```
Contemporary Diets of Lake Superior Lake Whitefish off the Keweenaw Peninsula and Changes
    in Condition from the 1980s to 2010s
        Grant Woodard }\mp@subsup{}{}{1}\mathrm{ ,Travis O. Brenden }\mp@subsup{}{}{1,*},\mathrm{ , and William P. Mattes }\mp@subsup{}{}{2
            /1Quantitative Fisheries Center
            Department of Fisheries and Wildlife
            Michigan State University
            East Lansing, MI 48824
            2Biological Services - Great Lakes Section
            Great Lakes Indian Fish and Wildlife Commission
            Odanah, WI 54861
                    Correspondence
Travis O. Brenden
Quantitative Fisheries Center
Department of Fisheries and Wildlife
Michigan State University
375 Wilson Rd, 101 UPLA
East Lansing, MI 48824
brenden@msu.edu
517-355-0003
    Running title: Lake Superior lake whitefish diet and condition
```


Abstract

Over the last two decades, declines in lake whitefish (Coregonus clupeaformis) recruitment and growth in many areas of the Laurentian Great Lakes have raised concerns about the status of this important species. Although Lake Superior populations have been less affected than those in other Great Lakes, these populations still face multiple threats. We characterized lake whitefish diets collected off the Keweenaw Peninsula between 2015-2017 and compared results to previous Lake Superior studies. We additionally estimated length-weight relationships to determine whether lake whitefish body condition (i.e., expected weight-at-length) had changed since the 1980s. Diet diversity was low, although individual specialization was moderate to high. Fish transitioned from consuming Diporeia in the spring to Mysis and fish eggs during fall and winter; sphaeriids composed $20-30 \%$ of diets across all seasons. Compared to findings for other Lake Superior regions, lake whitefish diets comprised lower percentages of high energy items (e.g., Diporeia, Mysis) and higher percentages of low energy items (e.g., sphaeriids). Expected weights in the 2000s and 2010s were lower in the 400 - and $500-\mathrm{mm}$ length groups but similar in larger lengths groups compared to the 1980s; condition was highest across all lengths in the 1990s. The observed decline in condition since the 1990s in the 400 - and $500-\mathrm{mm}$ length groups, in combination with possibly greater consumption of less energetically profitable items, suggests that lake whitefish < 600 mm or preferred prey resources in this lake region may be experiencing stressors leading to condition declines, although what these stressors are remain unknown.

Keywords: Lake Superior, lake whitefish, diet, quantile regression, condition, Diporeia, Mysis

Introduction

Lake whitefish (Coregonus clupeaformis) is a coregonid species indigenous to northern latitudes of North America, including the Laurentian Great Lakes (Ebener et al., 2008). Historically, Native American tribes and First Nation communities in the Great Lakes basin relied heavily on lake whitefish through subsistence fishing, and the species continues to be culturally important to indigenous peoples in the region (Cleland, 1982; Ebener et al., 2008; Mohr and Ebener, 2005). After European settlement, commercial fisheries for Great Lakes lake whitefish developed and populations were heavily exploited through the 1800s and early 1900s (Ebener et al., 2008; Wells and McLain, 1973, 1972). Substantial abundance declines occurred across all the lakes from the late-1800s to mid-1900s from overharvest, parasitism by invasive sea lamprey (Petromyzon marinus), competition with invasive planktivorous fishes [e.g., rainbow smelt (Osmerus mordax)], and declining water quality (Christie, 1973, 1972; Nalepa et al., 2005b). Beginning in the 1960s and continuing into the 1990s, lake whitefish abundances increased due to a variety of factors, including reductions in abundances of invasive species as a consequence of control efforts (in the case of sea lamprey; Ebener et al., 2008; Eck and Wells, 1987; Schneeberger et al., 2005) or elevated predation levels (in the case of rainbow smelt; Cook et al., 2005), more restrictive harvest regulations (Ebener et al., 2008), and improvements in water quality (Cook et al., 2005; Ebener et al., 2008). Additionally, efforts to rehabilitate lake trout (Salvelinus namaycush) populations in the Great Lakes through stocking reduced sea lamprey parasitism on lake whitefish due to the former being a more preferred food source than the latter (Wells and McLain, 1972).

Despite increasing abundances since the mid-1900s, recent declines in growth, condition, and recruitment levels have renewed concerns about Great Lakes lake whitefish populations. Declines in recruitment have occurred across Lakes Erie (Lake Erie Coldwater Task Group, 2017), Ontario (Hoyle et al., 1999), Huron (Lenart and Caroffino, 2018), and Michigan (Lenart and Caroffino, 2018). Lake-wide declines in lake whitefish growth and condition have been observed in Lakes Huron (Lenart and Caroffino, 2018), Michigan (Lenart and Caroffino, 2018; Pothoven et al., 2001; Schneeberger et al., 2005), and Ontario (Hoyle, 2005), with some localized declines observed in Lake Superior (Rennie, 2013). The identification of factors contributing to declines in recruitment is an active area of research in the Great Lakes basin. Declines in growth and condition were initially attributed to increased lake whitefish
abundances; declines since the early 2000s are believed to have been caused by declining abundances of deepwater amphipods Diporeia spp. (hereafter Diporeia; Hoyle, 2005; Nalepa et al., 2005b; Pothoven et al., 2001), which historically were an important food resource for Great Lakes lake whitefish (Gardner et al., 1985; Kainz et al., 2010; McNickle et al., 2006). Declines in Diporeia abundance ostensibly were caused by invasion and expansion of Dreissena polymorpha and D. bugensis (hereafter Dreissena; Barbiero et al., 2011; Dermott, 2001; Lozano et al., 2001). Hypotheses for how Dreissena invasion contributed to Diporeia declines include reduced food availability due to Dreissena filtering (Nalepa et al., 2005a, 2007, 1998), the associated competition with Dreissena (Dermott and Kerec, 1997), exposure to toxins from Dreissena pseudofeces (Dermott et al., 2005), and disease outbreaks from pathogens carried by Dreissena or possibly other sources (Cave and Strychar, 2015; Dermott et al., 2005; Winters et al., 2014). In addition to the link between Dreissena and reductions in availability of lake whitefish's preferred food resource, Dreissena establishment has been associated with modifications in resource use by lake whitefish, such as increased use of nearshore benthic food sources and shifts in occupied water depths (Fera et al., 2017; Rennie et al., 2015, 2012).

Although Lake Superior lake whitefish populations are believed to have fared better than those in the other Great Lakes due to limited Dreissena establishment in Lake Superior, concerns remain over the multitude of threats that populations in the lake currently or may soon face. Declines in lake whitefish growth and condition were observed in some areas of Lake Superior from the late 1990s to early 2000s (Rennie, 2013). The reasons for these declines are unknown, but are unlikely related to Dreissena because of limited establishment in Lake Superior (Rennie, 2013). Growth rates of Lake Superior lake whitefish from age-1 to age-2 did not change (Thunder and Whitefish Bays) or increased slightly (Apostle Islands) from the 1990s to the late2000s (Fera et al., 2015). Comparisons of current condition or growth rates of Lake Superior lake whitefish to earlier time periods have been limited.

One ostensible threat to Lake Superior lake whitefish populations is climate change. Open-water summer surface temperatures in Lake Superior have risen approximately $3.5^{\circ} \mathrm{C}$ over the last century, with most of the change in the last 30 years (Austin and Colman, 2008). Warming temperatures in Lake Superior may promote the colonization of non-native species that could compete with lake whitefish for food resources or prey upon lake whitefish at different life stages (Collingsworth et al., 2017). Furthermore, increased temperatures may reduce lake
whitefish egg survival and recruitment and increase age-at-maturity (Rennie, 2013). Water temperature is also an important factor, along with productivity and calcium levels, that has limited Dreissena expansion in Lake Superior (Grigorovich et al., 2003; Whittier et al., 2008). If Lake Superior water temperatures continue to increase, Dreissena populations in Lake Superior could expand given observations that veligers are widely distributed at low densities in the lake (Trebitz et al., 2019).

The purpose of this study was to describe contemporary diets of lake whitefish collected off the Keweenaw Peninsula of Lake Superior. Our expectations based on previous diet and stable isotope studies for Lake Superior lake whitefish (e.g., Anderson and Smith, 1971; Fera et al., 2017; Gamble et al., 2011; Rennie et al., 2012) were that diets would be heavily dominated by prey types such as Diporeia and Mysis. We additionally evaluated changes in lake whitefish body condition (i.e., expected weight-at-length) in Lake Superior over time (1980s to 2010s) to determine whether populations continue to be resilient to changes in demographics and dynamics that other Great Lakes lake whitefish populations have experienced. Our expectation was that lake whitefish condition in this region of Lake Superior would be temporally stable unlike condition in lakes where dreissenids invaded and Diporeia abundances decreased. We also did not anticipate density-dependence effects to cause changes in condition because abundance has not increased in this region of Lake Superior (Mattes, 2019).

Methods

Data collection

Lake whitefish diet data were obtained from fish collected between April 2015 and June 2017 from four management units in Lake Superior off the Keweenaw Peninsula (Figure 1). Fish were sampled by Great Lakes Indian Fish and Wildlife Commission fishery technicians from commercial fishing and assessment gill nets deployed in nearshore waters less than 73.2 m deep. Stretch-measure mesh sizes of commercial and assessment gillnet panels ranged from 50.8 to 152.4 mm . Commercial nets ranged from 305 to $1,829 \mathrm{~m}$ in length and 3.1 to 4.6 m in height. Assessment nets were 91.44 m in length and 1.8 m in height. Duration of net sets ranged from overnight to 3 days. During the summer and fall, nets were generally set overnight unless weather conditions prevented retrieval. During winter and spring, multiple day sets were more common. After fish were collected, stomachs were removed whole and then frozen. Once
returned to the laboratory, stomachs were thawed and dissected. Stomach contents were identified to the lowest taxonomic level possible, weighed, and enumerated. Consumed items were assigned to one of 12 prey types using a categorization system for fish diet studies developed and agreed upon by the Lake Superior Technical Committee (Lake Superior Technical Committee, unpublished report; Table 1). Items infrequently found in fish stomachs, such as chironomids and other aquatic insects, were combined into an "other" prey type.

Lake whitefish diets were described seasonally by averaging across sampling years. Due to variation in sample sizes across years, we averaged across years to reduce the effect of years with disproportionately larger number of observations. Seasonal classifications corresponded to spring (March to May), summer (June to August), autumn (September to November), and winter (December to February).

Length-weight data for Lake Superior lake whitefish were obtained from fish collected from commercial gillnet fishers between 1984 to 2017 in the same management units from which stomach samples were collected. Fish were measured for total length to the nearest $1 / 10^{\text {th }}$ of an inch, which was subsequently converted to the nearest mm for analysis. Weight measurements were made in either round weight (entire fish) or dressed weight (gutted fish) to the nearest 0.05 kg . Dressed weights were converted to round weights using a conversion factor of 1.17 (W. Mattes, unpublished data).

Diet characterization and analyses

Lake whitefish diets were described using two measures of average diversity: richness and Shannon diversity (Shannon, 1948). Richness was simply the count of the number of diet item types consumed by a lake whitefish. Shannon diversity was calculated as $\sum_{i} p_{i} \log _{10} p_{i}$ where p_{i} was the proportion by weight that the i-th diet item composed of all the items consumed by a fish.

Lake whitefish diets were characterized in terms of importance and specialization/generalization using the graphical assessment method of Amundsen et al. (1996). This method compares prey-specific abundance for predators that consumed that particular prey type versus frequency of occurrence of that prey type across all predators; the spread and location of the prey-type observations on the plot characterizes both prey importance and feeding strategy (Amundsen et al., 1996). In particular, prey types with high frequency of occurrence and
high prey-specific abundance are considered important items, prey types with low frequency of occurrence and high prey-specific abundance are considered indicative of individual predators specializing on certain items, and prey types with high frequency of occurrence and low preyspecific abundance are considered indicative of a generalized feeding strategy by fish (Amundsen et al., 1996; Chipps and Garvey, 2007; Willis et al., 2015).

We calculated individual diet specialization as a measure of intraspecific variation in resource use among individuals in the region. High individual diet specialization occurs when individuals consume a small number of available food resources that are different than what other individuals consume, which can be evidence of intraspecific competition (Araújo et al., 2008). Our expectation was that individual diet specialization would be low under the hypothesis that most sampled individuals would rely heavily on Diporeia and Mysis. Individual diet specialization was estimated using a network theory method (Araújo et al., 2008). This method involves constructing a niche overlap network based on the diet overlap among pairs of individuals - once this network is constructed, the density of overlap values (i.e., connections) around individual fish (i.e., nodes) is used to organize individuals into clusters that consume the same set of resources. A weighted clustering coefficient is then used as an overall measure of clustering and the measure of individual specialization is calculated by subtracting the weighted clustering coefficient from 1 (Araújo et al., 2008). The measure of individual specialization values can range from 0 to 1 , where 0 indicates all individuals have the same diet and 1 indicates maximum variation in diets among individuals (Araújo et al., 2008). An individual specialization value greater than 0.6 has been used as a threshold for identifying significant or strong amongindividual diet variation (Araújo et al., 2008). Individual specialization calculations were performed in R (R Core Team, 2018) using the RInSp package (Zaccarelli et al., 2013).

Similarities in lake whitefish diets among seasons were assessed using the Schoener diet overlap index (Schoener, 1970) calculated from the mean percentages by weight of the prey types. The Schoener diet overlap index ranges in value from 0 (no overlap) to 1 (perfect overlap). An index value greater than 0.6 is commonly interpreted as representing biologically significant overlap between the groups of organisms being compared (Zaret and Rand, 1971).

For richness, Shannon diversity, individual specialization, and Schoener diet overlap values, 95% confidence intervals were constructed by bootstrapping. For individual specialization, 95% confidence intervals were constructed by jackknifing (Araújo et al., 2008).

Bootstrapping the Schoener diet overlap index followed Smith (1985). Bootstrapping the richness and Shannon diversity values were conducted by sampling with replacement diet data of individual fish (i.e., stomachs of individuals were the sampling unit). For each metric, the number of bootstrap iterations was set at 1,000 . Ninety-five percent confidence intervals for the indices that bootstrapped were generated using the percentile method of Hall (1992), which uses the $2.5^{\text {th }}$ and $97.5^{\text {th }}$ percentiles of the bootstrap distribution for the evaluated index along with a bias-adjustment to generate the confidence intervals.

We compared lake whitefish diet results from this study to the results from previous studies conducted for the species on Lake Superior (Anderson and Smith, 1971; Gamble et al., 2011; Rennie et al., 2012; Stockwell et al. 2014). The main prey categories that we compared among studies were Diporeia, Mysis, sphaeriids, and fish eggs. For some of these studies, diet summaries were provided monthly. In those cases, we calculated weighted averages of the percentages by weight or volume of the prey types based on the number of non-empty stomachs that were examined in each month.

Temporal changes in lake whitefish condition

We assessed temporal changes in condition (i.e., expected weight-at-length) by using quantile regression (Cade and Noon, 2003) to fit a $\log _{10}$-transformed allometric growth model to the length-weight data provided by commercial fishers for the Keweenaw Peninsula region of Lake Superior. The model included a categorical grouping factor for the decade (i.e., 1980s, 1990s, 2000s, 2010s) that length-weight data were collected, which allowed for decade-specific growth model coefficients to be estimated (Cade et al., 2008). To assess whether allometric growth models differed by decade, we fit alternative versions of the model with different decade groupings and used Akaike Information Criterion (AIC) to determine which model was most supported by available data. The other models that were fit were 1) common model (i.e., shared coefficients) across all decades; 2) a model with unique coefficients for 1990s and shared coefficients for the1980s, 2000s, and 2010s; 3) a model with shared coefficients for the 1980s and 1990s and shared coefficients for the 2000s and 2010s; 4) a model with unique coefficients for the 1980s and 1990s and shared coefficients for 2000s and 2010s; 5) a model with shared coefficients for 1980s, 1990s and 2000s and unique coefficients for 2010s. For the AIC model comparison, quantile regression models were fit at quantiles of $0.10,0.25,0.5,0.75$, and 0.90 .

Using the AIC-selected allometric growth model, we estimated predicted quantiles of weight for the different decades at reference lengths ranging from 400 to 800 mm in $100-\mathrm{mm}$ length increments. Predicted quantiles of weight were estimated by re-centering the intercept of the AIC-selected allometric growth model to the evaluated reference lengths (Cade et al., 2008). When predicting weight, we used quantiles ranging from 0.10 to 0.90 in 0.05 increments. Bootstrapping based on the Markov chain marginal bootstrap approach was used to estimate 95% confidence intervals for predicted weights (He and $\mathrm{Hu}, 2002$). Quantile regressions were conducted in R using the rq() function in the quantreg package (Koenker, 2018).

Results

A total of 208 lake whitefish were collected in 2015, 581 fish in 2016, and 343 fish in 2017. Lengths of sampled lake whitefish ranged from approximately 250 to 750 mm , with approximately 92% of sampled fish between 400 and 600 mm in length. Percentages of nonempty stomachs were 75% in 2015 , 73% in 2016, and 89% in 2017 . Consequently, diet data were available for 157 fish in 2015, 425 fish in 2016, and 307 fish in 2017. For seasons, sample size ranges across years were: 70 to 189 fish with non-empty stomachs in spring, 24 to 200 fish with non-empty stocks in summer, 0 to 58 fish with non-empty stomachs in fall (0 fish with nonempty stomachs were collected in fall 2017), and 5 to 70 fish with non-empty stomachs in winter.

Overall description of diet

Diets of lake whitefish consisted primarily of Mysis (31% of diet by weight), Diporeia (28%) , and sphaeriids (26%). The other and fish egg diet categories composed 7 and 5% of diets by weight. None of the other diet item categories composed more than 2% of diets by weight. Overall richness and Shannon diversity of lake whitefish diets were approximately 2 and 0.28 , respectively, suggesting that on average the stomachs of lake whitefish contained few types of the possible diet items. Comparison of prey-specific abundance for predators that consumed a particular prey type versus frequency of occurrence of that prey type across all predators suggests that collected lake whitefish exhibited a mixed feed strategy (Amundsen et al., 1996). For diet items such as fish and terrestrial invertebrates, some individual specialization (i.e., low frequency of occurrence but high prey-specific abundance) was evident; whereas for other items
such as sphaeriids, feeding was more generalized (high frequency of occurrence but low preyspecific abundance; Figure 2). The most important (i.e., high frequency occurrence and preyspecific abundance) diet items were Diporeia and Mysis (Figure 2). The estimated individual diet specialization for the entire lake whitefish sample was 0.694 (95% confidence interval: 0.693 0.694) indicating strong among individual variation in lake whitefish diets (Araújo et al., 2008), which is additional evidence of a mixed feeding strategy by lake whitefish.

Seasonal diets

During spring, Diporeia and sphaeriids composed approximately 42 and 30% of fish diets by weight, respectively (Figure 3). Diporeia was the most important prey type for lake whitefish during the spring with a frequency of occurrence of approximately 65% and preyspecific abundance of approximately 70% (Figure 4). Frequency of occurrence for coregonids was low $(<2 \%)$, but in lake whitefish that consumed them the prey-specific abundance was greater than 50% (Figure 4). Conversely, lake whitefish in the spring exhibited more generalized feeding for sphaeriids with a frequency of occurrence greater than 50%, but low ($<25 \%$) average contribution by weight to the stomach contents of the fish that consumed them (Figure 4).

Lake whitefish diets during summer comprised primarily Mysis (47% of diet by weight), Diporeia (27%), and sphaeriids (21%; Figure 3). All three of these prey types were consumed by a majority of fish with non-empty stomachs; however, their average contribution by weight to the stomach contents of the fish that consumed them was less than 50% (Figure 4). In particular, frequency of occurrence of sphaeriids in lake whitefish stomachs during the summer was near 80%, but the average contribution by weight to the stomach contents of the fish that consumed them was only around 20%. Diets of a few individual lake whitefish during the summer were found to consist entirely of sculpins and terrestrial invertebrates (Figure 4).

During fall, lake whitefish diets comprised primarily Mysis, other prey types, and sphaeriids (Figure 3). Combined, these prey types composed approximately 94% of fish diets by weight. Mysis in particular was an important prey type with a frequency of occurrence of approximately 65% and an average contribution by weight to the fish that consumed them of approximately 80% (Figure 4). Similar to summer, diets of a few individual lake whitefish were found to consist entirely of either unknown fish or terrestrial invertebrates (Figure 4). As with the
other seasons, lake whitefish exhibited a generalized feeding strategy for sphaeriids during the fall (Figure 4).

Mysis, sphaeriids, and fish eggs composed approximately 82% of fish diets by weight in winter (Figure 3). Based on the combination of frequency of occurrence and prey-specific abundance, fish eggs were the most important prey type during the winter, although the frequency of occurrence was only around 40% (Figure 4). Although we did not attempt to identify the species of all the fish eggs that were consumed, genetic testing of some of the collected eggs indicated they were from cisco (Corgeonus artedi; B. Mattes, Great Lakes Indian Fish and Wildlife Commission, unpublished data) although we cannot rule out that some eggs were produced by other fall- or winter-spawning fish, such as other coregonids, burbot (Lota lota), or lake trout (Salvelinus namaycush). Mysis and sphaeriids were consumed by a majority of lake whitefish during the winter, however, their average contribution by weight to the fish that consumed them was generally low (Figure 4).

In terms of seasonal similarities, diets were most similar between spring and summer and summer and fall with Schoener (1980) overlap values > 0.60 (Table 2). The 95% confidence intervals for the diet overlaps encompassed 0.6 suggesting just moderate levels of overlap (Table 2). Diets were most dissimilar between spring and fall and fall and winter with overlap values of 0.27 (spring and fall) and 0.35 (fall and winter; Table 2).

Richness and Shannon diversity of lake whitefish diets were the highest in the summer and lowest in the fall (Table 3). In summer, winter, and spring, richness and Shannon diversity were greater than 2 and 0.25 ; in fall, richness and Shannon diversity were 1.543 and 0.216 , respectively (Table 3). Individual specialization was highest during the spring (0.650), declined during the summer (0.582) and fall (0.525), but increased again during the winter (0.557 ; Table 3). During spring, the 95% confidence interval for individual specialization was entirely greater than 0.6 , suggesting strong among-individual diet variation for lake whitefish (Table 3). For all other seasons, the 95% confidence intervals for the specialization values were between 0.5 and 0.6 suggesting moderate among-individual diet variation (Table 3).

Comparison with other Lake Superior lake whitefish diet studies

The extent to which lake whitefish in Lake Superior relied on Diporeia and Mysis varied across studies (Table 4). In some studies, Diporeia composed a higher percentage of stomach
contents than Mysis (Anderson and Smith, 1971; Rennie et al., 2012); in other studies, however, Mysis composed a higher percentage of stomach contents than Diporeia (Gamble et al., 2011). Our findings were intermediate between these studies with Diporeia composing a larger percentage of stomach contents than Mysis in spring, with the opposite being true in the other seasons. The percentages that Diporeia composed of stomach contents in our study for summer, fall, and winter seasons were on the lower end of what was reported in most other studies (Table 4).

For most studies, Diporeia and Mysis composed the majority of stomach contents by wet weight or volume, with the highest reported percentages by Gamble et al. (2011) across all assessed seasons (> 90\%), Rennie et al. (2012) for the Thunder Bay region of Lake Summer in 2005 (79\%), and Anderson and Smith (1971) for western Lake Superior during the winter (78\%; Table 4). Conversely, Diporeia and Mysis were found to compose between 0 and 12% of lake whitefish diets collected from western Lake Superior in winter and spring months (Stockwell et al., 2014; Table 4). Again, our results were intermediate between these extremes. During summer, we found that Diporeia and Mysis composed almost three-quarters of the stomach contents of fish, but during the other seasons these items composed one-third to one-half of fish stomach contents. The percentages that Diporeia and Mysis composed stomach contents in our study for summer, fall, and winter seasons were on the lower end of what was reported in most other studies with the exception of Stockwell et al. (2014) and Rennie et al. (2012) for the Apostle Islands region of Lake Superior (Table 4). Little consistency among studies was evident as to which season lake whitefish were most reliant on Diporeia and Mysis. In some studies, winter was the season when Diporeia and Mysis composed the largest percentage of stomach contents (Anderson et al., 1971), whereas in other studies Diporeia and Mysis were not found in stomachs during the winter months (Stockwell et al., 2014).

With respect to sphaeriids, none of the other diet studies of Lake Superior lake whitefish reported this item composing more than 15% of consumed items (Table 4). Conversely, we found sphaeriids composed between 20 and 30% of stomach contents across seasons.

The extent that fish eggs were consumed by lake whitefish was highly variable among studies, although this could reflect when fish were collected for the different studies or the typically low sample sizes in winter. In western Lake Superior during winter months, coregonid eggs composed 99% of stomach contents; during spring the contribution of fish eggs declined to
15% of stomach contents (Stockwell et al., 2014; Table 4). We observed the second highest percentage (27%) of fish eggs composing stomach contents; this also occurred during winter. During spring, the contribution declined to 3%. As indicated previously, we suspect that fish eggs consumed in our study were mostly from cisco or other coregonid species. The only other Lake Superior diet study to report consumption of fish eggs was from western Lake Superior in the 1960s during winter months (Anderson and Smith, 1971). In that study, coregonid eggs composed 3\% of stomach contents (Anderson and Smith, 1971; Table 4).

With respect to other items that were consumed by Lake Superior lake whitefish, copepods, ostracods, chironomids, and plant material were reported in diets in western Lake Superior in the 1960 (Anderson and Smith, 1971). Chironomids and leeches were also reported in diets in western Lake Superior in spring in the 2010s (Stockwell et al., 2014). For the Apostle Islands region of Lake Superior in summer 2004, Bythotrephes, chironomids, and plant material were other diet items that lake whitefish consumed (Rennie et al., 2012). For the Thunder Bay region of Lake Superior in 2005, chironomids and plant material were consumed by lake whitefish (Rennie et al., 2012).

Trends in fish condition over time

For all evaluated quantiles, the allometric growth model with the lowest AIC value was the model with separate coefficients for each of the four decades. The second-best performing model across all evaluated quantiles was the model with unique coefficients for the 1980s and 1990s and combined coefficients for the 2000s and 2010s. However, the delta AICs for the second-best performing models across the evaluated quantiles ranged from 40 to approximately 180, which indicated essentially no empirical support for these models based on available data (Burnham and Anderson, 2002).

Based on the predicted weights from the quantile regressions of the allometric growth model with decade as a categorical grouping factor, condition (i.e., expected weight-at-length) of Lake Superior lake whitefish collected off the Keweenaw Peninsula increased from the 1980s to 1990s, but subsequently declined in the 2000s. For the 400 - and $500-\mathrm{mm}$ reference length categories, condition also was lower in the 2010s than it was in the 2000s (Figure 5). For the $400-\mathrm{mm}$ reference length, expected weights in the 1990s were between 1 and 25 g greater in the 1990s than in the 1980s depending on the evaluated quantile. However, expected weights in the

2000s were between 27 and 46 g less than in the 1990s depending on the evaluated quantile; expected weights in the 2010s were between 54 and 66 g less than in the 2000s (Figure 5). For the $500-\mathrm{mm}$ reference length, expected weights in the 1990 s were between 55 and 76 g greater than in the 1980 s , but were between 84 and 112 g less in the 2000 s than in the 1990 s. Expected weights were 13 to 34 g less in the 2010s than in the 2000s for the $500-\mathrm{mm}$ reference length. For both the 400 and $500-\mathrm{mm}$ reference lengths, expected weights at length were lower in the 2000s and 2010s than in the 1980s (Figure 5).

For the $600-, 700-$, and $800-\mathrm{mm}$ reference lengths, expected weights increased by approximately 100 to $230 \mathrm{~g}(600 \mathrm{~mm}), 173$ to $502 \mathrm{~g}(700 \mathrm{~mm})$, and 270 to $918 \mathrm{~g}(800 \mathrm{~mm})$ from the 1980s to 1990s depending on the evaluated quantile with the largest increases generally for the upper quantiles. In the 2000s and 2010s, expected weights declined to the levels observed in the 1980s (Figure 5). For the $600-\mathrm{mm}$ reference length, expected weights in the 2010s were only around 22 to 52 g less than what observed in the 1980s. For the $700-\mathrm{mm}$ reference length, differences in expected weights in the 2010s compared to the 1980 s ranged from -39 to +64 g depending on the evaluated quantile. For the $800-\mathrm{mm}$ reference length, differences in expected weights in the 2010s compared to the 1980 s ranged from -3 to +221 g depending on the evaluated quantile.

Discussion

Our expectation was that diets of lake whitefish collected off Lake Superior's Keweenaw Peninsula would be heavily dominated by Mysis and Diporeia. Although our findings partly aligned with these expectations, the extent to which lake whitefish relied on these prey types was perhaps not as high as initially expected. Rather, we found lake whitefish to exhibit more of a mixed feeding strategy, with Diporeia, Mysis, and fish eggs strong contributors to the diet but other prey types contributing as an apparent result of varying degrees of specialization (e.g., fish, terrestrial invertebrates) and generalization (e.g., sphaeriids). A similar mixed feeding strategy was reported for lake whitefish from Lake Huron post-Dreissena invasion (Pothoven and Nalepa, 2006). Seasonally, lake whitefish appeared to shift feeding from Diporeia during the spring to Mysis and fish eggs in the fall and winter. Although items such as Diporeia, Mysis, and sphaeriids composed the majority of fish diets across the seasons, the apparent specialization on fish and terrestrial invertebrates by some individuals suggests some opportunistic foraging
behavior by lake whitefish, which has also been reported in lake whitefish diet studies conducted in waterbodies after Dreissena establishment (Pothoven and Nalepa, 2006; Herbst et al., 2013).

One possible reason why our results did not align with expectations was that we underestimated the variability in previous descriptions of Lake Superior lake whitefish diets. In particular, we did not expect Diporeia and Mysis to range from 0 to nearly 100% of lake whitefish diets (Gamble et al., 2011; Stockwell et al., 2014). One factor that could contribute to this variability across studies is the small number of non-empty stomachs examined in some previous studies ($n<30$), which raises a question as to representativeness of lake whitefish diets in these studies. Also, as described in greater detail below, diet studies such as those conducted on Lake Superior lake whitefish provide only a coarse snapshot of what fish are consuming because they only reflect what fish consumed within a couple of hours of capture (Bolnick et al., 2002). Despite this unexpected amount of variability, the percentages of fish diets consisting of Diporeia and Mysis in our study during the spring, fall, and winter months (37 to 59%) were on the lower end of what most other Lake Superior lake whitefish diet studies have reported (57\% to 100%; Anderson and Smith, 1971; Gamble et al., 2011; Rennie et al., 2012). Conversely, we found sphaeriids composed a larger percentage of stomach contents than what other Lake Superior lake whitefish diet studies have reported.

Our observation that lake whitefish consumed fish eggs during winter and spring matches observations from previous Lake Superior studies, although the extent to which fish may rely on fish eggs during these seasons is uncertain. Similar to the results for Diporeia and Mysis, the percentage of fish eggs in diets of lake whitefish was highly variable (3 to 99%) across studies (Anderson and Smith, 1971; Stockwell et al., 2014). In Lake Champlain, rainbow smelt and coregonid eggs were consumed by lake whitefish during the spring, composing around 42% of fish diets by weight for individuals < 800 g (Herbst et al., 2013). From an energetic standpoint, fish eggs have very high energy densities compared to other items consumed by lake whitefish (Stockwell et al., 2014). Consequently, even if fish eggs do not compose a majority of fish diets by weight during the winter in Lake Superior, a majority of the seasonal energetic intake of lake whitefish could be derived from this food source (Stockwell et al., 2014).

As with any diet study, the representativeness or scalability of our results may be limited by where and how data were collected. First, lake whitefish were only collected off the Keweenaw Peninsula of Lake Superior. While this region has been an important spawning and
rearing area for lake whitefish in Lake Superior (Goodyear et al., 1982), our ability to draw definitive conclusions when comparing our results to previous studies or to other areas of Lake Superior is limited. As well, because we collected lake whitefish with gill nets, our results could be biased against certain prey types, such as soft-bodied organisms, because they may be digested more quickly than other prey types while fish were entangled in the gear (Garvey and Chipps, 2012). Regurgitation of stomach contents during gillnet entanglement also could be a factor influencing our study results (Sutton et al., 2004; Treasurer, 1988). Additionally, the vast majority of our samples ranged from 400 to 600 mm in length, which were the sizes of fish most selected by the assessment and commercial fishing nets. Consequently, our ability to make inferences regarding fish diets is limited to lake whitefish within this length range. Finally, any study that relies on field capture of individuals provides only a coarse snapshot of diet because observed prey items are only those that were consumed within a couple of hours of capture; as a consequence, the observed diets may not reflect actual fish consumption over the assessed time period. In particular, this snapshot approach to characterize diets may skew results towards inferences of specialized feeding strategies as even a generalist predator will likely take advantage of a readily available prey resource when presented with the opportunity (Bolnick et al., 2002).

Given that we do not have diet data for lake whitefish from the Keweenaw Peninsula region of Lake Superior from years prior to this study, we do not know how different contemporary lake whitefish diets are from earlier time periods. Further, the variability in results from other lake whitefish diet studies in Lake Superior and the fact that studies were generally conducted in different locations and at least 5 years apart makes comparisons with earlier studies also challenging. Despite these limitations, the differences that we observed in lake whitefish diets from the Keweenaw Peninsula region of Lake Superior versus other studies from the lake warrants further investigation. In particular, the lower percentage that Diporeia and Mysis in lake whitefish diets and the higher percentage of sphaeriids we observed, compared to what other studies have found for some regions of the lake, may be of concern. In the lower Great Lakes, lake whitefish shifted from feeding heavily on Diporeia to consuming items such as Dreissena, sphaeriids, chironomids, and gastropods after Dreissena invasion (Pothoven et al., 2001), although immediately after invasion lake whitefish in some lakes initially shifted to consuming Mysis (Owens and Dittman, 2003; Pothoven et al., 2001). In Lakes Huron and Michigan, post-
invasion consumption of mollusks (i.e., Dreissena, gastropods, and sphaeriids) was 2 to 5 times greater during the post-invasion period then pre-invasion (Pothoven and Madenjian, 2008). If consumption of sphaeriids in the Keweenaw Peninsula is increasing while consumption of Diporeia and Mysis is decreasing, this could be problematic because the energy density of sphaeriids is approximately 60 to 70% lower than that of Diporeia and Mysis (Kočovský, 2019; Madenjian et al., 2006; Rennie et al., 2012). In the lower Great Lakes, shifts in feeding of lake whitefish and other species towards food resources with lower energy densities post Dreissena invasion led to reductions in whole body energy densities (Pothoven et al., 2006; Rennie et al., 2012). Consequently, we would expect similar declines in lake whitefish energy densities in the Keweenaw Region of Lake Superior if conditions shifted to push lake whitefish to rely more heavily on sphaeriids than Diporeia and Mysis.

Although we do not have historical or current energy density for lake whitefish from the Keweenaw Peninsula region of Lake Superior, our condition estimates for lake whitefish based on the fitted allometric growth model suggests energy densities for at least some sizes of lake whitefish in the region have declined. Our expectation at the outset of this research was that current and historical condition (i.e., expected weight-at-length) of lake whitefish would be similar under the prevailing belief that lake whitefish were not under the influence of stressors that have been affecting lake whitefish populations in the other Great Lakes. Our expectations were supported for lake whitefish in the $600-$, $700-$, and $800-\mathrm{mm}$ length categories, but were not supported for lake whitefish in the $400-$ and $500-\mathrm{mm}$ length categories. The distributions of weights at the 400 - and $500-\mathrm{mm}$ lengths in the 2010s were approximately 10% lower than they were in the 1990s and 5% lower than they were in the 1980s. The decrease in condition from the 1990s to 2010s for these two length groups is comparable to decreases in condition in lake whitefish in the lower Great Lakes after Dreissena invasion (DeBruyne et al., 2008; Lumb et al., 2007; Pothoven et al., 2001). For the 600-, 700-, and $800-\mathrm{mm}$ length categories, the distributions of weights in the 2010s were also approximately 10% lower than they were in the 1990s, but were equivalent or slightly greater in the 2010s compared to the 1980s. Why lake whitefish condition in the 1990s was so much greater than the other time periods across all evaluated length categories is unclear. Diporeia densities in Lake Superior were approximately 7 times greater in the 1994 than in 1973 and approximately 5 times greater in the region from the Keweenaw Peninsula to Grand Island (Scharold et al., 2004), suggesting that higher condition
could have stemmed from an abundance of a preferred food resource. Improvements in water quality in Lake Superior stemming from enactment of the Great Lakes Water Quality Agreement in the early 1970s (Bellinger et al., 2016; Jeremisaon et al., 1994; Scharold et al., 2004) also could have contributed to the high condition of fish in the 1990s.

The factors contributing to the decline in condition for lake whitefish in the 400- and $500-\mathrm{mm}$ length categories in the Keweenaw Peninsula region of Lake Superior are uncertain. Several hypotheses are possible, including intra- or inter-specific competition caused by fish abundance changes or declines in availability of energetically-profitable prey, environmental changes (e.g., warming water temperature), or condition-dependent selective predation to name a few. Based on catch-per-effort statistics for commercial gillnet fisheries operating in the Keweenaw Peninsula region of Lake Superior, relative abundance of lake whitefish in the region has declined since the mid- to late-2000s (Mattes, 2019). Consequently, intra-specific competition caused by increasing lake whitefish abundance is likely not contributing to changes in fish condition. Diporeia density in the region extending from the Keweenaw Peninsula to Grand Island in Lake Superior declined from 1,697/m² $\left(\mathrm{SE}=228 / \mathrm{m}^{2}\right)$ in 1994 to $1,268 / \mathrm{m}^{2}(\mathrm{SE}=$ $208 / \mathrm{m}^{2}$) in 2000 (Scharold et al., 2004). In this same general region of Lake Superior, Diporeia densities ranged from 619 to $1,200 / \mathrm{m}^{2}$ in the 2000s (Auer et al., 2013). While these studies provide some empirical support that an important food resources for lake whitefish in this region of Lake Superior may have declined from the 1990s to 2000s, changes in prey density alone does not prove that resources were sufficiently limiting to lead to competition for resources and/or declines in condition. If intra- or interspecific competition for Diporeia or Mysis were contributing to declines in lake whitefish condition, the reason for the decline to be limited to just certain sizes of lake whitefish is not clear. In northern and central Lake Michigan, condition of lake whitefish larger than 650 mm did not differ between pre- and post-Dreissena invasion time period even though condition of fish less than 650 mm was significantly lower during the post-Dreissena time period when lake whitefish were likely competing for food resources (DeBruyne et al., 2008). Thus, the recent declines in condition in subsets of lake whitefish length categories we observed could indicate competition or limited prey availability. The warming water temperatures of Lake Superior also could be a factor contributing to declines in condition (Rennie et al., 2010; Rennie, 2013). In a study evaluating lake whitefish populations across multiple lakes within Ontario, fish condition was found to decline in populations in northwest

Ontario where temperatures had warmed considerably whereas condition was more stable in southern Ontario where warming had not been as dramatic (Rennie et al., 2010). As with the hypothesis that intra- or interspecific competition could be contributing to declines in condition, why warming temperatures would only affect condition in certain length categories rather than across all evaluated lengths is uncertain. Condition-selected morality due to natural (i.e., predation) or fishery-related causes, where fish in the best condition and a limited length range are targeted, could also be a factor contributing to lower condition by exerting selection pressure towards individuals with lower than expected weights in the 400 - and $500-\mathrm{mm}$ length categories (Uusi-Heikkilä et al., 2016; Wang and Höök, 2009). Based on the relationship for maximum consumable prey length versus predator length presented in Stockwell et al. (2010), lake trout would need to be between 750 and $1,125 \mathrm{~mm}$ to prey on lake whitefish between 400 and 600 mm in length, which suggests if condition-selected mortality stemming from predation was a factor than it would be caused by predation from the largest segments of the lake trout populations. According to Ebener et al. (2008), commercial fisheries for lake whitefish in the Great Lakes region may also be selective for fish in better condition because processors pay higher prices per unit weight for larger fish, which also could result in some selection pressure on lake whitefish populations in this Lake Superior region.

While the mechanisms that are contributing to declining condition in some sizes of lake whitefish off the Keweenaw Peninsula region of Lake Superior are not known, the occurrence of these declines, in combination with declines in condition and growth that have been observed in other parts of Lake Superior (Rennie, 2013), have potentially important management consequences. Declines in condition and growth, similar to what we observed here for the 400and $500-\mathrm{mm}$ length categories, preceded declines in lake whitefish recruitment in Lakes Ontario (Hoyle et al., 1999, 2005), Huron (Mohr and Ebener, 2005), and Michigan (Nalepa et al., 2005a; Pothoven et al., 2001). Reduced recruitment levels have led to declines in abundances and commercial catch rates and yields in Lakes Huron and Michigan (Great Lakes Fishery Trust and Great Lakes Fishery Commission, 2018); similar declines, if they were to occur on Lake Superior, could have major ramifications on commercial and tribal fisheries. We recommend expanded spatial and temporal assessment of prey resource availability, environmental conditions, and consumption by lake whitefish and potential competitor species to permit ongoing monitoring of conditions that could affect future recruitment levels in lake whitefish
populations. We also recommend expanded monitoring of fish growth, condition, and mortality levels for determining how stable lake whitefish population dynamics and demographics are in the system. Finally, we echo the recommendation from Rennie (2013) for expanded research, including cross-region and cross-lake analyses, to try and identify what stressors might be leading to changes in fish condition in Lake Superior to assist in determining what fishery management actions might help protect populations and fisheries.

Acknowledgments

We thank the Great Lakes Indian Fish and Wildlife Commission for providing funding for this research. This research was also partially funded by supporting partners of the Michigan State University (MSU) Quantitative Fisheries Center. This paper is 20XX-XX of the MSU Quantitative Fisheries Center. We additionally thank Ronald Parisien Jr., Patrick LaGrew, and the many interns that assisted with processing stomach samples. Special thanks to commercial fishers and personnel from the Keweenaw Bay Indian Community Natural Resources Department for allowing samples from their catches to be used in this study. Comments and edits from three anonymous reviewers and Associate Editor Jason Stockwell substantially improved this manuscript.

References

Amundsen, P. A., Gabler H. M., Staldvik, F. J., 1996. A new approach to graphical analysis of feeding strategy from stomach contents data-modification of the Costello (1990) method. J. Fish Biol. 48, 607-614. https://doi.org/10.1111/j.1095-8649.1996.tb01455.x
Anderson, E. D., Smith, L. L., Jr., 1971. A synoptic study of food habitats of 30 fish species from western Lake Superior. Technical Bulletin 279, University of Minnesota Agricultural Experiment Station.
Araújo, M. S., Guimarães, P. R., Jr., Svanbäck, R., Pinheiro, A., Guimarães, P., dos Reis, S. F., Bolnick, D. I., 2008. Network analysis reveals contrasting effects of intraspecific competition on individual vs. population diets. Ecology 89, 1981-1993. https://doi.org/10.1890/07-0630.1

Auer, M. T., Auer, N. A., Urban, N. R., Auer, T., 2013. Distribution of the Amphipod Diporeia in Lake Superior: the ring of fire. J. Great Lakes Res. 39, 33-46. https://doi.org/10.1016/j.jglr.2012.12.020

Austin, J., Colman, S., 2008. A century of temperature variability in Lake Superior. Limnol. Oceanogr. 53, 2724-2730. https://doi.org/10.4319/lo.2008.53.6.2724

Barbiero, R. P., Schmude, K., Lesht, B. M., Riseng, C. M., Warren, G. J., Tuchman, M. L., 2011. Trends in Diporeia populations across the Laurentian Great Lakes, 1997-2009. J. Great Lakes Res. 37, 9-17. https://doi.org/10.1016/j.jglr.2010.11.009
Bellinger, B. J., Hoffman, J. C., Angrandi, T. R., Bolgrien, D. W., Starry, M., Elonen, C., Jicha, T. M., Lehto, L. P., Seifert-Monson, L. R., Pearson, M. S., Anderson, L., Hill, B. H., 2016. Water quality in the St. Louis River Area of Concern, Lake Superior, historical and current conditions and delisting implications. J. Great Lakes Res. 42, 28-38. https://doi.org/10.1016/j.jglr.2015.11.008

Bolnick, D. I., Yang, L. H., Fordyce, J. A., Davis, J. M., Svanback, R., 2002. Measuring individual-level resource specialization. Ecology 83, 2936-2941. https://doi.org/10.1890/0012-9658(2002)083[2936:MILRS]2.0.CO;2
Cade, B. S., Noon, B. R., 2003. A gentle introduction to quantile regression for ecologists. Front. Ecol. Environ. 1, 412-420. https://doi.org/10.1890/1540-9295(2003)001[0412:AGITQR]2.0.CO;2

Cade, B. S., Terrell, J. W., Porath, M. T., 2008. Estimating fish body condition with quantile regression. N. Am. J. Fish. Manage. 28, 349-359. https://doi.org/10.1577/M07-048.1

Cave, C. S., Strychar, K. B., 2015. Decline of Diporeia in Lake Michigan: was disease associated with invasive species the primary factor? Int. J. Biol. 7, 93-99. https://doi.org/10.5539/ijb.v7n1p93

Chipps, S., Garvey, J. E., 2007. Assessment of diets and deeding patterns. in: Guy, C. S., Brown, M. L. (Eds.), Analysis and Interpretation of Freshwater Fisheries Data, American Fisheries Society, Bethesda, Maryland. pp. 473-514.
Christie, W. J., 1972. Lake Ontario: effects of exploitation, introductions, and eutrophication on the salmonid community. J. Fish. Res. Board Can. 29, 913-929. https://doi.org/10.1139/f72-134
Christie, W. J., 1973. A review of the changes in the fish species composition of Lake Ontario.

Technical Report 23. Great Lakes Fishery Commission. [Accessed: 29 September 2020] http://www.glfc.org/pubs/TechReports/Tr23.pdf

Cleland, C. E., 1982. The inland shore fishery of the northern Great Lakes: its development and importance in prehistory. Soc. Am. Archaeology 47, 761-784. https://doi.org/10.2307/280281

Collingsworth, P. D., Bunnell, D. B., Murray, M. W., Kao, Y., Feiner, Z. S., Claramunt, R. M., Lofgren, B. M., Höök, T. O, Ludsin, S. A., 2017. Climate change as a long-term stressor for the fisheries of the Laurentian Great Lakes of North America. Rev. Fish Biol. Fisher. 27, 363-391. https://doi.org/10.1007/s11160-017-9480-3

Cook, H. A., Johnson, T. B., Locke, B., Morrison, B. J., 2005. Status of Lake Whitefish (Coregonus clupeaformis) in Lake Erie. in: Mohr, L. C., Nalepa, T.F. (Eds.), Proceedings of a Workshop on the Dynamics of Lake Whitefish (Coregonus clupeaformis) and the Amphipod Diporeia spp. in the Great Lakes. Great Lakes Fishery Commission, Ann Arbor, Michigan. pp. 87-104. [Accessed: 29 September 2020] http://www.glfc.org/pubs/TechReports/Tr66.pdf

DeBruyne, R. L., Galarowicz, T. L., Claramunt, R. M., Clapp, D. F., 2008. Lake whitefish relative abundance, length-at-age, and condition in Lake Michigan as indicated by fishery-independent surveys. J. Great Lakes Res. 34, 235-244. https://doi.org/10.3394/0380-1330(2008)34[235:LWRALA]2.0.CO;2

Dermott, R., 2001. Sudden disappearance of the amphipod Diporeia from eastern Lake Ontario, 1993-1995. J. Great Lakes Res. 27, 423-433. https://doi.org/10.1016/S0380-1330(01)70657-0

Dermott, R., Munawar, M., Bonnell, R., Carou, S., Niblock, H., Nalepa, T. F., Messick, G., 2005. Preliminary investigations for causes of the disappearance of Diporeia spp. from Lake Ontario. in: Mohr, L. C., Nalepa, T.F. (Eds.), Proceedings of a Workshop on the Dynamics of Lake Whitefish (Coregonus clupeaformis) and the Amphipod Diporeia spp. in the Great Lakes. Great Lakes Fishery Commission, Ann Arbor, Michigan. pp. 203232. [Accessed: 29 September 2020] http://www.glfc.org/pubs/TechReports/Tr66.pdf

Dermott, R., Kerec, D., 1997. Changes to the deepwater benthos of eastern Lake Erie since the invasion of Dreissena: 1973-1993. Can. J. Fish. Aquat. Sci. 54, 922-930. https://doi.org/10.1139/f96-332

Ebener, M. P., Kinnunen, R. E., Schneeberger, P. J., Mohr, L. C., Hoyle, J. A., Peeters, P., 2008. Management of commercial fisheries for lake whitefish in the Laurentian Great Lakes of North America. in: Schechter, M. G., Taylor, W. W., Leonard, N. J. (Eds.) International Governance of Fisheries Ecosystem: Learning from the Past, Finding Solutions for the Future. American Fisheries Society, Bethesda, Maryland. pp. 99-143.
Eck, G. W., Wells, L., 1987. Recent changes in Lake Michigan's fish community and their probable causes, with emphasis on the role of the alewife (Alosa pseudoharengus). Can. J. Fish. Aquat. Sci. 44, 53-60. https://doi.org/10.1139/f87-308

Fera, S. A., Rennie, M. D., Dunlop, E. S., 2015. Cross-basin analysis of long-term trends in the growth of lake whitefish in the Laurentian Great Lakes. J. Great Lakes Res. 41, 11381149. https://doi.org/10.1016/j.jglr.2015.08.010

Fera, S. A., Rennie, M. D., Dunlop, E. S., 2017. Broad shifts in the resource use of a commercially harvested fish following the invasion of dreissenid mussels. Ecology, 98, 1681-1692. https://doi.org/10.1002/ecy. 1836

Gardner, W. S., Frez, W. A., Cichocki, E. A., Parrish, C. C., 1985. Micromethod for lipids in aquatic invertebrates. Limnol. Oceanogr. 30, 1099-1105. https://doi.org/10.4319/lo.1985.30.5.1099

Gamble, A. E., Hrabik, T. R., Yule, D. L., Stockwell, J. D., 2011. Trophic connections in Lake Superior Part II: the nearshore fish community. J. Great Lakes Res. 37, 550-560. https://doi.org/10.1016/j.jglr.2011.06.008

Garvey, J. E., Chipps, S. R., 2012. Diet and energy flow. in: Zale, A. V., Parrish, D. L., Sutton, T. M. (Eds.), Fisheries Techniques, $3{ }^{\text {rd }}$ Edition, American Fisheries Society, Bethesda, Maryland. pp. 733-780.

Goodyear, C. D., Edsall, T. A., Ormsby Dempsey, D. M., Moss, G. D., Polanski, P. E., 1982. Atlas of the spawning and nursery areas of Great Lakes Fishes. Vol. II: Lake Superior. U.S. Fish and Wildlife Service, Washington DC FWS/OBS-82/52. [Accessed: 29 September 2020] https://archive.epa.gov/ecopage/web/pdf/atlas-spawning-nursery-areas-great-lakes-fishes-volume-2-lake-superior-198209-124pp.pdf

Great Lakes Fishery Trust and Great Lakes Fishery Commission, 2018. Developing research priorities for lake whitefish in the upper Great Lakes. [Accessed: 20 October 2020] http://www.glft.org/documents/cms/cms_file?path=/240/whitefish_workshop_proceeding
s_final_sept_2018.pdf
Grigorovich, I. A., Korniushin, A. V., Gray, D. K., Duggan, I. C., Colautti, R. I., MacIsaac, H. J., 2003. Lake Superior: an invasion coldspot? Hydrobiologia 499, 191-210. https://doi.org/10.1023/A:1026335300403

Hall, P., 1992. The bootstrap and Edgeworth expansion. Springer-Verlag, New York.
He, X., Hu, F., 2002. Markov chain marginal bootstrap. J. Am. Stat. Assoc. 97, 783-795. https://doi.org/10.1198/016214502388618591

Herbst, S. J., Marsden, J. E., Lantry, B. F., 2013. Lake whitefish diet, condition, and energy density in Lake Champlain and the lower four Great Lakes following dreissenid invasions. Trans. Am. Fish. Soc. 142, 388-398. https://doi.org/10.1080/00028487.2012.747991

Hoyle, J. A., 2005. Status of lake whitefish (Coregonus clupeaformis) in Lake Ontario and the response to the disappearance of Diporeia spp. in: Mohr, L. C., Nalepa, T.F. (Eds.), Proceedings of a Workshop on the Dynamics of Lake Whitefish (Coregonus clupeaformis) and the Amphipod Diporeia spp. in the Great Lakes. Great Lakes Fishery Commission, Ann Arbor, Michigan. pp. 47-66. [Accessed: 29 September 2020] http://www.glfc.org/pubs/TechReports/Tr66.pdf

Hoyle, J. A., Schaner, T., Casselman, J. M., Dermott, R., 1999. Changes in lake whitefish (Coregonus clupeaformis) stocks in eastern Lake Ontario following Dreissena mussel invasion. Great Lakes Res. Rev. 4, 5-10. https://www.esf.edu/glrc/documents/glrr99.pdf.

Jeremiason, J. D., Hornbuckle, K. C., Eisenrich, S. J., 1994. PCBs in Lake Superior, 1978-1992: decreases in water concentrations reflect loss by volatilization. Environ. Sci. Technol. 28, 903-914. https://doi.org/10.1021/es00054a023

Kainz, M. J., Johannsson, O. E., Arts, M. T., 2010. Diet effects on lipid composition, somatic growth potential, and survival of the benthic amphipod Diporeia spp. J. Great Lakes Res. 36, 351-356. https://doi.org/10.1016/j.jglr.2010.02.004

Kočovský, P. M., 2019. Diets of endangered silver chub (Macrhybopsis storeriana, Kirtland, 1844) in Lake Erie and implications for recovery. Ecol. Freshw. Fish 28, 33-40. https://doi.org/10.1111/eff. 12424

Koenker, R., 2018. quantreg: quantile regression. R package version 5.36. https://CRAN.Rproject.org/package=quantreg.

Lake Erie Coldwater Task Group, 2017. 2016 Report of the Lake Erie Coldwater Task Group, March 2017. Lake Erie Committee, Great Lakes Fishery Commission. [Accessed: 29 September 2020] http://www.glfc.org/pubs/lake_committees/erie/CWTG_docs/ annual_reports/CWTG_report_2017.pdf
Lenart S. J., Caroffino, D. C., 2018. Executive summary. in: Lenart, S. J. Lenart, Caroffino, D. C. (Eds.), Technical Fisheries Committee Administrative Report 2018: Status of Lake Trout and Lake Whitefish Populations in the 1836 Treaty-Ceded Waters of Lakes Superior, Huron and Michigan, with Recommended Yield and Effort Levels for 2018. Michigan Department of Natural Resources, Lansing, Michigan. pp. 4-9. [Accessed: 29 September 2020] https://www.michigan.gov/documents/dnr/2018StatusStocksReport_631815_7.pdf
Lozano, S. J., Scharold, J. V., Nalepa, T. F., 2001. Recent declines in benthic macroinvertebrate densities in Lake Ontario. Can. J. Fish. Aquat. Sci. 58, 518-529. https://doi.org/10.1139/f01-002
Madenjian, C. P., O’Connor, D. V., Pothoven, S. A., Schneeberger, P. J., Rediske, R. R., O’Keefe, J. P., Bergstedt, R. A., Argyle, R. L., Brandt, S. B., 2006. Evaluation of a lake whitefish bioenergetics model. Trans. Am. Fish. Soc. 135, 61-75. https://doi.org/10.1577/T04-215.1
Mattes, W. P., 2019. Biological and commercial catch statistics from the Ojibwe inter-tribal gill net fishery within Michigan waters of Lake Superior during 2017. Biological Services Division Administrative Report 19-17, Great Lakes Indian Fish and Wildlife Commission.

McNickle, G. G., Rennie, M. D., Sprules, W. G., 2006. Changes in benthic invertebrate communities of South Bay, Lake Huron following invasion by zebra mussels (Dreissena polymorpha), and potential effects on lake whitefish (Coregonus clupeaformis) diet and growth. J. Great Lakes Res. 32, 180-193. https://doi.org/10.3394/03801330(2006)32[180:CIBICO]2.0.CO;2
Mohr, L. C., Ebener, M. P., 2005. Status of lake whitefish (Coregonus clupeaformis) in Lake Huron. in: Mohr, L. C., Nalepa, T.F. (Eds.), Proceedings of a Workshop on the Dynamics of Lake Whitefish (Coregonus clupeaformis) and the Amphipod Diporeia spp. in the Great Lakes. Great Lakes Fishery Commission, Ann Arbor, Michigan. pp. 105-125.
[Accessed: 29 September 2020] http://www.glfc.org/pubs/TechReports/Tr66.pdf Nalepa, T. F., Fanslow, D. L., Messick, G., 2005a. Characteristics and potential causes of declining Diporeia spp. populations in southern Lake Michigan and Saginaw Bay, Lake Huron. in: Mohr, L. C., Nalepa, T.F. (Eds.), Proceedings of a Workshop on the Dynamics of Lake Whitefish (Coregonus clupeaformis) and the Amphipod Diporeia spp. in the Great Lakes. Great Lakes Fishery Commission, Ann Arbor, Michigan. pp. 157-188. [Accessed: 29 September 2020] http://www.glfc.org/pubs/TechReports/Tr66.pdf

Nalepa, T.F., Mohr, L. C., Henderson, B. A., Madenjian, C. P., Schneeberger, P. J., 2005b. Lake whitefish and Diporeia spp. in the Great Lakes: an overview. in: Mohr, L. C., Nalepa, T.F. (Eds.), Proceedings of a Workshop on the Dynamics of Lake Whitefish (Coregonus clupeaformis) and the Amphipod Diporeia spp. in the Great Lakes. Great Lakes Fishery Commission, Ann Arbor, Michigan. pp. 3-19. [Accessed: 29 September 2020] http://www.glfc.org/pubs/TechReports/Tr66.pdf

Nalepa, T. F., Fanslow D. L., Pothoven, S. A., Foley, A. J., III., Lang, G. A., 2007. Long-term trends in benthic macroinvertebrate populations in Lake Huron over the past four decades. J. Great Lakes Res. 33, 421-436. https://doi.org/10.3394/03801330(2007)33[421:LTIBMP]2.0.CO;2

Owens, R. W., Dittman, D. E., 2003. Shifts in the diets of slimy sculpin (Cottus cognatus) and lake whitefish (Coregonus clupeaformis) in Lake Ontario following the collapse of the burrowing amphipod Diporeia. Aquat. Ecosyst. Health Manage. 6, 311-323. https://doi.org/10.1080/146340390236162
Pothoven, S. A., Madenjian, C. P., 2008. Changes in consumption by alewives and lake whitefish after dreissenid mussel invasions in Lakes Michigan and Huron. N. Am. J. Fish. Manage. 28, 308-320. https://doi.org/10.1577/M07-022.1
Pothoven, S. A., Madenjian, C. P., 2013. Increased piscivory by lake whitefish in Lake Huron.
N. Am. J. Fish. Manage. 33, 1194-1202. https://doi.org/10.1080/02755947.2013.839973.

Pothoven, S. A., Nalepa, T. F., 2006. Feeding ecology of lake whitefish in Lake Huron. J. Great Lakes Res. 32, 489-501. https://doi.org/10.3394/03801330(2006)32[489:FEOLWI]2.0.CO;2

Pothoven, S. A., Nalepa, T. F., Schneeberger, P. J., Brandt, S. B., 2001. Changes in diet and body condition of lake whitefish in southern Lake Michigan associated with changes in
benthos. N. Am. J. Fish. Manage. 21, 876-883. https://doi.org/10.1577/15488675(2001)021<0876:CIDABC>2.0.CO;2

Pothoven, S. A., Naelpa, T. F., Madenjian, C. P., Rediske, R. R., Schneeberger, P. J., He, J. X., 2006. Energy densities of lake whitefish Coregonus clupeaformis in Lakes Huron and Michigan. Environ. Biol. Fish. 76, 151-158. http://doi.org/10.1007/s10641-006-9017-4
R Core Team, 2018. R: A language and environment for statistical compute. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-poject.org/.

Rennie, M. D., 2013. Context-dependent changes in lake whitefish populations associated with dreissenid invasion. in: Nalepa, T. F., Schloesser, D. W. (Eds.), Quagga and zebra mussels: biology, impacts and control (2nd edition). CRC Press, Boca Raton, Florida. pp. 661-680.

Rennie, M. D., Johnson, T. B., Sprules W. G., 2012. Energy acquisition and allocation patterns of lake whitefish (Coregonus clupeaformis) are modified when dreissenids are present. Can. J. Fish. Aquat. Sci. 69, 41-59. https://doi.org/10.1139/f2011-126

Rennie, M. D., Sprules, W. G., Johnson, T. B., 2009. Resource switching in fish following a major food web disruption. Oecologia 159, 789-802. 10.1007/s00442-008-1271-z

Rennie, M. D., Sprules, W. G., Vaillancourt, A., 2010. Changes in fish condition and mercury vary by region, not Bythotrephes invasion: a result of climate change? Ecography 33, 471-482. https://doi.org/10.1111/j.1600-0587.2009.06160.x
Rennie, M. D., Weidel, B. C., Claramunt, R. M., Dunlop, E. S., 2015. Changes in depth occupied by Great Lakes lake whitefish populations and the influence of survey design. J. Great Lakes Res. 41, 1150-1161. https://doi.org/10.1016/j.jglr.2015.09.014
Shannon, C. E., 1948. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

Scharold, J. V., Lozano, S. J., Corry, T. D., 2004. Status of the Amphipod Diporeia spp. in Lake Superior, 1994-2000. J. Great Lakes Res. 30 (Suppl. 1), 360-368. https://doi.org/10.1016/S0380-1330(04)70397-4
Schoener, T. W., 1970. Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology 51, 408-418. https://doi.org/10.2307/1935376.

Schneeberger, P. J, Ebener, M. P., Toneys, M., Peeters, P. J., 2005. Status of lake whitefish (Coregonus clupeaformis) in Lake Michigan. in: Mohr, L. C., Nalepa, T.F. (Eds.),

Proceedings of a Workshop on the Dynamics of Lake Whitefish (Coregonus clupeaformis) and the Amphipod Diporeia spp. in the Great Lakes. Great Lakes Fishery Commission, Ann Arbor, Michigan. pp. 67-86. [Accessed: 29 September 2020] http://www.glfc.org/pubs/TechReports/Tr66.pdf
Smith, E. P., 1985. Estimating the reliability of diet overlap measures. Environ. Biol. Fish. 13, 125-138. https://doi.org/10.1007/BF00002581

Stockwell, J. D., Hrabik, T. R., Jensen, O. P., Yule, D. L., Balge, M. 2010. Empirical evaluation of predator-driven diel vertical migration in Lake Superior. Can. J. Fish. Aquat. Sci. 67, 473-485. https://doi.org/10.1139/F09-198

Stockwell, J. D., Yule, D. L., Hrabik, T. R., Sierszen, M. E., Isaac, E .J. 2014. Habitat coupling in a large lake system: delivery of an energy subsidy by an offshore planktivore to the nearshore zone of Lake Superior. Fresh. Biol. 59, 1197-1212. https://doi.org/10.1111/fwb. 12340
Sutton, T. M., Cytersi, M. J., Ney, J. J., Duval, M. C., 2004. Determination of factors influencing stomach content retention by striped bass captured using gillnets. J. Fish Biol. 64, 903910. https://doi.org/10.1111/j.1095-8649.2004.0358.x

Treasurer, J. W., 1988. Measurement of regurgitation in feeding studies of predatory fishes. J. Fish Biol. 33, 267-271. https://doi.org/10.1111/j.1095-8649.1988.tb05469.x
Trebitz, A. S., Hatzenbuhler, C. L., Hoffman, J. C., Meredith, C. S., Peterson, G. S., Pilgrim, E. M., Barge, J. T., Cotter, A. M., Wick, M. J., 2019. Dreissena veligers in western Lake Superior - inference from new low-density detection. J. Great Lakes Res. 45, 691-699. https://doi.org/10.1016/j.jglr.2019.03.013
Uusi-Heikkilä, S., Lindstrom, K., Parre, N., Arlinghaus, R., Alós, J, Kuparinen, A., 2016. Altered trait variability in response to size-selective mortality. Biol. Lett. 12, 20160584. https://doi.org/10.1098/rsbl.2016.0584
Wang, H. Y., Höök, T. O., 2009. Eco-genetic model to explore fishing-induced ecological and evolutionary effects on growth and maturation schedules. Evol Appl. 2, 438-455. https://doi.org/10.1111/j.1752-4571.2009.00088.x.
Wells, L., McLain, A. L., 1972. Lake Michigan: effects of exploitation, introductions, and eutrophication on the salmonid community. J. Fish. Res. Board Can. 29, 889-898. https://doi.org/10.1139/f72-132

Wells, L., McLain, A., 1973. Lake Michigan: man's effects on native fish stocks and other biota. Technical Report 20, Great Lakes Fishery Commission. [Accessed: 29 September 2020] http://www.glfc.org/pubs/TechReports/Tr20.pdf
Whittier, T. R., Ringold, P. L. Herlihy, A. T., Pierson, S. M., 2008. A calcium-based invasion risk assessment for zebra and quagga mussels (Dreissena spp.). Front. Ecol. Environ. 6, 180-184. https://doi.org/10.1890/070073
Willis, C. M., Richardson, J., Smart, T., Cowan, J., Biondo, P., 2015. Diet composition, feeding strategy, and diet overlap of 3 sciaenids along the southeastern United States. Fish. Bull. 113, 290-301. https://doi.org/10.7755/FB.113.3.5
Winters, A. D., Fitzgerald, S., Brenden, T. O., Nalepa, T., Faisal, M., 2014. Spatio-temporal dynamics of parasites infecting Diporeia spp. (Amphipoda, Gammaridae) in southern Lake Michigan (USA). J. Invertebr. Pathol. 121, 37-45. https://doi.org/10.1016/j.jip.2014.06.008
Zaccarelli, N., Bolnick, D. I., Mancinelli, G., 2013. RInSp: an R package for the analysis of individual specialization in resource use. Meth. Ecol. Evol. 4, 1018-1023. https://doi.org/10.1111/2041-210X. 12079
Zaret, T. M., Rand, R. S., 1971. Competition in tropical streams: support for the competitive exclusion principle. Ecology 52, 336-342. https://doi.org/10.2307/1934593

Reporting Category	Description
Coregonid	Coregonus spp.
Burbot	Lota lota
Smelt	Osmerus mordax
Sculpin	Cottidae spp.
Stickleback	Gasterosteus aculeatus
Mysis	Mysis diluviana
Diporeia	Diporeia spp.
Terrestrial	Non-aquatic insects
Unknown Fish	Unidentifiable fish spp.
Eggs	Fish eggs
Sphaeriids	Sphaeriidae
Other	

Table 2. Schoener index values comparing diet similarities between seasons for lake whitefish collected off the Keweenaw Peninsula of Lake Superior. Values in parentheses are the lower and upper 95\% confidence limits (CL).

Comparison	Diet Overlap Index
Spring vs Summer	$0.631(0.524-0.735)$
Spring vs Fall	$0.349(0.258-0.435)$
Spring vs Winter	$0.486(0.374-0.602)$
Summer vs Fall	$0.643(0.521-0.783)$
Summer vs Winter	$0.426(0.307-0.580)$
Fall vs Winter	$0.2667(0.184-0.389)$

Table 3. Mean Shannon diversity, richness, and individual specialization values overall and by season for lake whitefish collected off the Keweenaw Peninsula of Lake Superior. Values in parentheses are the lower and upper 95% confidence limits (CL).

Category	Shannon Diversity	Richness	Individual Specialization
Overall	$0.285(0.245-0.323)$	$2.068(1.976-2.162)$	$0.694(0.694-0.694)$
Spring	$0.262(0.204-0.318)$	$2.007(1.866-2.147)$	$0.650(0.650-0.651)$
Summer	$0.332(0.248-0.419)$	$2.201(1.999-2.408)$	$0.582(0.580-0.584)$
Fall	$0.217(0.176-0.260)$	$1.544(1.419-1.670)$	$0.525(0.525-0.526)$
Winter	$0.321(0.212-0.410)$	$2.088(1.781-2.329)$	$0.557(0.503-0.610)$

Table 4. Percentages of lake whitefish diets consisting of Diporeia, Mysis, sphaeriids, fish eggs, and other items from this study and other diet studies from Lake Superior.

Study - Location, Year, and Season ($n=$ number of stomachs with food contents)	Diporeia	Mysis	Diporeia + Mysis	Sphaeriid	Fish Eggs	Other
Anderson and Smith (1971) - Western Lake Superior (1965- 1968)						
	Dec.-Feb. $(n=8)$	78%	0%	78%	12%	3%
May-Jul. $(n=30)$	34%	28%	62%	6%	0%	22%
	Sep.-Nov. $(n=13)$	52%	6%	58%	14%	0%

Gamble et al. (2011) ${ }^{-1}$ Multiple Sites (2005)

May-Jun. $\left(n=140^{*}\right)$	13%	87%	100%	$<1 \%$	0%	$<1 \%$
Jul.-Aug. $\left(n=34^{*}\right)$	43%	47%	90%	10%	0%	$<1 \%$
Sep.-Nov. $\left(n=48^{*}\right)$	30%	69%	99%	$<1 \%$	0%	$<1 \%$

Stockwell et al. (2014) -

Western Lake Superior (2010-
2011)

Dec.-Jan. ($n=31$)	0\%	0\%	0\%	NA^{-2}	99\%	1\%
Mar.-Apr. ($n=12$)	12\%	0\%	12\%	NA^{-2}	16\%	72\%
Rennie et al. (2012) ${ }^{-3}$						
Apostle Islands (2004;	32\%	12\%	44\%	9\%	0\%	47\%
Summer) ($n=$ NA)						
Thunder Bay (2005; Summer)	54\%	25\%	79\%	10\%	0\%	11\%
($n=$ NA)						

Present study - Keweenaw

Peninsula (2015-2017)

Dec.-Feb. $(n=116)$	11%	25%	37%	30%	27%	7%
Mar.-May $(n=379)$	42%	16%	59%	30%	3%	8%
Jun.-Aug. $(n=272)$	27%	47%	74%	21%	0%	4%
Sep.-Nov. $(n=122)$	3%	48%	51%	22%	0%	27%

${ }^{1}$-Percentage of lake whitefish diets consisting of Diporeia and Mysis for Gamble et al. (2011) were reported in Stockwell et al. (2014). Estimated diet percentages for sphaeriids from Gamble et al. (2011) were extracted from a published figure using WebPlotDigitizer software (https://automeris.io/WebPlotDigitizer/)
${ }^{2}$-Percentage of lake whitefish diet consisting of sphaeriids was not reported by Stockwell et al. (2014) although it was noted that clams and leeches were included in the other category.
${ }^{3}$ - Percentages of lake whitefish diets from Rennie et al. (2012) were calculated excluding inorganic material.
*- Number of stomachs reported in Gamble et al. (2011) is the total number of stomachs examined, including empty stomachs.

Figure Captions
Figure 1. Locations off the Keweenaw Peninsula of Lake Superior where lake whitefish were collected by commercial fishing and assessment gillnets for diet characterization from 2015-2017. The small grid and accompanying labels are 10-minute grids commonly used in the Great Lakes to denote locations. The larger regions demarcate Lake Superior lake whitefish management units.
Figure 2. Mean (averaged across years) prey-specific abundance plotted against mean (averaged across years) frequency of occurrence in the diet of lake whitefish collected off the Keweenaw Peninsula of Lake Superior, 2015-2017.
Figure 3. Percentage by wet weight for each prey type in lake whitefish diets by season (spring: March to May; summer: June to August; fall: September to November; winter: December to February) for fish collected off the Keweenaw Peninsula of Lake Superior, 2015-2017.
Figure 4. Mean (averaged across years) prey-specific abundance plotted against mean (averaged across years) frequency of occurrence seasonally for lake whitefish collected off the Keweenaw Peninsula of Lake Superior, 2015-2017.
Figure 5. Predicted weights at 400-, 500-, 600-, $700-$, and $800-\mathrm{mm}$ reference lengths of lake whitefish collected off the Keweenaw Peninsula of Lake Superior from quantile regression models fits $\log _{10}$-weight versus $\log _{10}$-length relationships using decade as a categorical grouping factors. Regressions were fit to quantiles from 0.1 to 0.9 in 0.05 increments.

