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INTRODUCTION

We applied statistical catch-at-age analysis (SCAA) to fishery and biological information on Lake Trout Salvelinus
namaycush collected in western and southern waters of Lake Michigan to help improve population-level analyses of
the species in Lake Michigan. One SCAA stock assessment was developed for Wisconsin waters that included
statistical districts (see Smith et al. 1961) WM-3, WM-4, and WM-5 (to be referred to as WI345) and a second was
developed for southern Lake Michigan that included Wisconsin, Illinois, Indiana, and Michigan waters. Both stock
assessments were developed to estimate total abundance, biomass, growth, and mortality of Lake Trout that we
could combine with the same quantities for fish management units in the 1836 Treaty-Ceded waters (see Caroffino
and Lenart 2011; Truesdell and Bence 2016) to estimate prey consumption by Lake Trout in the main basin of Lake
Michigan.

While SCAA is a powerful tool for estimating population demographics, integrating multiple data sources, specifying
the most appropriate selectivity and catchability parameters, and discerning the best model fit to the data can make
interpretation of output difficult (Carvalho et al. 2017). We adopted protocols established by the Modeling
Subcommittee (MSC) of the Technical Fisheries Committee in the 1836-Treaty Ceded waters (Modeling
Subcommittee, Technical Fisheries Committee 2018) for evaluating stability, bias, and reliability of the WI345 stock
assessment. The MSC has not published a formal document that describes their protocols, but all their stock
assessments must include an evaluation that addresses:

AD Model Builder (ADMB) output statistics

standard deviations for quantities appearing in the objective function
maximum effective sample size

selectivity and catchability functions

residual analysis

sensitivity of model output to starting values

retrospective analysis of SCAA output

Markov chain Monte Carlo (MCMC) posterior distributions of SCAA output
. MCMC trace plots of SCAA output

10. MCMC auto-correlations for SCAA output

CONDURWNE

We used the MSC protocols to evaluate different versions of the WI345 stock assessment for Lake Trout. The biggest
problem in WI345 was the lack of aged fish from the recreational harvest and the Lakewide Assessment Plan (LWAP)
survey, which meant we could not estimate annual age compositions for catches, a prerequisite for developing a
suitable SCAA. Therefore, we needed to find an alternative method to estimate age compositions. We decided to
combine two other data sources for this purpose, samples of the lengths of fish caught in the recreational harvest or
the LWAP survey and the recoveries of fish marked with coded-wire tags (CWTs) (Ebener et al. 2020). We applied
these data in a different way to six versions of the WI345 stock assessment: 02-20-20, 03-09-20, 04-02-20, 09-21-20,
11-16-20, and 01-02-21. These versions represent the date (month-day-year) we completed modifications to each
stock assessment.

Distinguishing features of the input and model structure for the six model versions tested are as follows.

1. 02-20-20 version

a. We used data for 1986-2017.

b. We used one generic age-length key developed from all data collection methods across all years and
aged from all structures available: fin clips, scales, otoliths, maxillaries, and CWTs. The age-length
key gave the proportion of fish in each 10-mm length bin that were in each age group.

c. The proportions in the age-length key were multiplied by numbers of unaged fish in each 10-mm
length bin in the recreational harvest each year. The result was a matrix of the numbers by age and
year for the unaged portion of the harvest, that was added to the numbers at age for the aged
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portion of the samples to estimate the age composition of the entire sample. The proportions by age
and year were then calculated for the entire sample (see Ebener et al. 2020). This matrix was used as
the age composition by year for the recreational fishery in the model, but its effect on mortality
estimates in the model was constrained as described below in 1.d. We recognize that this
application of an age-length key makes a strong assumption that the probability distribution of age
given length remains constant over all data sources the age-length key is applied to. This assumption
is an issue for all subsequent model implementations and is one reason why we subsequently began
considering model variants (not reported on herein) that are fit to length composition data, including
models where dynamic processes are based on length.

d. A prior estimate of mean instantaneous total annual mortality rate (Z) for fully recruited fish of age
6+ was input along with a standard deviation (sdZ) for the natural logarithm of Z, and these values
were included in the objective function (see Truesdell and Bence 2016 for MM-67 assessment). This
constrained the average annual Zs estimated in the model. In other words, the annual Zs in the
model were estimated from both age composition data and the prior Z. We estimated the prior from
catch curves computed from recoveries of CWT-marked Lake Trout (Clark et al. 2021%). The CWT-
based age data were adjusted for differences in annual collection effort (assumed to be proportional
to annual sample size) and the initial number of tagged fish released for each cohort. The input
values were Z = 0.2755 per year and sdZ = 0.0130.

2. 03-09-20 version

a. We used data for 1986-2017.

b. We suspected that mortality could have changed over time, so we calculated age-length keys for two
time periods for this version. The first was from data pooled for 1986-2000 and the second was from
data pooled for 2001-2017. We used data from all collection methods, but only used CWT ages for
these keys. The age-length keys gave the proportions of fish in each 10-mm length bin that were in
each age group.

c. The proportions in the CWT derived age-length keys were multiplied by numbers of unaged fish in
each 10-mm length bin in the recreational harvest for each year in the appropriate period. The
results were two matrices of the proportions by age and year for the harvest. That is, the annual
proportional age compositions of the harvest for 1986-2000 and 2001-2017 as described in 1.c.
These matrices were used as the age compositions by year for the recreational fishery in the model.

d. No constraints were placed on the model estimates of mortality, but an average Z and sdZ was
estimated from CWT-based age composition data using catch curves. The CWT age composition data
used in the catch curve was adjusted for the number of fish stocked for each year class and was used
to estimate population abundance during 1966-1985.

3. 04-02-20 version

a. We used data for 1986-2017.

b. We developed a single generic age-length key using data collected by all fishing and survey methods
across all years (1986-2017) as described for the 02-20-20 version, except that we only used CWT
ages. The matrix resulting from the application of this age-length key was used as the age
composition by year for the recreational fishery in the model.

c. No constraints were placed on the model estimates of mortality, but an average Z and sdZ was
estimated from CWT-based age composition data using catch curves. The CWT age composition data
used in the catch curve was adjusted for the number of fish stocked for each year class and was used
to estimate population abundance during 1966-1985.

lUnpublished analyses in draft manuscript.
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4, 09-21-2020 version

a.
b.

We added data for 2018 and 2019 to the 1986-2017 information.

We developed a single generic age-length key using data collected by all fishing and survey methods
across all years (1986-2019) as described for the 02-20-20 version, except that we only used CWT
ages. The matrix resulting from application of this age-length key was used as the age composition
by year for the recreational fishery in the model.

We calculated the proportion of age-20+ fish in the age-length key only for years where they could
exist. All previous versions of the generic age-length key estimated the proportional age composition
through age 20+ for all years, but in years prior to 1986 there could not be any age-20+ fish because
the 1966-year class was the first stocked in Lake Michigan. The maximum age of fish in any year was
age 20in 1986, age 21 in 1987, age 22 in 1988, age 23 in 1989 and so on. The sample size for each
year used to estimate the proportion at age was the sum of the number at each age estimated from
the age-length key from age 3 through the maximum age for that year. The oldest fish we observed
in Lake Michigan was age 35 in 2019 in an adjacent management area, and the oldest age observed
in WI345 was 34 in 2018. The maximum age observed for CWT-marked lake trout generally
increased linearly through time in WI345 (Figure 1).

Figure 1. The maximum age of coded-wire-marked Lake Trout observed annually in
commercial, recreational, and survey catches from WI345, 1995-2019.
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No constraints were placed on the model estimates of mortality, but an average Z and sdZ was
estimated from CWT-based age composition data using catch curves. The CWT age composition data
used in the catch curve was adjusted for the number of fish stocked for each year class and was used
to estimate population abundance during 1966-1985.

We reduced the Maximum Effective Sample Size (ESS) for both the recreational fishery and LWAP
survey from 100 to 25 to increase model fit and achieve our convergence criterion.

5. 11-16-20 version

a.
b.

We used data for 1986-2019.

We developed a single generic age-length key using data collected by all capture methods across all
years (1986-2019) as described for the 02-20-20 version, except that we only used CWT ages. The
matrix resulting from application of the age-length key was used as the age composition by year for
the recreational fishery in the model. Proportional age composition for the recreational fishery was
estimated as described in 1.c and 4.c.



Ebener et al. WI345 SCAA Evaluation

We estimated age composition of the LWAP survey catch by applying an age-length key developed
from CWT-recoveries by all capture methods in WI345 during 1986-2019 to the annual length
distribution of fish captured in LWAP surveys during 1998-2019 (Ebener et al. 2020). Most ages of
fish caught during the LWAP survey were determined from CWTs with lessor amounts from other
aging structures and no fin-clipped fish were aged, although they dominated LWAP catches. In
addition, over 90% of the 2004- to 2009-year classes were fin clipped but these year classes were not
represented in our LWAP survey catch database as age 3, age 4, or age 5 but they were represented
in catches as age 6+ (Ebener et al. 2020). Consequently, we felt the proportional age composition
matrix for the LWAP survey in all previous versions was not appropriate, so we estimated age
composition of the survey in the same manner as for the recreational fishery.

No constraints were placed on the model estimates of mortality, but an average Z and sdZ was
estimated from CWT-based age composition data using catch curves. The CWT age composition data
used in the catch curve was adjusted for the number of fish stocked for each year class and was used
to estimate population abundance during 1966-1985.

We modified our methods for estimating the proportion wild for each year classes. In previous
versions, we used catches of wild and stocked Lake Trout in LWAP, spawning surveys (SPAWN), and
other surveys to estimate the contribution of wild fish to the population of age 3+ (Ebener et al.
2020). Forthe 11-16-20 version, we used only LWAP and SPAWN survey data. Further, sample sizes
were very small for the 2014- and 2015-year classes, and in our opinion, the small sample sizes
inflated proportion wild for the 2015-year class far beyond that of other year classes. Finally, there
were no fish of the 2016-year class represented in LWAP or SPAWN surveys making it impossible to
estimate abundance of wild age-3 fish in 2019. Consequently, we estimated proportion wild for the
1971-2013-year classes using the same the method as for all previous versions of the stock
assessment (Ebener et al. 2020), but then fit a non-linear regression to the proportion wild data for
all year classes and used the regression equation to project the proportion wild for the 2014-2016
year-classes (Ebener et al. 2020). The proportion wild for each year class was expanded to create a
matrix of proportion wild at age by year (Ebener et al. 2020).

We modified our methods for estimating abundance of hatchery and wild Lake Trout at age 1. In
previous versions, the assessment model itself did not use input data on proportion wild when fitting
observational data, but instead we used these data after the model was fit to decompose the
population into wild and hatchery portions. We used a movement matrix (Ebener et al. 2020) to
estimate the number of stocked fingerlings and yearlings from each year class that moved into
WI345 from other areas and then adjusted this estimate for reduced survival of fingerlings to
estimate the number of hatchery yearling (age 1) equivalents (Hatyearling_eq) (Ebener et al. 2020).
This number was used as the number of total age-1 fish in the population. After the stock
assessment estimated abundance at age, we used the proportion wild (pct_wild) to estimate
abundance of wild and hatchery fish as:

(1) NWllle = Ni,j * pCt_Wildi’j
(2) Nhatl-,j = Ni,j - NWlldl’]

where N is total abundance, Nwild is wild fish, Nhat is hatchery fish, i is age class, and j is year. A
problem with this implementation is that although additional wild recruitment can be accounted for
by lowering early survival, this presupposes that a priori wild and hatchery recruitment would track,
which really does not make sense. Before fitting the 11-06-20 version of the assessment model, we
used proportion wild to expand Hatyearling_eq to represent the total abundance (wild plus
hatchery; Totyearling_eq) at age 1 for each year class (i) as:
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(3) Totyearling_eq;_, = Hatyearling_eq;_, + {(1.0—ZZEI;ZZ:Z)LLZ«_:;I;__;L'IOZB}
Because the percentage wild matrix began at age 3, we applied our calculations to age-1 trout two
year earlier with the code (i-2), thus there were not wild fish of the 2017-and 2018-year classes. The
stock assessment then estimated a matrix of abundance at age by year, and we continued to also use
the pct_wild at age matrix to allocate abundance at a given age between wild and hatchery fish as
described in equations (1) and (2).

6. 01-02-21 version

a.
b.

We used data for 1986-2019.

We modified commercial fishery selectivity to the stock assessment because previous versions had
estimated selectivity of the small-mesh gill net fishery as being proportional to age composition of
the population. We calculated age-specific selectivity of Lake Trout to the small-mesh gill net fishery
by adjusting the age composition data by cumulative survival (Ebener et al. 2020). A comparison of
the previous small mesh selectivity curve (versions 11-16-20 and earlier) and the selectivity adjusted
for survival is shown in Figure 2.

We developed a single generic age-length key using data collected by all fishing and survey methods
across all years (1986-2019) as described for the 02-20-20 version, except that we only used CWT
ages. The matrix resulting from application of this age-length key was used as the age composition
by year for the recreational fishery in the model. Proportional age composition for the recreational
fishery was estimated as described in 1.c and 4.c.

We estimated age composition of the LWAP survey catch as described above in 5.c. for the 11-06-20
version.

We used the same pct_wild data as for the 11-16-20 version.

We used the same method as 5.e. to estimate abundance of age-1 wild and hatchery Lake Trout.

No constraints were placed on the model estimates of mortality, but an average Z and sdZ was
estimated from CWT-based age composition data using catch curves. The CWT age composition data
used in the catch curve was adjusted for the number of fish stocked for each year class and was used
to estimate population abundance during 1966-1985.

Figure 2. Small-mesh gill net (GNS) and hybrid (HYB) selectivity of age 3-20+ Lake
Trout to the commercial fishery in the 11-06-20 and 01-02-21 versions of the
WI345 stock assessment.
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1.0 AD Model Builder Final Statistics

We used 11 components in the objective function (Objf) to fit the 02-20-20 version of the WI345 stock assessment
and 10 components in all other versions. The Objf was estimated as the sum of the normal log likelihood (NLL) values
for five data-based components plus the sum of lognormal likelihoods for five (6 in version 02-20-20) informative
priors (NLP) (Brenden et al. 2011; Truesdell and Bence 2016). We applied likelihood component weighting factors of
1.0 to all the data-based components in the Objf (Table 1.0).

Table 1.0. Description of the quantities, parameters, likelihood weighting factors, and components of the objective
function for six versions of the WI345 Lake Trout stock assessment.

Likelihood Objective

Variable in weighting function
Quantity or parameter description SCAA factor component
Observed recreational catch obs_r C 1.0 NLL
Observed commercial catch c C 1.0 NLL
Observed survey CPUE by year obs_InCPE_Y 1.0 NLL
Observed proportion at age recreational fishery obs_r_PA 1.0 NLL
Observed proportion at age LWAP? survey obs_PAsv 1.0 NLL
Natural mortality age 1 M1 NLP
Random walk log catchability recreational fishery In_grf_rw NLP
Random walk deviations selectivity LWAP survey rwdevsv_pl NLP
Total average (over years) instantaneous mortality Z NLP
rate (02-20-20 only)
Log natural mortality age 3+ InmedM NLP
Log natural mortality age 2 InmedM?2 NLP

2LWAP is the Lakewide Assessment Plan.

All versions of the WI345 stock assessment were able to run to completion and the maximum gradient was smaller
than our convergence criterion (Table 1.1). The smallest Objf value was for the 03-09-20 version and largest was for
the 11-16-20 version. For stock assessments prior to the 01-02-21 version, we were able to achieve convergence by
narrowing the bounds on the age of the first inflection point (p1 value) for the selectivity function of the recreational
fishery or LWAP survey, or by reducing the maximum effective sample size for the recreational or survey fishery.

Table 1.1. ADMB output for six versions of the WI345 Lake Trout stock assessment.

WI345 assessment

ADMB output 02-20-20 03-09-20 04-02-20 09-21-20 11-16-20 01-02-21
Number variables 141 141 141 149 149 149
Run complete Yes Yes Yes Yes Yes Yes
Number iterations 151 285 150 159 157 158
Convergence criterion 1.00e-004 1.00e-004 1.00e-004 1.00e-004 1.00e-004 1.00e-004
Maximum gradient -4.53e-007 2.15e-005 4.53e-007 -4.16e-007 -1.06E-07 -2.12e-007
Objective function 5799.58 5706.51 5752.07 4121.42 12180.5 12127.5
Normal log likelihood 5915.68 5815.15 5861.97 4253.64 12321.2 12267.5
Lognormal prior -116.103 -108.634 -109.895 -132.223 -140.618 -139.99
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2.0 SCAA Output — Standard deviations

Inputs to the WI345 stock assessment include prior estimates for some parameters and an estimate of the standard
deviation associated with the prior. We input priors for natural mortality rate of age 1 (M) and age 2 (M) based on
data from Eck and Wells (1983) and Rybicki (1990), and age-3+ (M) and their standard deviations. The standard
deviation for the natural logarithms of M; (0.175) and M (0.10) were basically just guesses, and we assumed the
standard deviation of the natural logarithm of M to be 0.5 because we wanted to give the stock assessment flexibility
in estimating natural mortality. We also input standard deviations for the priors of commercial (0.15) and
recreational (0.04) catch (Table 2.0).

Table 2.0. Standard deviation for quantities and parameters estimated for six versions of the WI345 Lake Trout stock
assessment.

Variance
Parameter (prior) ratio 02-20-20 03-09-20 04-02-20 09-21-20 11-16-20 01-02-21
Sigma 0.083045 0.087744 0.086549 0.076562 0.071017 0.071393
M; (0.175) 3 0.249133 0.263231 0.259648 0.229686 0.213050 0.214179
Comml catch (0.15) 0.8 0.066436 0.070195 0.069239 0.061250 0.056813 0.057114
Recrl catch (0.04) 1 0.083045 0.087744 0.086549 0.076562 0.071017 0.071393
Ln_gq recrl fishery 2.5 0.207611 0.219359 0.216373 0.191405 0.177542 0.178483
LWAP selectivity p1 0.15 0.012246 0.013162 0.012982 0.011484 0.010653 0.010709

An overall common standard deviation (sigma) (Truesdell and Bence 2016) was estimated during the modeling fitting
process as a bounded number and used to estimate the standard deviations of components used in the objective
function. We input variance ratios for these components and multiplied the ratio by sigma to estimate their standard
deviation. As the value for sigma varied in the modeling fitting process the standard deviations for the components
also varied and the most likely values were those that resulted in the largest log likelihood value in the objective
function. Sigma was highest for the 03-09-20 version and lowest for the 11-16-20 and 01-02-21 versions and
subsequently so were the standard deviations of the other parameters (Table 2.0).

Standard deviations estimated during the model fitting process fell within guidelines established by the Modeling
Subcommittee. The guidelines call for standard deviations of fishery catch to be less than 0.1 and our estimates for
all versions ranged from 0.06 to 0.09. The guideline for catchability is to be less than 0.5 and our value for the
recreational fishery was 0.21. There currently is no guideline for the standard deviation of selectivity but all our
estimates were only 0.01 for the LWAP p1 value.

3.0 Maximum Effective Sample Size

Maximum effective sample sizes (ESS) for the proportional age composition data were not estimated within any
version of the WI345 stock assessment. The ESS is used as a weighting factor in multinomial composition data
(Brenden et al. 2011; Truesdell et al. 2017). The ESS for age composition of the commercial and recreational fisheries
and the LWAP survey was input to the data file, and within the stock assessment annual sample sizes greater than
the ESS were set equal to the ESS (Table 3.0). The ESS value was 200 for the commercial fishery in all versions of the
stock assessment but this is mute because the commercial age composition was not used in the Objf since data were
missing for most years. We used an ESS of 25 for the recreational fishery in versions prior to 11-16-20 and 100 for
the LWAP survey for the 02-20-20, 03-09-20, and 04-02-20 versions. For the 09-21-20 version, we used a ESS of 25
for both the recreational fishery and LWAP survey because the model was more stable, i.e., reached convergence
criterion and ran to completion, at these lower ESS values than at ESS values used in previous versions.




Ebener et al. WI345 SCAA Evaluation

Table 3.0. Maximum effective sample size applied to the proportional age composition
of the commercial and recreational catch and the LWAP survey catch for six versions
of the WI345 Lake Trout stock assessment.

Stock WI345 fishery type

assessment commercial recreational LWAP
02-20-20 200 25 100
03-09-20 200 25 100
04-02-20 200 25 100
09-21-20 200 25 25
11-16-20 200 100 100
01-02-21 200 100 100

4.0 SCAA Output — Residual Analysis

We evaluated the WI345 models goodness-of-fit by plotting the standardized residuals (SRES) of fishery catch and
age composition (Table 4.0). We examined the SRES for patterns and the degree of variation to test model
assumptions (Carvalho et al. 2017). We did not estimate SRES for the commercial fishery because there were no
observed harvest values for it after 1999. We calculated SRES based on stock assessment estimates for: 1) the annual
recreational fishery catch; 2) the annual LWAP CPUE; 3) the proportions at age of the recreational fishery catch in
the last year (2017 or 2019); 4) the proportions at age of the LWAP survey catch in the last year; 5) the proportion of
the recreational fishery catch that was age 6; and, 6) the proportion of the LWAP survey catch that was age 6. We
used age-6 fish for the SRES evaluation because it was the first age used in our catch curves and was highly selected
by all fisheries.

Table 4.0. Quantities examined for residual analysis of six versions of the WI345 Lake Trout stock assessment.

Quantity SCAA variable name Description

Rec_fishery catch res_r C SRES annual recreational fishery catch

Age comp rec_fishery last year res_r_CA(j=2017 & 2019) SRES recreational fishery age composition last year
LWAP survey InCPUE res_sv_cpe SRES annual LWAP natural log CPUE

Age comp LWAP survey last year res_sv_ac(j=2017 & 2019) SRES LWAP survey age composition last year

Age 6 comp rec_fishery res_r_CA(i=6) SRES age-6 fish recreational fishery 1986 to last year
Age 6 comp LWAP survey res_sv_ac(i=6) SRES age-6 fish LWAP survey 1986 to last year

The SDRES for the recreational fishery catch and the LWAP CPUE (Table 4.0) were estimated as:

[log(Obs+0.001)—-log (Pred+0.001]
sd

(4) SDRES =

where log is the natural logarithm, Obs is the observed quantity, Pred is the predicted value from the stock
assessment and sd is the predicted standard deviation for the quantity. A small constant of 0.001 was added to the
observed and predicted CPUE values to avoid taking the natural logarithm of zero.

The SDRES for the age composition of the recreational and LWAP catch were estimated as multinomial functions,
adjusted for the sample sizes up to the ESS, and estimated as:

(ObsP—PredP)
/PredP(1—PredP)/Nsamp

(5) SDRES =

10
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where ObsP is the observed proportion at age in the catch, PredP is the predicted proportion at age in the catch and
Nsamp is the number of fish sampled from the recreational or LWAP catch.

The SDRES for each version of the stock assessment did not show sizable patterns but the variation was greatest for
the age composition data, particularly age composition of the LWAP survey. The SDRES for the recreational fishery
catch and the LWAP survey showed no patterns, and all values were between -2.0 and 2.0 (Table 4.1; Figure 4.1).
The variance of the SDRES for the recreational fishery ranged from 0.55 to 0.61 for the 02-20-20, 03-09-20, and 04-
02-20 versions and 0.68 to 0.79 for versions after 04-02-20. The variance of the SDRES values for the LWAP survey
ranged from 0.20 to 0.24 for the 02-20-20, 03-09-20, and 04-02-20 versions and 0.67 to 0.73 for versions after 04-02-
20. For the recreational fishery, the range and variance in composition of age-6 trout in the catch and age
composition in the last year was larger for the 09-21-20, 11-16-20, and 01-02-21 versions than for versions prior to
09-21-20 (Table 4.1; Figure 4.1). The SDRES for the age composition of the LWAP survey did show some patterns and
variation of the SDRES was quite large ranging from 2.5 to 6.2. Variation of the SDRES for the LWAP age composition
data was more evenly distributed for the 11-16-20 and 01-02-20 versions than for previous versions after an age-
length key was used to estimate age composition instead of using the actual age composition data. The predicted
values for the age composition were nearly always underestimated (positive SDRES values). Plots of the SDRES for
each quantity and each version of the WI345 stock assessment are shown in Figures 4.2 to 4.7.
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Table 4.1. Minimum, maximum, mean, and variance of the standardized residuals (SDRES) for recreational fishery
catch, catch-per-unit effort in the LWAP survey, age composition (comp.) of age-6 Lake Trout in the recreational and
LWAP survey, and age composition (age 3+) in the last year for the recreational fishery and LWAP survey for six
versions of the WI345 stock assessment for 1986-2019. Versions 02-20-20, 03-09-20, and 04-02-20 used data for
1986-2017 whereas versions 09-21-20, 11-16-20, and 01-02-21 used data for 1986-2019.

Age comp. Age comp.
WIi345 SRES Rec_fishery rec_fishery LWAP survey | LWAP survey Age 6 comp. Age 6 comp.
version statistic catch last year InCPUE last year rec_fishery LWAP survey

02-20-20 minimum -1.69928 -0.73262 -0.69907 -1.49471 -1.09272 -2.95888
maximum 1.64914 0.71768 1.10626 4.28796 1.45927 5.71957

mean 0.00144 -0.02552 -0.14056 0.26752 -0.06013 0.83237

variance 0.60954 0.14994 0.20881 2.50476 0.31247 6.15919

03-09-20 minimum -1.56567 -0.81571 -0.76339 -1.29699 -1.07810 -2.83365
maximum 1.51004 0.87983 1.09401 4.84727 2.48618 5.76752

mean -0.01191 0.13928 -0.13793 0.244987 0.15843 0.80642

variance 0.55386 0.17930 0.2359 2.56443 0.65098 5.61282

04-02-20 minimum -1.56633 -0.44309 -0.76741 -1.28882 -1.20256 -2.86435
maximum 1.51410 1.11809 1.12446 4.62771 2.55750 5.79083

mean -0.00892 0.12167 -0.13849 0.23270 0.127815 0.785092

variance 0.5702 0.14489 0.23797 4.03765 0.64826 5.61003

09-21-20 minimum -1.83567 -0.59768 -1.32854 -0.80329 -1.07124 -1.70832
maximum 1.6125 1.31854 1.84684 6.34165 1.77023 5.88414
mean -0.01836 0.16662 -0.02335 0.68022 0.05835 2.762084

variance 0.68032 0.26249 0.66758 4.03765 0.40049 5.05060

11-16-20 minimum -1.89895 -0.76834 -1.32868 -2.52312 -1.6287 -1.59126
maximum 1.82054 2.79123 1.90206 4.05043 2.3802 7.09587

mean -0.02060 0.29734 -0.02091 -0.32839 0.31235 1.64043

variance 0.79791 0.65210 0.72623 3.17626 0.81231 3.07358

01-02-21 minimum -1.89385 -0.82903 -1.31913 -2.52082 -1.75535 -1.59161
maximum 1.80180 2.69260 1.89645 4.03545 2.34662 7.09085

mean -0.02118 0.228475 -0.02070 -0.32847 0.264377 1.63337

variance 0.78695 0.65278 0.71704 3.16066 0.81239 3.07115
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Figure 4.1. Box and whisker plots of the standardized residuals for recreational catch, LWAP survey CPUE, and age
composition of Lake Trout in the recreational and survey catches for six version of the WI345 stock assessment.
Versions 02-20-20, 03-09-20, and 04-02-20 used data for 1986-2017 whereas versions 09-21-20, 11-16-20, and 01-02-
21 used data for 1986-2019. For each box plot the mean is shown as an X, the grey horizontal line is the median, the
grey box represents the interquartile range, while the vertical lines capped by horizontal lines demark 1.5 times the
interquartile range, and the individual data points represent outliers. The dashed horizontal line represents a SDRES
of 0.0.
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Figure 4.2. Residual plots WI345-02-20-20.
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Figure 4.3. Residual plots WI345-03-09-20.
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Figure 4.4. Residual plots WI345-04-02-20.
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Figure 4.5. Residual plots WI345-09-21-20.

Rec_Fishery Harvest Age Comp Rec_Fishery 2019
K w
=} =3
3 3
" v
. o
e ©
8 g
T T
[} (T
T ]
c c
3 3
wv (%]
1980 1990 2000 2010 2020 0 5 10 15 20 25
Year Age
LWAP Survey InCPUE Age Comp LWAP Survey 2019
I o
=] =]
3 s
wv [}
2 2
T e
(7] Q
N N
s T
& ©
T e
c c
3 3
(V] wv
1995 2000 2005 2010 2015 2020 0 5 10 15 20 25
Year Age
Age-6 Comp Rec_Fishery Age-6 Comp LWAP Survey
= _ 8
©
;E '5 6 L4 o. d °
4 P ° % o° °
= - 2 i L d o.. *
S S0 . : —————r .
-] o [ ]
5 : 2 .
g -
& & 6
-8
1980 1930 2000 2010 2020 2030 1995 2000 2005 2010 2015 2020
Year Year

17



Ebener et al. WI345 SCAA Evaluation

Figure 4.6. Residual plots WI345-11-16-20.
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Figure 4.7. Residual plots WI345-01-02-21.
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5.0 Selectivity and Catchability

Selectivity for the recreational fishery and the LWAP survey was estimated within the stock assessment fitting
process (Truesdell and Bence 2016) but selectivity of the commercial fishery was not. We estimated selectivity of the
recreational fishery by fitting a logistic function to the age composition data. For the LWAP survey we applied a
random walk function that allowed the p1 value of the selectivity curve to vary annually and fit a lognormal function
to estimate age-specific selectivity (Truesdell and Bence 2016). Selectivity for the commercial fishery was input to
the data file (Ebener et al. 2020) and described with a lognormal function.

Selectivity was not time varying for either the recreational or commercial fishery (Figure 5.1), but it was time varying
for the LWAP survey (Figure 5.2). Except for the 02-20-20 version, there was little difference in selectivity of the
recreational fishery between the different versions of the stock assessment, whereas modification of the commercial
selectivity for the 01-02-21 version did increase selectivity for ages 5-15 (Figure 5.1). Annual differences in selectivity
of ages 3-9 were smaller for the 11-16-20 and 01-02-21 versions than previous versions (Figure 5.2) after we used the
age-length key to determine age composition of the LWAP survey (Ebener et al. 2020).

We did estimate time varying catchability for the recreational fishery and time varying fishing intensity for the
commercial fishery because there is increasing evidence that catchability nearly always varies through time and is
seldom constant (Wilberg et al. 2009). Catchability of the recreational fishery and fishing intensity of the commercial
fishery were estimated as bounded parameters and a random walk was used to estimate catchability of the
recreational fishery. Fishing intensity of the commercial fishery varied little between versions of the stock
assessment. Catchability of the recreational fishery was similar for the 03-09-20 and 04-02-20 versions and the 11-
16-20 and 01-02-21 versions and substantially lower for the 02-20-20 version than other versions, but all versions
had the same temporal pattern (Figure 5.3). The largest divergence in catchability for the recreational fishery among
all versions occurred during roughly 1991-2001 whereas after 2001 catchability was very similar among all versions
except 02-20-20.

Figure 5.1. Age-specific proportional selectivity of the recreational and commercial fisheries for six versions of
the WI345 Lake Trout stock assessment.
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Figure 5.2. Age-specific proportional selectivity of the LWAP survey for six versions of the WI345 Lake Trout

Ebener et al. WI345 SCAA Evaluation

stock assessment. Each line represents selectivity for a given year.
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Figure 5.3. Commercial fishing intensity and recreational fishery catchability for six versions of the WI345 Lake

Trout stock assessment.
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6.0 SCAA Output — Starting Values

We tested the stability of our SCAA models by changing the starting values for the parameters of catchability or
fishing intensity and selectivity for each fishery. We excluded evaluation of selectivity for the commercial fishery for
all six versions because it was not estimated within the stock assessment. We illustrated effects of changing starting
values on total population biomass. The starting value for each parameter in the INITIALIZATION_SECTION of the stock
assessment is shown in Table 6.0.

Table 6.0. Starting values for selectivity and catchability parameters of the commercial and recreational fisheries and
LWAP survey for six versions of the WI345 Lake Trout stock assessment. The middle starting value is the original for
each version of the stock assessment.

SCAA variable &
Parameter (starting values) Description
Commercial intensity In_qgcf (-6,-3,3) natural logarithm fishing intensity commercial fishery
Recreational catchability In_grf_in (-30,-15,15) natural logarithm catchability recreational fishery
Survey catchability In_gsv (-20,-10,10) natural logarithm catchability LWAP survey
Recreational selectivity p1 Inselrf_p1 (-3,-1.5,1.5) natural logarithm selectivity p1 value recreational fishery
Survey selectivity p1 Inselsv_p1 (-1.88,-0.94,0.94) | natural logarithm selectivity p1 value LWAP survey
Recreational selectivity p2 Inselrf_p2 (-1.44,-0.7,0.7) natural logarithm selectivity p2 value recreational fishery
Survey Selectivity p2 Inselsv_p2 (-0.8,0.8,1.6) natural logarithm selectivity p2 value LWAP survey fishery

We changed the starting values away from the initial values by a substantial amount since they are on the natural
logarithm scale. If we made large-scale changes away from the initial starting values and the stock assessment still
arrived at the same final estimates of biomass, then we considered the model to be stable and our estimates of the
parameters was good. On the other hand, if final estimates of biomass were substantially different for different
starting values of a parameter than we considered the model to be unstable. We changed starting values away from
the original by first changing the sign and then doubling the value. For example, the starting value for commercial
fishing intensity was -3 so we changed starting values to 3 and -6. We did not change more than one starting value at
a time.

As the output below illustrate, our WI345 models always arrived at the same final annual estimates of population
biomass given our range of starting values for selectivity and catchability (Figures 6.1 to 6.7). Consequently, we
considered all versions of the WI345 stock assessment to be stable. We found that changing initial starting values
was a good way to find problems with bounds on the parameters of interest.
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Figure 6.1. Starting values WI345-02-20-20.
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Figure 6.2. Starting values WI345-03-09-20.
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Figure 6.3. Starting values WI345-04-02-20.
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Figure 6.4. Starting values WI345-09-21-20.
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Figure 6.5. Starting values WI345-11-16-20.
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Figure 6.6. Starting values WI345-01-02-21.
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7.0 Retrospective Analysis

We conducted retrospective analysis to evaluate whether estimated quantities from our SCAA analysis changed
systematically or drastically as years of data were added or removed. A retrospective pattern is a systematic
inconsistency among a series of estimates of population size, or related assessment variables, based on increasing
periods of data (Mohn 1999; Legault 2009) that can be caused by missing data, increases in M, changes in survey
catchability, and time-varying processes that are not accounted for in the stock assessment (Mohn 1999; Legault
2009; Carvalho et al. 2017). Retrospective analysis involves fitting a stock assessment to a complete data set, then
sequentially truncating (peeling off) data for the most recent year and fitting the stock assessment with the reduced
data set (Legault 2009; Deroba 2014; Carvalho et al. 2017). Positive retrospective patterns occur when the values for
a given quantity, biomass for example, increase as years are peeled off, while negative patterns occur when the
guantity declines as years are peeled off (Deroba 2014). While it is not possible to know for certain that estimates
near the end of a time series that change systematically as additional years of data are added were originally biased
(rather than becoming less biased with additional years of data), this is quite plausible.

We evaluated retrospective patterns for eight quantities (Table 7.0). Total abundance, total biomass, and total

mortality from our stock assessments will be used to forecast consumption by Lake Trout in Lake Michigan. For our
estimates of consumption to be valid, these three quantities should be unbiased and without substantial error.

Table 7.0 Quantities evaluated with retrospective analysis for six versions of the WI345 Lake Trout stock assessment.

Quantity SCAA variable Description

Total abundance totN abundance age 1+

Total biomass biomass biomass (kg) age 1+

Biomass age 3+ biomass3 biomass (kg) age 3+
Spawning biomass spbiomass spawning biomass (kg)

Total mortality rate ZbyY average Z age 6+

Fishing mortality rate FbyY average F age 6+

Commercial fishing rate F_CbyY average commercial F age 6+
Recreational Fishing Rate F_RbyY average recreational F age 6+

We used Mohn’s rho (p) to evaluate retrospective patterns (Mohn 1999; Legault 2009; Deroba 2014; ICES 2020) for
bias of model parameters or quantities for peels that included the years 2012-2016 for the first three versions or
2014-2018 for the last three versions. Mohn’s rho allowed us to measure the magnitude of retrospective patterns
(Deroba 2014) from the full assessment. To estimate p, the quantity (i.e., biomass) in a year for the stock assessment
that includes all years (i.e., the full assessment) was subtracted from the quantity in the last year for a peel and then
divided by the quantity for the full assessment. These proportional differences were then summed and divided by
the number of peels to calculate p for each quantity as:

npeelsX ¥
Y-ytip — AY-yref
© p= Z X

=1 Y-y ref

where X represents a variable from the stock assessment, y is the year, npeels is the number of years that are
dropped in succession and the assessment rerun, Y is the last year in the full time series, tip is the estimate in the last
year from an assessment with a reduced time series, and ref is the assessment using the full time series (Legault
2009).
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Some retrospective patterns were evident in all our estimated quantities but by refining estimates of the age
composition of the LWAP survey and selectivity of the commercial fishery we were able to reduce the retrospective
patterns (Figure 7.1). Retrospective patterns for all population demographic quantities were largest for the 02-20-20

Figure 7.1. Mohn’s rho values for abundance, biomass, and mortality for six versions of the WI1345 Lake Trout stock
assessment.
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03-09-20, and 04-02-20 versions and smallest for the 09-21-20, 11-16-20, and 01-02-21 versions. Mohn’s rho values
for the first three versions of the stock assessment were always smallest for total abundance and largest for biomass
and mortality quantities. The values for p for population abundance declined from -16% for the 02-20-20 version to -
0.2% for the 09-21-20 version and was 6.5% to 6.6% for the 11-16-20 and 01-02-21 versions (Figure 7.1). For
population biomass, p ranged from -23% to 33% for the first three versions of the stock assessment and from -5% to -
6% for the last three versions. For Z of age-6+ fish, p values ranged from -33% to 19% for the first three versions of
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the stock assessment to 8% to 9% for the last three versions. So, for the last three versions of the WI345 stock
assessment there was less than a 10% positive bias for Z, and a negative bias of about 6% for population abundance
and biomass. Retrospective patterns for individual quantities for each version of the stock assessment are shown in
Figures 7.2to 7.7.

Figure 7.2. Retrospective plots WI345-02-20-20.
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Figure 7.3. Retrospective plots WI345-03-09-20.
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7.4. Retrospective plots WI345-04-02-20.
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7.5. Retrospective plots WI345-09-21-20.

Total Abundance Total Biomass
-—2014 J—
3.00E+06 1, 2015 3.00E+06 1 _;gig
2.50E+06 2016 2.50E+06 3 2016
= ——2017 « ——2017
2 £
&= 2.00E+06 A —2018 & 2.00E+06 A
s —2019 B ——2018
5 1.50E+06 J 2 1.50E+06 J —2019
Qo X
E  1.00E+06 1 1.00E+06 1
2
5.00E+05 4 5.00E+05 4
0.00E+00 +rr-rrrrrrrrrrrrYYTTTTTTTTTTTTTTTTT 0.00E+00 4-rrrrrrrrrrrTYTTTTTTTTTTTTTTTTTTTTT
1986 1990 1994 1998 2002 2006 2010 2014 2018 1986 1990 1994 1998 2002 2006 2010 2014 2018
Year Year
Biomass Age-3+ Spawning Biomass
.00E: E —2014 —2014
3.00E+06 3015 800000 ——2015
2.50E+06 2016 700000 2016
g —2017 2 600000 2017
E  2.00E+06 ] 5018 £ ——2018
S & 500000 5019
£ 150E406 } —2019 £ 400000
1.00E+06 1 300000
200000
5.00E+05 9
100000
0.00E+00 +-rrrrrrrreesrrrTTTTTTTTTTTTTTTTTTT 0
1986 1990 1994 1998 2002 2006 2010 2014 2018 1986 1990 1994 1998 2002 2006 2010 2014 2018
Year Year
Commercial Fishing Rate Recreational Fishing Rate
0.12 4 —2014 0.45 —2014
o —2015 0.4 —2015
. g 2016 + 035 2016
& 008 ] —2017 ¢ 03 —531;
< 0.06 § s < 025 _—2019
o - —2019 < 02
'8 '8
0.04 3 0.15
0.1
0.02 J 0.05
0 b 0 --Trrr’rTrT£’T(f’£Trrrrrrrrrrrrrrrrrrrrrerrrrmrm
1986 1990 1994 1998 2002 2006 2010 2014 2018 1986 1990 1994 1998 2002 2006 2010 2014 2018
Year Year
Total Fishing Rate Total Mortality Rate
0.6 1 —2014 1.0 —2014
—2015
. 0.5 3 2016 .
© 041 —2017 ®
&n —2018 &o
w 0.3 3 —2019 N
0.2 4
0.1 4
0 -Trr’rTrT©T’£TTrTrrrrrrrrrrrrrrrrrrTrrrrrrrrrmr
1986 1990 1994 1998 2002 2006 2010 2014 2018 1986 1990 1994 1998 2002 2006 2010 2014 2018
Year Year

34




Ebener et al. WI345 SCAA Evaluation

7.6. Retrospective plots WI345-11-16-20.
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7.7. Retrospective plots WI345-01-02-21.
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8.0 MCMC Simulations

We conducted Markov chain Monte Carlo (MCMC) simulations to estimate the likelihood profiles for quantities
estimated in the WI345 stock assessment and to evaluate their bias. We ran one million MCMC iterations and saved
every one hundredth iteration for 10 chains (Table 8.0). We ran simulations for the average total abundance and
biomass estimated for the last ten model years and the average fishing and total mortality rates for age-6+ fish in the
last three model years. We excluded the first 3,000 iterations in all MCMC simulations as the burn-in period, so our
analysis illustrates iterations 3,001-10,000 for each chain. We used one R-script to read-in the “mceval” output
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generated from the MCMC simulations (Adam Cottrill, Ontario Ministry of Natural Resources and Forestry, Owen
Sound, Ontario, personal communications) and a second R-script to plot the output (Michael Seider, U.S. Fish and
Wildlife Service, Ashland, Wisconsin, personal communication) (see 11.0 Appendix - R-script for MCMC Analysis).

Table 8.0. Quantities for which one million Markov chain Monte Carlo simulations were run to evaluate bias in six
versions of the WI345 Lake Trout stock assessment.

Quantity & SCAA variable Description

Negative Log Likelihood (NLL) sum of likelihood catch, survey CPUE, & age compositions
Objective Function (Obijf) NLL + NLP

Average Total Abundance (AvgN) average abundance age 1+ last 10 model years
Average Total Biomass (AvgtotB) average biomass (kg) age 1+ last 10 model years
Average Biomass Age 3+ (AvgB3) average biomass (kg) age 3+ last 10 model years
Average Spawning Biomass (AvgB) average spawning biomass (kg) last 10 model years
Average Total Mortality Rate (AvgZ) average Z age 6+ last 3 model years

Average Fishing Rate (AvgF) average F age 6+ last 3 model years

Average Commercial Fishing Rate (AvgF_C) average F age 6+ commercial fishery last 3 model years
Average Recreational Fishing Rate (AvgF_R) average F age 6+ recreational fishery last 3 model years

To put the MCMC simulations in perspective, we created a subjective scoring of the output to rank versions of the
WI345 stock assessment. Plots of the quantities were ranked as 1 for poor, 2 for average, and 3 for good. The scores
for each quantity were then summed for each version of the stock assessment. The characteristics for each of the
ranking scores are given below.

Score Trace Plot Posterior Distribution Autocorrelation
1 pattern, sticky, uneven skewed, multiple maximum decline to 50% or more
2 some pattern, some stickiness, uneven  small skew, single maximum decline to 10-50%
3 no pattern, not sticky, even no skew, single maximum decline to <10%

Trace plots were, for the most part, without sizable trends but did exhibit some stickiness in all versions of the W1345
stock assessment (Figures 8.1 to 8.11). Objective function trace plots were nearly always bad and scored only 9 of 18
possible points, whereas trace plots for Z were nearly always good scoring 15 out of 18 points (Table 8.1). Trace plots
for total abundance (13 points) and total biomass (14 points) were generally good and scored higher for all the last
three versions than for the first three versions.

Likelihood profiles from all versions were generally normally shaped with a single peak but typically they were
skewed to the right, or bumpy on the descending limb, or both. The Obijf likelihoods were always poorly shaped and
scored only 10 of 18 points, whereas total population biomass scored 15 of 18 points. Average total abundance and
Z each ranked 13 of 18 points.

Auto-correlation plots did decline with lag and were generally 10% or less at the final log (Figures 8.2 to 18.12). The
Objf scored only 9 of 18 points, whereas all population demographic quantities scored between 14 and 16 of 18
possible points. Auto-correlation did decline substantially from the 02-20-20 version to the 01-02-21 version (Table
8.1).

Overall, the 09-21-20 and 01-02-21 versions ranked the highest based on our scoring system, accumulating 78 out of

90 possible points. The 02-20-20 version ranked the lowest scoring 49 of 90 points. The 09-21-20, 11-16-20, and 01-
02-20 versions all ranked substantially higher than the first three versions of the WI345 stock assessment. The sum
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of the trace plots, likelihood profiles, and auto-correlation scores for the last three versions of the stock assessment
all improved by 16 to 20 points from the 04-02-20 version.

Table 8.1. Rankings of the MCMC trace plots (trace), posterior distributions (den.), and auto-correlation (corr.) for six
versions of the WI345 Lake Trout stock assessments.

WIi345 MCMC Population quantity
version plot Objf NLL AvgN AvgtotB AvgB3 AvgSSB F_R F C AvgF AvgZ Total
02-20-20 trace 1 1 1 1 1 1 2 2 2 2 14
dens. 1 2 2 2 2 1 2 1 2 2 17
corr. 1 2 1 2 2 2 2 2 2 2 18
03-09-20 trace 1 1 1 2 2 2 2 2 2 17
dens. 1 3 1 2 2 2 1 2 1 2 17
corr. 1 2 2 2 2 2 2 2 2 2 19
04-02-20 trace 1 2 2 2 2 2 2 1 1 2 17
dens. 2 3 2 2 2 2 1 2 2 2 20
corr. 1 2 2 2 2 2 2 3 3 2 21
09-21-20 trace 2 2 3 3 3 3 3 3 3 3 28
dens. 2 2 2 3 2 3 2 2 2 2 22
corr. 2 2 3 3 3 3 3 3 3 3 28
11-16-20 trace 2 2 3 3 3 3 2 2 2 3 25
dens. 2 2 3 3 2 2 2 1 2 2 21
corr. 2 2 3 3 3 3 3 3 3 3 28
01-02-21 trace 2 3 3 3 3 3 2 3 2 3 27
dens. 2 2 3 3 2 2 2 2 3 23
corr. 2 2 3 3 3 3 3 3 3 28
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Figure 8.1. Trace plots and posterior distributions WI345-02-20-20.
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Figure 8.1 cont’d.
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Figure 8.1 cont’d.
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Figure 8.1 cont’d.
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8.3. MCMC trace plots and posterior distributions WI345-03-09-20.
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Figure 8.3 cont'd.
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Figure 8.3 cont'd.
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Figure 8.3 cont'd.
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8.5 MCMC trace plots and posterior distributions W1345-04-02-20.
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Figure 8.5 cont'd.
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Figure 8.5 cont'd.
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Figure 8.5 cont'd.
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Density of obif

] T T T | 1
12440 12480 12480 12500 12520 12540

M=7000 Bandwidih=- 2397

Density of NLL

| ] 1 I
12580 12600 12620 12640

M=7000 Bandwidi = 1784

Density of AvgF_R

I 1 I I 1 ]
006 a0a 010 12 414 00é

M=7000 Sandwidh = 0002494



0000 00012

a1a  ai4

006

018 024

ai2

Ebener et al. WI345 SCAA Evaluation

Figure 8.7 cont’d.
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Figure 8.7 cont’d.
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Figure 8.7 cont'd.
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Figure 8.8. MCMC auto-correlations WI1345-09-21-20.
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Figure 8.9. MCMC trace plots and posterior distributions WI345-11-06-20.
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Figure 8.9 cont'd.
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Figure 8.9 cont'd.
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Figure 8.9 cont'd.
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Figure 8.11. MCMC trace plots and posterior distributions W1345-01-02-21.
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Figure 8.11 cont’d.
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Figure 8.11 cont’d.
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Figure 8.11 cont’d.
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Figure 8.12. MCMC auto-correlations WI345-01-02-21.
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9.0 Summary

The structure of all six versions of the WI345 stock assessment were not fundamentally different. They varied in
what aging structures were used to estimate age composition of the recreational fishery and LWAP catch, whether Z
was estimated for the entire time series or split into two time periods, what values were used for commercial fishery
selectivity, and whether yearling equivalents used as age-1 abundance inputs to the assessment were adjusted for
contributions of wild fish. Selectivity for both fisheries was not time-varying in any version while selectivity of the
LWAP survey was time-varying in all versions. Catchability was allowed to be time-varying for both fisheries.
Consequently, determining the most appropriate model was not clear cut. All six versions ran to completion and
their maximum gradients were less than our convergence criterion of 1.00E-04. Model-derived estimates of sigma
were less than targets developed by the Modeling Subcommittee. All versions of the stock assessment were able to
arrive at the same final estimates of biomass even at substantially different starting values for selectivity and
catchability. The patterns and variations of the SDRES were similar for the recreational fishery catch and LWAP CPUE
for all six versions and in each version age composition of the LWAP survey exhibited some patterns and larger
variation than other quantities.

There were retrospective patterns for each version of the stock assessment but for the most part these patterns
were small and declined from the first three versions to the last three versions. Retrospective patterns for
abundance, biomass, and mortality quantities at the end of the time series were substantial ranging from 3% to 59%
in the 02-20-20, 03-09-20, and 04-02-20 versions but declined to less than 8% in the 09-21-20, 11-16-20, and 01-02-
21 versions. Our retrospective patterns for Lake Trout demographic quantities were substantially smaller than
patterns reported by Brenden et al. (2011) in Lake Ontario where they also allowed catchability to vary as a random
walk and they did not allow selectivity to be time-varying except to account for changes in recreational fishery size
limits during three time periods.

MCMC simulations illustrated that the 02-20-20 version was the least reliable of all the versions of our WI345 stock
assessment while the 01-02-21 version appeared to be the most reliable. Trace Plots, posterior distributions, and
auto-correlations all improved from the 02-20-20 version to the 01-02-21 version. The lowest auto-correlations
occurred for all versions after the 04-02-20 version. The use of all aging structures to estimate age composition of
the recreational fishery, constraining estimates of Z in the objective function, and having two different generic age-
length keys for estimating age composition of the recreational fishery all appeared to introduce bias in our stock
assessment. It is imperative to have accurate estimates of the age composition of harvested fish for integrated stock
assessments because aging errors can have sizable effects on their reliability (Catalano and Bence 2012). We believe
the use of CWTs to determine ages of Lake Trout reduced our aging error to near zero compared to the 02-20-20
version which relied upon multiple, much less reliable, aging structures. However, substantial uncertainty and strong
assumptions were added because of the necessity of applying age-length keys, based on data collected over multiple
years. In theory this weakness could be addressed with sufficient collection and processing of CWT-marked fish
annually from various data sources to generate annual age-length keys. Unfortunately, from an assessment
perspective only, in addition to the challenge of obtaining adequate samples as recruitment of wild-born fish
increases, reliance will have to be made on aging from natural structures. These current and growing uncertainties
argue for considering assessment methods that do not require annual catch-at-age data (e.g., length-based
methods).

We selected the 01-02-21 version as the most reliable of the six WI345 stock assessments based its small
retrospective patterns, low Mohn’s rho values, and MCMC simulations. All versions of the WI345 stock assessment
achieved our convergence criterion, produced acceptable sigma values, arrived at the same final estimates of
biomass regardless of the starting values for selectivity and catchability, and exhibited similar standardized residuals.
Consequently, we used retrospective patterns and MCMC output to identify the 01-02-21 version as the most
reliable.
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One reason we developed the SCAA stock assessment was to aid in evaluating the influence of Lake Trout
consumption on prey fish biomass in Lake Michigan. Predator abundance, biomass, and total mortality drive
estimates of predator production and their consumption (Negus et al. 2008; He et al. 2015), so these quantities
should have low levels of uncertainty. Our estimates of abundance and biomass for the 02-20-20 version exhibited
sizable retrospective patterns and greater proportional differences of peels from the full assessment than other
versions, thus it is the least reliable for projecting consumption of Lake Trout in Lake Michigan. Variability between
retrospective peels of total abundance, biomass, and total mortality was smaller for the versions after 04-02-20,
further pointing to the 01-02-21 version as the most acceptable stock assessment. Last, trace plots and auto-
correlations produced for the 01-02-21 version scored better in our subjective ranking criteria than all but the 09-21-
20 version, but we were using the wrong commercial selectivity in all but the 01-02-21 version.
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11.0 Appendix — R-script for MCMC Analysis
11.1 Script “read.mcmc.R”

##' Read in text files produced by AD model build's MCMC functions
##' and create an mcmc object that can be examined using R's built in
##' tools (Coda, mcmcplots ect).

HH'

##' @title read.mcmc

##' @param mcmc.file - the name of or path to the ascii file that

##' contains the output from admb.

##' @param header - a boolean value indicating whether or not names
##' of the variables are included in the top row of the mcmc file.

##' This may or may not be true depending on how tpl was

##' structured and will have to be checked.

##' @param burnin - how many simulations should be discarded as the
##' burnin period. Any value less than or equal to the number of

##' simulation is acceptable.

##' @param delimiter - this can be either whitespaces, tabs,

##' semi-colons or commas.

##' @param names - this can either be a file name in the same directory
##' as mcmc.file or a vector of character strings that correspond

##' to the columns in the mcmc file. This argument is maintained for
##' flexibility. Incorporating variable names into mcmc file when

H##' itis created and then using header==TRUE is the prefered approach.
##' @param ... - additional arguments to be passed to read.table().

##' @return an mcmc object

##' @author Adam Cottrill \email{adam.cottrill@ @ontario.ca}

##' @keywords misc

H##' @export

read.mcmc <- function(mcmc.file="mcmc.csv", header = TRUE, burnin=1000,
delimiter=",", names=NULL,... ){

require(coda) #to convert text file to mcmc object

mcmc.file <- gsub("[\\]", "/", mcmc.file) #use slashes in paths
#rather than double back
#slashes
#Check each of the arguments:
#does the file exist?
if(file.exists(mcmc.file) == FALSE){
stop(paste("The file:'"", mcmc.file, "' does not seem to exist."))}

#delimiter can only be whitespaces, commas, or semi-colons

match.arg(as.character(delimiter),c(" ",";",",","\t"))

#make sure that header is boolean:
match.arg(as.character(header),c("TRUE","FALSE"))
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# first read in the memc file:
# if the delimiter is a space, the header isn't always read in
# correctly if the delimiter argument is supplied.
if(delimiter==""){
my.mcmc <- read.table(mcmc.file, header=header,...)
}else {
my.mcmc <- read.table(mcmc.file, header=header, sep=delimiter,...)

}

#now we need to try and figure out what is going on with the names

#was a names argument provided? if not, then return option 4 from
#above:

if(header==FALSE){
if(!is.null(names) & length(names)==1){
#see if a 'names' is a file that exists
#if not try pasting on the directory of the mcmc file and
#test again, if this works re-assign names and read in the
#files using the new, longer names argument.
if(file.exists(names)==FALSE){
if(file.exists(paste(dirname(mcmc.file),"/",names, sep=""))){
names <- paste(dirname(mcmc.file),"/",names, sep="")
} else {
warning(paste(names, " could not be found.",sep=""))
}
}

if(file.exists(names)){
#if the file exists - read it in, check the number of elements
#and apply them if possible, otherwise, issue a warning.
my.mcmc.names <- read.table(names, sep=",")
my.mcmc.names <- as.character(unlist(my.mcmc.names))
if(length(my.mcmc.names)==ncol(my.mcmc)){
#remove any trailing or leading whitespaces
my.mcmc.names <-sub("A[[:space:]1*(.*?)[[:space:]]*S",
"\\1", my.mcmc.names, perl=TRUE)
names(my.mcmc) <- my.mcmc.names
}else {
warning(paste("A file ', names,
"' exists, but it contains the wrong number of elements (",
length(my.mcmc.names), " instead of ", ncol(my.mcmc),
"). \nNo names assigned to mcmc object."))
}
}
}else {
#if the number of names match the number of columns go ahead
#and use them:
if(length(names)==ncol(my.mcmc)){
#remove any trailing or leading whitespaces
names <-sub("*[[:space:]]*(.*?)[[:space:]]*S$",
"\\1", names, perl=TRUE)
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names(my.mcmc) <- names
} else if(length(names)>1 & length(names)!=ncol(my.mcmc)){
warning ("'names' contains the wrong number of elements (",
length(names), " instead of ", ncol(my.mcmc),
"). \nNo names assigned to mcmc object.")
} #else {
}
}

#make sure that each column has a distinct name:

if(length(names(my.mcmc)) != length(unique(names(my.mcmc)))){
warn.txt <- "The names in mcmc object may not be unique."
warning(warn.txt)

}

#make sure that burn in is a positive number
if(!is.numeric(burnin) | burnin<0 | burnin > nrow(my.mcmc)) {
warn.txt <-
("The burn in period must be a positive integer less than the number of rows in mcmc.file.")
warn.txt <-
paste(warn.txt,"\nNo 'Burn-in' period was removed from the mcmc simulations.",sep="")
warning(warn.txt)
}else {
#discard the burn-in values from the mecmc chain
my.mcmc <- my.mcmc[(burnin + 1):nrow(my.mcmc),]

}

#convert the matrix to an mcmc object so that coda functions can
#work:
my.mcmc <- try(coda::as.mcmc(my.mcmc), silent=TRUE)
if(inherits(my.mcmc, what="try-error")){

stop(my.mcmc[1])

}

#my.mcmc <- as.mcmc(my.mcmc)
return(my.mcmc)
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11.2 Script “MCMC_plotting.R”

##Plotting MCMC

#Source file for MCMC plotting functions

#Modify path to location of plotter/ source files

#source("C:/Users/MSeider/Documents/SCAA_Projects/R_plotter/Plotter
Materials/Master_RPlotter_Files/read.mcmc.R")

source("C:/Users/tflwc/Desktop/datafiles/LAT Model Lake Michigan/Model evaluations W1345/read.mcmc.R")

#set location of your MCMC file
my.mcmc.file <- "C:/Users/tflwc/Desktop/datafiles/LAT Model Lake Michigan/Model evaluations W1345/WI1345-04-
02-20_mcmcout.txt"

#Run Cottrill's mecmc function (assumes column header is in file)
my.mcmc <- read.mcmc(my.mcmc.file, delimiter="", header=T, burnin=3000)

#Look at summary statistics
summary(my.mcmc)

#Set current date time for naming PDF
date.time <- format(Sys.time(), "%m.%d.%Y_%H_%M")

#Change name of MU
mu <- "WI345-04-02-20"

#Create pdf with output

pdf(file=paste0(dirname(my.mcmc.file),"/MCMC ",mu," ",date.time,".pdf"))
plot(my.mcmc)

autocorr.plot(my.mcmc)

graphics.off()
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