ among lake basins, with positive growth expected 470 

in some, but not all, open water environments of the Great Lakes (Anderson et al., 2017, 2015). 471 

However, these analyses considered phytoplankton or Microcystis as the sole prey resource 472 

(Anderson et al., 2017); the availability and use of other planktonic food items, such as 473 

dreissenid veligers or detritus (e.g. Alsip et al., 2019) could bolster prey availability.  474 

Not all forms of environmental variation can be effectively considered within 475 

bioenergetics and food web models. Often, assumptions are made that homogenize model inputs 476 

or models are built at such coarse scales that such variability becomes less important (e.g., 477 

Mason and Brandt, 1996). However, to address the critical role of environmental variation 478 

(chiefly temperature and food availability) on model outcomes, many authors have favored a 479 

simulation approach, whereby the key sources of environmental variation are tested within the 480 

modeling effort (e.g., temperature effects in van der Lee et al., 2017; prey utilization in Zhang et 481 

al., 2016). As with any modeling effort, it is necessary to communicate the forms of 482 

environmental variation being considered and their implications on system dynamics. Effectively 483 

accounting for environmental variation within bioenergetics and food web models requires that 484 

the temporal and spatial variability of relevant environmental components and processes be well 485 

understood before decisions are made regarding model development. 486 

 487 

Partial Observability 488 

Partial observability (or observation error; Peterman, 2004) results from an imperfect 489 

ability to observe true system dynamics (Williams, 1997). There are three aspects that contribute 490 

to this uncertainty related to invasive species. First is uncertainty about the ecosystem into which 491 

the species will arrive. This can result from monitoring programs that are not adequately 492 

designed to detect the information needed to consider invasive species effects, or from a lack of 493 

precision in the actual tools and methods used for observation. Second is uncertainty about the 494 

invasive species. This is related to parametric uncertainty (see above) and the fact that 495 

predictions about ecological impacts will frequently involve extrapolation to new or projected 496 
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environmental conditions and borrowing parameter values from related species. Finally, there is 497 

uncertainty about how a species will interact with a novel ecosystem. Cooke and Hill (2010) 498 

were the first to develop a bioenergetics model to assess whether bigheaded carps could survive 499 

and grow in the Great Lakes. While some of their model parameters were informed by both 500 

existing and new research, they needed to use parameter values from other species (partial 501 

observability from extrapolation) and a sample of offshore sites to represent ecosystem 502 

conditions (partial observability from existing monitoring programs). They concluded that 503 

bigheaded carps could only survive in restricted eutrophic areas of the Great Lakes (e.g., western 504 

Lake Erie or Green Bay, Lake Michigan). Anderson et al. (2015) built upon the Cooke and Hill 505 

(2010) model by updating it with some species-specific parameter values and used satellite 506 

imagery of chlorophyll-a to broaden the coverage of ecosystem conditions. Reducing these 507 

observation uncertainties resulted in an expanded area of suitable habitat projected for bigheaded 508 

carps. Focusing on Lake Michigan, Alsip et al. (2019) evaluated surface and subsurface biomass 509 

inputs for three different types of prey (phytoplankton, zooplankton, and detritus), and projected 510 

a much larger area of suitable habitat than was projected by Anderson et al. (2017). Contrary to 511 

the expectation that uncertainty will expand the possible outcomes from models making them 512 

less useful, this example demonstrates that partial observability can underestimate invasion risk. 513 

 514 

Partial Controllability 515 

Partial controllability (or implementation uncertainty; Peterman, 2004) results from the 516 

differences between intended and realized outcomes of management actions (Williams, 1997). 517 

Any action for prevention and control can vary in its effectiveness based on unexpected events, 518 

catchability of the species, potential errors in predicting the effectiveness of actions, human 519 

error, or lack of human willingness to follow management regulations. Some aspects of invasive 520 

species management should be under greater control than is faced by natural resource 521 

management because more of the actions are carried out by the management agencies. For 522 

example, unlike sport or commercial fishing regulations (e.g., catch limits) that rely on 523 

stakeholder compliance, invasive species removal efforts are largely enacted by agency staff, 524 

leading to less uncertainty related to predicted versus realized effects of the removal action. This 525 

should reduce partial controllability associated with a willingness to follow regulations (human 526 

nature). However, prevention is also targeted with public outreach and changes in human 527 

behavior designed to reduce the risk of moving invasive species (e.g., bait releases, cleaning 528 
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boats, etc.), which rely on human willingness to apply these actions and would be associated 529 

with greater implementation error (Drake et al., 2015). To date, partial controllability has not yet 530 

been considered when planning management strategies for FMCC. 531 

 532 

Linguistic Uncertainty 533 

Linguistic uncertainty, which is a hindrance to biological understanding, includes 534 

categories such as vagueness, context dependence, ambiguity, indeterminacy of theoretical 535 

terms, and underspecificity (Regan et al., 2002). Many of the efforts at modeling bioenergetics 536 

and food web effects of the FMCC on the Great Lakes require diverse teams of researchers. In 537 

any team setting, these categories of linguistic uncertainty must be guarded against, such that all 538 

members of the research team have complete clarity about model structure, parameter values and 539 

descriptions, and other aspects of the model, like spatial and temporal scale. Even in the 540 

development of this manuscript, substantial effort was spent by the authors to arrive at a common 541 

set of terms. In addition, communication of modeling outcomes to managers and stakeholders 542 

requires ensuring that terms are fully understood and agreed upon. Many of these linguistic 543 

uncertainties are also related to risk assessment, including discussions around terms such as the 544 

“impact” of an invasive species (e.g., ecological impact of grass carp; Cudmore et al., 2017), or 545 

how to best define establishment of an invasive species (Kočovský et al., 2018b). In addition, 546 

changes in the ecosystem related to invasion risk should be discussed in terms of values and 547 

objectives, as modelers and managers may have different perspectives on the effects of different 548 

magnitudes of change in a system. For example, a change in fish biomass within the large 549 

bounds of uncertainty in a food web model may seem insignificant to a modeler but may be quite 550 

concerning to a manager. Finally, the terminology related to FMCC can be confusing for 551 

stakeholders and the general public, which can lead to misunderstandings related to model 552 

outputs and risk assessments. Kočovský et al. (2018a) described myriad linguistic uncertainties 553 

with using the term “Asian carp”, including confusion among the public and professionals about 554 

which species are being discussed, confusion in translation to Chinese and other languages, and 555 

miscommunication among cultures. Although linguistic uncertainty is not quantified in 556 

bioenergetics and food web models, the related confusion can have lasting effects on 557 

development of these models and communication of results.  558 

 559 

Accounting for Important Uncertainty  560 
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 We have used a decision analytic framework to describe and categorize the uncertainties 561 

inherent in modeling the bioenergetic and food web effects of the FMCC on the Great Lakes 562 

ecosystem. The list of uncertainties is long, but we argue that there are approaches that can be 563 

used to account for and, when possible, reduce these uncertainties. We describe methods for 564 

determining how to allocate research effort to most benefit risk assessments and management 565 

decisions, as well as approaches to account for irreducible uncertainties in modeling efforts. In 566 

all cases, we provide guidance and suggestions (see Table 1 for synthesis) but acknowledge that 567 

at times the way to account for these uncertainties is less clear. 568 

 569 

Structural Uncertainty  570 

Research efforts to reduce or resolve structural uncertainties, such as adaptive 571 

management, will likely be part of FMCC control plans in the Great Lakes moving forward (see 572 

Robinson et al., this issue and Herbst et al., this issue for an example with grass carp). However, 573 

as is the case with most aspects of invasive species control, we have described many sources of 574 

structural uncertainty that could be reduced. We suggest that these structural uncertainties could 575 

be considered in terms of their ultimate effects on decisions. Those uncertainties that affect a 576 

control and prevention decision, and that can be reduced (“important uncertainties”), could then 577 

be prioritized for further research and adaptive management efforts (Runge et al., 2011). 578 

Determining the value of gathering information about a particular uncertainty can aid 579 

biologists and managers in ascertaining the important uncertainties for invasive species impacts, 580 

and related aspects of control and prevention. A suite of calculations, known as expected value 581 

of information, provides a method for elucidating these important uncertainties (Runge et al., 582 

2011). This method describes the value of gathering new information in terms of the difference 583 

between enacting a management or control action after gathering new information and enacting 584 

the action without the new information (Raiffa and Schlaifer, 1961; Runge et al., 2011). By 585 

calculating the value of new information in terms of gains in outcomes from management 586 

actions, research and monitoring efforts can be directed at those uncertainties that have the 587 

greatest value of information.  588 

Three value of information measures are relevant for bioenergetics and food web 589 

modeling of FMCC: expected value of perfect information (EVPI), partial expected value of 590 

information (EVPXI), and expected value of sample information (EVSI). Each of these measures 591 

provide an understanding of how resolving structural uncertainty, such as what we describe for 592 
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FMCC, might lead to better overall management and control responses. Expected value of 593 

perfect information describes how important a gain in information is to improving the 594 

performance of the control or management action (Runge et al., 2011). In cases like FMCC in 595 

the Great Lakes, EVPXI highlights how reductions in various components of uncertainty, like 596 

particular effects of climate change, can improve management actions, whereas EVSI can 597 

indicate how gathering a sample of information, rather than completely resolving an uncertainty, 598 

can improve management outcomes (Runge et al., 2011). Each of these measures can be used to 599 

inform bioenergetics and food web modeling for FMCC, but they will require the elucidation of 600 

specific objectives for control decisions, description of formal models of system uncertainties, 601 

and a set of control actions designed to achieve the objectives (Runge et al., 2011). 602 

In addition to value of information, scenario planning (Peterson et al., 2003) can be 603 

useful for understanding the effects of uncertainties related to climate or land use change on 604 

FMCC and their effects on the Great Lakes. By creating plausible scenarios of future climate or 605 

land use, researchers can evaluate the relative differences in model outputs under different 606 

scenarios. For example, recent work on scenarios of phosphorus loading in Lake Michigan 607 

indicated that the growth potential of bigheaded carps is especially responsive to this variable 608 

(Alsip et al., 2020). Describing multiple future scenarios and related predictions for ecosystem 609 

change is also known as predictive control (Allen and Gunderson, 2011; Game et al., 2014). 610 

Although tools like value of information and scenario planning are helpful for elucidating 611 

important uncertainties, accounting for all parametric uncertainty in bioenergetics and food web 612 

models can be onerous. Sensitivity analyses for these models are difficult to perform and can be 613 

resource intensive, but we suggest it is paramount to understand how parameters affect the 614 

results of the models. As an example, the Pedigree routine in Ecopath documents the confidence 615 

levels of input data based on their origin (Christensen et al., 2008). The uncertainty related to 616 

these parameter estimates in Ecopath was evaluated using a Monte Carlo algorithm in the 617 

Ecoranger module in earlier model versions (Stewart and Sprules, 2011; Currie et al., 2012). 618 

Although the Ecoranger module could provide a heuristic uncertainty analysis for Ecopath input 619 

parameters, it was rarely used in published studies owing to a very data intensive task to describe 620 

the probabilistic distributions for all input parameters (Christensen et al., 2008). This module was 621 

removed in more recent versions of the model but is proposed to be included in future versions. 622 

The probabilistic distributions of model parameters associated with FMCC could be identified by 623 

a structured expert judgment process, which weights and aggregates expert knowledge on key 624 
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uncertainties of invasion risk and quantifies uncertainty in a stochastic manner (Wittman et al. 625 

2015; Zhang et al. 2016). Concerted efforts to evaluate sensitivity to parametric uncertainty, 626 

similar to these examples, will enable researchers to begin to focus on uncertainty reduction. 627 

Furthermore, innovative adaptions of tools like structured expert judgement that are common in 628 

other disciplines should be explored as a means of addressing uncertainties in FMCC risk 629 

assessments. 630 

 631 

Environmental Variation 632 

 Environmental variation can be accounted for at the data gathering and modeling stages. 633 

Environmental monitoring can provide modelers with better information about the range of 634 

anticipated variation in a system (Williams, 1997), which can enable better control responses for 635 

invasive species like the FMCC. For example, when considering the variation in spatial and 636 

temporal availability of prey items, monitoring programs can be implemented to identify how 637 

prey density varies within the ecosystem. Accounting for this uncertainty in model inputs can 638 

ensure that the range of possible outcomes is projected (Nichols et al., 2011). This can be 639 

accomplished implicitly, by incorporating the range of potential values for environmental state 640 

variables, or explicitly, by linking environmental variables with vital rates through functional 641 

relationships, such as a relationship between temperature and survival (Nichols et al., 2011).  642 

 Earlier we acknowledged structural uncertainty related to climate change and defined 643 

environmental variation as any naturally occurring variation unrelated to climate change. 644 

Environmental variation includes random variation in climate, which typically occurs at temporal 645 

or spatial scales that are finer than those needed to evaluate climate change signals. However, 646 

these two sources of uncertainty become more difficult to dissociate when confronting how 647 

climate change is presumed to affect environmental variation. Data collected for deriving inputs 648 

of ecological models are often assumed to represent stationary processes, but a changing climate 649 

will lead to mischaracterization of future environmental variation when using historical data 650 

(Johnson et al., 2015; Milly et al., 2008; Nichols et al., 2011). In the face of climate change, 651 

Nichols et al. (2011) suggested that models for making management decisions should be 652 

developed to incorporate changing probabilistic distributions of environmental variables over 653 

time. In addition, models that update probabilistic distributions of environmental variables by 654 

more heavily weighting recent monitoring data can begin to account for the future effects of 655 

climate change on environmental variability (Johnson et al., 2015). Accounting for projected 656 
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future changes in environmental variation through evolving probabilistic distributions of external 657 

inputs of forcing, or changing the weighting schemes for monitoring data, could be incorporated 658 

into bioenergetics and food web models, allowing for shifts in ranges of environmental variables 659 

and their ecological effects.  660 

 661 

Partial Observability 662 

Uncertainty related to partial observability is reducible through increased monitoring 663 

efforts and incorporating a diversity of habitats and long-term assessments that can lead to more 664 

precise estimates of variables and better information about habitat (Williams, 1997). This is 665 

particularly salient when projecting the ecological impacts of invasive species like the FMCC in 666 

a novel ecosystem. As with many uncertainties, collecting more data can help to reduce partial 667 

observability. For example, the studies described above of increasing habitat information, such 668 

as chlorophyll-a coverage (Anderson et al., 2015) and depth (Alsip et al., 2019), show how 669 

inclusion of more and better data can provide a more accurate projection of habitat suitability for 670 

bigheaded carps. If more data can be collected to reduce observation error in parameters that 671 

affect the projection of ecological impacts and the decision-making process for control or 672 

prevention, then we believe this is the best option available. However, identifying the key 673 

uncertainties related to partial observability will often require a value-of-information analysis to 674 

first understand where to allocate efforts to reduce these uncertainties. Therefore, it is paramount 675 

to account for these uncertainties in predictive models, especially when working with invasive 676 

species. When applying a modeling exercise, partial observability can be included by (1) 677 

considering alternative model structures, (2) considering the full range of possible states and 678 

implications for the assessment of risk or management actions, and (3) fully considering the tails 679 

of parameter distributions and the potential for surprises (e.g., Hilborn, 1987). These 680 

considerations will enable researchers and managers to understand where to direct efforts for 681 

increased monitoring to reduce partial observability, which requires iterative interactions among 682 

researchers, managers, and modelers. 683 

 684 

Partial Controllability 685 

Quantifying uncertainty is a common best practice, and applies to partial controllability. 686 

Both the expectation (mean) and distribution of the uncertainty should be specified and could be 687 

improved by including covariates that affect the uncertainty. For example, the willingness of 688 
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individuals to apply control actions may be affected by local conditions. The full range of 689 

compliance may span from low to high, but if it is dependent on local conditions, the 690 

probabilistic distribution may actually be bimodal. Ultimately, a true understanding should 691 

consider the constraints or limitations of management or control actions, as well as policies.  692 

By incorporating bioenergetics and food web modeling into a larger decision analysis 693 

framework (e.g., structured decision making or adaptive management), ecologists can work with 694 

social scientists, decision makers, and managers to understand the full set of management actions 695 

and their implementation capacity when building predictive models of ecological impacts. 696 

Although predicting human behaviors related to management actions is difficult, including a 697 

suite of experts and stakeholders can reduce the uncertainty surrounding the implementation of 698 

control actions (Robinson et al., 2019). Models then can be used to evaluate how management 699 

strategies are affected by partial controllability. This can be accomplished by building scenarios 700 

(e.g., Lauber et al., 2016) that consider the range of events and implementation of management 701 

actions, assessing how robust management actions are to implementation uncertainty, and 702 

evaluating if managers need multiple tools to manage the consequences of partial controllability 703 

(e.g., Coulter et al., 2018).  704 

 705 

Linguistic uncertainty 706 

 Regan et al. (2002) described five sources of linguistic uncertainty and potential means to 707 

reduce it. In general, these methods include specifying the context of discussions, clarifying 708 

meanings of ambiguous words, narrowing the bounds as much as possible for underspecified 709 

data, and using tools for defining borderline cases for vague terms. Linguistic uncertainty causes 710 

difficulties in all aspects of decision making and risk assessment, in part because of the range of 711 

expertise required for invasive species management, including ecologists, statisticians, managers, 712 

stakeholders, and social scientists. The bioenergetics and food web models that project 713 

ecological impacts of invasive species provide needed clarity to the decision-making process and 714 

can serve as a tool for reduction of linguistic uncertainty (Irwin et al., 2011). By assigning 715 

numerical ranges to model parameters and state variables, terms related to the ecological impacts 716 

of invasion are clearly defined. Overall, groups involved in assessing risk and making decisions 717 

for the control of invasive species like the FMCC must be aware of the potential effects of 718 

linguistic uncertainty and make every effort to account for these effects. 719 

 720 
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Conclusions 721 

 Multiple types of uncertainty exist when projecting the ecological effects of invasive 722 

species in novel habitats like the FMCC in the Great Lakes (Table 1). In this review, we identify 723 

uncertainties within bioenergetics and food web models, classify these into an existing typology 724 

(Peterman, 2004; Regan et al., 2002; Williams, 1997), and provide tools to account for and 725 

reduce key uncertainties. Together, we hope this review will spur continued development and 726 

application of broad solutions for these types of uncertainties, thereby improving an 727 

understanding of the ecological impacts of FMCC in the Great Lakes basin. Although the scope 728 

of this paper was applied to the FMCC and their projected effects on the Great Lakes ecosystem, 729 

the typology of uncertainties described herein, and the methods and tools suggested, can be 730 

applied to invasive species in almost any aquatic ecosystem (e.g., grass carp in the Colorado 731 

River [Brandenburg et al., 2019] or snakehead species in North America [Herborg et al., 2008]).  732 

 Despite the seemingly overwhelming uncertainties, the models used to make these 733 

projections are necessary tools for helping managers and decision makers understand the 734 

potential establishment and ecological impacts of invasive species following their introduction 735 

because of their ecological realism and ability to account for several aspects of species 736 

assimilation within the ecosystem. They also inform a range of critical management questions, 737 

such as how reducing abundance of an invasive species can prevent various food web changes. 738 

For example, the results of bioenergetics (van der Lee et al., 2017) and population (DuFour et al., 739 

this issue) models for grass carp in Lake Erie informed a subsequent decision analysis to 740 

determine optimal actions for grass carp control and key uncertainties for implementation of 741 

adaptive management (Robinson et al., this issue).  742 

 Targeted approaches to reducing identified uncertainties exist and have been reviewed 743 

extensively in this paper (Table 1). We do not advocate for a different set of tools to address 744 

establishment and impact questions, but rather a refinement of current tools using existing 745 

solutions. It is our hope that the synthesis presented here will clarify the range of uncertainties 746 

that exist and motivate future research effort towards addressing the unanswered questions 747 

related to survival, establishment, and impact of not only the FMCC in the Great Lakes, but 748 

aquatic invasive species in general. 749 
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Table 1. Summary of the five types of uncertainty covered in this paper including their definitions, relevance to models of the four 1074 
major Chinese carps (FMCC), techniques for addressing, research needs for reducing, and examples of relevant references.   1075 
 1076 
Type of 
Uncertainty    

Description  Relevance to FMCC 
modeling 

Techniques for 
addressing uncertainties 

Research needs to reduce 
or account for 
uncertainty 

Examples of 
relevant 
references 

Structural An epistemic 
uncertainty 
related to 
biological and 
ecological 
processes of the 
modeled 
system; 
classified as 
either functional 
or parametric. 

• Effects of 
environmental 
drivers and trophic 
interactions on 
FMCC (Functional) 

• Lack of information 
on certain 
bioenergetics or 
food web model 
parameters 
(Parametric) 

• Sensitivity analysis to 
identify priority 
parameters where 
efforts to reduce 
parametric uncertainty 
would be best focused 

• Monte Carlo analysis 
to quantify parametric 
uncertainty 

• Institute measures of 
value of information 

• Scenario planning 

• Structured expert 
judgement 

• Adaptive management 

• Resolving uncertainty 
related to climate 
change effects on prey 
biomass and trophic 
interactions 

• Narrowed estimates of 
recruitment for FMCC 

• Reliable prey biomass 
estimates and 
evaluation of 
potentially novel foods 

• Predator adaptability to 
FMCC as prey 

• Interactions among 
FMCC 

• Species-specific 
bioenergetics 
parameters 

• Foraging efficiency of 
adult FMCC 

Alsip et al. (2020) 
 
Coulter et al. 
(2018) 
 
Ivan et al. (2020) 
 
Robinson et al. 
(this issue) 
 
Wittman et al. 
(2015) 
 
Zhang et al. (2016) 
 
 

Environmental 
variation 

An aleatory 
uncertainty 
dependent on 
scale of 
observation; 
includes random 
variation in 
weather and 

• Affects all stages of 
model development, 
parameterization, 
validation, and 
forecasting 

• Underlying 
processes and 
ecosystem 

• Model probabilistic 
distributions of 
potential values for 
environmental state 
variables 

• Account for predicted 
future changes in 
environmental 

• Establishment of long-
term monitoring 
programs can provide 
better information 
about the anticipated 
variation in a system 

 

Alsip et al. (2020) 
 
Jones et al. (2017) 
 
Smyth et al. (2020) 
 
van der Lee et al. 
(2017) 
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spatiotemporal 
heterogeneity in 
aquatic systems.  

components in 
models are affected 
by variation in 
temperature and 
aquatic habitat, 
which influences 
primary production, 
prey availability, 
energetic quality of 
prey, consumption 
and trophic transfer 
efficiency 

variation (rather than 
assuming stationarity 
in environmental 
processes) through 
evolving probabilistic 
distributions, allowing 
for shifts in ranges of 
environmental 
variables 

• Link environmental 
variables with vital 
rates through functional 
relationships, such as a 
relationship between 
temperature and 
survival 

 
 

Partial 
observability 

An epistemic 
uncertainty 
resulting from 
our imperfect 
ability to 
observe true 
system 
dynamics 

• Lack of adequate 
monitoring programs 
tracking recipient 
ecosystem 
components 

• Lack of data on 
FMCC ecology and 
physiology leads to 
extrapolating from 
other species 

• No information on 
how FMCC interact 
with a given novel 
environment 

• Consider alternative 
model structures 

• Consider the full range 
of possible states and 
implications for risk 
assessment or 
management actions 

• Consider the tails of 
parameter distributions 
and the potential for 
surprises 

• Implementation of a 
value of information 
analysis to identify 
where and how best to 
allocate monitoring 
efforts 

• Establishment of 
monitoring programs 
tracking relevant 
ecosystem components 

Alsip et al. (2019) 
 
Anderson et al. 
(2017, 2015)  
 
Cooke and Hill 
(2010)  
 
 
 

Partial 
controllability 

Uncertainty 
resulting from 
differences in 
intended and 

• The realized effects 
of management 
decisions informed 
by models may 

• Specify the expectation 
and probabilistic 
distribution of the 
uncertainty  

• Increased 
understanding of the 
range of possible 

Coulter et al. 
(2018) 
 
Drake et al. (2015) 
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 1077 

realized 
outcomes 

differ from the 
predicted efficacy on 
prevention and 
control strategies 
due to human 
behavior, 
unexpected events, 
catchability of a 
species, prediction 
error, or human error  

• Identify important 
covariates that affect 
uncertainty 

• Consider constraints of 
management or control 
actions 

• Incorporate modeling 
into larger decision 
analytic framework 

events and 
management actions 

• Assessment of the 
effect of robust 
management actions on 
implementation 
uncertainty 

 

 
 
Lauber et al. (2016) 
 
Robinson et al. 
(2019) 
 

Linguistic  Limitation of 
biological 
understanding 
due to 
vagueness, 
context 
dependence, 
ambiguity, 
indeterminacy 
of theoretical 
terms, and 
underspecificity 

• “Asian Carp(s)” is a 
term used to 
describe four 
ecologically distinct 
species 

• What constitutes an 
ecosystem impact? 

• How do we define 
establishment? 

• How do managers 
and modelers value 
projected model 
outputs? 

 

• Specify context of 
discussions, clarify 
meanings of 
ambiguous words, and 
use tools for defining 
borderline cases for 
vague terms 

• Clarify model 
parameters related to 
ecological 
consequences in an 
intelligible manner for 
managers and 
stakeholders 

• When not collectively 
referring to all FMCC, 
specify the distinct 
species in scientific 
publications and all 
communications 

• Identification, review, 
and synthesis of 
potentially problematic 
terms 

• Diverse input to 
modeling exercises 

Kočovský et al. 
(2018a) 
 
Kočovosky et al. 
(2018b) 


