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Abstract
Objective: Globally, flavobacteria (family Flavobacteriaceae and Weeksellaceae) are 
leading causes of disease- related losses in fish- farms and hatcheries. One route flavo-
bacteria gain access to aquaculture facilities is via source water. Ultraviolet (UV) light 
treatment of source water has been effective in reducing the risk of disease outbreaks 
caused by nonflavobacteria; however, the UV dose required to inactivate flavobacte-
ria has been understudied. The primary objective of this study was to examine the 
efficacy of UV light treatments for reducing the viability of fish- pathogenic and fish- 
associated Flavobacterium and Chryseobacterium species in a planktonic form.
Methods: Sixty- five flavobacterial isolates belonging to ten Flavobacterium spp. and 
Chryseobacterium spp. were exposed to a low (25 mJ/cm2) and high (126 mJ/cm2) 
dose of UV light via a collimating beam apparatus under in vitro conditions, after 
which treatment efficacy was determined via culture.
Result: All assayed flavobacteria were reduced by an average of ~1000- fold or 
~100,000- fold at the low and high UV doses, respectively; however, substantial dif-
ferences in reduction at the same UV dose were noted among isolates of the same 
flavobacterial species, including F. psychrophilum, F. columnare, and F. oreochromis. 
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INTRODUCTION

Fish diseases caused by multiple yellow- pigmented bac-
teria within the family Flavobacteriaceae (Bernardet 
et al.  1996) are collectively among the top contributors 
to disease- associated losses in aquaculture and hatch-
ery facilities globally (Loch and Faisal 2017). Among the 
most common causes of such losses are Flavobacterium 
psychrophilum, the etiological agent of bacterial coldwa-
ter disease (BCWD) and Rainbow Trout fry syndrome 
(Davis 1946; Holt 1987); the agents of columnaris disease 
(e.g., F. columnare, F. covae, F. davisii, and F. oreochro-
mis; Davis 1922; Bernardet and Grimont 1989; LaFrentz 
et al. 2022; collectively referred to as “columnaris- causing 
bacteria”); and F. branchiophilum, a cause of bacterial gill 
disease (Wakabayashi et al.  1989). In addition, multiple 
seemingly emergent and novel Flavobacterium spp. and 
Chryseobacterium spp. (family Weeksellaceae; Garcia- 
Lopez et al. 2019) have been increasingly linked to disease 
outbreaks in a range of captive- reared fishes (Loch and 
Faisal 2015).

In contrast to the diversity of fish- pathogenic flavo-
bacteria is their seemingly unified ability to circumvent 
current methods of disease prevention and control. For 
example, iodophor, a widely used fish egg disinfectant, 
does not completely eradicate flavobacteria on or within 
infected eggs (Brown et al. 1997; Kumagi et al. 1998; Loch 
and Faisal 2016, 2018). Additionally, there are reports of 
reduced susceptibility to the few antibiotics that are ap-
proved to treat flavobacterial infections in fish (Bruun 
et al. 2000; Schmidt et al. 2000; Van Vliet et al. 2017), and 
the development of efficacious licensed BCWD and co-
lumnaris vaccines has proven elusive to date (Bebak and 
Wagner 2012; Gomez et al. 2014).

Many fish- pathogenic flavobacteria also gain access to 
fish rearing facilities via source water, particularly those 
that utilize surface water (Bebak et al.  1997; Wiklund 
et al. 2000; Madetoja et al.  2002; Kunttu et al.  2012). To 
minimize the likelihood of introducing fish pathogens via 

source water (Cross and Peterson 1987; Masters et al. 2018), 
some aquaculture facilities treat incoming water with ul-
traviolet (UV) light (Summerfelt  2003). Multiple studies 
have reported that a UV dose of 30 mJ/cm2 is effective at 
inactivating bacterial fish pathogens; therefore, this dose 
is widely recommended for water disinfection at aqua-
culture facilities (Wedemeyer 1996; Liltved 2002; Sharrer 
et al.  2005). However, most of these studies did not use 
culture media or detection methods that are appropriate 
for flavobacteria. Among the few studies that have ex-
plored the UV doses required to inactivate flavobacteria, 
results have been inconsistent. Farkas et al. (1986) exam-
ined a UV dose of 3 × 10−7 mJ/cm2 against F. columnare 
occurring naturally in source water and reported that the 
bacterium remained viable in aquaria receiving the UV- 
treated water; notably, this treatment was several orders of 
magnitude lower than UV doses reported in other studies. 
Elmore (2016) found that a UV dose of 5 mJ/cm2 achieved 
a 3.5 log reduction of viable F. psychrophilum; conversely, 
Hedrick et al. (2000) found that a UV dose of 126 mJ/cm2, 
which greatly exceeds the 30- mJ/cm2 dose commonly rec-
ommended for aquaculture systems (Wedemeyer  1996; 
Liltved 2002; Sharrer et al. 2005), was required to achieve 
a 5 log reduction of a single F. psychrophilum isolate. Stud-
ies conducted on flavobacteria that were recovered from 
polar environments have suggested relative resistance to 
UV exposure (Marizcurrena et al. 2017).

In addition, F. psychrophilum multilocus sequence typing variants ST10 and ST78, 
which are two of the most widespread variants in the United States of America, were 
among the least susceptible to ultraviolet light.
Conclusion: Overall, results demonstrate that viable flavobacteria can be reduced 
substantially by ultraviolet doses of 25– 126 mJ/cm2, suggesting such treatments rep-
resent a promising tool for minimizing flavobacterial loads in hatcheries and aqua-
culture facilities, thereby enhancing biosecurity and reducing the risk of epizootics.

K E Y W O R D S

bacterial coldwater disease, biosecurity, columnaris disease, flavobacteria, Flavobacterium, 
ultraviolet light

Impact statement

In this study, ultraviolet light effectively reduced 
multiple fish disease- causing flavobacteria under 
laboratory conditions. Thus, ultraviolet light 
treatment of water is a promising tool for reduc-
ing harmful flavobacteria in fish farms and hatch-
eries, thereby potentially improving fish health 
and aquaculture sustainability.
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The disparate UV doses required to inactivate different 
F. psychrophilum isolates could be related to this species' 
substantial intraspecific diversity. Multilocus sequence 
typing (MLST) studies have revealed there to be at least 
260 F. psychrophilum sequence types (STs) worldwide 
(https://pubml st.org/organ isms/flavo bacte rium- psych 
rophilum), some of which appear to differ in host species 
association (Nicolas et al. 2008; Knupp et al. 2019, 2021a), 
antimicrobial susceptibility (Van Vliet et al.  2017), sero-
type (Rochat et al.  2017; Avendaño- Herrera et al.  2020), 
and virulence (Sundell et al.  2019; Knupp et al.  2021b). 
Likewise, genetic heterogeneity within F. columnare, 
which was recently emended to be four distinct species 
(F. columnare, F. covae, F. davisii, and F. oreochromis; La-
Frentz et al. 2022), has also been associated with pheno-
typic differences (LaFrentz et al. 2018) and therefore may 
also contribute to differences in UV light susceptibility.

Fish- pathogenic flavobacteria continue to cause sub-
stantial global losses in aquaculture and hatchery- based 
conservation facilities, and few disparate results on flavo-
bacterial susceptibility to UV light exist. Therefore, this 
study was designed with the primary objective of deter-
mining the UV doses that are capable of efficaciously 
inactivating a diversity of fish- pathogenic flavobacteria, 
including columnaris- causing bacteria and an assortment 
of F. psychrophilum MLST variants, under in vitro con-
ditions. In addition, the UV light susceptibility of Aero-
monas salmonicida subsp. salmonicida, Carnobacterium 
maltaromaticum, and Yersinia ruckeri was investigated 
due to their role as fish pathogens and the limited or non-
existent UV light susceptibility data for these taxa (Liltved 
and LandFald 1996; Wedemeyer 1996).

MATERIALS AND METHODS

Bacterial isolates

Sixty- five flavobacterial isolates were evaluated for UV 
light susceptibility in this study (Table 1; Table S1 avail-
able in the Supplementary Materials in the online version 
of this article). Thirty- two of the isolates were previ-
ously identified as eight Flavobacterium spp.: namely, F. 
branchiophilum (n = 1; Wakabayashi et al.  1989), F. co-
lumnare (n = 1; Faisal et al. 2016), F. covae (n = 2; LaFrentz 
et al. 2022), F. davisii (n = 1; LaFrentz et al. 2022), F. oreo-
chromis (n = 2; LaFrentz et al. 2022), F. plurextorum (n = 1; 
Zamora et al. 2013), F. psychrophilum (n = 23 isolates in 
12 STs; Van Vliet et al. 2016; Knupp et al. 2019), and F. 
tructae (n = 1; Loch and Faisal 2014a; Kämpfer et al. 2020). 
Three isolates were previously identified as Chryseobac-
terium spp.: C. aahli (n = 1; Loch and Faisal  2014b), C. 
aquaticum (n = 1; Kim et al. 2008), and C. scophthalmum 

(n = 1; VanDamme et al. 1994). The remaining 30 isolates 
were newly identified as flavobacteria or F. columnare 
using previously published protocols (Loch et al. 2013; La-
Frentz et al. 2019).

The 65 flavobacterial isolates were recovered from 
seven fish genera and 11 species, including Rainbow Trout 
Oncorhynchus mykiss (n = 33), Chinook Salmon Onco-
rhynchus tshawytscha (n = 4), Coho Salmon Oncorhynchus 
kisutch (n = 3), Lake Trout Salvelinus namaycush (n = 3), 
Brown Trout Salmo trutta (n = 2), Channel Catfish Ictal-
urus punctatus (n = 2), tilapia Oreochromis spp. (n = 2), 
Atlantic Salmon Salmo salar (n = 1), Muskellunge Esox 
masquinongy (n = 1), Largemouth Bass Micropterus sal-
moides (n = 1), and Turbot Scophthalmus maximus (n = 1; 
Table S1). Of the remaining 12 isolates, 11 were recovered 
from hatchery water and one was recovered from a water 
reservoir (Table S1).

In addition, type strains of three other bacterial fish 
pathogens— A. salmonicida subsp. salmonicida (American 
Type Culture Collection [ATCC] 33658T), C. maltaromati-
cum (ATCC 35586T), and Y. ruckeri (ATCC 29473T)— were 
included in this study (Table 1; Table S1).

Bacterial culture for ultraviolet light 
susceptibility experiments

Flavobacterium spp. and Chryseobacterium spp. were 
grown using Hsu– Shotts agar/broth (Bullock et al. 1986) 
or tryptone yeast extract agar/broth (Holt 1987) and were 
incubated at 15°C or 22°C depending on the isolate. Ae-
romonas salmonicida subsp. salmonicida, C. maltaromati-
cum, and Y. ruckeri were cultivated using tryptone soya 
agar/broth (ThermoScientific Oxoid) and were incubated 
at 22°C.

In preparation for the UV light susceptibility experi-
ment, isolates were revived from cryostock (maintained at 
−80°C) on the appropriate solid medium, incubated for 
72 h at either 15°C or 22°C, and then visually inspected for 
purity. A 1- μL loopful of each isolate was inoculated into 
45 mL of analogous broth and incubated with constant 
shaking (180 rpm) for 48 h at either 15°C or 22°C. Bacte-
ria were harvested via centrifugation (2571 g, 10 min) and 
resuspended into sterile saline (i.e., a planktonic bacterial 
suspension) to an optical density (OD) of 2.0 at 600 nm 
(OD600) using a Biowave CO8000 Cell Density Meter (i.e., 
a spectrophotometer; Walden Precision Apparatus). To 
quantify bacterial concentrations, a 1- mL aliquot was se-
rially diluted up to 100,000,000- fold in 10- fold increments, 
plated on the appropriate solid medium in duplicate, and 
then incubated for 7 days at the appropriate temperature, 
after which final colony counts were performed. In this 
context, an OD600 of 2.0 corresponded to approximately 

 15488454, 2023, 4, D
ow

nloaded from
 https://afspubs.onlinelibrary.w

iley.com
/doi/10.1002/naaq.10300, W

iley O
nline L

ibrary on [19/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://pubmlst.org/organisms/flavobacterium-psychrophilum
https://pubmlst.org/organisms/flavobacterium-psychrophilum


314 |   KNUPP et al.

T A B L E  1  Summary information for the 65 flavobacterial isolates and three nonflavobacterial isolates used in this study, including 
bacterial species, 16S ribosomal RNA (rRNA) percent similarity (newly presented isolates in this study only), multilocus sequence typing 
sequence type (ST) and clonal complex (CC; Flavobacterium psychrophilum only), and log10 reduction of colony- forming units (mean ± 
SE) at ultraviolet doses of 25 and 126 mJ/cm2. All bacterial suspensions were adjusted to an optical density of 2.0 at 600 nm. The table is 
alphabetically arranged by species.

Isolate ID
Species or most similar 

described
16S rRNA 

similarity (%) ST/CC

Log10 reduction ± SE

25 mJ/cm2 126 mJ/cm2

ATCC 33658T Aeromonas salmonicida subsp. 
salmonicida

3.15 ± 0.15 3.39 ± 0.24

ATCC 35586T Carnobacterium 
maltaromaticum

1.50 ± 0.10 3.39 ± 0.09

ATCC BAA- 2540T Chryseobacterium aahli 5.26 ± 0.14 9.54 ± 0.24a

KCTC 12483T Chryseobacterium aquaticum 6.06 ± 0.06 9.30 ± 0.00a

NIFA- 501 Chryseobacterium ginsengiterrae 97.9 4.67 ± 0.15 4.89 ± 0.59

NIFA- 230 Chryseobacterium indoltheticum 100 3.70 ± 0.00 4.60 ± 0.30

NIFA- 441 Chryseobacterium lactis 99.2 3.70 ± 0.00 5.24 ± 0.24

NIFA- 301 Chryseobacterium piscium 99.4 0.98 ± 0.12 2.96 ± 0.04

NIFA- 302 C. piscium 98.2 2.88 ± 0.24 4.09 ± 0.09

NIFA- 589 C. piscium 97.6 3.44 ± 0.22 4.85 ± 0.15

NIFA- 491- B C. piscium 99.5 3.55 ± 0.15 8.70 ± 0.00a

NIFA- 214 C. piscium 96.4 3.83 ± 0.13 4.29 ± 0.20

NIFA- 281 C. piscium 98.1 4.06 ± 0.06 5.69 ± 0.09

NIFA- 580 C. piscium 97.4 4.50 ± 0.20 9.74 ± 0.04a

NIFA- 224 C. piscium 97.6 4.61 ± 0.21 9.65 ± 0.05a

NIFA- 494 C. piscium 92.8 8.81 ± 0.03a 9.04 ± 0.00a

ATCC 700039T Chryseobacterium scophthalmum 2.62 ± 0.22 3.82 ± 0.22

NIFA- 403 Flavobacterium aquidurense 98.6 2.04 ± 0.00 3.15 ± 0.15

NIFA- 309 F. aquidurense 98.7 3.00 ± 0.00 5.00 ± 0.00a

NIFA- 303 F. aquidurense 96.1 4.39 ± 0.09 5.30 ± 0.00

NIFA- 192 F. aquidurense 98.3 6.30 ± 0.00a 6.82 ± 0.00a

NIFA- 385 F. aquidurense 98.8 9.00 ± 0.00a 8.70 ± 0.00a

NIFA- 478 Flavobacterium bizetiae 98.7 2.70 ± 0.00 4.15 ± 0.15

NIFA- 475 Flavobacterium branchiarum 99.0 4.09 ± 0.09 5.15 ± 0.15

ATCC 35036T Flavobacterium branchiophilum 2.76 ± 0.24 3.61 ± 0.09

090702- 1 3 Flavobacterium columnareb 3.61 ± 0.21 4.29 ± 0.08

181002- 1 10 F. columnareb 5.54 ± 0.11 9.22 ± 0.04a

ALG- 00- 530 Flavobacterium covaeb 6.54 ± 0.24a 8.00 ± 1.00a

AL- 02- 36T F. covaeb 7.39 ± 0.09a 7.30 ± 0.30a

NIFA- 204 Flavobacterium cupreum 98.4 5.00 ± 0.00 9.15 ± 0.15a

90- 106T Flavobacterium davisiib 1.37 ± 0.15 3.85 ± 0.15

NIFA- 312 Flavobacterium oncorhynchi 99.3 1.76 ± 0.24 6.00 ± 0.00a

Costa Rica 04- 02- TNT Flavobacterium oreochromisb 5.03 ± 0.08 8.78 ± 0.18a

BZ- 1- 02 F. oreochromisb 1.51 ± 0.16 1.94 ± 0.02

NIFA- 255 Flavobacterium pectinovorum 98.7 4.00 ± 0.00 5.00 ± 0.00

NIFA- 469 Flavobacterium piscis 96.4 4.15 ± 0.15 4.46 ± 0.24

NIFA- 579 Flavobacterium plurextorum 97.0 3.70 ± 0.00 5.39 ± 0.09

CECT 7844T F. plurextorum 5.63 ± 0.15 7.70 ± 0.00a
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108– 1010 colony- forming units (CFU)/mL for most 
(56/68 ≈ 82.4%) isolates. For the remaining 12 isolates, an 
identical OD600 yielded approximately 105– 107 CFU/mL.

Exposure of bacteria to ultraviolet light

The collimating beam apparatus used in this study was 
supplied by AquiSense Technologies and consisted of a 
UVinaire single- wavelength (255- nm) UV LED unit and a 
collimating tube. The UVinaire was positioned on top of the 
collimating tube; when powered, the UVinaire produced an 

average UV intensity of 59.8 μW/cm2 at the tube's end ac-
cording to the manufacturer's specifications. The average 
UV intensity was used to calculate a target UV dose, which 
was the product of the average UV intensity and exposure 
time (s). Thus, by varying exposure time, different UV doses 
were achieved (Bolton and Linden 2003).

For this study, UV treatment doses of 25 and 126 mJ/cm2 
were evaluated for their ability to reduce bacterial concen-
tration using the planktonic bacterial suspensions detailed 
in the previous section (Bacterial culture for ultraviolet light 
susceptibility experiments). For both UV treatment doses, 
3 mL of each bacterial suspension were aliquoted into two 

Isolate ID
Species or most similar 

described
16S rRNA 

similarity (%) ST/CC

Log10 reduction ± SE

25 mJ/cm2 126 mJ/cm2

ATCC 49418T Flavobacterium psychrophilum 13/9 3.06 ± 0.16 4.22 ± 0.13

US019 F. psychrophilum 13/9 0.70 ± 0.00 3.40 ± 0.00

CSF259- 93 F. psychrophilum 10/10 1.18 ± 0.03 2.66 ± 0.24

US305 F. psychrophilum 10/10 1.71 ± 0.19 4.05 ± 0.25

US075 F. psychrophilum 10/10 2.40 ± 0.40 4.54 ± 0.06

US051 F. psychrophilum 78/10 0.76 ± 0.06 4.57 ± 0.27

US053 F. psychrophilum 78/10 1.76 ± 0.24 3.75 ± 0.15

US074 F. psychrophilum 86/10 1.24 ± 0.24 3.18 ± 0.00

US073 F. psychrophilum 86/10 1.40 ± 0.30 3.55 ± 0.15

US104 F. psychrophilum 275/10 1.64 ± 0.20 4.85 ± 0.15

US057 F. psychrophilum 275/10 2.90 ± 0.00 8.54 ± 0.06a

US047 F. psychrophilum 256/256 3.18 ± 0.30 5.27 ± 0.13

US217 F. psychrophilum 256/256 1.09 ± 0.09 2.70 ± 0.00

US462 F. psychrophilum 286/286 3.20 ± 0.20 4.33 ± 0.15

US343 F. psychrophilum 301/191 0.36 ± 0.06 3.24 ± 0.24

US181 F. psychrophilum 301/191 0.17 ± 0.13 1.86 ± 0.08

US374 F. psychrophilum 330/318 1.70 ± 0.00 4.00 ± 1.00

US009 F. psychrophilum 253/singleton 3.55 ± 0.15 4.94 ± 0.24

US094 F. psychrophilum 253/singleton 4.09 ± 0.09 9.07 ± 0.16a

US442 F. psychrophilum 350/singleton 3.50 ± 0.20 4.90 ± 0.10

US443 F. psychrophilum 350/singleton 8.18 ± 0.03a 8.23 ± 0.00a

US450 F. psychrophilum 353/singleton 2.88 ± 0.18 5.03 ± 0.03

US451 F. psychrophilum 353/singleton 3.15 ± 0.33 3.86 ± 0.24

NIFA- 508 Flavobacterium psychroterrae 96.6 3.91 ± 0.39 5.15 ± 0.15

ATCC BAA- 2541T Flavobacterium tructae 2.70 ± 0.00 3.00 ± 0.00

NIFA- 048 F. tructae 98.6 2.94 ± 0.24 4.09 ± 0.39

NIFA- 037 F. tructae 98.7 0.85 ± 0.45 2.76 ± 0.06

NIFA- 028 F. tructae 100 3.09 ± 0.09 3.91 ± 0.09

NIFA- 147 F. tructae 98.8 3.54 ± 0.06 4.12 ± 0.42

ATCC 29473T Yersinia ruckeri 3.52 ± 0.00 4.78 ± 0.11
aIsolate was reduced by 100%.
bColumnaris- causing bacteria.

T A B L E  1  (Continued)
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sterile 60-  × 15- mm petri dishes. Both petri dishes were 
placed on top of an orbital rotation platform that was set to 
slowly rotate at 60 rpm. One of the petri dishes on the orbital 
platform was underneath the collimating beam apparatus, 
while the other was not positioned under the apparatus and 
thus served as the negative control dish. The UVinaire was 
powered on for a duration equating to the evaluated UV 
doses. After treatment, the contents of both petri dishes 
were transferred into different sterile tubes and gently ho-
mogenized using a vortexer; bacteria were then quantified 
as described in the previous section.

Data analysis

Ultraviolet light efficacy was evaluated by calculating 
the log10 reduction in CFU, whereby the log10 was taken 
after dividing the number of CFU for the negative control 
group by the number of CFU for the treatment group.

A general linear mixed- effects model was used to quan-
tify the effect (e.g., log10 reduction in CFU) of UV light 
treatment on the 65 flavobacterial isolates. The model 
included UV treatment dose, flavobacterial isolate group 
(i.e., columnaris- causing bacteria: n = 7; F. psychrophilum 
isolates: n = 23; all other flavobacterial isolates: n = 35), 
and the interaction between treatment dose and flavobac-
terial isolate group as fixed effects. Flavobacterial isolates 
within flavobacterial isolate group and the interaction be-
tween treatment dose and flavobacterial isolates within 
flavobacterial isolate group were treated as random ef-
fects. We treated flavobacterial isolates within flavobacte-
rial isolate group as a random effect to draw inference for 
flavobacterial isolate variability beyond the flavobacterial 
isolates that were specifically measured for this study. 
Custom hypothesis tests examining the differences be-
tween the F. psychrophilum STs (n = 12) and between the 
columnaris- causing bacterial species (n = 4) at the same 
dose were evaluated through linear functions of model 
parameter estimates. Analyses were performed using the 
GLIMMIX procedure in SAS version 9.4; the construction 
of the custom hypotheses was performed using custom-
ized Contrast statements.

RESULTS

Ultraviolet inactivation of flavobacteria

General linear model analyses

Based on the fitted general linear mixed- effects model, 
the UV treatment doses had similar effects within each 

flavobacterial isolate group (i.e., there was no signifi-
cant interaction between treatment dose and flavobacte-
rial isolate group; F = 0.80; df = 2, 62; p = 0.4550); overall, 
flavobacterial isolate reduction was significantly greater 
at the high UV dose than at the low UV dose (F = 73.17; 
df = 1, 62; p < 0.0001; Figure 1A). In terms of the model 
random effects, variation was greater for the random 
effect of flavobacterial isolates within flavobacterial 
isolate group (variance = 2.886; SE = 0.6188) than for 
the interaction between treatment dose and flavobac-
terial isolates within flavobacterial isolate group (vari-
ance = 0.995; SE = 0.187).

Effect of low ultraviolet dose (25 mJ/cm2)

At the low UV dose of 25 mJ/cm2, the log10 reduction 
among all tested flavobacterial isolates ranged from 0.17 
to 9.00 (Figure 1A), with 6 of the 65 evaluated flavobacte-
rial isolates being reduced by 100% (Table  1). The log10 
reduction for the columnaris- causing bacteria group, the 
F. psychrophilum isolate group, and the group containing 
all other flavobacterial isolates averaged 4.43 (SE = 0.749; 
range = 1.37– 7.38), 2.34 (SE = 0.413; range = 0.17– 8.17), 
and 3.95 (SE = 0.335; range = 0.84– 9.00), respectively 
(Table 1; Figure 1B– D). The log10 reduction in the F. psy-
chrophilum isolate group was significantly greater than 
the log10 reduction in both the columnaris- causing bac-
teria group (t = 2.44; df = 80.51; p = 0.0168) and the group 
consisting of all other flavobacterial isolates (t = 3.03; 
df = 80.51; p = 0.0033). The difference between the 
columnaris- causing bacteria group and the group con-
taining all other flavobacterial isolates was not significant 
(t = 0.58; df = 80.51; p = 0.5609).

When columnaris- causing bacteria were grouped ac-
cording to species, the average log10 reductions in bacterial 
concentration were 1.37 (F. davisii), 3.27 (F. oreochromis), 
4.58 (F. columnare), and 6.96 (F. covae; Table 2). The log10 
reductions for all species were significantly different from 
each other (p < 0.0001; Table S2).

When F. psychrophilum isolates were grouped by ST, 
the average log10 reduction ranged from 0.27 (ST301) 
to 5.84 (ST350; Table  2) and significant differences in 
UV light susceptibility were observed between all STs 
(Table S3). Sequence type 301 was significantly more re-
sistant to UV light compared to all other STs (p < 0.0001), 
whereas ST350 was significantly less resistant to UV light 
in comparison to all other STs (p < 0.0001). The remain-
ing 10 STs differed significantly in UV light susceptibility 
relative to 6 (ST330), 7 (ST256), 8 (ST10, ST13), 9 (ST78, 
ST86), 10 (ST256, ST275, ST353), or 11 (ST253) other STs 
(Table S3).
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Effect of high ultraviolet dose (126 mJ/cm2)

At the high UV dose of 126 mJ/cm2, the log10 reduction 
among all tested flavobacterial isolates ranged from 1.86 
to 9.73 (Figure  1A), with 19 of the 65 evaluated flavo-
bacteria isolates reduced by 100% (Table  1). The log10 
reduction for the columnaris- causing bacteria group, 
the F. psychrophilum isolate group, and the group en-
compassing all other flavobacterial isolates averaged 
6.20 (SE = 0.749; range = 1.93– 9.21), 4.56 (SE = 0.413; 
range = 1.86– 9.06), and 5.69 (SE = 0.335; range = 2.76– 
9.73), respectively (Table 1; Figure 1B– D). The log10 re-
duction in the group containing all other flavobacterial 
isolates was significantly greater than the reduction for 
the F. psychrophilum isolate group (t = 2.13; df = 80.51; 
p = 0.0362). The difference between the columnaris- 
causing bacteria group and the F. psychrophilum isolate 
group was not significant (t = 1.92; df = 80.51; p = 0.0584). 
The difference between the columnaris- causing bacteria 
group and the group consisting of all other flavobacterial 

isolates also was not significant (t = 0.62; df = 80.51; 
p = 0.5364).

When columnaris- causing bacteria were grouped ac-
cording to species, the average log10 reductions in bacterial 
concentration were 3.85 (F. davisii), 5.36 (F. oreochromis), 
6.75 (F. columnare), and 7.65 (F. covae; Table 2). The log10 
reductions for all species were significantly different from 
each other (p < 0.0001; Table S2).

When F. psychrophilum isolates were grouped by 
ST, the log10 reduction ranged from 2.55 (ST301) to 7.00 
(ST253; Table  2) and significant differences in UV light 
susceptibility were observed between all STs (Table  S3). 
Sequence type 301 was significantly more resistant to UV 
light compared to all other STs (p < 0.0001– 0.0002). Al-
though ST253 had the greatest log10 reduction, it was not 
significantly different from those of two other STs (ST275: 
p = 0.1212; ST350: p = 0.0666). The remaining 10 STs dif-
fered significantly in UV light susceptibility relative to 5 
(ST78, ST330), 6 (ST256), 7 (ST13, ST286), 8 (ST10, ST353), 
9 (ST275, ST350), or 11 (ST86) other STs (Table S3).

F I G U R E  1  Box plots of the log10 reduction of colony- forming units at ultraviolet (UV) doses of 25 and 126 mJ/cm2 for (A) all 65 
flavobacteria isolates, (B) columnaris- causing bacteria (n = 7) only, (C) Flavobacterium psychrophilum isolates (n = 23) only, and (D) all 35 
flavobacteria isolates except columnaris- causing bacteria and F. psychrophilum. All groups (A– D) were significantly more susceptible to UV 
light at the high dose compared to the low dose (α = 0.05). Box plots depict the upper and lower quartiles, separated by the median (i.e., the 
horizontal line). Also included are the mean (“×” within the box) and the outliers (circles beyond whiskers).
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Comparisons between low (25 mJ/cm2) and 
high (126 mJ/cm2) ultraviolet doses

For the columnaris- causing bacteria group, the log10 
reduction in bacterial concentration was significantly 
greater at the high UV dose than at the low UV dose 
(t = 3.24; df = 62; p = 0.0019). Similarly, the log10 reduc-
tion was significantly greater at the high UV dose than at 
the low UV dose for the F. psychrophilum isolate group 
(t = 7.36; df = 62; p < 0.0001) and for the group compris-
ing all other flavobacterial isolates (t = 7.13; df = 62; 
p < 0.0001).

Ultraviolet light inactivation of nonflavobacteria

At the low UV dose, C. maltaromaticum was least suscepti-
ble among the nonflavobacterial species tested, exhibiting 
a log10 reduction of 1.50 ± 0.10 (mean ± SE), followed by 
A. salmonicida subsp. salmonicida and Y. ruckeri, which 
were reduced by 3.15 ± 0.15 and 3.52 ± 0.00, respectively 
(Table 1). At the high UV dose, C. maltaromaticum and A. 
salmonicida subsp. salmonicida were reduced similarly, 
with log10 reductions of 3.39 ± 0.09 and 3.39 ± 0.24, respec-
tively. Comparably, reduction of Y. ruckeri was approxi-
mately 1.0 log higher at 4.78 ± 0.11 (Table 1).

DISCUSSION

Ultraviolet light susceptibility experiments with 65 fla-
vobacterial isolates belonging to over 10 species of Fla-
vobacterium and Chryseobacterium revealed reductions 
for all assayed taxa by an average of about 1000- fold at 
25 mJ/cm2 or by about 100,000- fold at 126 mJ/cm2. How-
ever, some marked differences in UV light susceptibility 
between species and among isolates of the same species 
were observed. For example, at the UV dose of 25 mJ/cm2, 
F. psychrophilum MLST variant ST301 was reduced sig-
nificantly less (e.g., by less than twofold) than all other 
assayed MLST variants (reductions ranging from ~18- fold 
to 690,000- fold; Table  2), and the two most widespread, 
disease- causing F. psychrophilum variants in the United 
States (ST10 and ST78, both belonging to clonal complex 
ST10; Knupp et al. 2019) were among the most resistant 
to UV light (reductions ranging from ~18- fold to 57- fold; 
Table  2). Thus, it appears that UV light exposure could 
be more effective on some F. psychrophilum variants than 
others. Whether such variations in UV susceptibility ex-
plain in part the widespread, long- term persistence of F. 
psychrophilum variants ST10 and ST78 or others is cur-
rently unknown. Nevertheless, study findings revealed 
that UV light treatments have the potential to substan-
tially reduce most F. psychrophilum isolates. Extrapolating 

T A B L E  2  Log10 reduction of colony- forming units (mean ± SE) at ultraviolet doses of 25 and 126 mJ/cm2 for four columnaris- causing 
bacterial species (e.g., Flavobacterium columnare, F. covae, F. davisii, and F. oreochromis) and 12 F. psychrophilum sequence types (STs), 
which belong to six clonal complexes (CCs) or are singletons. Columnaris- causing bacteria are presented first (alphabetically), followed by 
F. psychrophilum STs/CCs.

Species ST/CC

Log10 reduction ± SE

25 mJ/cm2 126 mJ/cm2

F. columnare 4.58 ± 0.56 6.75 ± 1.42

F. covae 6.96 ± 0.27 7.65 ± 0.47

F. davisii 1.37 ± 0.15 3.85 ± 0.15

F. oreochromis 3.27 ± 1.02 5.36 ± 1.98

F. psychrophilum 13/9 1.88 ± 0.69 3.81 ± 0.24

F. psychrophilum 10/10 1.76 ± 0.25 3.75 ± 0.37

F. psychrophilum 78/10 1.26 ± 0.31 4.16 ± 0.27

F. psychrophilum 86/10 1.32 ± 0.16 3.36 ± 0.12

F. psychrophilum 275/10 2.27 ± 0.37 6.69 ± 1.07

F. psychrophilum 256/256 2.13 ± 0.62 3.99 ± 0.75

F. psychrophilum 286/286 3.20 ± 0.20 4.33 ± 0.15

F. psychrophilum 301/191 0.27 ± 0.08 2.55 ± 0.41

F. psychrophilum 330/318 1.70 ± 0.00 3.50 ± 0.50

F. psychrophilum 253/singleton 3.82 ± 0.17 7.00 ± 1.20

F. psychrophilum 350/singleton 5.84 ± 1.35 6.56 ± 0.96

F. psychrophilum 353/singleton 3.01 ± 0.17 4.45 ± 0.35
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study results to facility source water, in which F. psychro-
philum loads of approximately 10,000 cells/mL have been 
reported (Strepparava et al.  2014), while acknowledging 
that laboratory and field conditions (e.g., water turbidity) 
vary, a UV dose of 25 mJ/cm2 could reduce many different 
F. psychrophilum isolates by 99%, thereby substantially re-
ducing infection risk.

Findings for the four bacterial species that cause co-
lumnaris disease, which until recently was believed to 
be caused by only one species (F. columnare; LaFrentz 
et al. 2022), revealed that all species were reduced after UV 
light exposure at both doses. However, significant differ-
ences in reduction among the four newly described species 
were present. The factors driving these differences are un-
known, but such factors are unlikely to include variations 
in cell morphology, as cell dimensions are similar among 
the four species (LaFrentz et al. 2022). Nevertheless, after 
future field studies are completed, it is possible that salmo-
nid aquaculture facilities affected by F. davisii will need 
a higher UV dose than tilapia- producing facilities, which 
tend to be more affected by F. oreochromis (LaFrentz 
et al. 2022). Future studies evaluating the relationship be-
tween source water characteristics (e.g., turbidity) that vary 
among aquaculture facilities and the UV dose required to 
inactivate columnaris- causing bacteria and other flavobac-
teria under field conditions are warranted.

The mechanism or mechanisms responsible for the ap-
parent reduced susceptibility of flavobacteria to UV light 
are currently unknown. However, research on flexirubin, 
a yellow pigment found at high concentrations in the outer 
membrane of some flavobacteria (Irschik and Reichen-
bach 1978; Venil et al. 2014), suggests that this pigment 
plays at least a partial role. In this context, Bai et al. (2017) 
mutated the flexirubin synthesis gene fabZ of Cytophaga 
hutchinsonii and found that nonpigmented mutants had 
reduced survival when exposed to UV light in compari-
son with the pigmented wild- type strain. Likewise, Venil 
et al. (2014) found that flexirubin isolated from a Chryseo-
bacterium sp. was stable after 5 days of UV light exposure. 
Notably, F. psychrophilum isolates US181 and US343, the 
flavobacteria that were the least sensitive to UV light in 
this study, had the most intense and brightest yellow col-
oration compared to all other utilized flavobacteria (data 
not shown); however, a correlation between pigment in-
tensity and UV resistance was not assessed herein and has 
yet to be described in flavobacteria elsewhere.

Although this study established a baseline UV light sus-
ceptibility profile for flavobacteria in a planktonic form, 
additional studies evaluating UV light efficacy against fla-
vobacteria originating from biofilms are needed. Biofilm 
has been shown to protect other bacterial species, such as 
Escherichia coli, from the harmful effects of UV light (Voll-
merhausen et al. 2017), likely by increasing the optical path 

to cells, light scattering by accumulated solids, and bacte-
rial production of UV- absorbing pigments (Luo et al. 2022). 
Indeed, flavobacteria are also adept at forming biofilm on 
surfaces common to aquaculture and hatchery facilities 
(Cai et al. 2013; Levipan and Avendano- Herrera 2017; Sato 
et al. 2021). Likewise, at least one Flavobacterium sp. (i.e., 
F. johnsoniae) can form biofilm- like microcolonies on solid 
surfaces (Li et al. 2021). In this context, if flavobacteria in 
biofilm or biofilm- like assemblages are more resistant to 
UV light than flavobacteria in planktonic form, then higher 
UV doses may be required for inactivation.

Another area for future consideration comprises the 
mutational and therefore potential phenotypic effect(s) 
that UV light may have on different flavobacterial spe-
cies, as UV light has been reported to induce recombina-
tion in some bacteria (Howard- Flanders et al.  1968). In 
this context, F. psychrophilum is highly recombinant ac-
cording to MLST and whole- genome analyses (Duchaud 
et al. 2018; Knupp et al. 2019). Whether exposure of flavo-
bacteria to UV light could ultimately lead to unanticipated 
phenotypic changes is currently unknown but warrants 
consideration.

In comparison to other bacterial fish pathogens that 
have been the subject of UV light efficacy studies, the fla-
vobacteria evaluated herein appear more resilient to UV 
light exposure. For example, Liltved and LandFald (1996) 
exposed Vibrio anguillarum, V. salmonicida, and Y. ruckeri 
to a UV dose of 2.7 mJ/cm2 and achieved an approximately 
100,000- fold reduction for all three species. Similarly, a 
UV dose of 4– 5 mJ/cm2 was sufficient for reducing Aero-
monas hydrophila and A. salmonicida subsp. salmonicida 
by about 1000- fold (Wedemeyer  1996). A similar over-
all degree of reduction for flavobacteria, as determined 
herein, was achieved at a UV dose of 126 or 25 mJ/cm2, but 
an increase in UV dose did not result in a proportional in-
crease in reduction for most flavobacterial isolates. Thus, 
whether UV doses lower than 25 mJ/cm2 are also suffi-
cient for reduction of flavobacteria remains unknown. 
Interestingly, although the Y. ruckeri (causative agent of 
enteric redmouth disease; Ross et al. 1966) and A. salmoni-
cida subsp. salmonicida (etiological agent of furunculosis; 
Griffin et al.  1953) isolates evaluated in this study were 
reduced similarly to flavobacteria at the low UV dose (i.e., 
each by ~1000- fold), both bacterial isolates appeared less 
susceptible to UV light than did flavobacteria at the high 
UV dose (reduction of ~10,000- fold [Y. ruckeri] or ~1000- 
fold [A. salmonicida subsp. salmonicida] versus reduction 
of ~100,000- fold [flavobacteria]). Such discrepancies and 
the possible factor(s) behind them (e.g., methodological/
technological differences, potential intraspecific variation 
in isolate UV susceptibility) warrant further study, but we 
strongly recommend that future UV light efficacy studies 
test multiple isolates of the same bacterial species.
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Although not a primary goal of this study, the UV 
light susceptibility of C. maltaromaticum, the cause of 
pseudokidney disease in salmonids (Ross and Toth 1974), 
was evaluated herein for the first time. This bacterium 
appeared to be fairly resistant to UV light at both doses 
relative to the other studied isolates, which may not be 
surprising given that gram- positive bacteria are generally 
considered more UV light resistant than gram- negative 
bacteria due to differences in bacterial membrane 
structures (Mahapatra et al.  2007; Beauchamp and La-
croix  2012). Nevertheless, C. maltaromaticum may be 
an emerging fish pathogen that is also present in source 
water (Standish et al. 2022), and UV light appears to be a 
potential tool of use for its reduction.

In conclusion, UV light appears to be a promising 
means of reducing flavobacterial disease risk in fish farms 
and hatcheries. Although additional studies that more 
closely mimic the fish farming environment are needed, 
current results suggest that facilities afflicted by BCWD or 
F. branchiophilum- induced bacterial gill disease may ben-
efit from treating the source water at a UV dose of 25 mJ/
cm2, which could result in a 99% reduction of viable cells, 
whereas facilities grappling with F. davisii- induced co-
lumnaris disease could consider implementing a UV dose 
of 126 mJ/cm2 to achieve a similar reduction. Overall, the 
data produced herein are currently the most comprehen-
sive source of information with respect to the UV light 
susceptibility of flavobacteria and will be beneficial for 
aquaculture and hatchery facility personnel in the interim.
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