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Abstract
We investigated using longitudinal models to reconstruct year-class strength (YCS) from catch-at-age data, with an example

application to lake trout (Salvelinus namaycush) in the main basin of Lake Huron. The best model structure depended on the age
range used for model implementation. The YCS trajectory from the full age range (3–30 years) was similar to the trajectory from
a narrow age range that approximated the age of recruitment to the fishing gears (5–7 years), but YCS estimates from the full age
range included additional variations due to time-dependent selectivity and mortality. When using ages younger or older than
the likely ages of recruitment, YCS estimates did not represent recruitment abundances and were also biased by trends in age-
specific selectivity and mortality across years. Longitudinal YCS estimates are likely more robust than single-age recruitment
indices, which are often subject to interannual changes in catchability and selectivity. Our findings provide guidance for future
applications of the longitudinal YCS reconstruction that in turn may inform and supplement more comprehensive research
and management programs for understanding fish recruitment dynamics.
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Introduction
The concepts of year-class strength (YCS) and recruitment

are often used interchangeably to describe fish year-class
abundance (Myers 2002; Maceina and Pereira 2007). We make
a distinction between the two concepts based on how the in-
dices are derived from data. A recruitment model is mostly
based on indices at a given age, with each index value col-
lected in a single year, to articulate predictive relationships
with various covariates including environmental variables,
stock abundance, individual growth, and abundance mea-
sures at earlier life stages (Subbey et al. 2014). The concept
of YCS is more commonly used when the relative abundance
is derived from repeated measures on a fish year-class across
multiple ages and years (Carlander and Payne 1977).

In this paper, we focus on the reconstruction of YCS from
fishery-independent surveys and fisheries monitoring and
generalize the statistical descriptions as a longitudinal model
(Verbeke and Molenberghs 2000). This modeling approach
can be distinguished from more comprehensive fishery stock

assessment models that calculate absolute abundances of fish
year-classes and estimate mortality rates, such as virtual pop-
ulation analyses (Shepherd and Pope 2002) and statistical
catch-at-age (SCAA) models (Maunder and Punt 2013; Methot
and Wetzel 2013; Aeberhard et al. 2018), which require data
on total removals and often rely on additional data and as-
sumptions (Ricker 1975; Hilborn and Walters 1992; Maunder
and Deriso 2003). There are also other approaches to estimat-
ing YCS based on assumptions of fish mortality, such as using
residuals of catch-curve regressions (Maceina 1997; Tetzlaff et
al. 2011) or individual-based approaches of population mod-
eling (Thanassekos et al. 2016). In contrast, the YCS model
that we generalize in this paper is a statistical description of
indices from catch-at-age data.

Catch-at-age data are particularly suitable for tracking fish
year-classes, but with only a couple of exceptions (Parsons
and Pereira 2001; Honsey et al. 2020), longitudinal models
have rarely been applied to catch-at-age data for estimating
YCS. Many linear or generalized linear models have been
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used in fisheries research to separate various factors from
the year effect that represents the relative abundance of a
fish population (Venables and Dichmont 2004). When using
age-structured data, however, a conceptual difference arises
because the linear-mixed model can separate the year effect
from the year-class effect, where the year effect represents
annual variation in sampling efforts and catchability (rather
than fish population abundance) and the year-class effect rep-
resents the relative abundance of a fish year-class based on
repeated measures across multiple ages and years.

To describe survey indices for the relative abundance of a
fish population, Kimura (1988) introduced a two-way analysis
of variance (ANOVA):

log (NYr,I ) = γYr + δI + γYr,I + ε(1)

where N is the observed value of an index, such as catch per
unit effort (CPUE), γ Yr is the year effect representing the rel-
ative abundance of a fish population, δI is the index effect
representing survey gear or survey location, and γ Yr,I is the
year-by-index interaction. An average term is dropped from
the right-hand side of the equation, and ε is the residual er-
ror following a standard normal distribution. When the in-
dex value (NYr,I) is from a given young age, the year effect (γ Yr)
represents the indices of recruitment at the age specified.

Parsons and Pereira (2001) used a similar two-way ANOVA
to analyze age-structured indices (see also Maceina and
Pereira 2007). Their primary interest was in the relative abun-
dance of a fish year-class, and the major parameters of their
model captured the age (αAge) and year-class (βYc) effects on
the age-structured index values:

log
(
NYc,Age

) = αAge + βYc + ε(2)

where the year-class effect (βYc) represents the relative abun-
dance of a fish year-class, i.e., YCS. More recently, Honsey et
al. (2020) modified eq. 2 and added a year effect (cYr) to ac-
count for interannual variation in catchability:

log
(
NYc,Age,Yr

) = αAge + bYc + cYr + ε(3)

Note that in eq. 3 and all equations of this paper, we follow
McCulloch et al. (2008) in using Greek letters (e.g., α, β, γ , and
δ) to represent fixed effects and Roman letters (e.g., b, c, and
e) to represent random effects. In a linear-mixed model, each
level of a factor estimated as a fixed effect is the expected
value from an independent normal distribution. Conversely,
all levels of a factor estimated as a random effect are random
samples from the same normal distribution, which allows a
factor to be included in a model at the cost of one degree of
freedom regardless of how many levels are included within
the factor.

Equation 3 has year-class and sampling year as random ef-
fects, implying that all YCS estimates are independent ran-
dom draws from the distribution for the year-class effect, and
likewise all levels of the year effect are independent random
draws from the distribution for the year effect. This model
structure not only allows for the comparisons across separate
populations based on standardized estimates, N(0, 1), but also

implicitly assumes that a fish population and its environment
have not been undergoing any sustained major changes or
trends. Meanwhile, eq. 3 has age as a fixed effect, represent-
ing the expected catch-at-age. Thus, a year-class effect can be
interpreted as a deviation for a cohort, signaling the strength
of that year-class. This model can be effectively applied to
an age range with partial data in many years given the as-
sumption of a constant fixed age effect. It is also assumed
that the use of a particular alternative age range should not
have a large impact on YCS estimates because different ages
are tracking the same trends.

The assumptions and implications in eq. 3 are problem-
atic when a fish population and its environment have been
changing rapidly, as is the case for lake trout (Salvelinus na-
maycush) in the main basin of Lake Huron, one of the Lau-
rentian Great Lakes of North America (He et al. 2015, 2016,
2020, 2022). With continued changes in juvenile selectivity
and adult mortality, YCS estimates need to be separated from
interannual variations in age-specific selectivity and mortal-
ity. With rapid changes in fish spatial distributions, using
multiple data sources from different sampling locations not
only has potential advantages, but also presents a challenge
that the interannual changes in catchability and selectivity
are likely different among data sources. Overall, the age, year,
and year-class effects may each involve patterns and trends
that cannot be interpreted as interchangeable samples from
a distribution.

In this paper, we further generalize the YCS model in eqs. 2
and 3 for broad applications, particularly for reconstructing
YCS of fish populations in changing environments. We have
four specific objectives: (1) to integrate multiple data sources,
i.e., using different surveys and fisheries in different sam-
pling locations to estimate a common time-series of YCS for
the underlying fish population, (2) to illustrate the impacts
of confounding variables that must be taken into considera-
tion when determining the most appropriate age range for
estimating YCS, (3) to demonstrate the procedure of model
development and to objectively incorporate year and age ef-
fects into a model structure for estimating YCS, and (4) to
illustrate the overall approach by example and provide YCS
estimates for lake trout in the main basin of Lake Huron.

Methods

Data sources and the age range for model
implementation

With the year effect as one of the major components of a
YCS model (e.g., eq. 3), we used catch-at-age data in numbers,
rather than age-structured CPUE, to estimate YCS. Our mod-
eling approach does not require the use of fishing effort data
because the year effect can be estimated and interpreted as
a combination of interannual variations in sampling effort
and catchability. We preferred this option because interan-
nual variation in catchability was large for lake trout in the
main basin of Lake Huron (He et al. 2020), and the data for
fishing effort were not comparable between data sources and
sometimes even among years within a data source. For exam-
ple, the fishing pressure on lake trout based on angler-hours
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recorded for fishing salmon and trout has shifted as dom-
inant species in recreational fishery catches have changed
(Bence and Smith 1999; Su and Clapp 2013; Su and He 2013).

We used lake trout catch-at-age data from recreational and
commercial fisheries and fishery-independent surveys in the
two spatial units of the main basin of Lake Huron (Appendix
A). These catch-at-age data have been used to calculate age
compositions in SCAA assessments (He et al. 2015, 2020;
Lenart et al. 2020). We used the six datasets to estimate a com-
mon time-series of YCS for the underlying fish population.
In the main basin of Lake Huron, the lake trout population
was rebuilt and supported by stocking lake trout yearlings
and fingerlings (Eshenroder et al. 1995; Ebener 1998). Over
70% of stocked lake trout were from hatcheries of U.S. Fish
and Wildlife Service (He et al. 2022). Lake trout migration af-
ter stocking has been detected and reported (Adlerstein et
al. 2007; Kornis et al. 2020). Spawning segregated adult lake
trout were often found available to fisheries outside the man-
agement unit containing their spawning location (Binder et
al. 2017), although spatial units have been used for stock as-
sessments and fisheries management (Sitar et al. 1999; He
et al. 2015, 2020; Lenart et al. 2020). Since the early 2000s,
the lake-wide recruitment of wild-born lake trout was driven
mostly by production in the northern main basin of Lake
Huron (Riley et al. 2007, 2014; He 2019), i.e., north of the ex-
tended boundary between the Ontario OH-2 and OH-3 statisti-
cal districts (i.e., extended across the international boundary
as in He et al. 2022). More geographic specifics about the fish-
ery statistical districts can be found in Smith et al. (1961).

To determine the most appropriate age range for recon-
structing lake trout YCS, we analyzed the data to confirm the
findings from previous studies. We calculated the averages
of log-scale catch-at-age across years and the six data sources,
and we plotted the average logarithm versus age for two time
periods (Fig. 1). In the main basin of Lake Huron, the age that
lake trout first fully recruited to the fishing gears, i.e., the
age of recruitment, was not constant across years but was
within a narrow age range of 5–7 years. Wilberg et al. (2002)
and Johnson et al. (2004) used age-5 CPUE per unit of stock-
ing to evaluate the relative return rate of hatchery-stocked
lake trout, although the fishery catch from pre-recruitment
ages was high in early years (Fig. 1). Madenjian et al. (2004)
used ages 6–8 for a similar evaluation for lake trout stocked
on offshore reefs in Lake Huron, including Six Fathom Bank
and Yankee Reef. He et al. (2012) used age-7 CPUE per unit of
stocking to repeat the lake-wide evaluation in the main basin
of Lake Huron. In a more recent study of catch-curve mortal-
ity based on age-specific averages of the relative return rate of
coded-wire tagged lake trout from US waters of Lake Huron,
the starting age for the catch-curve regression was age 5 (He
et al. 2022).

In this paper, to repeatedly measure the relative abundance
of lake trout year-classes, we decided to use the age range of
5–7 years for our model implementation. In that regard, we
maintain a clear definition that YCS is the relative abundance
of a year-class when fish first fully recruit to the fishing gears.
We assume that (1) within the age range that comprises likely
ages of recruitment, the deviation for each age is random and
is around the expected YCS or recruitment abundance after

Fig. 1. Average logarithm of lake trout (Salvelinus namay-
cush) catch-at-age numbers (solid line and black dots; dot
lines = 95% confidence intervals), across years and six data
sources for two time periods in the main basin of Lake Huron.
The six data sources include commercial and recreational
fisheries and fishery-independent surveys in two manage-
ment units (Appendix A).

adjustment for any potential year effect; (2) below this age
range, selectivity sharply increases with increasing age, and
it is impossible to separate time-dependent selectivity from
YCS estimates; (3) above this age range, the abundance of a
year-class is reduced from the recruitment abundance, and
it is impossible to separate time-dependent mortality from
YCS estimates; and (4) within the range of likely ages of re-
cruitment, because selectivity does not differ greatly, we also
expect little variation in relative vulnerability over time.

To further support our decision and to demonstrate how
confounding variables may mislead model estimates, we
compared YCS time-series from many model implementa-
tions with alternative age ranges. In comparison with the age
range of 5–7 years, the alternatives included (a) younger age
ranges such as ages 3–5, 3–7, and 4–7; (b) older age ranges such
as ages 5–8 and 5–10; (c) approximately balanced age ranges
around those likely ages of recruitment, such as ages 3–10
and 4–8; (d) broad age ranges such as ages 3–15; and (e) the
full age range of 3–30 years that has been used in the SCAA
assessments (He et al. 2015, 2020).
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Model development and evaluation of findings
We expected that a combination of the age, year, and year-

class effects would not be the same for different age ranges.
We applied two alternative strategies to find the best model
structure for each age range used for model implementa-
tion. We used Akaike information criterion (AIC) (Burnham
and Anderson 2002) to compare and select model structures
throughout the procedures of model development.

One strategy was to first select fixed effects, adding as many
as possible to ensure that systematic variations in the data
were well explained, and then to evaluate random variations
in the data by selecting and adding random effects to the
model (Verbeke and Molenberghs 2000; West et al. 2007). For
our YCS models, in addition to the index effect given by the
six data sources, we only had three major factors (year-class,
year, and age) to be evaluated and included in the model. We
first evaluated and selected two of these three major factors
as fixed effects, and then evaluated the third major factor to
be included as a random effect. It is impossible to treat year-
class, year, and age all as fixed effects in the model because
a factor level (the expected value and its variance) cannot be
estimated as coming from an independent distribution when
the three fixed effects are connected by a predictive relation-
ship: Yc = Yr − Age. For the same reason, it is also unlikely to
detect interactions as fixed effects between any pair of these
three major factors. There were several possible model struc-
tures with a single major factor as a fixed effect and two major
factors as random effects (similar with eq. 3). Those models
performed poorly in all preliminary model comparisons, and
we therefore excluded them from further analyses in this pa-
per.

Following the above strategy, our model development
started with the year-class and data source index as fixed ef-
fects:

log (NYc,I ) = βYc + δI + ε(4)

We then fitted and compared alternative models that added
the second fixed effect of year or age either as a main effect
or as an interaction with the data source index.

log (NYc,Yr,I ) = βYc + γYr + δI + ε(5-1)

log (NYc,Yr,I ) = βYc + γYr,I + ε(5-2)

log
(
NYc,Age,I

) = βYc + αAge + δI + ε(6-1)

log
(
NYc,Age,I

) = βYc + αAge,I + ε(6-2)

If eq. 4 was the best among the models of eqs. 4–6, then the
model selection process was stopped. If any other model was
the best, then the factor that was not selected as a fixed effect
would be further evaluated in the model as a random effect
interacting with the data source index:

log
(
NYc,Yr,Age,I

) = βYc + γYr + δI + eAge,I + ε(7a-1)

log
(
NYc,Yr,Age,I

) = βYc + γYr,I + eAge,I + ε(7a-2)

log
(
NYc,Yr,Age,I

) = βYc + αAge + δI + eYr,I + ε(7b-1)

log
(
NYc,Yr,Age,I

) = βYc + αAge,I + eYr,I + ε(7b-2)

Note that we compared eqs. 4–6 for each of many alterna-
tive age ranges, and the subsequent comparison with one of
the alternatives in eqs. 7 was dependent on the previous se-
lection from eqs. 5–6. We then further considered the alter-
native random effect as an age-by-year interaction, following
the same sequence as in the previous step:

log
(
NYc,Yr,Age,I

) = βYc + γYr + δI + eAge,Yr + ε(8a-1)

log
(
NYc,Yr,Age,I

) = βYc + γYr,I + eAge,Yr + ε(8a-2)

log
(
NYc,Yr,Age,I

) = βYc + αAge + δI + eAge,Yr + ε(8b-1)

log
(
NYc,Yr,Age,I

) = βYc + αAge,I + eAge,Yr + ε(8b-2)

For all these models (eqs. 4–8), we included year-class as
a fixed effect because our primary interest was in YCS for a
year-class that influences fish catch from the year-class across
multiple ages and years in every data source. In our prelimi-
nary model comparisons, even when model development was
started with age or year as a fixed effect, year-class was al-
ways selected eventually as a fixed effect, rather than as an
interaction with the data source index or as a random effect
with or without interaction with other factors (recall the ar-
guments and our analyses on eq. 3 in the Introduction). The
potential age-by-index interaction was evaluated to represent
the fact that age assignments were conducted separately by
each agency lab responsible for a data source, although the
lab procedures were comparable among agencies. More im-
portantly, fish samples from each data source were often col-
lected in different locations of the lake where fishing mor-
tality might not be the same, and the fishing and survey se-
lectivity were likely different among data sources. The poten-
tial year-by-index interaction was evaluated to represent in-
terannual variations in sampling effort and catchability that
were also likely different among data sources. The possible
age-by-year interaction was evaluated to represent a scenario
that age-specific selectivity and mortality could be different
among years, or interannual variations in catchability could
be age-specific because of different spatial distributions of
fish age groups.

The alternative strategy for our model development was to
reverse the above process of model comparison and selection
by starting with the year-class and data source index as fixed
effects along with the age-by-year interaction as a random ef-
fect:

log
(
NYc,Yr,Age,I

) = βYc + δI + eAge,Yr + ε(9)

Here, the index effect was given by the six data sources, and
the year-class effect was our primary interest. We were also
interested in the age-by-year interaction as a random effect
because we used an age range for multiple measures on every
year-class, but those measures were from a different range
of years for each year-class. Equation 9 was compared with
alternative models that added the second fixed effect of year
or age either as a main effect or as an interaction with the
data source index (eqs. 8). If any model in eqs. 8 was better
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Table 1. Model comparison and selection for different age ranges used for estimating lake trout (Salvelinus
namaycush) year-class strength in the main basin of Lake Huron, based on the Akaike information criterion
(AIC).

Model Description Ages 3–5 Ages 5–7 Ages 3–15 Ages 3–30

Eq. 4 Yc, Index 663.2 884.2 2708.1 5164.0

Eq. 5-1 Yc, Yr, Index 499.5 835.4 1523.8 3054.0

Eq. 6-1 Yc, Age, Index 481.2 866.2 1377.8 1015.0

Eq. 5-2 Yc, Yr × Index 93.2 87.2 1033.7 2902.0

Eq. 6-2 Yc, Age × Index 473.7 870.3 1281.3 632.0

Eq. 7a-2 Yc, Yr × Index, (Age × Index) 0.0 0.0 0.0

Eq. 7b-2 Yc, Age × Index, (Yr × Index) 121

Eq. 8a-2 Yc, Yr × Index, (Age × Yr) 95.2 89.2 335.1

Eq. 8b-2 Yc, Age × Index, (Age × Yr) 0.0

Note: Provided is the difference in AIC (�AIC) between a model and the best model, with the best model having �AIC = 0. Model structures
include the year-class (Yc), year (Yr), age, and index (data source) effects, as well as some interactions between two factors. The lists in
parentheses indicate random effects. Model equations and their development can be found in the Methods. The results from four age ranges
are used to represent general findings for all age ranges examined (e.g., Figs. 2–4).

than the model of eq. 9, we further evaluated the factor that
was not selected as a fixed effect as an alternative random
effect interacting with the data source index (eqs. 7). In the
Results section, we do not report the step-by-step comparison
in this alternative strategy of model development because the
final best model was the same as that selected through the
first strategy of model development for a given age range.

We compared and evaluated YCS estimates across age
ranges with the best model for each age range. We also eval-
uated uncertainty in YCS estimates with the age range of 5–
7 years. In that regard, we implemented the best model for
the age range of 5–7 years separately with each of the six
data sources (Appendix A). We then calculated their variance-
weighted means and compared the mean YCS time-series to
the estimates using all data indexed and combined, with 95%
confidence intervals. The variance-weighted mean YCS was
calculated using the equation (Shepherd 1997)

YCS =
∑

i

(
YCSi/s2

i

)

∑
i

(
1/s2

i

)(10)

where YCSi stands for YCS estimates from the data source i,
with the estimated variance s2

i . Our model estimates were ob-
tained using the “nlme” package in R with the maximum like-
lihood option (Pinheiro et al. 2022; R Core Team 2022).

Results

The best model structure for each of alternative
age ranges

The best model structure (with the lowest AIC) depended
on the age range used for model implementation (Table 1).
When using the full age range of 3–30 years, the age-by-index
interaction was selected to be the second fixed effect over
other options. For other age ranges, the year-by-index inter-
action was selected as the second fixed effect. Thus, in addi-
tion to changes in YCS, the systematic variation within a data
source was better described by interannual differences than
the variations among age groups unless the full age range was

used. Also, the selected random effect was the age-by-index in-
teraction with all reduced age ranges but was the age-by-year
interaction with the full age range.

Year-class strength estimates from alternative
age ranges

YCS estimates from the age range of 5–7 years increased
through two decades beginning in 1978, peaked in 1997, and
declined after 2000 apart from a small peak in 2010 (Figs. 2–
4). When the age range was extended to include younger ages
or was restricted to younger ages, YCS estimates started to
decline earlier and more rapidly (Fig. 2). From the age range
of 4–7 years, the decline started in 1997; from the age range
of 3–7 years, the decline started in 1991; from the age range of
3–5 years, the decline started in 1980. Including younger ages
was the only difference in data uses that led to the earlier and
more rapid declines in YCS estimates, suggesting that those
YCS estimates were likely confounded by declines in survey
and fishing selectivity for young lake trout, which have been
documented in previous studies (e.g., Johnson et al. 2004; He
et al. 2012, 2020).

When the age range was extended to include one or more
older ages, YCS estimates showed different patterns and even
an opposing trend (Fig. 3a). From the age range of 5–8 years,
YCS estimates did not show a consistent trend from the late
1990s to present. From the age range of 5–10 years, YCS esti-
mates continued to increase after 2000. Given the well-known
declines in lake trout adult mortality (He et al. 2015, 2020,
2022; Lenart et al. 2020), the different patterns and opposing
trend suggested that the YCS estimates from old ages were
likely confounded by declines in adult mortality.

When an extended age range was nearly balanced around
the age of recruitment (e.g., 3–10 and 4–8 years), YCS esti-
mates were almost the same as the estimates from the age
range of 5–7 years, although the estimated trends for more
recent year-classes still showed noticeable differences from
models using different age ranges (Fig. 3b). The focus of our
comparisons was on interannual patterns and trends, rather
than the estimated magnitudes, which reflected the differ-
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Fig. 2. Lake trout (Salvelinus namaycush) year-class strength
(YCS) in the main basin of Lake Huron, estimated from the
age ranges of (a) 4–7 years, (b) 3–7 years, and (c) 3–5 years, com-
pared with YCS estimates from the age range of 5–7 years.

ences in catch numbers from different age ranges and should
not be interpreted directly as differences in YCS. When more
older ages were included in a broad age range, such as the
age range of 3–15 years, YCS estimates again showed hyper-
stability since the late 1990s (Fig. 3c).

From the full age range of 3–30 years, YCS estimates did not
show hyperstability, and the estimated YCS trajectory since
1990 was similar to that from the age range of 5–7 years (Fig.
4). Additional large variations in YCS estimates from the full
age range likely resulted from confounding variables such as
time-dependent selectivity and mortality. Using the full age
range was also complicated by the fact that there were no

Fig. 3. Lake trout (Salvelinus namaycush) year-class strength
(YCS) in the main basin of Lake Huron, estimated from the
age ranges of (a) 5–8 and 5–10 years, (b) 4–8 and 3–10 years,
and (c) 3–15 years, compared with YCS estimates from the age
range of 5–7 years.

data for older fish for early year-classes (prior to 1990) be-
cause the population was in recovery, and there were no data
for older fish from recent year-classes because those year-
classes have not yet reached older ages.

Uncertainty of year-class strength and using
multiple data sources

Using the common age range of 5–7 years, YCS estimates
differed substantially across data sources (Figs. 5a–5b). From
the fisheries data, particularly the commercial data from
southern Lake Huron, the early-year increases in YCS were
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Fig. 4. Lake trout (Salvelinus namaycush) year-class strength
(YCS) in the main basin of Lake Huron, estimated from the
full age ranges of 3–30 years and compared with YCS esti-
mates from the age range of 5–7 years with 95% confidence
intervals.

relatively slow, but YCS estimates for recent year-classes were
relatively more stable. Variance-weighted means from the six
YCS time-series were mostly within the 95% confidence inter-
vals for the YCS estimates based on all data indexed and com-
bined (Fig. 5c). The variance-weighted means appeared to be
slightly higher than the estimates from the integrated data,
suggesting that some relatively low estimates from a single
data source were down weighted because their correspond-
ing variances were relatively high. Based on the above find-
ings, the uncertainty in YCS reconstruction appeared to stem
from data differences, and our model provided an effective
method to use multiple data sources each year.

Discussion
To separate YCS estimates from confounding variables em-

bodied in catch-at-age data, it is very important to use the
most appropriate age range for model implementation. We
recommend using an age range that comprises likely ages
that a fish year-class first fully recruits to the fishing gears.
The age of recruitment typically changes through years and
differs among fish species and ecosystems. We therefore also
recommend using AIC comparison through the standard and
objective procedures of model development to determine the
best model structure for a given age range and population.

Many previous studies have estimated fish YCS using the
youngest ages from available data. We caution against the use
of such age ranges unless survey and fishing selectivity are
constant across years. In the main basin of Lake Huron, sur-
vey and fishing selectivity for young lake trout were clearly
not constant (He et al. 2012, 2020), in part due to changes in
lake trout growth and body condition (He and Bence 2007;
He et al. 2008, 2016), but also due to changes in spatial dis-
tributions of lake trout age and size groups (Riley and Adams
2010; He et al. 2012; He 2019). These changes in spatial dis-
tributions and age-specific catchability/availability (not just
mesh-size selectivity of fishing gear) reflected a regime shift
in the lake ecosystem (Riley et al. 2008; Barbiero et al. 2011;

Fig. 5. Lake trout (Salvelinus namaycush) year-class strength
(YCS) based on the age range of 5–7 years, estimated sep-
arately using commercial fishery data (open triangles and
lines), recreational fishery data (open squares and lines),
and fishery-independent survey data (dots and lines), from
(a) northern Lake Huron and (b) southern Lake Huron. Also
provided are (c) variance-weighted means (open diamonds
and lines) from the above six YCS time-series compared with
the YCS estimates based on all six data sources indexed
and combined (solid line), along with 95% confidence in-
tervals (broken lines). Herein, the northern and southern
Lake Huron are separated by the extended boundary between
the Ontario OH-2 and OH-3 statistical districts (i.e., extended
across the international boundary as in He et al. 2022).

Madenjian et al. 2013; He et al. 2015, 2016, 2020; Rudstam
et al. 2020) and concurrent changes in the relative contribu-
tions of wild-born and hatchery-stocked lake trout (He et al.
2012; Johnson et al. 2015).
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We also caution against using age ranges that include rel-
atively old ages. For lake trout in Lake Huron, we found that
YCS estimates from a broad age range could not be disen-
tangled from declines in adult mortality. We do not use YCS
as a loose term such that increases in YCS could result from
declines in adult mortality. To assess and understand popu-
lation dynamics, we strictly use YCS as an interchangeable
concept of recruitment. Even with a narrow older age range
and constant adult mortality, YCS estimates would not repre-
sent the relative year-class abundance as fish first fully recruit
to the fishery; instead, they would represent a relative abun-
dance after major impacts of the fishery.

In general, when using a broad age range, variations in age-
specific selectivity and mortality are inevitably confounded
with YCS variation. Such a mix of confounding variables
could be the major cause for commonly observed retro-
spective patterns in age-structured fishery assessments (e.g.,
Mohn 1999), as a potential solution with SCAA models would
require comprehensive diagnostics of the model structures
for many key variables such as recruitment, mortality, catch-
ability, and selectivity (Stewart and Martell 2014; Hurtado-
Ferro et al. 2015; Szuwalski et al. 2018).

Using longitudinal mixed-effects models, we exploited two
aspects of the information in catch-at-age data. With the full
age range, the best selected model structure represented our
understanding of three major processes of a fish population,
including interannual changes in recruitment, over-age re-
duction of a year-class in each data source, and interannual
changes in age-specific selectivity and mortality. With re-
duced age ranges, the best selected model structure reflected
another reality of the catch-at-age data: the variations among
year-classes and among years were systematic, while the vari-
ations among ages were random. This combination of system-
atic and random variations was true even with a broad age
range such as 3–15 years, likely because the year effect and
age effect were different among data sources as indicated by
the year-by-index and age-by-index interactions. With the age
range of 5–7 years, the three repeated random measures from
each of the six data sources (Appendix A) excluded the con-
founding information from pre-recruitment ages and from
older ages after fishing mortality with full vulnerability to the
fishery. These repeated random measures appeared to be suf-
ficient to reliably reflect the strength of a year-class, in com-
parison with using the full age range for a more complete
understanding of all major processes influencing the catch-
at-age data, while using the full age range did not allow for a
clear separation of confounding variables.

Our reconstruction of YCS for lake trout in the main basin
of Lake Huron was consistent with previous findings that
adult abundance rapidly increased during the late 1990s
through the early 2000s, but then started to decline, par-
ticularly in southern Lake Huron (He et al. 2020; Lenart et
al. 2020). Previous studies attributed the population recovery
to successful controls of fishing mortality and sea lamprey
(Petromyzon marinus)-induced mortality (Johnson et al. 2004,
2015; He et al. 2012). Those previous studies, however, also
maintained the observations that the recent, more effective
control of sea lamprey abundance did not happen until the
end of the 1990s (Adams et al. 2003), and the rigorous con-

trol of fishing mortality was not implemented regularly until
the early 2000s (United States v. Michigan 2000). Our YCS re-
construction suggests that the increases in lake trout YCS pre-
ceded the subsequent declines in mortality, implying a cause–
effect relationship between these two patterns. Fishery re-
movals were limited by fishing effort capacity (He et al. 2020),
and sea lamprey attacks were limited by sea lamprey abun-
dance and the upper rate at which they could feed (Nowicki
et al. 2021). Thus, lake trout deaths likely did not increase in
proportion to lake trout abundance, and the increases in re-
cruitment combined with lower per capita mortality can lead
to substantial increases in adult lake trout abundance during
the 1990s through the early 2000s.

Longitudinal estimates of YCS are survey and monitoring
indices that do not require any assumptions on natural mor-
tality, catchability, or selectivity to be explicitly parameter-
ized in the model. Explicit parameterization for every ma-
jor process can be implemented in models such as SCAA for
comprehensive descriptions of a complex fishery system, but
such parameterizations may also build up uncertainties due
to gaps in data and the limitation of our understanding. With
longitudinal models, the year and age effects are used to rep-
resent time-dependent catchability, selectivity, and mortality,
and adequate model structures can effectively separate those
confounding variables from YCS estimates.

We do not consider the longitudinal reconstruction of YCS
to be a replacement for SCAA assessments. The estimated re-
cruitment patterns should be similar when using the same
data for both models as we have seen in our additional anal-
yses for lake trout in the main basin of Lake Huron, but the
longitudinal estimates are relative abundances, and the SCAA
estimates are absolute abundances. More investigations and
developments are needed to use longitudinal YCS estimates
as recruitment indices, such as rescaling the relative year-
class abundance to the absolute abundance of recruitment
at a given age. For example, while the YCS estimates contain
valuable information that might benefit SCAA assessments if
added as a data source, further statistical evaluations of how
to appropriately add them are needed, such as accounting for
correlations among the indices due to shared parameters and
assuring their independence from other data already used in
an assessment.

Longitudinal models have major advantages over single-
age recruitment indices based on annual survey CPUE. First,
YCS is reconstructed from repeated measures across multi-
ple ages and years, while single-age recruitment indices could
be biased by various unknown factors and events in annual
surveys (Rosenberg et al. 1992; Shepherd 1997). Second, an
adequate YCS model can remove year effects from YCS time-
series, while the single-age recruitment indices from annual
CPUE could be biased by long-term trends in catchability and
selectivity because of changes in fish abundance and distri-
bution (Rose and Kulka 1999; Harley et al. 2001; Wilberg
and Bence 2006). Third, for reconstructing YCS, the repeated
measures across multiple ages can be designed to recognize
and represent the reality that the age of recruitment is not
constant across years, but the single-age recruitment indices
from annual CPUE cannot effectively account for this varia-
tion. Finally, a longitudinal model can be used with multiple
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data sources, including routine fishery-independent surveys
and fisheries monitoring, and does not necessarily require
fishing effort data. The uncertainty of YCS reconstruction can
be substantially reduced by improving the design and consis-
tency of fish sample collection from fishery-independent sur-
veys and fisheries monitoring. In contrast, single-age recruit-
ment indices from annual CPUE typically require additional
targeted efforts to be maintained with specialized methods
and fishing gears.
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Appendix A
Annual samples for lake trout (Salvelinus namaycush) age

frequency have been collected from the two management
units in the main basin of Lake Huron (Table A1). Commer-
cial samples were collected by the Chippewa Ottawa Resource
Authority and Ontario Ministry of Natural Resources and
Forestry (see He et al. 2015, 2020), and the commercial fish-
eries were distributed only in Canadian waters and the 1836
treaty ceded areas of US waters, mostly using large mesh
(stretched length 114 mm) gillnets and trap nets (Brown et
al. 1999; United States v. Michigan 2000). Recreational sam-
ples were collected by the Michigan Department of Natural

Resources (MDNR) creel survey program, and US Fish and
Wildlife Service headhunter program (coded wire tag (CWT)
return collection), when charter boats and anglers return to
major ports along the US shoreline (Bence and Smith 1999;
Su and Clapp 2013; Su and He 2013; Kornis et al. 2020).
Fishery-independent samples were collected from the an-
nual spring gillnetting surveys conducted by the MDNR. The
MDNR surveys covered every nearshore area of US Waters.
Cross-contour transects (approximately 10–60 m) were sam-
pled for lake trout, typically during late April to early June,
using multifilament nylon gillnets. A net consists of nine pan-
els that are 1.83 m tall and 30.48 m long, with stretched mesh
sizes ranging from 50.8 to 152.4 mm in 12.7 mm increments.
The mesh sizes were in consecutive order of panels and were
not randomized. The nets were set on the lake bottom and
lifted after one night.

Age assignments to lake trout samples were conducted
within each management agency. Prior to 2000, most of age
assignments were based on a 6-year rotation of fin-clips, with
the reference of lake trout size, and scales were used for the
age assignments to wild-born juvenile lake trout occasion-
ally captured. This procedure eventually became unreliable
due to increased numbers of older lake trout (Wellenkamp
et al. 2015). When lake trout body length approached their
asymptotic size, they often overlapped among year-classes
with the same fin-clips. The abundance of wild-born adult
lake trout also increased since the mid-2000s (Riley et al.
2007; He et al. 2012; Johnson et al. 2015). During 2001–2010,
several otolith methods and a new maxilla method were
explored and compared for age assignments. Wellenkamp
et al. (2015) and Murphy et al. (2018) have reported consis-
tency of age assignments between maxilla and otolith sec-
tions. Since 2011, maxilla or otolith sections were used to
estimate ages of all wild lake trout, and the combination of
a fin-clip with a maxilla or otolith section was used to nar-
row down the true age for a hatchery-stocked lake trout that
did not carry a CWT to indicate a year-class (Yc). A total 14%
of fall fingerlings and 21% of spring yearlings for the 1985–
2009 year-classes from hatcheries were manually tagged with
CWTs, and all lake trout stocked after 2010 were tagged with
CWT using automated tagging trailers (Bronte et al. 2012).
For those lake trout captured with a CWT return, the lake
trout age in the capture year (Yr) was calculated as Age =
Yr − Yc.

Table A1 appears on the following page.
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Table A1. Annual sample sizes for lake trout (Salvelinus namaycush) age fre-
quency from the commercial fishery (CF), recreational fishery (RF), and
fishery-independent surveys (SV) in the two spatial units for lake trout stock
assessment and fisheries management in the main basin of Lake Huron (He
et al. 2020; Lenart et al. 2020).

Northern Lake Huron Southern Lake Huron

Year CF RF SV CF RF SV

1985 118 191 811 —— 396 1185

1986 464 286 505 —— 516 901

1987 399 201 446 —— 495 696

1988 266 152 387 —— 230 815

1989 355 24 490 571 16 590

1990 350 3 194 10 54 555

1991 303 13 58 11 275 411

1992 257 91 112 —— 203 633

1993 876 26 112 —— 89 527

1994 501 67 170 378 100 700

1995 848 201 505 1551 197 538

1996 357 349 482 210 169 595

1997 291 347 246 1442 202 441

1998 556 182 455 866 240 678

1999 350 183 476 1630 218 842

2000 407 159 393 788 253 924

2001 351 173 419 505 123 690

2002 556 124 402 439 137 614

2003 495 79 300 58 343 762

2004 444 228 378 179 150 476

2005 265 199 371 91 199 304

2006 427 241 251 41 184 200

2007 286 341 302 61 166 320

2008 317 323 188 38 114 235

2009 468 347 112 120 170 279

2010 548 388 363 209 153 166

2011 479 299 262 281 73 306

2012 470 481 185 34 262 108

2013 404 472 302 176 298 173

2014 304 399 332 438 200 267

2015 789 449 369 371 129 298

2016 343 406 386 84 202 126

2017 287 476 264 63 171 274

2018 524 396 367 216 223 250

2019 602 321 221 —— —— ——

Note: Dashes indicate the absence of data. The two spatial units are defined and separated by the
boundary between the Ontario OH-2 and OH-3 statistical districts extended across the international
boundary as in He et al. (2022).
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