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Introduction 

 As part of the Great Lakes mass marking program, beginning in 2011 all Chinook salmon 

stocked into lakes Michigan and Huron were to be implanted with coded wire tags (CWT) and to 

receive an adipose fin clip.  The purpose of the marking program is to evaluate wild reproduction 

of Chinook salmon in the lakes, as well as to determine individual stocking site success, hatchery 

performance, intra- and inter-lake movement patterns, and contribution to the recreational fishery 

creel (S. Hansen, Wisconsin Department of Natural Resources, personal communication).  In 

spring 2012, the Salmonid Working Group and the Lake Michigan Committee requested 

assistance from the Quantitative Fisheries Center (QFC) at Michigan State University to develop 

target sample size recommendations and sample collection protocols to help ensure statistically 

valid results can be gained from collections of tagged and wild fish.  The Salmonid Working 

Group provided the following list of questions to the QFC that fishery managers were interested 

in exploring as part of the marking program: 

 What is the contribution of Illinois, Indiana, Wisconsin, and Michigan origin Chinook 
salmon to their respective summer fisheries?  Additionally, what are the contributions to 
the local and lake-wide summer fisheries of Chinook salmon stocked in specific state 
jurisdictions and management areas?   

 Is there a difference in the contribution of Chinook salmon stocked at Waukegan, 
Diversey, and Jackson Harbor to the Illinois and lake-wide fishery? 

 What are the return rates of Chinook salmon stocked by Illinois and other agencies to the 
fall spawning populations? 

 What is the contribution of Lake Huron Chinook salmon to the Lake Michigan 
recreational fishery and vice versa?   

 What is the rate of exchange between Lake Huron and Lake Michigan stockings sites? 
 Is the current sampling design and target sample size at Michigan DNR weir index sites 

appropriate for biological data needs? 
 

With regards to the last question, the specific biological data needs that managers were interested 

in were not specified, so I did not attempt to provide input on this question.  The other questions 

are essentially variants of the same concept - namely, how large of a sample should be collected 



3 
 

to accurately estimate the proportional contribution of Chinook salmon from state-, location-, or 

hatchery-specific stocking events, as well as proportion wild, to a particular region of Lake 

Michigan, whether it be the whole lake or the recreational fishery operating in a specific 

jurisdictional area. 

 To answer the sample size questions, I referenced primary scientific literature pertaining 

to sample sizes for simultaneous estimation of confidence intervals for multinomial proportions.  

Numerous approaches exist for simultaneous estimation of confidence intervals for multinomial 

proportions, less has been published regarding target sample sizes to ensure a desired level of 

precision is achieved when estimating proportions.  Several methods for determining sample 

sizes do exist and in this report I describe a fairly straightforward and conservative approach that 

can be used in a variety of situations.  I begin the report by summarizing information provided in 

a Great Lakes Fishery Commission completion report entitled Review of Procedures for 

Estimating Wild Production of Chinook Salmon through Marking Experiments: Evaluation of 

Needed Sampling of Marked Fish on Lake Michigan, which was authored by Drs. Emily Szalai 

and James Bence from Michigan State University in the early 2000s (Szalai and Bence 2002).  

The Szalai and Bence (2002) report (hereafter referred to as the SB report) concerns estimating 

the proportion wild of Chinook salmon in Lake Michigan when stocked fish are marked with 

oxytetracyclene (OTC), which is different than estimating proportion wild using CWT tagging in 

that with the latter it is possible to determine proportion contributed from state- and location-

specific stocking by way of unique tag codes.  Despite this difference, many of the sampling 

issues discussed in the SB report are relevant to the CWT mass marking program.  I then briefly 

review the multinomial distribution, including why I think this is the appropriate distribution for 

evaluating many of the questions that Lake Michigan fishery managers are interested in 
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answering.  Lastly, I describe one approach for how sample sizes to achieve a desired level of 

absolute precision for multinomial proportions can be determined. 

 

Relevant Aspects from the SB Report 

Among the items discussed in the SB report that are relevant to the CWT mass marking 

program are the importance of accounting for marking error, sampling issues for inferring wild 

reproduction of the overall population when sampling is restricted to angler harvested fish, and 

sampling issues for inferring age-related differences in proportion wild when fish age is not 

known at time of capture.  As noted in the SB report, the ability to accurately estimate the 

proportion of wild Chinook salmon depends critically on the ability to distinguish between 

stocked and wild fish.  In the case of OTC marked fish, there existed the possibility that wild fish 

might be classified as stocked as a result of the appearance of fluorescence when examining 

vertebrae from wild produced fish and for stocked fish to be classified as wild as a result of 

degradation of OTC marks due to improper storage or other factors.  In the case of the CWT 

mass marking program, the classification of wild fish as stocked fish seems highly unlikely, so 

the primary concerns are that stocked fish may shed their tags and that shedding rates might 

increase over time, which could result in age-related biases in the estimated proportion wild 

unless the estimates are corrected for shedding.  Based on the 2011 CWT stocking database to 

which I had access, immediate tag retention for tagged fish was evaluated at some, but not all, 

release sites.  It does not appear that there have been any attempts to rigorously evaluate long-

term tag retention of CWT Chinook salmon (e.g., double tagging of some fish), although the 

adipose fin clipping of stocked individuals can provide general, but not state-, location-, or year-

specific, information about long-term tag shedding.  In studies conducted on other species, 
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chronic CWT shedding does not appear to be a major issue (Dunning et al. 1990; Wallin and Van 

Den Avyle 1994; Guy et al. 1996; Munro et al. 2003; Dorsey et al. 2004), so concerns about 

shedding rates increasing as fish age may be unfounded.   

Immediate CWT retention rates for stocking events where tag shedding was evaluated 

based on the 2011 CWT stocking database ranged from 97.8% to greater than 99.9% (shedding 

rates ranging from less than 0.1 to 2.2%).  This level of tag loss is unlikely to have a large effect 

on the accuracy of estimating the proportion of wild fish in the Chinook salmon population, but 

it still would be a good idea to account for this shedding during estimation.  Given that all fish 

tagged with a CWT also receive an adipose-fin clip, it is still possible to distinguish between 

wild and stocked individuals even if tags are shed.   However, CWT shedding will result in 

biases when it comes to estimating proportion contributed from state- or location-specific 

stocking events.  CWT shedding in effect will introduce an additional response category when 

samples are collected from Lake Michigan (i.e., un-differentiable stocked individual).  If 

immediate CWT retention rates are available for each stocking event, then the corrected stocked 

proportions can be easily adjusted. If immediate CWT retention rates are not available for each 

stocking occurrence, then a weighted-average correction could be calculated based on stocking 

events where shedding was evaluated and using the number of tagged fish for the stocking events 

as the weighting factor.   

 Regarding the sampling issues for inferring wild reproduction in Chinook salmon, the SB 

report discusses three possible objectives for Lake Michigan tagging/marking projects 

1) Estimate the proportion wild in the Chinook salmon population 

2) Estimate the proportion wild at age in the Chinook salmon population 

3) Estimate the proportion wild at age in the Chinook salmon harvest 
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As noted in the SB report, the first two objectives are fundamentally different from the third 

objective in that they concern the lake-wide population rather than the recreational harvest.  

Meeting the first two objectives requires that sampling be representative of the at-large 

population.  Fishery independent surveys for Chinook salmon are not widely conducted in the 

Great Lakes, so there is little choice but to rely on recreational fishery harvest for obtaining 

samples.  As noted in the SB report, when samples of fish come from the recreational fishery, 

sampling needs to be conducted at a time when the population is well mixed to make inference to 

the proportion wild in the population.  This assumption is necessary to ensure that samples from 

different locations can be combined as if they were samples from the same population.  If the 

Chinook salmon population is divided into spatially distinct sub-populations consisting of 

different proportions of stocked and wild fish, the sampling design would need to be stratified by 

the location of the sub-populations.  This would require knowing the spatial distribution of each 

sub-population and the relative sizes of the sub-populations.  Since the SB report was completed, 

understanding of the spatial distribution of Chinook salmon has increased considerably as a 

result of research conducted by Adlerstein et al. (2008) and Williams (2012); however, 

knowledge of the spatial distribution of Chinook salmon from state- and location-specific 

stocking events is presently lacking.   In the absence of such information, an assumption of a 

well-mixed population at certain times of the year is necessary for inferring to the lake-wide 

Chinook salmon population level.   

In the SB report, it was assumed that the Lake Michigan Chinook salmon population was 

well mixed during the month of July.  There are likely some concerns as to whether an 

assumption of a well-mixed population in July can be supported.  Hesse (1994) found differences 

in proportion wild of age-3 Chinook salmon for samples collected between May and September 



7 
 

at Ludington, Michigan and at Grand Haven, Michigan.  Small sample sizes prevented rigorous 

testing of monthly differences in proportion wild (Hesse 1994).  Williams (2012) recently found 

that proportion wild of age-1 Chinook salmon for samples collected between April and August 

were significantly greater in Michigan and Illinois jurisdictions than in Wisconsin jurisdictions, 

although once again monthly specific differences could not be evaluated.  None of the other age 

classes assessed by Williams (2012) were found to significantly differ in terms of proportion 

wild.  The degree of mixing of stocked fish from different states and stocking locations during 

different times of the year is a major unknown and I am not aware of any data source that might 

be used to assess this a priori.  Even if it is assumed that the population is well mixed during a 

certain time of year, it is still nevertheless prudent to collect samples across a broad area so that 

large spatial differences in the proportion wild can be detected.    

To estimate the proportion wild at age in the population, it is important to ensure that the 

sampling is designed to adequately sample all age classes of interest (i.e., stratified sampling).  

Unfortunately, at time of sampling, fish age is not known so it is typical for length bins to be 

used to separate ages.  In the past, length bins of < 38 cm, 38 to 57, and > 57 cm have been used 

to distinguish between age-0, age-1, and age-2 and older Chinook salmon.  In the SB report, it 

was assumed that age-2, age-3, and age-4 fish comprised 55, 42, and 3% of Chinook salmon > 

57 cm.  Thus, if data collection targeted 750 fish > 57 cm in length the expected sample size by 

age was approximately 413 age-2 fish, 315, age-3 fish, and 23 age-4 fish.  Given that Chinook 

salmon growth rates have changed in recent years, different length bins and/or length bin age 

compositions should probably be developed and used for the CWT marking program. 

When estimating the proportion wild at age in the harvest, the SB report indicated that 

sampling should be designed to account for differences in harvest between locations and seasons 
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around the lake.  Specifically, it was recommended that sampling be stratified by location and 

season, in addition to length class, to ensure adequate samples were collected.  In the SB report, 

six regions were used for stratification.  The North region encompassed Michigan statistical 

districts MM2, MM3, and MM4.  The Northeast region encompassed Michigan statistical 

districts MM5 and MM6.  The Northwest region encompassed Wisconsin statistical districts 

WM3 and WM4.  The Southeastern region encompassed Michigan statistical districts MM7 and 

MM8.  The Southwestern region encompassed Wisconsin statistical districts WM5 and WM6.  

The Indiana-Illinois region encompassed all waters within the Illinois-Indiana jurisdictional 

boundaries.  Seasons were categorized into early, mid, and late season.  Early season 

encompassed Chinook salmon harvest prior to June 16.  Mid season encompassed Chinook 

salmon harvest between June 16 and July 31.  Late season encompassed Chinook salmon harvest 

after July 31.  The same strata could be used for the CWT marking program, or the strata could 

be modified for finer (or broader) resolution. 

With stratified sampling, one important issue to consider is allocation of sampling effort 

(i.e., effort of head hunters in collecting specimens from recreational fishers).  Without prior 

knowledge of population distribution, a logical choice is to allocate sampling effort equally 

across strata (e.g., evenly across 6 spatial strata, 3 seasonal strata, and 2 length strata).  An 

alternative choice would be to allocate sampling to the strata in proportion to a prior estimate of 

each stratum's contribution to the total population being assessed.  One reasonable basis for prior 

weighting would be the proportion of harvest.  Based on creel survey reports from 1985 to 2000, 

the SB report presents the approximate proportion of total harvest that occurs in each season at 

each location (25% early season, 50% mid season, 25% late season) and in each spatial region 

(2% North, 33% Northeast, 17% Northwest, 27% Southeast, 16% Southwest, and 5% 



9 
 

Indiana/Illinois).  If a choice is made to allocate sampling based on proportion of harvest, then 

the percentages established in the SB report should be updated. 

The SB report concluded with a series of recommendations for the OTC marking 

program.  Many of these recommendations are valid for the CWT mass marking program as 

well, although the wording of the recommendations requires some modification.  

1) Tag shedding is important to acknowledge in the mass marking program.  Failure to 

account for shedding may result in biases in the proportion of wild fish or biases in 

the proportion contributed from state- or location-specific stocking events.    

2) Sampling of CWT fish to estimate the proportion wild and proportion contributed 

from state- or location-specific stocking to the harvest should be concentrated at 

locations where large numbers of Chinook salmon are harvested.  This can be 

accomplished by targeting tournaments or sampling at locations during times that are 

known to produce large harvests.   

3) Sampling efforts directed at estimating wild contributions should be concentrated on 

estimating the proportion wild at age.  Sampling only to estimate overall proportion 

wild does not provide information on how year class strength changes temporally, 

which is perhaps the key uncertainty regarding Chinook salmon population dynamics.   

4) Samples for determining proportion wild or proportion contributed from state or 

location-specific stocking at the population level should be taken from different 

locations from around the lake so that patterns in the proportions across the lake can 

be examined.   
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Review of the Multinomial Distribution 

 The multinomial distribution is a generalization of the binomial distribution.  Whereas 

the binomial distribution is assumed to consist of n independent repetitions where the outcome of 

a repetition can be only one of two possible categories, the outcome for a multinomial 

distribution can be one of k possible categories.  In early OTC studies conducted on Lake 

Michigan Chinook salmon, the binomial distribution was an appropriate distribution for analyses 

as there were only two possible outcomes when fish were collected from the lake: stocked or 

wild.  In the case of the CWT mass marking program, the outcomes for sampling fish from the 

lake can take on of several possible variants depending on the scale of inference.  At the finest 

scale, the outcomes could consist of all tag batch codes that have been released in the lake in 

addition to wild produced fish, Lake Huron stocked fish, and un-differentiable stocked fish (i.e., 

fish with adipose fin clips but no recoverable tag).  In 2011, 19 unique batch codes were used to 

mark Chinook salmon released into Lake Michigan: 3 unique codes were used by Illinois, 3 

unique codes were used by Indiana, 3 unique codes were used by Michigan, and 10 unique codes 

were used by Wisconsin.  In 2012, another 19 unique batch codes were used to mark Chinook 

salmon: 3 unique codes were used by Illinois, 3 unique codes were used by Indiana, 3 unique 

codes were used by Michigan, and 10 unique codes were used by Wisconsin.  At a broader scale, 

the outcomes of sampling fish from Lake Michigan could be considered to consist of the states 

from which stocked fish were planted (Michigan, Wisconsin, Illinois, and Indiana) in addition to 

wild produced fish, Lake Huron stocked fish, and un-differentiable stocked fish.  At the broadest 

scale, the outcomes of sampling fish from Lake Michigan that fishery managers would be 

interested in categorizing would be Lake Michigan stocked fish, Lake Huron stocked fish, un-

differentiable stocked fish, and wild fish.  Most of the questions posed to the QFC by the 
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Salmonid Working Group included some mention of state- or location-specific contributions, 

rather than just stocked versus wild contributions, so it would seem that there is greater interest 

in categorizing outcomes at fine rather than broad scales. 

 With n independent repetitions and i=1…k possible outcomes, the multinomial 

distribution gives the probability of observing a particular combination of categories in a sample 

where the probability of observing the i-th  category is equal to pi and the total number of 

occurrences of a particular category is denoted as xi.   Each pi is assumed to be greater than or 

equal to 0.0, less than 1.0, and the sum of all the pis is assumed to equal 1.0 (i.e., the categories 

are mutually exclusive and exhaustive).  The expected number of occurrences of a particular 

category is E(xi) = npi.   The variance associated with a particular category is Var(xi) = npi(1.0-

pi), while the covariance between the i-th and j-th categories is Cov(xi,xj) = -npi(pj).  The 

covariance between two categories is necessarily negative because for a fixed number of 

repetitions an increase in one category necessitates a decrease in another category.  For the 

multinomial distribution, the sample proportions xi/n are the unbiased estimates of the population 

proportions for each category.  The variances of the sample proportions are simply Var(pොi) = 

pi(1.0-pi)/n, while the covariance of two sample proportions is Cov(pොi,	pොj) = -(pipj)/n.  The 

presented formulas for the variances and covariances do not include a finite population 

correction factor because sample sizes from the CWT mass marking program should be large 

enough that the correction factor would have negligible influence.  Also, as noted by Cochran 

(1977), although it is common practice for the variances of sample proportions to be denoted as 

Var(pොi) = pi(1.0-pi)/n, this is a biased estimate.  An unbiased estimate is Var(pොi) = pi(1.0-pi)/(n-1), 

although this seems to be rarely used in practice.  The bias of pi(1.0-pi)/n decreases as sample 

size increases.   
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 As previously stated, my interpretation of most of the questions posed to the QFC is that 

fishery managers are interested in using collections of fish from Lake Michigan to estimate the 

proportion wild or proportion contributed from state- or location-specific stocking to the 

Chinook salmon population or fishery harvest, thus the desire is to make inferences regarding the 

pis.  Some possible comparisons that managers may be interested in making include testing 

whether estimated pis differ from known values (e.g, testing whether the proportions contributed 

from state-specific stocking estimated for the lake-wide population differ from the stocking 

proportions) or in testing differences in the pis for particular outcomes (e.g., differences in 

proportion contributed among the Waukegan, Diversey, and Jackson Harbor stocking locations).  

Alternatively, fishery managers may simply be interested in estimating the uncertainty associated 

with particular pis (i.e., generative confidence intervals associated with the estimated pis).  Each 

of these can be accomplished under an assumption that the data are multinomially distributed, 

although in most cases the underlying methods make use of a normal approximation to the 

multinomial distribution.  To test whether an estimated proportion is different from an assumed 

level (H0: pi = p0 versus H1: pi  p0), the following test statistic can be used 
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This test statistic would then get compared to a standard normal curve at a particular Type-I error 

rate (α) for deciding whether the null hypothesis could be accepted or rejected.  Alternatively, the 

test could be based on a Student’s t-distribution with degrees of freedom equal to 1 less than the 

total sample size.  I presented the formula as a standard normal distribution as I anticipated that 

the collected sample sizes through the CWT marking program would be large enough to be able 
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to assume a standard normal distribution.  To test differences in the pis for two particular 

outcomes ((H0: pi – pj = 0 versus H1: pi – pj  0), the following test statistic can be used 
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which again would get compared to a standard normal curve at a particular Type-I error rate for 

deciding whether the null hypothesis could be accepted or rejected.  For constructing confidence 

intervals around proportion estimates, there are several methods that can be used.  The simplest 

approach is to construct asymptotic (Wald) confidence intervals as  
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where 21 Z is the upper 2  point of the standard normal distribution.  Alternative methods 

include Agresti-Coull, Clopper-Pearson, Jeffreys, and Wilson score intervals.  When multiple 

tests of proportions or confidence intervals are calculated, appropriate corrections should be used 

to protect the experiment-wise Type-I error rate (e.g., Bonferroni corrections).  Alternatively, 

simultaneous approaches for estimating confidence intervals for proportion estimates or testing 

differences in proportions can be used.  For background on simultaneous approaches for 

estimating confidence intervals for multinomial proportions of testing differences in proportions, 

see Goodman (1965), Fitzpatrick and Scott (1987), Sison and Glaz (1995), Kwong (1998), Glaz 

and Sison (1999), Piegorsch and Richwine (2001), and Cai and Krishnamoorthy (2006). 

 As noted earlier, the categories used to summarize collections of Chinook salmon can 

range from fine scale (all possible tag codes) to broad scale (by lake).  When estimating 

proportions at broad scales, the estimated proportions can be considered to consist of linear 

combinations of the category probabilities at the finest possible scale.  In some cases, fishery 
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managers may be interested in summarizing the outcomes in a number of different ways (i.e., 

calculating many linear combinations of the fine scale categories).  When calculating many 

linear combinations of multinomial proportions, the Bonferroni correction can be overly 

conservative for determining confidence intervals and there are other approaches that can be 

used to protect the experiment-wise error rate of the intervals (Johnson and Wichern 1992).  How 

these methods perform relative to Bonferroni corrected confidence intervals ultimately depend 

on the number of linear combinations that are considered (see Brenden et al. 2008)  

 

Sample Sizes to Achieve a Desired Level of Precision for Multinomial 

Proportions 

 Estimating sampling sizes to achieve a desired level of precision for any parameter 

estimate oftentimes can be difficult because the sample sizes may depend on an unknown 

parameter value.  For example, when determining sample sizes for proportions from a binomially 

distributed random variable, necessary sample sizes depend on the outcome probabilities.  For 

this reason, sample size requirements sometimes are presented graphically as there is not a 

necessarily concise approach for presenting the information.  For example, in the SB report, 

sample size requirements for estimating proportion wild and proportion stocked for the Lake 

Michigan Chinook salmon population was presented in a series of graphs where proportion wild 

ranged from 0.05 to 0.4 and with different levels of desired relative precision.  In the case of 

sample sizes to achieve a desired level of precision for multinomial proportions, concisely 

presenting the information is made even more difficult as a consequence of the potentially large 

number of possible outcomes.  As a result, sample size requirements are often based on a worst-

case scenario, which generally occurs when some of the proportions being considered are equal 
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and the rest are zero.  An analogous situation is occasionally used when setting sample size 

targets for proportions from a binomial random variable.  The formula for determining same 

sizes for binomial proportions is  
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where d is the desired level of absolute precision (the standard error) around the estimated 

proportions.  For example, if it was believed that the probability of success for some event was 

0.3 and researchers wanted to collect a sample size large enough such that there was a 95% 

probability that the estimated p was between 0.300.05, than a sample size of 323 should be 

targeted.   It should be noted that n is at a maximum when p = 0.5.  Thus if there is little 

information to suggest beforehand what actual proportions are for a binomial random variable, 

sample size determinations will be calculated assuming p = 0.5 to err on the side of 

conservatism.  See the final paragraph for discussion regarding the distinction between absolute 

and relative precision. 

Thompson (1987, 1992) presents a table for determining sample sizes for simultaneously 

estimating the proportions of a multinomial random variable within a desired level of absolute 

precision and at a given significance level under the worst possible case.  Part of the table is 

reproduced below, including situations where sample sizes are calculated when it is desired that 

proportions are within 0.01, 0.025, or 0.05 of their true values.  To find the target sample size, 

one just needs to select a probability level (α) and the desired absolute precision level (d).  As an 

example, if it is desired that there is a 95% probability that all proportions are within 0.025 of the 

true proportions, than a sample size of 2,038 should be collected.  If it is desired that there is a 

95% probability that all proportions are within 0.05 of the true proportions, than a sample size of 

510 should be collected.  If it is desired that there is a 95% probability that all proportions are 
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within 0.01 of the true proportions, than a sample size of 12,736 should be collected.  Again, it 

should be noted that this is for the worst possible scenario; when it comes to calculating actual 

confidence intervals around proportion estimates, the actual confidence interval may be 

considerably smaller for a particular sample size.  

 
Table 1. Table for determining sample sizes for simultaneously estimating multinomial 
proportions within a desired absolute precision level (d) at a 1- α probability level. 
α nd 2  m d=0.01 d=0.025 d=0.05 

0.30 0.60123 3 6,013 962 241 

0.20 0.74739 3 7,474 1,196 299 

0.10 1.00635 3 10,064 1,610 403 

0.05 1.27359 3 12,736 2,038 510 

0.025 1.55963 2 15,597 2,495 624 

0.02 1.65872 2 16,588 2,654 664 

0.01 1.96986 2 19,699 3,152 788 

0.005 2.28514 2 22,852 3,656 915 

Note: Worst possible case occurs when the population proportions are 1/m for m of the k possible 
categories.  See Thompson (1987) and Fitzpatrick and Scott (1987) for additional information 
regarding the determination of the worst-possible cases for determining sample sizes for 
multinomial proportions. 
 In my mind, the main advantage of using the above table for determining target sample 

sizes for the mass marking program is that the specified targets are somewhat independent of the 

question.  In other words, it does not matter if the question is directed at determining proportions 

contributed by state-specific stocking events or proportion contributed from location-specific 

stocking events (or some combination of both) as the target sample size will meet the desired 

precision level for any number of categories.  The sampling frame scope also does not matter in 

terms of determining target sample sizes.  If fishery managers are interested in determining a 
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target sample size for determining proportions contributed by state- or location-specific stocking 

to the recreational fishery operating within Illinois jurisdictional boundaries within 0.025 of the 

true values at a 0.95 probability level, the target sample size would be no different than if the 

goal was to determine proportions contributed by state- or location-specific stocking to the lake-

wide recreational fishery.   Rather, the difficulty is ensuring a representative sample has been 

collected for inferring to the lake-wide recreational fishery. 

 When using OTC marking to infer proportion wild of Chinook salmon in Lake Michigan, 

to a large extent collected sample sizes were restricted by the time required to process samples.  

Tail sections of collected fish needed to be removed, vertebrae removed and cleaned, and then 

the vertebrae examined under a stereo microscope.  This limited the number of samples that 

could be examined in a given year to 2000 (Szalai and Bence 2002).  Presumably, the processing 

of samples for the presence of CWT tags will be considerably more efficient and sample sizes 

will primarily be restricted on the number of personnel (i.e., head hunters) that can be employed 

to collect samples from anglers.  Given the desire to answer questions pertaining to proportions 

contributed by state- and location-specific stocking events to state- and lake-wide- recreational 

fisheries, a coordinated conversation regarding target precision levels and availability of 

personnel should be had among the Salmonid Working Group for how efforts will be allocated.  

 As a concluding comment and something that may need to be discussed in the future, the 

target sample sizes generated from Table 1 above is based on the use of absolute precision across 

the all the outcome categories.  For example, if an absolute precision of 0.05 is used to set target 

sample sizes, then the level of precision is the same regardless of whether the estimated 

proportion is 0.02, 0.5, or 0.9.  An alternative strategy would be to use relative precision (i.e., the 

coefficient of variation).  For example, if a relative precision for multinomial proportions was set 
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at 10%, the for an outcome with an estimated probability of being observed equal to 0.2, the 

target absolute precision level would be 0.18 to 0.22 (0.20(0.10.2)), while the outcome with an 

estimated probability of being observed equal to 0.7 the target precision level would be 0.63 to 

0.77 (0.70(0.10.7)).   From the questions submitted to the QFC and in follow-up conversations 

with cooperators in the Lake Michigan mass marking program, it’s unclear if relative or absolute 

precision should be used in setting target sample sizes.  I used absolute precision as the basis for 

this report as most of the research studies that I have encountered regarding sample size targets 

for multinomially distributed data also were based on absolute precision.  Basing target sample 

sizes on the idea of relative precision may be considerably more difficult as defining a worst-

case scenario may not be possible.  As a result, sample size recommendations would need to be 

context dependent and would have to assume some specific outcome probabilities. 
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