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ABSTRACT 
 

IMPROVING STATISTICAL CATCH-AT-AGE STOCK ASSESSMENTS 
 

By 
 

Michael J. Wilberg 
 

My dissertation addresses three objectives: 1) to estimate fishing mortality rates 

and abundance of yellow perch in southwestern Lake Michigan during 1986-2002 to 

determine the contribution of fishing to the collapse of yellow perch in southwestern 

Lake Michigan, 2) to determine robust methods of dealing with time-varying fishery 

catchability within a statistical catch-at-age analysis (SCA) framework, and 3) to 

determine whether using Bayesian model selection, specifically Deviance Information 

Criterion (DIC) and an approximation of Bayes factors, results in using accurate models 

for prediction of important fisheries management quantities. 

In chapter 1, I conducted an age-, size-, and sex-structured stock assessment of 

yellow perch to estimate population size and examine historical trends in fishing 

mortality in Illinois and Wisconsin waters of southwestern Lake Michigan.  Model 

estimates indicated that yellow perch abundance in 2002 was less than 10% of 1986 

abundance in Wisconsin and about 20% in Illinois.  Annual mortality rates for females 

age 4 and older averaged 69% during 1986-1996 in Wisconsin and 60% in Illinois during 

1986-1997, which are quite high for a species like yellow perch that can live longer than 

10 years.  Estimated fishing mortality rates on adult females during 1986-1996 exceeded 

widely used reference points, suggesting that overfishing may have occurred.  I believe 

unsustainably high fishing mortality rates were a substantial contributing cause of the 

rapid decline of mature females in the mid-1990s.   



 

The relationship between fishing mortality and fishery effort (catchability) may 

change over time through either density dependent or density independent processes.  I 

used Monte Carlo simulations in chapter 2 to evaluate how different methods of 

estimating fishery catchability within an SCA model performed when models were 

confronted with different data generating scenarios.  I evaluated performance of the 

estimation models by their accuracy and precision in determining quantities of interest 

such as biomass in the last year.  In many cases, including fishery effort data in the 

estimation model and allowing catchability to follow a random walk performed as well or 

better than other methods.  Exceptions were cases where fishing mortality was low and 

catchability trended over time.  The estimation model that ignored fishery effort data 

performed well in cases with a good survey, but performance degraded as survey 

precision decreased.  White noise and density dependent estimation models performed 

poorly in situations where catchability trended over time.  No estimation model was best 

for all underlying models of catchability, hence I recommend fitting multiple SCA 

models with alternative assumptions. 

Structural flaws in SCA models may cause considerable bias in model estimates 

of mortality rates, abundance, and recruitment.  I used simulations to evaluate whether 

using Deviance Information Criterion (DIC) or approximate Bayes factors to select the 

best SCA model provided more accurate estimates of quantities important for 

management than using a single model in all cases.  Using the model selected by DIC or 

approximate Bayes factors resulted in estimates with lower mean square errors than using 

any single model.   
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INTRODUCTION 

 
 
 

Fishery managers need realistic predictions of future population dynamics of 

individual fish stocks and predictions of how these populations will respond to 

management actions.  Most major fisheries are managed by a process where scientists 

estimate population size and other parameters of a fish population (and uncertainty of 

these estimates) and provide this information to fishery managers who then make 

decisions regarding which fishery policies to implement (e.g., catch quotas, bag limits, 

season or area closures).  The process of estimating these quantities is called stock 

assessment.   

Relatively recent advances in fisheries science have allowed researchers to 

estimate total abundance from fishery harvest and age or length composition data, and 

other diverse data sources, with a method known as statistical catch-at-age analysis 

(SCA; Fournier and Archibald 1982; Deriso et al. 1985; Megrey 1989; Methot 1990). 

This approach is preferable, in many cases, to other stock assessment methods because it 

can incorporate many diverse data sources and allows for a rigorous statistical approach 

(i.e., promotes explicit modeling of measurement and process error).  Hence, SCA can 

allow estimation of uncertainty associated with parameter estimates and other model 

quantities.  SCA methods are being applied worldwide for many fisheries and 

predominates applications to major marine fisheries in the northwestern U.S., New 

Zealand, Australia, and South Africa (Radomski et al. in press).   

The basic idea behind SCA is that one can infer the effect of fishing on a 

population by estimating how absolute removals (e.g., fishery harvest or yield) affect 
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relative abundance.  A model is created that describes the population and the process of 

removals, and this model is statistically fit to data from a fishery.  Usually, one of the key 

assumptions of these models, called the separability assumption, is that fishing mortality 

can be described by an overall year effect (how a certain amount of fishing effort affects 

a population) and an age effect (the relative vulnerability of different aged fish to a 

fishery).  This basic approach has also been extended to species for which there is no 

directed fishery (Szalai 2003). 

In southern Lake Michigan, yellow perch abundance has declined substantially 

since the mid-1980s (Marsden and Robillard 2004).  As the abundance of yellow perch 

declined during the mid to late 1990s, commercial fisheries in Indiana, Illinois, and 

southern Wisconsin were restricted to smaller quotas, and were eventually closed during 

1996-1997 (Francis et al. 1996).  Stricter regulations were also imposed on the 

recreational fishery with reductions in daily bag limits implemented in all states during 

1996-1998, the incorporation of a slot size limit (i.e., only fish between 8 and 10 in could 

be kept) in Illinois during 1997-2000, and seasonal closures of the fishery (Marsden and 

Robillard 2004).  Reproductive failure has been implicated as the primary cause of the 

population collapse, but the role of fishing in the collapse has not previously been 

rigorously investigated.  My research investigates the role of fishing in the decline of 

yellow perch in southwestern Lake Michigan by using SCA models. 

A frequent (but somewhat outdated) criticism of SCAs is that they do not allow 

for the flexibility to accurately model time-varying fishing mortality at age (NRC 1998).  

Specifically, the relationship between fishery effort and fishing mortality or the age-based 

vulnerability to the fishery may change over time (Butterworth et al. 2002; Radomski et 
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al. in press).  Many methods have been developed to account for these changes over time 

(e.g., Fournier and Archibald 1982; Fournier 1983; Methot 1990; Hampton and Fournier 

2001; Butterworth et al. 2003), but there is not consensus on which methods are best 

when faced with different underlying mechanisms for change.  My research also aims to 

evaluate performance of several SCA methods under many situations and to develop 

guidelines to help researchers decide among several SCA model structures. 

 My dissertation addresses three objectives: 1) to estimate fishing mortality rates 

and abundance of yellow perch in southwestern Lake Michigan during 1986-2002 to 

determine the contribution of fishing to the collapse of yellow perch in southwestern 

Lake Michigan, 2) to determine robust methods of modeling time-varying catchability 

within an SCA framework, and 3) to determine whether using Bayesian model selection, 

specifically Deviance Information Criterion (DIC) and an approximation of Bayes 

factors, results in choosing models with accurate estimates of fishing mortality rates and 

abundance.  These objectives arose out of questions that formed during my research 

program, and each chapter of my dissertation addresses an objective.  Chapter 1 

developed from a management need to evaluate the importance of fishing in the 

population declines of yellow perch in southern Lake Michigan.  In working on chapter 1, 

I found that many of the model parameters were likely time-varying and wanted to 

determine whether the approaches I used (or alternatives) were robust methods for 

modeling these processes.  This led to the evaluation of several methods for incorporating 

time-varying catchability into SCA models detailed in chapter 2.  Based on the results of 

chapter 2 (differential performance of SCA models under different data-generating 

scenarios), the question arose as to whether statistical model selection techniques could 
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be used to select “good” (i.e., accurate) models when one does not know the true 

underlying pattern or mechanism of change.  

Objective 1 

In chapter 1, I detail my assessment model and describe results from the modeling 

efforts.  I developed a length-, age-, and sex-based SCA model to estimate fishing 

mortality rates and abundance, to determine if fishing mortality rates exceeded the 

maximum that could be supported, and to integrate diverse sources of data to get the best 

estimates of recruitment and population size.  My model allowed fishing mortality rates 

at age and sex to change over time 1) in response to changes in fishery effort, 2) by 

allowing fishery catchability to change according to random walk models, and 3) by 

modeling fishery selectivity as a function of length and allowing growth to change over 

time to match observed changes in size at age and sex in southern Lake Michigan. 

Model estimates of catchability of the recreational fishery changed approximately 

five-fold during 1986-2002, and commercial fishery catchability changed approximately 

four- and eight-fold in Illinois and Wisconsin respectively.  However, fishing mortality 

rates changed approximately 15-fold for females and eight-fold for males during 1986-

2002, indicating that changes in effort and catchability were both important to changes in 

fishing mortality.  This leads to questions of whether modeling fishery catchability as a 

random walk, as in this application, is the best approach and whether fishery effort data 

should be used at all (because of the extreme changes in fishery catchability).  

Objective 2 

Many SCAs of fish stocks assume that fishing mortality is directly proportional to 

fishing effort (i.e., constant catchability).  However, fishery catchability has often 
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changed in response to changes in population abundance (e.g., Peterman and Steer 1981), 

environmental conditions (e.g., Ziegler et al. 2003), or changes in fishing gear or 

fisherman experience (e.g., Hilborn and Walters 1992 pp. 126, 130).  Likewise, 

catchability in yellow perch fisheries in southwestern Lake Michigan has changed 

substantially over time, perhaps due to a combination of the factors listed above.  

Therefore, my second chapter describes an evaluation of several methods of modeling 

time-varying catchability within SCA models.  I used Monte Carlo simulations to 

compare how four different methods of estimating fishery catchability within an SCA 

model performed when models were confronted with five different data generating 

scenarios.   

In many cases, including fishery effort data in the estimation model and allowing 

catchability to follow a random walk performed better than ignoring fishery effort data.  

Exceptions were cases where fishing mortality was low and catchability trended over 

time.  The estimation model that ignored fishery effort data performed well in cases with 

a good survey, but performance degraded as survey precision decreased.  White noise and 

density dependent estimation models performed poorly in situations where catchability 

trended over time.  No estimation model was best for all underlying models of 

catchability. 

Objective 3   

Structural flaws in SCA models may cause considerable bias in model estimates 

of mortality rates, abundance, and recruitment (McAllister and Kirchner 2002).  Often 

researchers will make ad hoc decisions about model structure that may cause substantial 

biases in their ensuing model estimates (Burnham and Anderson 2002; Gavaris and 
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Ianelli 2002).  Given that a wide variety of models can potentially describe dynamics of a 

given stock, methods to decide among several SCA models are needed.  Helu et al. 

(2000) evaluated performance of Akaike’s Information Criterion (AIC; Akaike 1973) and 

Schwartz’s Bayesian Information Criterion (BIC; Schwartz 1978) in SCA models and 

found that AIC and BIC both performed well by selecting the candidate model that was 

the same as the data-generating model in most of their scenarios.  Unfortunately, 

although AIC or BIC may perform well in some cases, their implementation is 

problematic when models differ in their random effects or hierarchical structures because 

the number of parameters in these models is not easy to determine (Burnham and 

Anderson 2002).  Therefore, to be able to compare structurally complex SCA models 

requires alternative model selection approaches that can account for random effects and 

priors on parameters.  DIC and Bayes factors are generally considered practical methods 

to choose the best model from a set of candidate models and do not require the user to 

specify the number of model parameters.  However, performance of model selection 

using DIC and Bayes factors has not been evaluated for SCA models.   

My third chapter evaluates whether using DIC or an approximation of Bayes 

factors results in choosing accurate models from the set of candidate models.  

Specifically, I was interested in whether Bayesian model selection could determine an 

appropriate model structure for time varying catchability because catchability is one of 

the most important parameters in SCA models (scales abundance relative to catch), 

catchability varied widely over time in yellow perch fisheries in southwestern Lake 

Michigan, and the accuracy of different structural forms of SCA models differs 

depending on the underlying true changes in catchability, quality of data, and average 
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fishing mortality rate.  To achieve these objectives, I designed a simulation study and 

challenged the model selection criteria with three estimation models, which differed in 

how catchability was allowed to vary over time, and three scenarios of data accuracy and 

time-varying catchability.  I evaluated whether using DIC and approximate Bayes factors 

to select among SCA model variants provided more accurate estimates of quantities used 

for management than an approach of using a single model structure in all cases.   
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CHAPTER 1                                                                                      

YELLOW PERCH DYNAMICS IN SOUTHWESTERN LAKE MICHIGAN DURING 

1986-2002 

 

Introduction 

Yellow perch Perca flavescens is an ecologically and economically important 

species in Lake Michigan (Wells and McLain 1972).  Yellow perch are native to Lake 

Michigan, play an important role in near-shore energy cycling and transfer (Evans 1986), 

and have provided a fishery on Lake Michigan since the late 1800s (Wells and McLain 

1972; Wells 1977).  Yellow perch is the only native species in Lake Michigan that has 

supported a commercial fishery continuously during the last century (Baldwin et al. 

1979), although the fishery has only continued in Green Bay since 1998.  During the 

1980s and 1990s, the recreational fishery harvested more yellow perch than any other 

species in Lake Michigan (Bence and Smith 1999).   

In southern Lake Michigan, yellow perch abundance underwent periodic 

fluctuations during 1934-1964, and declined greatly during the 1960s (Francis et al. 

1996).  The decline in yellow perch abundance in the 1960s coincided with a large 

increase in alewife Alosa pseudoharengus abundance, and therefore alewife interference 

with yellow perch reproduction (either through competition or predation) was considered 

the primary cause of the decline (Wells 1977).  However, exploitation was also 

considered a contributing factor to the overall decline and the primary cause of the 

decline of adults (Wells 1977).  Prior to 1969, all the states bordering Lake Michigan 

(Indiana, Illinois, Michigan, and Wisconsin) had commercial fisheries for yellow perch 
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(Baldwin et al. 1979).   In 1969, the state of Michigan was the first to close their 

commercial fishery (Wells 1977).  During the 1970s, yellow perch populations in 

southern Lake Michigan began to recover (Wells and Jorgenson 1983), and abundance 

was high during the 1980s with strong year-classes in 1980 and 1983-1988 (Jude and 

Tesar 1985; Makauskas and Clapp 2000).  Abundance declined to low levels during the 

1990s with a series of weak year-classes during 1989-1997 and 1999-2000.  As yellow 

perch abundance declined, the sex ratio became skewed toward males, which may have 

been caused by intense fishing mortality targeted on large females (Madenjian et al. 

2002).  The selective removal of large females may have led to further declines in yellow 

perch recruitment.  As the abundance of yellow perch declined in southern Lake 

Michigan during the mid to late 1990s, commercial fisheries in Indiana, Illinois, and 

southern Wisconsin were restricted to smaller quotas (Francis et al. 1996), and were 

eventually closed during 1996-1997; these fisheries remain closed.  Stricter regulations 

were also imposed on the recreational fishery with reductions in daily bag limits 

implemented in all states during 1996-1998, the incorporation of a slot size limit in 

Illinois during 1997-2000, and seasonal closures of the fishery (Francis et al. 1996).  

Reproductive failure has been implicated as the primary cause of the population collapse 

(Francis et al. 1996; Heyer et al. 2001; Marsden and Robillard 2004), but the role of 

fishing in the collapse has not been rigorously investigated.  

Our objectives were to estimate fishing mortality rates and abundance of yellow 

perch in Wisconsin and Illinois waters of southwestern Lake Michigan during 1986-2002 

to determine the contribution of fishing to the collapse of yellow perch in southern Lake 

Michigan.  We also wanted to determine if fishing mortality rates exceeded the maximum 
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that could be supported, and to integrate diverse sources of data to get the best estimates 

of recruitment and population size.  Our approach was to fit age-, size-, and sex-

structured population models to fishery and survey data.  No previous population model-

based stock assessments have been conducted for yellow perch in southern Lake 

Michigan.  Similar age-structured assessments have been applied to lake trout Salvelinus 

namaycush (Sitar et al. 1999), lake whitefish Coregonus clupeaformis (Ebener et al. in 

press), walleye Sander vitreus (Deriso et al. 1988), and yellow perch (Lake Erie Yellow 

Perch Task Group 2001) in other areas of the Great Lakes. 

Methods 

We implemented statistical catch-at-age models (detailed description in Appendix 

A) for yellow perch in southwestern Lake Michigan (Figure 1.1).  Statistical catch-at-age 

models are age-structured models that follow cohorts of fish over time and consider the 

catch-at-age data to be measured with error (Megrey 1989).  Such models consist of 

population and observation submodels, where the model parameters are estimated by 

fitting the models to data (Megrey 1989).  Our assessment models contained annual time 

intervals and considered the period from 1986 to 2002, and ages 2 through 9 (age 9 was 

an aggregate age class that included all fish age 9 and older).  We began our models in 

1986 because recreational fishery data were not available for earlier years.  During model 

development, we tested the effect of sequentially changing the aggregate age class lower 

(down to age 6) and results were similar to those we report.  Our models also contained 

two fisheries, recreational and commercial, and a fishery independent gillnet survey.  Our 

models produced estimates of fishing mortality rates, abundance, biomass, and spawning 

stock biomass (SSB).  We defined SSB as the biomass of mature females in the 
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population and calculated this based on a length-based maturation curve derived outside 

our model fitting process (see Appendix A). 

Our assessment model was age-, size-, and sex-structured.  In statistical catch-at-

age models, relative vulnerability (i.e., selectivity) to the fisheries is usually modeled as a 

time-invariant function of age (Quinn and Deriso 1999).  However, this assumption does 

not appear to be reasonable for yellow perch, because these fisheries are highly size 

selective (Kraft and Johnson 1992) and yellow perch size-at-age has changed 

substantially over time (Marsden and Robillard 2004).  Also, yellow perch show sexually 

dimorphic growth, with females growing faster and to larger sizes than males, which is 

suspected to cause higher fishing mortality rates for females (Wells and Jorgenson 1983; 

Madenjian et al. 2002).  We modeled selectivity of the fisheries and surveys as functions 

of length and allowed growth to change over time with a time-varying von Bertalanffy 

growth model (Szalai et al. 2003).  We accounted for temporal variations in growth by 

allowing the von Bertalanffy parameters to change in accord with random walk 

submodels (see Appendix A).  Our approach allowed the relative vulnerability of 

different age-sex categories of yellow perch to change over time as their mean length-at-

age changed, even though relative vulnerability was a constant function of length that did 

not differ between the sexes (Methot 1990; Hampton and Fournier 2001).  We also 

included a different selectivity pattern to capture changes in recreational fishery 

selectivity during 1997-2000 when a slot size limit was implemented in Illinois.  We 

assumed a time-, sex-, and age-invariant natural mortality rate, M, of 0.37, which was 

consistent with estimates of M for yellow perch in Indiana waters of southern Lake 
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Michigan (Allen 2000) and with values used for stock assessments of yellow perch in 

Lake Erie (Lake Erie Yellow Perch Task Group 2001). 

As well as allowing for changes in the relative vulnerability of different ages in 

response to changes in growth, our model allowed for temporal changes in the 

vulnerability of the most selected size of yellow perch, so that the fishing mortality 

imposed by a given amount of fishing effort could change over time.  As for the growth 

model this was done by having fishery catchability parameters vary according to random 

walk models (see Appendix A). 

Genetic analyses have found that yellow perch in the southern basin of Lake 

Michigan form a single genetic stock (Miller 2003).  However, our approach implicitly 

assumed that there was no net migration for either of the model areas (Illinois, and 

Wisconsin WM-4 to WM-6; Figure 1.1).  We believe this assumption is a reasonable 

approximation because preliminary tagging data suggest that the median dispersal 

distance for adult yellow perch in southwestern Lake Michigan was relatively low ( < 30 

km; D. Glover, University of Illinois at Urbana-Champaign, personal communication).  

Also, Horns (2001) attributed differences in growth patterns among yellow perch stocks 

in southern Lake Michigan to geographic segregation.  Evidence from physical current 

modeling studies suggests that genetic structure of the yellow perch population of 

southern Lake Michigan may be caused by mixing during the larval stage (Beletsky et al. 

2004). 

Model Fitting 

We took a Bayesian approach to obtain posterior probability estimates for the 

parameter values and quantities of interest such as fishing mortality rates, abundance, 
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biomass, and SSB.  We fitted our models to commercial yield, recreational harvest, 

commercial length frequency, recreational length frequency, commercial effort, 

recreational effort, mean length-at-age in the survey, age composition of the survey by 

sex, total survey CPE by sex, and survey length composition by sex.  The objective 

function contained 11 additive components for the Wisconsin model and 12 additive 

components for the Illinois model (Appendix A).  Each component represented a type of 

data or a specified informative distribution (i.e., prior distribution) for parameters.  

Variations in catchability and growth model parameters according to random walks were 

included as components.  We estimated 149 parameters for the Wisconsin model and 151 

parameters for the Illinois model.  We used Markov Chain Monte Carlo (MCMC) 

simulations with a Metropolis-Hastings algorithm to estimate posterior probability 

intervals (the Bayesian analog of confidence intervals) of several model parameters and 

estimates (Otter Research Limited 2000).  We ran the MCMC chain for 2,000,000 steps, 

sampling every 250 steps, and discarded samples from the initial 250,000 steps as a burn 

in period, which reduces the effect of starting values on the MCMC results (Gelman et al. 

2004).  We determined that the length of our burn in period was long enough by 

separating the MCMC chains (of the objective function) into several smaller chains and 

comparing the distributions of these blocks (Gelman et al. 2004); the distribution of each 

block was nearly identical to the other blocks.   

We assumed that total catch for all fisheries was median-unbiased, and that the 

coefficient of variation (CV) of the catches was constant for each fishery (i.e., we 

assumed lognormal errors).  We set the CV for the commercial fishery by assuming that 

recorded yield was accurate to within approximately 10% in Illinois and 20% Wisconsin 
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95% of the time.  The CV for the recreational fishery was set to approximately 10% 

based on estimates of the CV from the Wisconsin recreational fishery during 1998-2001 

(Wisconsin Department of Natural Resources [WDNR], unpublished data).  Independent 

estimates for the CV of the Illinois recreational fishery were not available.  The CVs of 

survey CPEs and effective sample sizes of the age and length compositions of the surveys 

and recreational and commercial fisheries were estimated using an iterative approach 

where we adjusted the assumed initial CVs and effective sample sizes of the objective 

function components to match the residual variance (McAllister and Ianelli 1997).  

Effective sample sizes for survey age composition determined by otoliths or anal fin 

spines were weighted five times higher than those determined by scales because scale 

aging is thought to be a less accurate method of aging yellow perch (Baker and 

McComish 1998; Robillard and Marsden 1996; Wisconsin Department of Natural 

Resources, unpublished data).  For the Illinois model, we set the CVs of the random walk 

deviations for commercial and recreational catchability to about 25%.  For the Wisconsin 

model, we used the same CV for recreational fishery catchability, but used a higher CV 

of about 40% for commercial catchability because, based on the large amounts of 

unreported catch, we thought the commercial effort data were less accurate for Wisconsin 

than for Illinois.  For the Wisconsin model, we set the CVs to about 5% for the random 

walk deviations for the L∞ and K parameters of the growth model because mean length-

at-age of the older age groups rarely changed rapidly from year to year.  In contrast, we 

set the CV of the random walk deviations for mean length-at-age 2 to 10% because mean 

length-at-age 2 showed more variation from year to year than older ages.  Using the same 

CV values for L∞ and K in the Illinois model as in the Wisconsin model resulted in poor 
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convergence.  Therefore, we set the CVs on L∞ and K to about 2.5% to further constrain 

the growth model for Illinois, but the CV for deviations in mean length-at-age 2 was the 

same as the Wisconsin model. 

Sensitivity Analyses 

We performed sensitivity analyses to determine the effects of some of our 

assumptions on the results of the analysis.  To test the sensitivity of the model estimates 

to the weighting factors for each data source, we increased and decreased the weighting 

factors for each data source five-fold and refit the models.  We also tested the sensitivity 

of our estimates to our assumed value of M by increasing and decreasing M by 20% and 

refitting our models.  We then evaluated sensitivity of the model estimates to the change 

by comparing model estimates of abundance, biomass, and mean fishing mortality rates 

for females and males age 4 and older in 2002 to those obtained with the baseline 

weighting factors and natural mortality rate.  Also, because of large suspected amounts of 

unreported commercial harvest in Wisconsin during 1989-1992, we tested the effects of 

three levels (one to three times the reported amount) of commercial harvest during those 

years on our results. 

Data 

Commercial yield and effort were estimated from mandatory bimonthly reports 

submitted by commercial fishermen.  In some cases, these reports were validated by law 

enforcement officials, but underreporting may have been a large problem, especially in 

Wisconsin.  The exact magnitude of underreporting is unknown, but during 1990-1992 

commercial yield in Wisconsin was underreported by at least 44%, which law 

enforcement officials documented during a multi-year sting operation (WDNR, 
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unpublished data).  Two commercial fishermen indicted for unreported harvest testified 

that unreported harvest was two to three times reported harvest.  Wisconsin implemented 

a commercial quota for yellow perch in the summer of 1989, so there was less incentive 

for commercial fishermen to underreport prior to 1989.  For observed commercial yield 

in Wisconsin during 1989-1992, we added the reported commercial yield and the verified 

illegal yield and multiplied the number by two.  In Illinois, unreported commercial 

harvest was thought to be relatively low (Illinois Department of Natural Resources 

[IDNR], unpublished data).  Length frequency estimates of the commercial catch were 

collected by dockside monitoring.  Sampling did not occur for most lifts.   

Creel surveys were conducted by the Wisconsin DNR and the Illinois DNR to 

estimate recreational fishery harvest, effort, and composition of the harvest (details in 

Austen et al. 1995).  Creel clerks visited access points and interviewed anglers to 

determine target species and angler effort.  Anglers’ catches were examined for species 

composition and length frequency.   

Graded-mesh gillnet surveys were conducted in Wisconsin (2.54-7.62 cm stretch-

measure with 0.64 cm increments) in the winter and in Illinois (2.54-8.89 cm stretch-

measure with 1.27 cm increments) in June of each year to obtain fishery independent 

relative abundance data.  Nets were set overnight in the same locations each year at 

multiple depths.  CPE was measured as the number of yellow perch per 30.5 m gillnet.    

The length of each fish was measured, and the age composition of the catch was 

estimated by estimating ages for a randomly chosen subsample and applying the 

subsequent age-length key to the length frequency.  Ages were estimated by counting the 

annuli on scales during 1986-1999 in Wisconsin and 1986-1993 in Illinois.  However, 
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this method was found to be fairly unreliable (Robillard and Marsden 1996; Baker and 

McComish 1998; WDNR, unpublished data).  Therefore, Illinois estimated ages of fish 

by counting annuli in otoliths during 1994-2002, and Wisconsin estimated ages of fish by 

counting the annuli in anal fin spines during 2000-2002.  Ages estimated by different 

readers of spines and otoliths agreed 86% of the time (WDNR, unpublished data). 

Results 

Model Fits 

Most of our data sources contained relatively large amounts of contrast and our 

models produced reasonable fits to all data sources.  Fishery and survey catch was 

relatively high in the beginning of our time series and decreased to low levels during the 

mid 1990s.  Our models predicted observed commercial yield and recreational harvest 

within 5% of observed values in most years (Figure 1.2).  For total survey CPE, our 

models produced the same declining trend as was observed, but produced lower 

predictions of survey CPE than was observed in most years prior to 1991 (Figure 1.2).  

This may be due to decreases in survey catchability caused by increases in water clarity 

since the colonization of Lake Michigan by zebra mussels Dreissena polymorpha.  

Relative differences between observed and predicted survey CPE tended to be larger than 

fishery catch residuals (especially for the Wisconsin survey); this result is not surprising 

given that survey CPE had relatively high CVs and that CVs were higher for the 

Wisconsin survey than for the Illinois survey.  Mean age in the survey was relatively 

stable during 1986-1992, increased during 1992-1997, and decreased thereafter (Figure 

1.3).  Deviations between model predictions and observations of mean age in the survey 

were usually less than 15%.  Mean length in the recreational fishery and surveys 
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increased during 1986-2002, but did not show a trend for commercial fisheries (Figure 

1.4).  Predicted mean length was usually within 10% of the observed value for the 

commercial fishery and surveys and within 5% of observed values for the recreational 

fishery (Figure 1.4).  Predicted mean length of females in the Illinois survey during 1986-

1992 was lower than observed values and may be low because the survey mainly targets 

mature fish; after 1990, a smaller proportion of females were immature.   

Model Estimates 

Model estimates of mortality rates were generally higher for females than males, 

and were higher during the mid-1980s through the mid-1990s than in the late 1990s and 

after (Figure 1.5).   In Wisconsin, the commercial fishery was the predominant source of 

fishing mortality until the commercial fishery was closed, and in Illinois, the recreational 

fishery was the predominant source of fishing mortality.  Estimated instantaneous fishing 

mortality rates for females age 4 and older exceeded 1.0 in most modeled years prior to 

1996 in Wisconsin waters and averaged 1.16, which corresponds to an annual mortality 

rate of about 69%.  In Illinois, estimated fishing mortality rates were not as high as in 

Wisconsin, although total mortality rates averaged about 0.92 (annual mortality rate of 

about 60%) for females age 4 and older during 1986-1997.  In Wisconsin during 1986-

1996, instantaneous total mortality rates for males age 4 and older averaged 0.67 (annual 

mortality rate of about 49%), and in Illinois during 1986-1997, instantaneous total 

mortality rates averaged 0.57 (annual mortality rate of about 44%).  Until severe 

restrictions were placed on commercial and recreational fisheries (1996-1997), fishing 

was the predominant source of mortality for female yellow perch age 4 and older in 

Wisconsin and Illinois.  After the fisheries were considerably restricted in 1996 in 
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Wisconsin and 1997 in Illinois, fishing mortality rates declined substantially and natural 

mortality was the predominant source of mortality.  

Model estimates of recruitment in Illinois and Wisconsin showed similar patterns, 

with recruitment generally higher in Illinois than in Wisconsin (Table 1.1; Figure 1.6).  

Recruitment was relatively high during 1984-1989 and was substantially lower than 

1980s levels thereafter, except for the 1998 year-class.  The largest year-class during the 

1980s was in 1988 and the largest year-class during the 1990s was in 1998.   Model 

estimates of average recruitment of the 1984-1989 year-classes were 13 times higher in 

Illinois and 23 times higher in Wisconsin than the estimated average recruitment of the 

1990-1997 year-classes.  Recruitment was not strongly related to stock size and yellow 

perch produced weak year-classes across a wide range of stock size (Figure 1.6). 

Estimated abundance of yellow perch in Wisconsin waters of southwestern Lake 

Michigan increased from 1986 to 1990, and then decreased from 1991 to 2002 except for 

a small increase in 2000 (Figure 1.7).  Estimated abundance of yellow perch in Illinois 

waters declined from 1986 to 2002, except during 1990 and 2000.  In 2002, yellow perch 

abundance was approximately 8% of 1986 abundance in Wisconsin and approximately 

20% of 1986 abundance in Illinois.  Model estimates of relatively high abundance 

throughout the 1980s resulted from high estimated recruitment during that period.  

Abundance decreased drastically during the 1990s because recruitment declined and 

fishing mortality rates were relatively high.   

 Changes in estimated biomass were smaller than changes in abundance; estimated 

biomass in 2002 was approximately 74% of 1986 biomass in Wisconsin and 123% of 

1986 biomass in Illinois (Figure 1.7).  Estimated biomass showed somewhat different 
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trends over time than abundance because the age structure of the population changed and 

growth rates increased.  In 1986, the population was composed of mostly age-2 and 3 

yellow perch.  In 2002, the majority of the population was age-4 and substantially larger 

at a given age due to faster growth.   

 Patterns of estimated SSB were similar to patterns of biomass (Figure 1.7).  

Model estimates of SSB increased during 1986-1992 in Illinois and during 1986-1991 in 

Wisconsin, and decreased until the late 1990s.  Estimated SSB increased greatly during 

1997-2002 in Illinois and during 1999-2002 in Wisconsin.  In 2002, SSB was at its 

highest level since the early 1990s and was 346% and 854% of 1986 levels in Illinois and 

Wisconsin, respectively.  The large increase in SSB during 1999-2002 was due to the 

relatively good recruitment of the 1998 year-class, low fishing mortality rates, and rapid 

growth and maturity of females.  We estimated that spawning stock biomass per recruit 

(SSB/R) was approximately 0.46 kg in Wisconsin and 0.44 kg in Illinois in 2002.  We 

compared these SSB/R values to scenarios without fishing mortality, and estimated that 

2002 SSB/R was approximately 84% of the unexploited scenario in Wisconsin and 87% 

of the unexploited scenario in Illinois.  In contrast, SSB/R during 1986-1995 was 

approximately 0.03 kg (18% of the unexploited scenario) in Wisconsin and 0.06 kg (33% 

of the unexploited scenario) in Illinois.  These dramatic differences in SSB/R occurred 

because fishing mortality rates were much lower during 2002 than during 1986-1995 and 

yellow perch were growing faster, and therefore maturing at younger ages, during 2002 

than during 1986-1995.   

Females grew faster and to larger sizes than males (Figure 1.8); the mean length-

at-age of females at all ages older than age-2 were higher than males of the same age.  
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Estimated mean length-at-age remained relatively stable during 1986-1994 and increased 

substantially during 1994-2000.  During 2000-2002, mean length-at-age decreased 

slightly, but was still higher than during the 1980s and early 1990s.  In Wisconsin, yellow 

perch were generally smaller at a given age than in Illinois. 

Selectivity patterns of the recreational fisheries in Wisconsin and Illinois were 

quite similar to one another when no length-based regulations were in effect (Figure 1.9).  

Commercial selectivity patterns were also similar.  This latter result was not surprising 

because the scarcity of biological data for the Illinois commercial catch had led us to 

assume an informative prior for the selectivity parameters, based on the results of the 

Wisconsin assessment (see Appendix A).  Due to differences in selectivity of the 

commercial and recreational fisheries, yellow perch recruited to the recreational fishery at 

smaller sizes than to the commercial fishery.  Selectivity of the Illinois recreational 

fishery changed substantially when a slot size limit was implemented during 1997-2000.  

In Illinois during 1997-2000, average mortality rates for males age-4 and older were 

slightly higher than for females due to the selectivity pattern of the recreational fishery.  

Selectivity patterns in the survey were substantially different between Illinois and 

Wisconsin.  Differences in selectivity patterns are likely attributable to differences in the 

surveys such as mesh sizes of assessment gillnets and time of year of the survey. 

Sensitivity Analyses 

The models were somewhat sensitive to changes in the assumed CVs and 

effective sample sizes for the different data sources (Table A.4).  The Illinois model was 

slightly less sensitive to these assumptions than the Wisconsin model.  In general, five-

fold changes in the weights for each data source usually resulted in less than 15% 
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changes in mean fishing mortality rates, abundance, and biomass.  Weights that resulted 

in increased estimates of mean fishing mortality rates usually resulted in decreased 

estimates of abundance and biomass.  The Illinois model was most sensitive to changes in 

the CV and effective sample sizes associated with females caught in the survey and the 

effective sample size of the length composition from the recreational fishery.  The 

Wisconsin model was most sensitive to CV and effective sample size associated with 

males caught in the survey and the CV for catchability of the commercial fishery.  

Increasing M by 20% resulted in higher model estimates of average fishing mortality 

rates and lower estimates of abundance and biomass. The Illinois model was less 

sensitive to our assumed value of M than the Wisconsin model; Illinois model estimates 

changed approximately 12% and Wisconsin model estimates changed approximately 

47%.   

The Wisconsin model estimates of abundance, biomass, and mean fishing 

mortality rates were also somewhat sensitive to the different levels of commercial harvest 

(Table 1.2).  When we fit the model using only reported yield, model estimates of 

abundance and biomass in 2002 were more than 20% lower than the baseline (2x reported 

during 1989-1992) scenario, and estimates of mean fishing mortality rates were about 

27% higher than baseline estimates.  Under the 3x reported yield scenario, abundance and 

biomass were about 20% greater than the baseline scenario, but mean fishing mortality 

rates were about 17% lower than the baseline. 

Discussion 

The decline in abundance of yellow perch in southwestern Lake Michigan during 

the 1990s was likely caused by a combination of recruitment failure and relatively high 
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fishing mortality rates, and our results are consistent with other authors’ descriptions of 

the decline.  During 1989-1994, yellow perch larvae were abundant shortly after 

hatching, but recruitment to age 0 in the fall was poor, which has led some researchers to 

propose that at least the initial decline in recruitment was not due to fishing (Francis et al. 

1996; Robillard et al. 1999; Marsden and Robillard 2004).  Our results also indicated that 

several successive year-classes failed despite relatively high SSB.  However, after 1994, 

the relative abundance of yellow perch larvae was less than 10% of the relative 

abundance during the early 1990s, which may indicate that SSB had decreased to low 

enough levels to limit recruitment (Francis et al. 1996; Marsden and Robillard 2004).  We 

estimated that between 1991 and 1996 yellow perch SSB in Wisconsin declined almost 

94% and between 1992 and 1997 yellow perch SSB in Illinois declined almost 90%.  The 

resultant low SSB may have prolonged the period of poor reproduction. 

The decline of yellow perch SSB in southern Lake Michigan would probably not 

have occurred at such a rapid pace if fishing mortality rates had been lower.  We 

projected dynamics for the 1986 through 1996 period using our estimated recruitment 

time series and age-based selectivity estimates, while changing the overall level of F.  

Our projections indicated that SSB in 1996 would have been more than five times higher 

than our model estimates in Wisconsin and nearly twice as high in Illinois if fishing 

mortality rates for fully selected ages and sexes had been equal to the natural mortality 

rate (0.37) during 1986-1997.  While our simple projections do not account for 

compensatory changes that might have occurred if fishing mortality had been lower, we 

believe they do illustrate that high fishing mortality rates on adult females were a 

substantial contributor to the rapid decline in SSB that occurred.  An alternative 



 

 26

hypothesis to the effect of fishing yellow perch population dynamics is that natural 

mortality decreased concurrently with restrictions on the fisheries.  In a supplemental 

analysis (detailed results not reported), we explored this possibility by adding one more 

estimated parameter to each model that allowed natural mortality to change from one 

level for the 1986-1996 period to another for 1997 and after.  The estimated changes in M 

were opposite in sign for the Wisconsin and Illinois models and were much less than the 

estimated changes in fishing mortality for these periods. 

The declines of yellow perch abundance in southern Lake Michigan were similar 

in the 1960s and 1990s, and recruitment failures of several successive year-classes may 

be likely in the future.  In the early 1960s, yellow perch suffered a recruitment failure 

(Wells 1977) similar to the recruitment failure observed in the early 1990s (Robillard et 

al. 1999; Marsden and Robillard 2004).  The recruitment failure in the 1960s was 

preceded by an increase in abundance during the late 1950s (Wells 1977), which was 

similar to the increase in abundance during the late 1980s (Francis et al. 1996).  Adult 

abundance had decreased rapidly by the mid-1960s due to intense fisheries (Wells 1977).  

Yellow perch growth was slow during the 1950s (Wells 1977) and the 1980s (Marsden 

and Robillard 2004).  Extremely high fishery catches preceded both declines in 

abundance.  However two major differences in the Lake Michigan community exist 

regarding exotic species:  alewife abundance in Lake Michigan was extremely high 

during the 1960s compared to relatively low alewife abundance in the 1980s and 1990s, 

and zebra mussels were absent from Lake Michigan in the 1960s, but their abundance 

was high in the 1990s (Madenjian et al. 2002).  Because the reproduction failure in the 

1960s was associated with extremely high levels of alewife abundance, the decline in 
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recruitment was blamed on alewife (Eck and Wells 1987).  Schroyer and McComish 

(2000) found a negative correlation between alewife abundance and yellow perch 

recruitment in Indiana waters of Lake Michigan during 1988-1997, but little direct 

evidence of alewife preying upon yellow perch larvae has been observed in southern 

Lake Michigan (Dettmers et al. 2003).  Also, alewife abundance during the 1990s was 

substantially lower (perhaps more than 20 times lower) than during the mid-1960s 

(Madenjian et al. 2002), the period when alewife interference with yellow perch 

recruitment was originally proposed as a cause for yellow perch reproduction failure.  

Marsden and Robillard (2004) suggested that declines in yellow perch recruitment may 

be exacerbated by changes in the ecosystem due to zebra mussel colonization, and 

Janssen and Leubke (2004) found that poor recruitment was correlated with the presence 

of zebra mussels in Indiana waters of Lake Michigan.  Indeed, zebra mussels can alter the 

composition of the zooplankton community (MacIsaac et al. 1992), which may decrease 

food supplies for larval yellow perch.  However, yellow perch recruitment did not 

collapse after invasion of zebra mussels in Oneida Lake (Mayer et al. 2000) or the 

western basin of Lake Erie (Tyson and Knight 2001).    

Based on several reference points, yellow perch likely experienced overfishing in 

southwestern Lake Michigan during 1986-1996.  Beverton (1998) recommended the use 

of the F95 reference point (F at which yield is 95% of maximum sustainable yield) to 

sustainably manage fisheries.  A rough estimate of F95 is usually around M for medium-

lived species (Beverton 1998), which would be approximately 0.37 for yellow perch in 

southern Lake Michigan.  Others have argued that M should be an upper bound on fishing 

mortality rates that maximize yield (Deriso 1982, Quinn and Deriso 1999).  Fishing 
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mortality rates for adult females were well above M in Illinois (1-2 times M) and 

Wisconsin (2-4 times M).  A number of U.S. marine commercial fisheries are managed to 

keep fishing mortality below levels that would reduce SSB/R below a set percentage of 

the unfished situation (FX%), and typical percentages have been in the 35% to 45% range 

(Quinn and Deriso 1999).  In Wisconsin and Illinois, F was higher than F35% during 

1986-1996. 

Regulation changes likely helped to substantially reduce fishing mortality rates.  

In 1996 in Wisconsin, the commercial quota was set to zero and a daily bag limit of five 

yellow perch per angler was implemented for the recreational fishery (reduced from 50 to 

25 in 1995).  When these policies were introduced, fishing mortality decreased 

noticeably.  Recreational effort decreased, but may not have been a direct consequence of 

the implemented bag limit.  When stricter bag limits were implemented in some inland 

Wisconsin lakes for walleye, anglers preferred to fish in lakes that had less restrictive bag 

limits (Beard et al. 2003).  In Illinois in 1995, the recreational daily bag limit was reduced 

from no limit to 25 yellow perch per angler.  In 1997, the commercial quota was reduced 

to zero and a daily bag limit of 15 yellow perch per angler and a slot size limit of 8-10 in 

(fish within this range could be kept) were implemented for the recreational fishery.  

Mortality rates also declined substantially in Illinois, as they did in Wisconsin; 

commercial effort was reduced to zero, and recreational fishing effort decreased 

noticeably.  Also, the slot size limit caused the recreational fishery selectivity to change 

so that average fishing mortality rates were higher for age-4 and older males than for age-

4 and older females. 
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We did not incorporate age-estimation error into our model and this may bias our 

estimates of recruitment and mortality rates.  Our results likely underestimate the amount 

of variability in recruitment because age-estimation error tends to blend strong and weak 

year classes together (Richards and Schnute 1998).  Specifically, our estimates of 

recruitment of the 1989 and 1990 year-classes are probably high because of age-

estimation error associated with the 1988 year-class.  However, our estimates of 

recruitment are consistent with external estimates of year-class strength from age-0 

assessments (Pientka et al. 2003).  Our mortality rate estimates are likely biased low for 

the beginning of the time series when ages of yellow perch were estimated from scales.  

Younger yellow perch tended to be aged as older when ages were estimated from scales 

(Robillard and Mardsen 1996; Baker and McComish 1998; Wisconsin DNR, unpublished 

data) and the overrepresentation of older fish in the data is most likely interpreted by the 

model as an indication that older fish were more abundant.  Annual mortality rates in the 

late 1970s in Indiana and Illinois were estimated to be about 70% for males age-3 and 

older and substantially higher for females age-3 and older (Wells and Jorgenson 1983).  

These mortality rate estimates are similar to our estimates for Wisconsin in the late 1980s 

and for Illinois in the mid-1980s. 

Yellow perch growth may be density dependent and may also have increased due 

to zebra mussel colonization.  Patterns of growth during 1986-1998 resembled growth 

during 1954-1979 for yellow perch in southern Lake Michigan.  Yellow perch growth 

may have been density dependent during 1986-2002 and 1954-1975 (Wells 1977).  We 

found similar growth patterns in Wisconsin and Illinois; growth was relatively slow when 

yellow perch were at high abundance and growth was fastest at low abundance.  
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However, growth during 1999-2002 (low abundance) was the fastest observed for yellow 

perch in southern Lake Michigan during the last five decades.  This increased growth 

coincided with substantial changes in yellow perch habitat due to colonization by zebra 

mussels.  Thayer et al. (1997) found increased adult yellow perch growth associated with 

zebra mussels in ponds enclosures and Tyson and Knight (2001) found increased growth 

of age-2 and age-3 yellow perch in the western basin of Lake Erie after zebra mussel 

colonization; these increases in growth were attributed to increased food availability.  

However, Mayer et al. (2000) found no increase in adult yellow perch growth associated 

with zebra mussel colonization in Oneida Lake.   

Management Implications 

Since 1998, recruitment has continued to be poor in southern Lake Michigan 

except for the 2002 year-class (Pientka et al. 2003; Clapp and Dettmers 2004; Fitzgerald 

et al. 2004).  Success of the 1998 year-class has renewed pressure on the agencies to 

implement less restrictive regulations.  Based partially on development of the models 

described here, the Lake Michigan Yellow Perch Task Group recommended that 

regulations remain unchanged for the time being.  The models we developed will 

continue to be used to monitor changes in the population and to advise managers.    

Overexploitation of yellow perch has not previously been considered a likely 

hypothesis for the decline of yellow perch in southern Lake Michigan (Francis et al. 

1996).  However, we found that SSB had reached very low levels by the mid-1990s and 

intense fishing likely compounded the rapidity of the decline in SSB.  Although exotic 

species or climatic changes may have affected recruitment, fishing mortality rates during 

the late 1980s and early 1990s probably were above levels that would be sustainable over 
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the long term.  Therefore, management of yellow perch in Lake Michigan should focus 

on limiting fishing mortality and be flexible to adjust to future recruitment failures.  

Despite poor recruitment, SSB has increased to its highest point since the early 1990s in 

Wisconsin and Illinois.  This is partly a response to extensive management actions taken 

by Wisconsin and Illinois, which have reduced fishing mortality rates.  However, 

relatively few year-classes are represented in the population and future increases in 

biomass and SSB will depend upon relatively strong recruitment of future cohorts to the 

adult population. 
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Table 1.1.  Model estimates of yellow perch abundance-at-age (in thousands) during 

1986-2002 in Illinois and Wisconsin waters of southwestern Lake Michigan. 

    Age     

Year 2 3 4 5 6 7 8 9+ 

Illinois   

1986 9,674 11,417 2,082 769 284 105 39 14

1987 9,598 6,682 7,518 862 146 33 10 4

1988 6,807 6,629 4,518 3,715 247 32 6 2

1989 7,255 4,701 4,457 2,567 1,245 67 8 2

1990 17,535 5,011 3,180 2,759 1,370 545 30 4

1991 5,432 12,110 3,322 1,837 1,383 633 231 15

1992 2,521 3,726 8,070 1,949 969 694 311 116

1993 444 1,718 2,401 4,930 1,090 526 371 224

1994 22 302 1,070 1,370 2,691 573 270 295

1995 190 15 188 598 727 1,434 298 284

1996 325 127 9 102 310 378 747 292

1997 1,153 216 70 4 48 144 175 476

1998 130 787 143 45 3 31 93 420

1999 879 89 529 96 30 2 21 342

2000 8,911 599 59 349 63 20 1 240

2001 38 6,144 404 40 235 43 14 163

2002 38 26 4,139 265 26 153 28 115
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Table 1.1. Continued. 

Wisconsin    
 

    

1986 5,863 11,702 1,490 300 101 40 16 6

1987 5,083 4,050 7,922 741 106 21 5 2

1988 8,757 3,510 2,776 4,246 195 20 2 0

1989 8,438 6,045 2,353 1,676 1,718 71 5 0

1990 11,935 5,826 3,994 1,250 694 578 19 1

1991 5,221 8,230 3,786 2,020 530 287 204 6

1992 1,237 3,603 4,964 1,665 682 161 78 47

1993 310 853 2,315 2,227 627 225 48 34

1994 102 214 572 1,327 1,043 285 96 33

1995 83 71 144 336 579 408 108 44

1996 60 57 49 85 158 231 153 53

1997 289 42 39 33 54 96 139 122

1998 128 200 29 27 22 35 63 170

1999 373 88 138 20 18 14 22 147

2000 3,115 258 61 93 13 11 9 107

2001 29 2,147 175 41 62 9 8 77

2002 29 20 1,405 111 26 39 5 53
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Table 1.2.  Model estimates of abundance (N; 1000s), biomass (B; 1000 kg), mean rate of 

fishing mortality for females age-4 and older ( +4F  females), and mean rate of fishing 

mortality for males age-4 and older ( +4F  males) for 2002 under three scenarios of 

unreported commercial harvest in Wisconsin waters of southwestern Lake Michigan 

during 1989-1992. 

 N B 
+4F  females +4F  males 

Reported 1,331 280 0.095 0.077 

2 X Reported 1,690 356 0.075 0.060 

3 X Reported 2,020 427 0.062 0.050 
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Figure 1.1.  Map of Lake Michigan statistical districts with modeled areas shaded.  WM 

indicates Wisconsin waters, IL indicates Illinois waters, IN indicates Indiana waters, and 

MM indicates Michigan waters. 
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Figure 1.2.  Model fits to commercial yield (1000 kg), recreational harvest (1000s), and 

gill net survey catch-per-effort (CPE; number per 30.5 m) in Illinois and Wisconsin 

waters of southwestern Lake Michigan during 1986-2002.  Model predictions are 

represented by solid lines and observed values are represented by dots. 
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Figure 1.3.  Mean age of yellow perch caught in gill net surveys in Illinois and Wisconsin 

waters of southwestern Lake Michigan during 1986-2002.  Lines represent model 

predictions and dots represent observed values.
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Figure 1.4.  Mean length of yellow perch caught in the commercial and recreational 

fisheries and gill net surveys in Illinois and Wisconsin waters of southwestern Lake 

Michigan during 1986-2002.  Lines represent model predictions and dots represent 

observed values.
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Figure 1.5.  Model estimates of average instantaneous mortality rates for yellow perch 

age-4 and older in Illinois and Wisconsin waters of southwestern Lake Michigan during 

1986-2002.  
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Figure 1.6.  Model estimates of yellow perch recruitment (1000s) in Illinois and 

Wisconsin waters of southwestern Lake Michigan for the 1984-2000 year-classes and 

estimates of recruitment plotted against yellow perch spawning stock biomass (SSB; 

1000 kg).   
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Figure 1.7.  Estimated abundance (1000s), biomass (1000 kg), and spawning stock 

biomass (SSB; 1000 kg) of yellow perch age-2 and older in Illinois and Wisconsin waters 

of southern Lake Michigan during 1986-2002.  Error bars represent 95% probability 

intervals (the Bayesian analog of confidence intervals). 
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Figure 1.8.  Model estimates of mean length at age 5 Illinois and Wisconsin waters of 

southwestern Lake Michigan during 1986-2002.   
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Figure 1.9. Model estimates of selectivity of the commercial fishery, recreational fishery, 

and survey in Illinois and Wisconsin during 1986-2002.     
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CHAPTER 2                                                                                      

PERFORMANCE OF TIME-VARYING CATCHABILITY ESTIMATORS IN 

STATISTICAL CATCH-AT-AGE ANALYSIS 

Introduction 

Statistical catch-at-age analysis (SCA) is used to provide estimates of absolute 

abundance, recruitment, and fishing mortality for many fisheries throughout the U.S. and 

the rest of the world (National Research Council [NRC] 1998; Quinn and Deriso 1999).  

In contrast to virtual population analysis and its variants, SCAs generally assume that 

fishing mortality rate-at-age can be modeled as a function of a year effect and an age 

effect (selectivity).  This approach allows statistical estimation where fishery catch-at-age 

data are assumed to contain some amount of measurement error (Megrey 1989; Fournier 

and Archibald 1982).  These models require catch-at-age data as well as an index of 

abundance; other data sources can also be included in the model (Deriso et al. 1985).  

Under many conditions, SCA provides more accurate estimates of stock size and other 

important management quantities than other stock assessment techniques (NRC 1998, 

Punt et al. 2001, Radomski et al. in press) 

Many SCAs use fishery catch per effort (CPE) as an index of relative abundance, 

and thus assume that fishery CPE is proportional to abundance (Quinn and Deriso 1999).  

However, violations of this assumption can cause SCA models (and other stock 

assessment models) to produce biased estimates (NRC 1998).   Time-varying catchability 

has been documented in a wide range of fisheries, spanning commercial and recreational 

fisheries and freshwater and marine systems.  In some cases, catchability may change 

with abundance or the area inhabited by a stock (e.g., Peterman and Steer 1981; Winters 
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and Wheeler 1985; Crecco and Overholtz 1990; Harley et al. 2001), environmental 

effects (Ziegler et al. 2003), or due to changes in fisherman behavior or gear (Hilborn and 

Walters 1992).  Interactions between population size, stock area, and fisher behavior can 

lead to hyperstable fishery CPE, where CPE remains high despite decreases in abundance 

(Hilborn and Walters 1992; Harley et al. 2001).  Hyperstable CPE in combination with a 

stock assessment model that does not account for this can lead to overestimated stock size 

and catch limits (NRC 1998).   

Methods have been developed to account for time-varying fishery catchability, 

but there is little consensus about best practices in this area (e.g., Fournier and Archibald 

1982, Fournier 1983; Methot 1990, Fournier et al. 1998, NRC 1998).  Generally, fishery 

effort or CPE data are ignored if an independent survey is available for a stock (NRC 

1998).  However, in many fisheries, survey data are not available and ignoring fishery 

effort data is not an option (NRC 1998).  Likewise, ignoring fishery effort data may 

decrease the accuracy and precision of SCA estimates in some cases because fishery CPE 

may be informative about changes in relative population size or survey data may be poor.  

Our objective was to determine how well different methods of estimating time-varying 

catchability performed within an SCA framework.  Specifically, we tested four 

estimation models to determine how well they performed in scenarios where catchability 

changed over time. 

Methods 

We used Monte Carlo simulations to compare how four different methods of 

estimating fishery catchability within an SCA model performed when models were 

confronted with different data generating scenarios.  Our data generating models included 



 

 51

five cases where catchability changed abruptly or gradually over time and where 

catchability was explicitly a function of population abundance.  Our data generating 

models also contained three levels of fishing mortality and three levels of survey 

measurement error.  While the general influence of fishing mortality level and survey 

measurement error on the performance of SCA methods is well understood (e.g., Bence 

et al. 1993), we included these factors to determine whether they act to change the 

relative performance of different approaches of modeling time-varying catchability.  We 

generated 1000 datasets for each scenario (45 total scenarios).  For data sets that included 

survey data, we fit each data set with four different models that made different 

assumptions regarding fishery catchability; catchability was modeled as white noise, a 

random walk, density dependent, or catchability was effectively estimated as a free 

parameter for each year.  This last method ignores any information contained in fishery 

CPE or effort.  For data sets that did not include survey data we used the first three of 

these estimation methods.  Each scenario used the same sets of random numbers.   

All models contained 15 years of data and eight age classes with the last age class 

representing all fish that age and older.  Data generating models were based on 

commercial fisheries for lake whitefish (Coregonus clupeaformis) in the upper Great 

Lakes.  Symbols and equations defining the data generating models and estimation 

models are presented in Tables 2.1 and 2.2.  Equations are referred to in the text as eq. 

Tx.y, where x is the table number and y is the equation number within Table x.  To avoid 

redundancy, equivalent quantities and parameters in estimation and data generating 

models are not differentiated except when they both appear in the same equation, in 

which case estimated quantities are denoted with a caret above the symbol. 
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Data Generating Model 

The data generating model described the population dynamics and created data 

sets of total fishery catch, the age composition of the fishery catch, and in some scenarios 

total survey CPE and the age composition of the survey.  For the population dynamics, 

we used an age-structured model that followed cohorts over time.  Recruitment 

(abundance at age 1) was generated from a lognormal distribution with a coefficient of 

variation (CV) of 100%.  Numbers-at-age in the first year were calculated assuming a 

stable age distribution with lognormal errors, where recruitment and mortality rates prior 

to the first year of the simulation were on average the same as in the first year (eq. 

T2.2.1).  Cohorts were tracked over time by applying a simple exponential mortality 

model (eq. T2.2.2a); the last age class was treated as representing all fish age 8 and older 

(eq. T2.2.2b).  Biomass each year was the sum of age-specific abundance and mean 

weight-at-age (eq. T2.2.3). 

We used a separable model to generate fishing mortality rates.  The total mortality 

rates were determined by the natural mortality rate and age-specific fishing mortality 

rates (eq. T2.2.4).  M was held constant across ages and years at 0.25.  The instantaneous 

fishing mortality rate was a function of catchability, fishing effort, and age-specific 

selectivity (eq. T2.2.5).  We used three levels of fishing mortality where F at fully 

selected ages was approximately 2M (high), M (medium), and 0.5 M (low).  We allowed 

fishing mortality to change over time by allowing effort to change (Figure 2.1) and by 

incorporating several processes of time-varying catchability (see below).  For a given 

level of fishing mortality, each of the models used the same effort series and each effort 
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series had the same amount of contrast in absolute terms.  The selectivity pattern for the 

fishery was dome shaped to simulate a gill net fishery (Figure 2.2). 

We included five models for time-varying catchability, which incorporated a 

range of possible ways that catchability could vary over time.  The loge of catchability 

was modeled as white noise to simulate a fishery where catchability varied from year to 

year about a constant mean (eq. T2.2.6), perhaps due to environmental effects, but where 

year-to-year deviations were not correlated.  We also included four treatments that had 

varying amounts of autocorrelation: first order autoregressive (AR1), density dependent, 

linear increase, and abrupt change.  The AR1 process was also on the loge-scale and 

could mimic catchability changes from many sources (eqs. T2.2.7a, T2.2.7b), such as 

density dependent catchability or correlated environmental effects.  We set the correlation 

(ρ) of the AR1 process to 0.9 and the CV (σε) to 0.16.  Density dependent catchability 

followed a power relationship where catchability declined with increasing abundance (eq. 

T2.2.8; Paloheimo and Dickie 1964).  Because each of the different levels of fishing 

mortality had different average levels of abundance, we used three sets of parameters (α 

and β) to define the density dependent power function, one for each level of fishing 

mortality.  In the linear increase scenario, catchability increased linearly over time (eq. 

T2.2.9), which could represent learning by fishers or increases in gear efficiency.  In the 

abrupt change scenario, catchability was constant until year eight of the time series and 

increased to a higher level where it remained for the rest of the time series (eq. T2.2.10).  

This scenario simulated the adoption of a more efficient technology by the fishery.  All 

models were parameterized to have the same expected catchability (over the time series) 

and similar variances of logeqf.  We achieved this by simulating data sets and adjusting 
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the catchability parameters until the mean and variance of catchability were the same as 

in the white noise case.  We used a value of 0.2 for the standard deviation of the log of 

catchability as the standard for all other catchability models.  This value is similar to 

estimates of the CV of catchability for commercial fisheries in New Zealand (Francis et 

al. 2003), but was less than median values of the CV of fishery CPE estimated by Harley 

et al. (2001) for International Council for the Exploration of the Sea fisheries of 0.4-0.8, 

which should be an upper bound.   

Fishery catch was calculated with the Baranov catch equation (eq. T2.2.13; Quinn 

and Deriso 1999).  We multiplied total catch by a lognormal measurement error to 

calculate observed fishery catch (eq. T2.2.14); the measurement error CV for fishery 

catch was 10%.  Observed age compositions were generated by drawing a sample from a 

multinomial distribution of size n (100 for the fishery) with proportions equal to the 

expected catch-at-age in the fishery.  Survey CPE-at-age was calculated as the product of 

survey catchability, abundance, and survey selectivity (eq. T2.2.15), and observed survey 

CPE was the product of total survey CPE and a lognormal measurement error (eq. 

T2.2.16).  Our simulation model contained three levels of survey quality with differing 

levels of measurement error: good CV=0.25, poor CV=1.0, and no survey.  Catchability 

of the survey was constant over time.  Observed survey age compositions were generated 

by drawing a random sample from a multinomial distribution of size 75 with proportions 

equal to the expected CPE at age in the survey. 

Estimation Model 

The estimation models were largely the same as the simulation models except for 

how catchability was estimated and how numbers-at-age in the first year and recruitments 
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were handled.  Common parameters among models included N1,1…N15,1 (Recruitment), 

N1,2…N1,8 (numbers-at-age in the first year), and s1,f…s7,f (fishery selectivity); models 

with surveys also included s1,s…s7,s (survey selectivity) and qs (survey catchability).  

Numbers-at-age in the first year and recruitment for each year were estimated as 

parameters during the model fitting process.  After the first year and age, abundance-at-

age followed a standard exponential mortality model with the last age representing all 

fish that age and older (eqs. T2.2.2a, T2.2.2b). 

The total mortality rate (Zy,a) was the sum of M and Fy,a (eq. T2.4); M was 

assumed known at 0.25 (the true value from the simulation models).  Fishing mortality 

followed a separable model for all of our estimation models.  Fishery and survey 

selectivities were estimated as individual parameters by setting selectivity at the oldest 

age-class to one.  Estimation models contained four methods of estimating catchability: 

white noise, random walk, density dependent, and no catchability (directly estimating 

fishing mortality) with survey data.  The first estimation model allowed fishery 

catchability to vary with white noise about a constant mean (eq. T2.2.6).  The second 

estimation model allowed fishery catchability to vary according to a random walk (eq. 

T2.2.16).  The third estimation model allowed catchability to be a density dependent 

function (eq. T2.2.8).  The density dependent model did not contain any random 

deviations.  In our fourth estimation model, we estimated the fishing mortality rate for 

fully selected age classes as a parameter, and then applied the estimated fishery 

selectivity to calculate age-specific fishing mortality rates (eq. T2.2.17).  This method 

does not use fishery effort as a data source.  The estimation models also predicted 

proportions of fishery and survey catch-at-age. 
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Model Fitting and Convergence 

We fit the models using a likelihood-based approach where we used a numerical 

search to find parameter values that minimized our objective function.  The objective 

function was the sum of the likelihood components and each component was the negative 

of the log-likelihood for a single data source or a penalty related to time-varying 

catchability (eq. T2.3.1).   

Our estimation models assumed lognormal distributions of errors for total catch 

for the fishery (eq. T2.3.2) and survey CPE (eq. T2.3.3) and multinomial distributions for 

age compositions of the fishery (eq. T2.3.4) and the survey (eq. T2.3.5; Fournier and 

Archibald 1982).  Effective sample sizes and CVs of the fishery and survey catch and age 

compositions were set to their true values from the generating models.  The likelihood 

components for survey CPE and age composition were only included in models that 

included survey data.   

For estimation models that used fishery effort as a data source, fishery CPE was 

not explicitly modeled.  Instead, fishing mortality was an explicit function of effort, and 

catch was linked to abundance and fishery effort by estimating the catchability 

coefficient.  We assumed lognormal deviations for catchability in the white noise (eq. 

T2.3.6) and random walk (eq. T2.3.7) estimation models.  The CV for the white noise 

catchability was set to the true expected value, which was 0.2 for all data generating 

models.  For the random walk model, we set the CV to 0.165, the CV that on average 

created a time series with a sample CV of 0.2.  This component in the objective function 

can be thought of as a penalty that produces a shrinkage estimator (in the Frequentist 

case) or as a Bayesian prior and penalizes large deviations from mean catchability (for 
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the white noise model) or large year-to-year deviations (in the random walk model).  

Estimation models that contained density dependent catchability or ignored effort data 

did not contain likelihood component 5l . 

We minimized the objective function iteratively using an efficient quasi-Newton 

implementation in AD Model Builder software that takes advantage of automatic 

differentiation (Otter Research Limited 2000).  We minimized the objective function in 

stages, where the initial stages were penalized if the model estimates deviated from the 

expected average fishing mortality rates under each scenario (early stages can be viewed 

as providing starting values for subsequent stages).  This constraint was removed for the 

final stage of fitting and therefore did not penalize final model estimates.  Iterative 

adjustment of the parameters terminated when the maximum gradient of parameters with 

respect to the objective function was less than 0.0001, or more than 1000 function 

evaluations had occurred.  We denoted any terminated parameter estimates where the 

maximum gradient component was less than 0.0005 as converged, based on trial 

investigations after the completion of the simulations that used different parameter 

starting values. 

Evaluation of Estimation Model Performance 

In stock assessments, estimated quantities in the last year are often most important 

for forecasting and management.  Therefore, we evaluated estimation model performance 

by calculating the relative error (RE) of estimated biomass in the last year. 

(2.1)     
true

trueestimatedRE −
=  

We report only results for stock size measured in biomass.  Other common 

measures of stock size (e.g., measures of exploitable abundance) showed similar patterns 
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and estimates of fully selected F or exploitation rate reflected similar but inverse patterns 

(i.e., if estimated biomass was higher than the true value, estimated F was usually lower 

than the true value and vice versa).  We evaluated systematic over or under estimation 

using the median of the relative error (MRE).  If MRE equals zero, half of the estimates 

are higher than the true value and half are lower than the true value.  Throughout the rest 

of the paper we use the term unbiased as meaning median unbiased (i.e., MREs near 

zero).  We also compared estimation model performance using the median of the absolute 

values of relative error (MARE), which indicates the width of the distribution of REs if 

the median is zero.  In situations where the REs are either all (or mostly) positive or 

negative, the MRE will equal the MARE.  We compared relative performance of the 

estimation models by calculating the difference of their MAREs and report these 

differences as percentages because the units of MARE are percent.  We used MRE and 

MARE instead of mean relative error and root mean squared error because mean values 

were heavily influenced by several cases with large relative errors (>100).  We checked 

whether these outliers represented false convergence by restarting the estimation with 

different starting values.  Convergence was verified and obtained the same parameter 

estimates. 

Results 

All estimation models performed best in situations with high fishing mortality and 

low survey CV and worst in cases with low fishing mortality and no survey (Table 2.4, 

Table 2.5).  The performance of a given estimation model depended on the level of 

fishing mortality, survey quality, and data generating model.  In almost all cases, 

estimation models that made use of both survey CPE and fishery effort outperformed 
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models that used only fishery effort or survey CPE.  Performance of the estimation model 

that ignored fishery effort data was independent of the underlying catchability model that 

generated the data and was only a function of survey quality and fishing mortality.  The 

estimation model that ignored effort data was relatively unbiased (MRE near zero) in all 

cases, but the MARE was often significantly higher than for estimation models assuming 

white noise and random walk catchability and the relative performance of this method 

was highly dependent on survey quality.  For the other estimation models, the results can 

be separated into two categories: ones where all estimation models were relatively 

unbiased (white noise, autoregressive, and density dependent) and ones where some 

estimation models had substantial bias (linear increase and abrupt change).  Although the 

density dependent estimation model was relatively unbiased in many cases, it performed 

relatively poorly overall because it did not converge for 15-35% of the simulated data 

sets that did not contain density dependent catchability; the other estimation models 

usually failed to converge less than 1% of the time.  This lack of convergence likely 

occurred because the two parameters describing density dependent catchability were 

confounded with one another (i.e., many combinations of α and β could produce equally 

good fits) for many data sets, and thus the optimization procedure could not find a unique 

best solution.  Because of problems with convergence in most cases, we did not believe 

that the density dependent estimation model was a viable candidate for most situations. 

White Noise, First Order Autoregressive, and Density Dependent 

In cases where the data generating models contained white noise catchability, first 

order autoregressive catchability, or density dependent catchability, all estimation models 

produced relatively unbiased estimates of biomass in the last year (i.e., MREs near zero; 
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Table 2.4), with the most biased estimation model in these scenarios having an MRE of 

only -6.1% (random walk estimation model fitting density dependent generation model 

with low mortality and no survey). There were larger differences in precision among the 

estimators and this was reflected in MARE and the tightness of the distributions of 

relative errors (Table 2.4).  For cases where the estimation model was the same as the 

generating model (white noise and density dependent), the estimation model that matched 

the generating model performed best (i.e., had the lowest MARE and tighter 

distributions).  In the case of the AR1 data generating model, the random walk model 

performed best in most cases.  Differences in MARE among estimation models that 

modeled catchability as white noise, a random walk, or ignored fishery effort were 

usually less than 5% for cases with good surveys (Figure 2.3; Figure 2.4).  However, 

MAREs of random walk and white noise estimation models were 7-30% lower than 

estimation models that ignored fishery effort in cases with a poor survey.  Differences in 

estimation model relative performance were largely accounted for by differing 

performance of random walk and white noise catchability models because the 

performance of the estimation model that ignored fishery effort data was relatively 

constant for a given level of fishing mortality and survey quality.  White noise and 

random walk models were most accurate in cases with white noise catchability, 

somewhat less accurate for cases with density dependent catchability, and least accurate 

in cases with AR1 catchability. 

Linear Increase and Abrupt Change 

The white noise and random walk estimation models were biased in cases where 

catchability increased linearly or changed abruptly, but the amount of bias depended on 
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survey quality, fishing mortality rate, and data generating model.  The MREs of biomass 

in the last year for estimation models with white noise and random walk catchability were 

above zero in all cases, indicating a positive bias (Table 2.5).  The positive bias seen in 

our simulations undoubtedly reflects the direction of change in catchability built into our 

simulations, where the estimation models did not fully account for the increase in fishery 

catchability.  Neither the white noise nor the random walk estimation models performed 

well in cases with no survey, trending catchability, and low mortality.  The amount of 

bias was highest in cases where fishery catchability changed abruptly and fishing 

mortality rates were low and decreased as the level of fishing mortality increased and as 

survey quality improved.   

Although the random walk estimation model was biased, it usually had a lower 

MARE than our other estimation models, but performance relative to the other estimation 

models depended on the treatment.  In cases with a good survey, the MARE of the 

estimation model that ignored fishery effort and the MARE of the random walk 

estimation model were within 5% of one another (Figure 2.3).  However, in cases with a 

poor survey, the random walk model usually had MAREs 10-20% lower than the 

estimation model that ignored fishery effort.  The estimation model that ignored fishery 

effort data only outperformed the random walk model in the scenario with an abrupt 

change in catchability and low fishing mortality.  The estimation model that ignored 

fishery effort and the random walk estimation model clearly outperformed the white 

noise estimation model in these cases and had MAREs 12-50% lower than the white 

noise estimation model (Figure 2.4). 
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Discussion 

Often stock assessment scientists will not use or will substantially downweight 

(i.e., specify an arbitrarily large CV) fishery effort or CPE data in an SCA if a fishery 

independent index of abundance is available for a given stock.  Indeed, the NRC (1998) 

recommended that fishery dependent indices of abundance should be ignored if an 

independent index of abundance is available based on the results of their simulations.  

However, our results argue against automatically ruling out the use of fishery dependent 

indices of abundance when a survey is present.  In cases where the survey CV is large, 

we believe that use of fishery dependent indices is justified if they are believed to contain 

information on stock size.  Of course fishery effort should be adjusted for known changes 

in fishing efficiency, and the estimation model should allow for flexible changes in 

catchability over time, as was the case for our random walk estimator.  The reliability of 

fishery effort data may be suspect in some fisheries and, in these cases, it may make 

sense to ignore fishery effort.  Using methods that do not allow for trends in catchability 

can lead to severely biased SCA estimates, and modeling fishery catchability as white 

noise (which is often done) may not provide the necessary flexibility for models to 

accurately depict system dynamics.  Also, there may be a tendency to overstate the 

precision of survey data and understate the precision of fishery data in SCAs, which is 

what Francis et al. (2003) found for assessments of many New Zealand commercial 

fisheries.     

Our recommendations are contrary to NRC (1998), because we evaluated a wider 

range of structural models for time-varying fishery catchability within SCAs, but our 

results yield similar insights for the cases they explored.  In the NRC (1998) study, 
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fishery catchability increased over time combined with density dependence; their survey 

had a CV of 30% (near the level of our “good” survey).  Also, the NRC (1998) study 

mainly included SCA estimation models that contained white noise models for 

catchability or ignored fishery effort data (see Restrepo (1998) for details of models used 

in the NRC (1998) study).  The exception was one estimation model where fishery 

catchability was modeled as a mixture of random walk and white noise processes (Ianelli 

and Fournier 1998).   However, the CV of the white noise term was large relative to the 

CV of the random walk term (Ianelli and Fournier 1998), which likely caused the model 

to perform similarly to a white noise model.  Similar to the results of NRC (1998), we 

also found that that SCA models that ignored fishery effort data outperformed SCA 

models that modeled fishery catchability as white noise in cases with trending 

catchability.    

Independent survey indices of abundance or relative abundance are extremely 

important for obtaining accurate SCA estimates, especially in situations with low fishing 

mortality.  Our results agree with the NRC (1998) recommendation to use survey data if 

they are available.  In our study, estimation models that utilized fishery effort data and 

survey data (even with a CV of 100%) outperformed models that used only fishery effort 

data, especially in cases where catchability trended over time and fishing mortality was 

not high.  

It is important to standardize effort series to remove catchability trends to as large 

an extent as possible.  Our experiments showed that SCA estimates were most biased 

when trends or abrupt changes in fishery catchability occurred and that all our estimation 

models performed reasonably well in cases where catchability did not trend over time.  
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Trending fishery catchability is probably common.  Many mechanisms could lead to 

trends in fishery catchability, such as increasing power of the fishery, increasing 

aggregation of fish stocks and fishers, or trending recruitment dynamics and density 

dependent catchability.  Salthaug and Aanes (2003) presented a method to correct CPE 

for the spatial distribution of fishing effort, which has been shown to affect catchability 

(Winters and Wheeler 1985; Rose and Kulka 1999).  Also, improvements in vessels, and 

other fisher behaviors can be accounted for either by preprocessing (e.g., analyzing CPE 

data to estimate mean CPE by accounting for vessel characteristics and spatial and 

temporal patterns of fishing) fishery data or by integrating the standardization process 

into the stock assessment model (e.g. Maunder 2001; Maunder and Starr 2003; Maunder 

and Punt 2004).  The procedure of simultaneously standardizing catch and effort data and 

fitting the stock assessment model can lead to improved estimates over the two-step 

approach of standardizing catch and effort data and then fitting the assessment model 

with the standardized values (Maunder 2001; Maunder and Langley 2004).  

Our results probably provide a best-case view of the performance of SCAs when 

faced with time-varying catchability and may exaggerate the accuracy of all estimation 

models used in our study.  Except for the catchability aspect, the structure of the 

estimation models was correct (i.e., the same as the data generating model).  In reality, it 

is likely that M may vary among years and ages and that the data analyst will not know 

the true M.  Fishery selectivity may vary over time, which can cause biased estimates 

from SCA models if it is not accounted for (Radomski et al. in press).  Likewise, our 

models did not contain trends in survey catchability over time or correlation with changes 

in fishery catchability, which could cause models that used survey indices of abundance 
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to generate less accurate estimates.  Lastly, our data generating models contained a 

survey with an asymptotic selectivity pattern, which allows SCA models to produce more 

accurate estimates than other survey selectivity patterns (Bence et al. 1993).   

While our results favored the random walk model in general, this was not true 

under all circumstances.  We recommend that data analysts fit multiple stock assessment 

models with different assumptions about time-varying catchability.  One may be able to 

then determine the best catchability model using a Bayesian framework, where each of 

the catchability models we fit is a special case of a “full” model (McAllister and Kirchner 

2002; Gelman et al. 2004).  For instance, the estimation models that ignore effort data, 

use white noise, or a random walk are all special cases of a first order autoregressive 

process (eq. T2.8).  In the case of white noise, the correlation coefficient (ρ) equals 0.  In 

the case of random walk, ρ equals 1.  And in the case of ignoring effort data, the CV of 

the random deviations (σ) is infinity.  Thus, one possible procedure would be to allow 

catchability to follow a first order autoregressive process and estimate the ρ and σ 

parameters.  If the CVs of the other likelihood components are specified, these 

parameters (ρ and σ) may be estimable and this method could lead to better SCA 

estimates of parameters and uncertainty.  Alternative approaches would be to select 

among our special case models using the deviance information criterion (Spiegelhalter et 

al. 2002) or other measures that account for both goodness of fit and model complexity, 

or to average over the alternative models using Bayesian Model Averaging (McAllister 

and Kirchner 2002).  These are topics warranting future research. 
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Table 2.1. Symbols and descriptions of variables for data generating and estimation 

models. 

Symbol Description Value (if needed in the 

data generating model) 

R  Average recruitment 1,000,000 

Ny,a 
Abundance by age and year  

By 
Biomass  

Zy,a 
Total instantaneous mortality rate by age and 

year 

 

Fy,a 
Instantaneous fishing mortality rate by age 

and year 

 

M Instantaneous natural mortality rate 0.25 

sa,f 
Fishery age-specific selectivity See figure 2.2 

sa,s Survey age-specific selectivity See figure 2.2 

Ey 
Fishery effort See figure 2.1 

qy,f 
Fishery catchability  

qs 
Survey catchability 0.0001 

fq  Mean fishery catchability 0.05 

Cy,a 
Expected fishery catch-at-age  
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Iy,a 
Expected survey catch-at-age  

yC~  Observed total fishery catch  

yI~  Observed total survey catch  

uy,a,f 
Proportion of catch-at-age in fishery  

uy,a,s Proportion of catch-at-age in survey  

wa 
Mean weight at age 0.16, 0.45, 0.82, 1.2, 1.55, 

1.86, 2.11, 2.3 

yδ  Deviations for white noise catchability  

yε  Deviations for first order autoregressive 

catchability 

 

yω  Deviations for random walk catchability  

βα ,  Parameters for density dependent catchability 

(low, medium, high) 

175, 0.53; 90, 0.49; 35, 

0.42 

a, b Parameters for linear increase in catchability 0.032, 0.00225 

q1 , q2 Parameters for abrupt change in catchability 0.0402, 0.0598 

fy 
Fishing intensity by year  

ρ Correlation parameter for autoregressive 

catchability 

0.9 

γσ  CV for recruitment variation 1.0 
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τσ  Fishery measurement error CV 0.1 

υσ  Survey measurement error CV 0.25; 1.0 

δσ  CV for white noise catchability deviations 0.2 

εσ  CV for autoregressive catchability deviations 0.16 

ωσ  CV for random walk catchability deviations 0.165 
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 Table 2.2.  Data generating and estimation model equations. 

 Population model equations Application 

(T2.2.1) 

⎟
⎠
⎞⎜

⎝
⎛
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−

=
−

= 2,0~;

1

1 1
,1 γσγ
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N

a
a

a ,aZ
eRaN  

Generation 

(T2.2.2a) ayZ
eayNayN ,

,1,1

−
=++  

Both 
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8,

7,
7,8,1

yZ
eyNyZ

eyNyN
−

+
−

=+  
Both 

(T2.2.3) ∑=
a awayNyB ,  Both 

(T2.2.4) ayFMayZ ,, +=  Both 

(T2.2.5) asyEyqayF =,  Both 

 Catchability model equations  

(T2.2.6) White noise 

⎟
⎠
⎞⎜

⎝
⎛+= 2,0~;log,log δσδδ Nyyfqefyqe  

Both 

(T2.2.7a) First order autoregressive 

⎟
⎟
⎟

⎠

⎞

⎜
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⎜

⎝

⎛

− 21

2
,log~,1log

ρ
εσ

fqeNfqe  
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⎝
⎛
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⎝
⎛ −+=+
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log,loglog,1log

εσε

ερ
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(T2.2.8) Density dependent 

βα −= yNfyq ,  

Both 

(T2.2.9) Linear increase 

)(, ybafyq +=  

Generation 

(T2.2.10) Abrupt change 

8 if 2

8 if 1
, ≥

<
= yq

yq
fyq  

Generation 

(T2.2.11) Random walk 

⎟
⎠
⎞⎜

⎝
⎛+=+

2,0~;,log,1log ωσωω Nyyfyqefyqe  

Estimation 

(T2.2.12) Freely estimate fy (ignore fishery effort) 

fasyfayF ,, =  
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 Observation model equations  
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ayNayZ
e

ayZ
ayF

ayC ,),1(
,

,
,

−
−=  

Both 

(T2.2.14) 
),0(~;,

~
τστ

τ
Nya ayCyeyC ∑=  
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(T2.2.15) ayNassqayI ,, =  Both 

(T2.2.16) 
),0(~;,

~
υσυ

υ
Nya ayIyeyI ∑=  

Both 
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Table 2.3.  Objective function equations for statistical catch-at-age analysis simulation 

study.  Equations T2.3.3 and T2.3.5 were only used in estimation models that considered 

survey data.  Equations T2.3.6 and T2.3.7 were only used in estimation models that 

modeled fishery catchability as white noise or a random walk respectively. 

(T2.3.1) ∑=
i iL l  Objective function 

(T2.3.2) 2
)ˆ(log)~(log

22

1
1 ∑ ⎟

⎠
⎞⎜

⎝
⎛ −=

y yCeyCe
τσ

l
Fishery catch 

(T2.3.3) 2
)ˆ(log)~(log

22

1
2 ∑ ⎟

⎠
⎞

⎜
⎝
⎛ −=

y yIeyIe
υσ

l  
Survey catch-per-effort 

(T2.3.4) 
∑∑−=
y a fayuefayufn ),,ˆ(log,,3l  Proportion at age in the fishery catch

(T2.3.5) 
∑∑−=
y a sayuesayusn ),,ˆ(log,,4l  Proportion at age in the survey catch 

(T2.3.6) 2
ˆ
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White noise catchability 
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⎠
⎞⎜

⎝
⎛=

y y
q

ω
σ

l  
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Table 2.4.  Simulation results for statistical catch-at-age estimation model performance in 

cases where data generating models included white noise catchability (WN), first order 

autoregressive catchability (AR), and density dependent catchability (DD).  Shown are 

median relative error (MRE) and median of the absolute values of relative error (MARE) 

for estimated biomass in the last year (year 15) from four statistical catch-at-age 

estimation models: white noise (WN), random walk (RW), density dependent (power 

relationship; DD), and freely estimated F at maximum selectivity (i.e., not fitted to 

fishery effort data; FF).  Data generating models included three levels of fishing mortality 

(high [F=2M], medium [F=M], and low [F=0.5M]), and 3 levels of survey precision 

(good [CV=25%], poor [CV=100%], and no survey).  Estimation models with the lowest 

MARE for each treatment are indicated in bold. 

   Estimation Model 
   MRE MARE 
q-Model Mortality Survey WN RW DD FF WN RW DD FF 
WN low good -0.005 0.009 0.007 0.017 0.196 0.212 0.259 0.216 

WN low poor -0.006 -0.010 0.016 0.018 0.214 0.258 0.284 0.493 

WN low none 0.006 -0.019 0.000  0.231 0.255 0.319  

WN medium good 0.001 0.009 0.019 0.024 0.133 0.155 0.191 0.170 

WN medium poor 0.012 0.002 0.031 0.036 0.156 0.213 0.219 0.400 

WN medium none 0.018 0.006 0.035  0.183 0.234 0.233  

WN high good 0.012 0.015 0.015 0.024 0.103 0.119 0.143 0.146 

WN high poor 0.011 0.001 0.025 0.046 0.124 0.166 0.149 0.308 

WN high none 0.020 0.017 0.041  0.141 0.185 0.179  

AR low good -0.004 0.004 0.022 0.000 0.271 0.222 0.356 0.226 

AR low poor 0.009 -0.025 0.030 -0.001 0.355 0.335 0.434 0.498 

AR low none 0.020 -0.015 0.011  0.409 0.419 0.456  

AR medium good 0.008 0.006 0.006 0.031 0.211 0.164 0.302 0.169 
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AR medium poor 0.002 -0.045 0.034 0.014 0.297 0.278 0.365 0.412 

AR medium none 0.031 -0.031 0.028  0.332 0.340 0.373  

AR high good 0.007 0.009 0.029 0.030 0.174 0.131 0.251 0.148 

AR high poor 0.004 -0.022 0.029 0.019 0.236 0.196 0.301 0.314 

AR high none 0.018 -0.037 0.025  0.271 0.236 0.311  

DD low good -0.019 0.022 0.006 0.013 0.244 0.233 0.195 0.243 

DD low poor -0.025 -0.006 0.009 0.046 0.342 0.324 0.234 0.514 

DD low none -0.025 -0.061 0.007  0.401 0.384 0.273  

DD medium good -0.026 0.009 0.024 0.027 0.177 0.163 0.139 0.185 

DD medium poor -0.023 -0.031 0.023 0.039 0.252 0.249 0.177 0.418 

DD medium none -0.020 -0.047 0.018  0.295 0.292 0.199  

DD high good -0.010 0.005 0.027 0.031 0.137 0.121 0.114 0.146 

DD high poor -0.012 -0.028 0.020 0.037 0.193 0.178 0.130 0.329 

DD high none 0.004 -0.030 0.022  0.218 0.213 0.155  
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Table 2.5.  Simulation results for statistical catch-at-age estimation model performance in 

cases where data generating models included linearly increasing catchability (LI) and an 

abrupt increase in catchability (AC).  Shown are median relative error (MRE) and median 

of the absolute values of relative error (MARE) for estimated biomass in the last year 

(year 15) from four statistical catch-at-age estimation models: white noise (WN), random 

walk (RW), density dependent (power relationship; DD), and freely estimated F at 

maximum selectivity (i.e., not fitted to fishery effort data; FF).  Data generating models 

included three levels of fishing mortality (high [F=2M], medium [F=M], and low 

[F=0.5M]), and 3 levels of survey precision (good [CV=25%], poor [CV=100%], and no 

survey).  Estimation models with the lowest MARE for each treatment are indicated in 

bold. 

   Estimation Model 
   MRE MARE 
q-Model Mortality Survey WN RW DD FF WN RW DD FF 

LI low good 0.353 0.050 0.437 0.013 0.353 0.187 0.437 0.234 

LI low poor 0.762 0.419 0.647 0.044 0.762 0.419 0.647 0.501 

LI low none 0.751 0.635 0.642  0.751 0.635 0.642  

LI medium good 0.345 0.074 0.488 0.029 0.345 0.150 0.488 0.174 

LI medium poor 0.671 0.299 0.653 0.032 0.671 0.302 0.653 0.390 

LI medium none 0.716 0.429 0.647  0.716 0.429 0.648  

LI high good 0.322 0.072 0.482 0.031 0.322 0.121 0.482 0.140 

LI high poor 0.551 0.172 0.598 0.033 0.551 0.189 0.598 0.280 

LI high none 0.605 0.211 0.611  0.605 0.213 0.611  

AC low good 0.571 0.165 1.386 0.018 0.571 0.255 1.386 0.242 

AC low poor 1.154 0.655 2.145 0.055 1.154 0.655 2.145 0.491 

AC low none 1.755 1.413 2.462  1.755 1.413 2.462  

AC medium good 0.371 0.088 0.730 0.029 0.371 0.168 0.730 0.171 
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AC medium poor 0.699 0.282 1.107 0.039 0.699 0.300 1.107 0.390 

AC medium none 0.842 0.472 1.207  0.842 0.472 1.207  

AC high good 0.291 0.038 0.488 0.030 0.291 0.114 0.488 0.139 

AC high poor 0.497 0.084 0.641 0.019 0.497 0.144 0.641 0.280 

AC high none 0.550 0.103 0.620  0.550 0.154 0.620  
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Figure 2.1.  Effort series used for high, medium, and low fishing mortality rate scenarios 

in the data generating models.  The average fishing mortality rates for fully selected age 

classes were approximately 2M for the high scenario, M for the medium scenario, and 

0.5M for the low scenario. 
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Figure 2.2.  Fishery and survey selectivity patterns used in the data generating model. 
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Figure 2.3.  Relative performance of the estimation model that ignores fishery effort 

versus the random walk estimation model measured by the difference of median of the 

absolute value of the relative errors (MARE).  Positive values indicate that the estimation 

model that ignored fishery effort data had a larger MARE than the random walk 

estimation model and vice versa.  Data generating models are indicated by the symbol 

shape: WN – white noise, AR – autoregressive, DD – density dependent, LI – linear 

increase, and AC – abrupt change.  Two letters identify each treatment:  the first letter for 

level of fishing mortality (L – low, M – medium, H – high) and the second letter for level 

of survey quality (G – good, P – poor).    
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Figure 2.4.  Relative performance of white noise versus random walk estimation model 

measured by the difference of median of the absolute value of the relative errors 

(MARE).  Positive values indicate that the white noise estimation model had a larger 

MARE than the random walk estimation model and vice versa.  Data generating models 

are indicated by the symbol shape: WN – white noise, AR – autoregressive, DD – density 

dependent, LI – linear increase, and AC – abrupt change.  Two letters identify each 

treatment:  the first letter for level of fishing mortality (L – low, M – medium, H – high) 

and the second letter for level of survey quality (G – good, P – poor, N – none). 
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CHAPTER 3                                                                                      

PERFORMANCE OF BAYESIAN MODEL SELECTION IN STATISTICAL CATCH-

AT-AGE ANALYSIS 

Introduction 

Development of a fishery stock assessment often involves fitting alternative 

models and using what is thought to be the best among them to provide management 

advice.  The “best” model is often selected by ad hoc criteria with unknown performance 

characteristics.  Model selection is an area of importance because estimated quantities 

important for management, such as exploitable biomass, can be extremely sensitive to 

model structure (McAllister and Kirchner 2002).  Common uncertainties in statistical 

catch-at-age (SCA) model structure include stock-recruitment relationships, selectivity 

functions, and assumptions linking fishery catch with abundance and effort (McAllister 

and Kirchner 2002).  In some cases, results from several models will be reported to 

managers, but quantitative estimates of the relative likelihood a particular model being 

most “correct” are typically not provided (McAllister and Kirchner 2002). 

 Model selection has been applied to SCA models, but previous applications have 

been limited in the types of models that could be compared.  Helu et al. (2000) evaluated 

performance of Akaike’s Information Criterion (AIC; Akaike 1973) and Schwartz’s 

Bayesian Information Criterion (BIC; Schwartz 1978) to assess model selection in SCA 

models and found that AIC and BIC both performed well by selecting the candidate 

model that was the same as the data-generating model in most of their scenarios.  

Unfortunately, although AIC or BIC may perform well in some cases, their 

implementation is problematic when models differ in their random effects or hierarchical 
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structures because the number of parameters in these models is not easy to determine 

(Burnham and Anderson 2002).  Therefore, to be able to compare structurally complex 

SCA models requires alternative model selection approaches that can account for random 

effects and priors on parameters.   

The Deviance Information Criterion (DIC) has been developed relatively recently 

to select among complex hierarchical models where the number of effective parameters is 

not readily apparent (Spiegelhalter et al. 2002).  Much like AIC and BIC, DIC selects 

among models by trading off goodness of fit and model complexity.  DIC is a 

generalization of AIC and reduces to AIC in the case of a model with diffuse priors 

(Spiegelhalter et al. 2002).  DIC is particularly applicable to models with random effects 

or hierarchical structure because it estimates the effective number of parameters rather 

than requiring the user to provide this.  Unlike BIC, DIC does not depend on the number 

of data points directly in its calculation.   

Although DIC has been applied in many studies (e.g., Zhu and Carlin 2000; Barry 

et al. 2003), relatively few studies have evaluated the performance of DIC model 

selection (Spiegelhalter et al. 2002; Cardoso and Tempelman 2003; Kizilkaya and 

Tempelman 2003; Berg et al. 2004; Kizilkaya and Tempelman 2005; van der Linde 

2005).  In general, these studies found that DIC usually selected the correct model (i.e., 

the model that generated the data) from the set of candidate models and that the estimated 

number of effective parameters seemed reasonable for their given models.   

Bayes factors are another method to compare models that can account for random 

effects and hierarchical structure (Gelman et al. 2004).  Fournier et al. (1998) used 

posterior Bayes factors (an approximation to Bayes factors; Aitkin 1991) to estimate 
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“weight of evidence” of one model over another (Lavine and Schervish (1999) showed 

that weight of evidence is not quite an accurate description of Bayes factors).  However, 

like AIC and BIC, posterior Bayes factors also require the number of parameters as an 

input to the calculation.  McAllister and Kirchner (2002) estimated Bayes factors for 

several competing assessment models of Namibian orange roughy (Hoplostethus 

atlanticus) using the sampling-importance resampling algorithm.  To date, there are no 

published studies of fishery stock assessments that have evaluated the performance of 

model selection or model averaging based on Bayes factors.  However, in complex 

models, such as SCA models, Bayes factors can be difficult to calculate and sensitive to 

priors (Kass and Raftery 1995; Lavine and Schervish 1999; Han and Carlin 2001). 

 My objectives were to determine if using DIC or an approximation of Bayes 

factors as model selection criteria resulted in choosing an appropriate model structure and 

level of complexity.  Also, I wanted to evaluate whether using formal model selection 

methods provided more accurate estimates of important fishery management quantities, 

such as fishing mortality rate and biomass in the last year.  To achieve these objectives, I 

designed a simulation study and challenged the model selection criteria with three 

estimation models and three scenarios of data accuracy and time-varying catchability.  

Methods 

I evaluated whether using DIC and approximate Bayes factors to select among 

SCA model variants provided more accurate estimates of quantities used for management 

than an approach of using a single model structure in all cases.  My data-generating 

models contained three basic scenarios, which differed in their relationship between 

fishing mortality and observed effort.  These scenarios included (1) modeling fishery 
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catchability as white noise, (2) modeling fishery catchability as increasing a constant 

amount each year, and (3) treating fishing mortality as unrelated to observed effort.  I 

chose these data-generating scenarios because previous results indicated that the relative 

performance of different estimation models was likely to change over this range of 

conditions.  Three different estimation models were fitted to each of the 30 datasets (ten 

from each scenario).  These estimation models contained different assumptions regarding 

fishery catchability; (1) catchability was modeled as white noise, (2) as a random walk, 

and (3) where catchability was effectively estimated as a free parameter for each year.  

This last method ignores any information contained in fishery effort data. 

All models contained 15 years of data and eight age classes with the last age class 

representing all fish that age and older.  Data-generating models were based on 

commercial fisheries for lake whitefish (Coregonus clupeaformis) in the upper Great 

Lakes.  Symbols and equations defining the data-generating models and estimation 

models are presented in Tables 3.1 and 3.2.  Equations are referred to in the text as eq. 

Tx.y, where x is the table number and y is the equation number within Table x.  To avoid 

redundancy, equivalent quantities and parameters in estimation and data-generating 

models are not differentiated except when they both appear in the same equation, in 

which case estimated quantities are denoted with a caret above the symbol.  

Data-generating Model 

The data-generating model described the population dynamics and created data 

sets of total fishery catch, the age composition of the fishery catch, total survey CPE, the 

age composition of the survey, and fishery effort.  To model population dynamics, I used 

an age-structured model that followed cohorts over time.  Recruitment (abundance at age 
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1) was generated from a lognormal distribution with a coefficient of variation (CV) of 

100%.  Numbers-at-age in the first year were calculated assuming a stable age 

distribution with lognormal errors, where recruitment and mortality rates prior to the first 

year of the simulation were on average the same as in the first year (eq. T3.2.1).  Cohorts 

were tracked over time by applying a simple exponential mortality model (eq. T3.2.2a); 

the last age class was treated as representing all fish age 8 and older (eq. T3.2.2b).  

Biomass each year was the sum of age-specific abundance and mean weight-at-age (eq. 

T3.2.3). 

I used a separable (i.e., fishing mortality was the product of an age effect and a 

year effect) model to generate fishing mortality rates.  The total mortality rates were 

determined by the natural mortality rate and age-specific fishing mortality rates (eq. 

T3.2.4).  M was held constant across ages and years at 0.25.  The instantaneous fishing 

mortality rate was a function of catchability, fishing effort, and age-specific selectivity 

(eq. T3.2.5).  I allowed fishing mortality to change over time by allowing fishery effort to 

change and by incorporating two processes of time-varying catchability (see below).   

The overall level of fishing mortality varied among simulations.  This was 

accomplished by multiplying the baseline effort (Figure 3.1) by a Uniform(1,2) number 

selected for each simulation.  The baseline effort series was designed to produce an 

average level of F for fully selected ages approximately equal to M.  Thus, this procedure 

led to F for fully selected ages varying among simulations between M and 2M.  For the 

white noise catchability and linearly increasing catchability scenarios observed effort 

equaled true effort.  For the scenario with uninformative effort, the observed effort series 

was drawn as uniform random numbers between the minimum true effort (effort in year 
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1) and the maximum true effort (effort in year 8).  The selectivity pattern for the fishery 

was dome shaped to simulate a gill net fishery (Figure 3.2). 

I included two models for time-varying catchability, which caused SCA models to 

have variable performance (chapter 2).  The loge of catchability was modeled as white 

noise to simulate a fishery where catchability varied from year to year about a constant 

mean (eq. T3.2.6), perhaps due to environmental effects.  In the second scenario, 

catchability increased linearly over time with a small amount of white noise error (eq. 

T3.2.9), which could represent learning by fishers or increases in gear efficiency.  Both 

models were parameterized to have the same expected catchability (over the time series) 

and similar variances of logeqf.  I achieved this by simulating data sets and adjusting the 

catchability parameters until the mean and variance of catchability were the same as in 

the white noise case.  I used a value of 0.2 for the standard deviation of the loge of 

catchability.  This value is similar to estimates of the CV of catchability for commercial 

fisheries in New Zealand (Francis et al. 2003), but was less than median values of the CV 

of fishery CPE estimated by Harley et al. (2001) for International Council for the 

Exploration of the Sea fisheries of 0.4-0.8, which should be an upper bound on the CV of 

catchability.   

Fishery catch was calculated with the Baranov catch equation (eq. T3.2.13; Quinn 

and Deriso 1999).  I multiplied total catch by a lognormal measurement error to calculate 

observed fishery catch (eq. T3.2.14); the measurement error CV for fishery catch was 

about 0.1.  Observed age compositions for the fishery catch were generated by drawing a 

random sample from a multinomial distribution of size 200 with proportions equal to the 

true proportions of catch-at-age in the fishery.  Survey CPE-at-age was calculated as the 
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product of survey catchability, abundance, and survey selectivity (eq. T3.2.15), and 

observed survey CPE was the product of total survey CPE and a lognormal measurement 

error (eq. T3.2.16).   

As was the case for average fishing mortality, survey quality varied randomly 

among simulated datasets.  This was accomplished by selecting the measurement error 

CV for each simulation from a Uniform(0.2,0.8) distribution.  These levels of survey CV 

were selected because they provided contrast in performance of several estimation 

models in chapter 2.  Catchability of the survey was constant over time.  Observed survey 

age compositions were generated by drawing a random sample from a multinomial 

distribution of size 150 with proportions equal to the true proportions of CPE at age 

calculated from eq. T3.2.15. 

Estimation Model 

The estimation models were largely the same as the simulation models except for 

how catchability was estimated and how numbers-at-age in the first year and recruitments 

were handled.  Common parameters among models included N1,1…N15,1 (Recruitment), 

N1,2…N1,8 (numbers-at-age in the first year), and s1,f…s7,f (fishery selectivity), s1,s…s7,s 

(survey selectivity) and qs (survey catchability).  All models had 52 unique estimated 

parameters.  Parameterization of the models to reduce correlations among parameters is 

described in Appendix B.  Numbers-at-age in the first year and recruitment for each year 

were estimated as parameters during the model fitting process.  After the first year and 

age, abundance-at-age followed a standard exponential mortality model with the last age 

representing all fish that age and older (eqs. T3.2.2a, T3.2.2b). 



 

 90

The total mortality rate (Zy,a) was the sum of M and Fy,a (eq. T2.4); M was 

assumed known at 0.25 (the true value from the simulation models).  Fishing mortality 

followed a separable model for all of my estimation models.  Fishery and survey 

selectivities were estimated as individual parameters by constraining the log of the age-

specific selectivities to sum to zero.  This method was used to reduce correlations among 

selectivity parameters.  Estimation models contained three methods of estimating 

catchability: white noise, random walk, and no catchability (directly estimating fishing 

mortality).  The first estimation model allowed loge fishery catchability to vary with 

white noise about a constant mean (eq. T3.2.6).  The second estimation model allowed 

loge fishery catchability to vary according to a random walk (eq. T3.2.16).  In my third 

estimation model, I estimated the fishing mortality rate for fully selected age classes as a 

parameter, and then applied the fishery selectivity to calculate age-specific fishing 

mortality rates (eq. T3.2.17).  This method does not use fishery effort as a data source.  

The estimation models also predicted proportions of fishery and survey catch-at-age. 

Model Fitting and Convergence 

I fit the models using a Bayesian approach as implemented in AD Model Builder 

version 6.0.2 (Otter Research Ltd. 2000).  The objective function was the sum of the 

likelihood components and priors.  Each component was the negative of the log-

likelihood for a single data source or an informative prior related to time-varying 

catchability (eq. T3.3.1).   My estimation models assumed lognormal distributions of 

errors for total catch for the fishery (eq. T3.3.2) and survey CPE (eq. T3.3.3) and 

multinomial distributions for age compositions of the fishery (eq. T3.3.4) and the survey 

(eq. T3.3.5; Fournier and Archibald 1982).  Effective sample sizes and CVs of the fishery 
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and survey catch and age compositions were set to their true values from the generating 

models.   

For estimation models that used fishery effort as a data source, fishing mortality 

was an explicit function of effort and catch was linked to abundance and fishery effort by 

estimating the catchability coefficient.  I assumed lognormal deviations for catchability in 

the white noise (eq. T3.3.6), and random walk (eq. T3.3.7) estimation models.  The 

standard deviation for the white noise and random walk catchability deviations (on the 

loge scale) was assumed known at 0.2, which was approximately equal to the expected 

standard deviation in the data-generating models.  This component in the objective 

function is a prior and penalizes large deviations from mean catchability (for the white 

noise model) or large year-to-year deviations (in the random walk model).  Note that 

priors 5l  contained the constants for the likelihood function so that the priors were 

comparable to compare approximate Bayes factors.  I placed uninformative uniform 

priors on common parameters among models and these priors were the same in each 

model. 

The AD Model Builder implementation of Markov Chain Monte Carlo (MCMC) 

includes first estimating the maximum likelihood parameter estimates and asymptotic 

variance-covariance matrix, then using the estimated parameters as starting values for the 

MCMC chain.  The Metropolis-Hastings algorithm sampled from a scaled multivariate 

normal distribution with variances and covariances proportional to the asymptotic 

variance covariance matrix.  I ran the MCMC chain for each model for 5,000,000 cycles 

and saved values from every 100th cycle.  To estimate the precision of the DIC estimates, 

I estimated the variance of a shorter chain (as a minimum estimate for my cases) using 
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the “brute force” method of Zhu and Carlin (2000), which involves running many parallel 

MCMC chains, estimating DIC, and then estimating the variance of DIC from the parallel 

chain estimates.  The MCMC chains were divided into subchains of 500,000 cycles to 

estimate the variance of DIC for a chain of that length.  I dropped the initial 100,000 

cycles of each chain as a burn in period, which reduces the effect of starting values on the 

MCMC estimates (Gelman et al. 2004).  In some cases, the models did not converge to a 

stable mixing distribution for at least 1,000,000 cycles.  In these cases, I used a burn in 

period of 1,500,000 cycles.  I then estimated the variance of DIC estimates from the ten 

subsamples (seven in the cases with long burn in periods) for each chain.  If the MCMC 

chain has converged to a stable mixing distribution, this method should provide the same 

result as running ten independent chains.   

DIC Calculations 

DIC, like other information-theoretic information criteria, trades off a measure of 

model fit (estimated deviance) and a measure of model complexity (effective number of 

parameters; Spiegelhalter et al. 2002).   

DpDDIC +=  

The average deviance, D , for model j is an estimate of model adequacy and is estimated 

by 

∑
=

−=
C

c cdatapeCjD
1

)|(log21 θ  

where C is the number of MCMC cycles saved minus the burn in, and )|(log ce datap θ  

was the natural logarithm of the likelihood function (Spiegelhalter et al. 2002).  Like with 

AIC and BIC, smaller DIC values indicate better models.  I estimated the effective 
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number of parameters as the difference between the average deviance and the deviance 

evaluated at the maximum likelihood parameter estimates,  

)( MLDDDp θ−= . 

Normally, the effective number of parameters is estimated as the difference between the 

mean deviance and the deviance evaluated at the mean of the parameter vector, which is 

estimated by the mean parameters from the MCMC chain (Spiegelhalter et al. 2002).  

However, Spiegelhalter et al. (2002) noted that other measures of the central tendency, 

such as the mode or median of the parameters could be used.  DIC differences calculated 

using the maximum likelihood estimates were usually within 0.1 DIC units of DIC 

differences calculated with the mean of the parameters from the MCMC chain.  I also 

attempted a third method of estimating the effective number of parameters, which used ½ 

of the variance of the deviance chain values to approximate the effective number of 

parameters (Gelman et al. 2004),  
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This method performed poorly (large DIC variance) and almost always estimated more 

parameters for the model than the actual number of parameters in the models. 

Approximate Bayes Factors 

 The probability that model Mi is the best in a set of candidate models can be 

approximated by 

( )
( )∑

=
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where ( )MLdataip θ|  is the likelihood evaluated at the maximum likelihood estimates of 

the parameters, and )|( iMMLip θ  is the prior for the parameters conditional on model i 

(Hilborn and Mangle 1997).  Throughout the rest of the paper, this method for estimating 

the posterior probability that a model is the best in the set of candidate models is referred 

to as approximate Bayes factors.  However, the term “approximate Bayes factors” in the 

model selection literature usually refers to using BIC differences to approximate Bayes 

factors (Kass and Raftery 1995). 

Evaluation of Estimation Model Performance 

 I determined how often the correct structural model was selected, even though 

there was not a truly correct model in the scenario with a linear increase in catchability or 

in the uninformative effort scenario.   In the white noise case, the white noise estimation 

model was correct.  In the linear increase case, the random walk model was considered 

the correct model because it tended to perform better than other models in this scenario 

(chapter 2) and because it is designed to allow for gradual changes.  In the case with 

uninformative effort data, the model that ignored fishery effort data was considered the 

correct model. 

 In stock assessments, estimated quantities in the last year are often most important 

for forecasting and management.  Therefore, I evaluated estimation model performance 

by calculating the relative error (RE) of estimated biomass and average fishing mortality 

(for ages 4-8) in the last year. 

true
trueestimatedRE −

=  
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I evaluated systematic over or under estimation using the mean of the relative error 

(MRE).  I also calculated the mean square relative error (MSE), which summarizes the 

variance and bias of model predictions.  If the bias of the estimates is zero, MSE equals 

the variance of the estimator. 

Results 

 Most of the MCMC chains appeared to have converged to their stable mixing 

distribution within 10,000 cycles.  However, in several cases, the MCMC routine 

required nearly 1,500,000 cycles as a burn in period.  The estimated standard deviation 

for DIC from a chain of 500,000 cycles was about 0.3.  This indicates that, for a chain 

length of 500,000 cycles, DIC differences less than one are probably not important.  For 

the 5,000,000 cycle chains, effective sample sizes were usually greater than 19,000 (from 

an actual sample size of 49,000 saved cycles) and DIC estimates should have lower 

standard deviations than from a substantially smaller chain. 

 Estimates of the effective number of parameters, pD, were generally less than the 

actual number of estimated parameters, 52.  The effective number of parameters for the 

estimation model with random walk catchability was the lowest with a mean of 47.7 and 

a range of 47.0-48.4.  The estimation model with white noise catchability had the second 

fewest effective parameters with a mean of 48.8 (range 47.4-50.0).  The estimation model 

that freely estimated fishing mortality for each year had the most effective parameters 

with a mean of 52.4 (range 51.4-54.1), which was quite close to the true number of 

estimated parameters. 

 DIC usually selected the correct model.  However, DIC differences between the 

best model and the other models were usually less than seven, except in the 
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uninformative fishery effort scenario, indicating that the evidence was not 

overpoweringly in favor of the model with the lowest DIC (Figure 3.3).  In the white 

noise catchability case, DIC selected the white noise model (correct model) eight out of 

ten times.   In the two times when the white noise estimation model was not selected, the 

white noise catchability model and the random walk catchability model were quite close 

in terms of DIC scores (<0.7).  In the linear increase catchability scenario, the random 

walk model was selected in nine out of ten cases.  In the only case where DIC did not 

choose the correct model, the white noise estimation model was chosen and the 

difference in DIC scores was less than 1.0.  In the uninformative effort scenario, the 

model that ignored fishery effort was always selected.   

Model selection using approximate Bayes factors performed somewhat differently 

than DIC model selection and always selected the correct model in the case of white 

noise catchability (between 80-99% probability).  However, approximate Bayes factors 

only selected the correct model six out of ten times for scenarios with a linear increase in 

catchability or uninformative fishery effort data.  In the scenario where effort data were 

uninformative, approximate Bayes factors selected the white noise model twice and 

random walk model twice.  In the scenario where catchability increased linearly, 

approximate Bayes factors did not choose any model strongly; posterior model 

probabilities were between 55 and 91% for the best model, and only the white noise 

model was selected in cases where the random walk model was not.  The posterior model 

probabilities for the estimation model that ignored fishery effort were always less than 

0.1% in both scenarios with informative effort data. 
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 In general, using Bayesian model selection helped to choose relatively accurate 

models.  Models selected using either DIC or approximate Bayes factors had smaller 

MSEs than always using any single model (table 3.3, figure 3.4).  DIC model selection 

slightly outperformed approximate Bayes factors, but the difference was probably not 

significant because of the small sample size.  

Discussion 

In general, DIC and approximate Bayes factor model selection produced better 

point estimates of biomass and fishing mortality in the last year on average than relying 

on any single model.  However, the best DIC or approximate Bayes factor model did not 

always produce the best estimates of biomass and fishing mortality rates in the last year.  

Indeed, DIC and approximate Bayes factors only selected the model with the lowest 

relative errors in fishing mortality or biomass in the last year between 7% (for DIC and 

fishing mortality) and 14% (approximate Bayes factors and biomass) of the time.  Helu et 

al. (2000) also found that incorrect models often produced more accurate estimates of 

biomass in the last year than the structurally correct model in their study of AIC and BIC 

model selection for SCA models.   

DIC model selection seems to perform well in cases where increased model 

complexity is warranted, but may not perform as well in determining when less 

complexity is warranted.  Kizilkaya and Tempelman (2005) found that DIC strongly 

selected their model with heteroskedastic residual variances when residual variances were 

heteroskedastic, but did not strongly select the simpler model when variances were 

homoskedastic in linear mixed models and generalized linear mixed models.  This is 

similar to my results where DIC fairly strongly selected the model that ignored fishery 
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effort data (the most complex model) in cases where fishery effort data were 

uninformative, but did not strongly select the models with fewer effective parameters 

when fishery effort data were informative.  Indeed, Spiegelhalter et al. (2002) and van der 

Linde (2005) suggested that DIC does not provide a large enough penalty for model 

complexity for models with exponential family likelihoods.  This family of distributions 

includes the normal and multinomial distributions that I used in the objective functions of 

my estimation models.  However, increasing the penalty term for DIC would increase 

selection of simpler models in cases where a more complex model may be warranted. 

Although MCMC methods can be quite time-consuming, calculating DIC should 

not be prohibitive in terms of time, given current levels of computer speed.  In general, 

estimation models took about 1.5-2 hours to run 5,000,000 cycles on a computer with 2.8 

gHz processors (Intel Xeon).  These times are probably overestimates because I ran these 

models longer than was necessary (in most cases) to ensure convergence and to estimate 

the variance of DIC estimates for shorter chains.  However, models that are structurally 

more complex or have more data (i.e., more years or age classes) will require longer run-

times. 

 In most cases, model averaging provides superior predictive performance than 

using only the best model selected by DIC (or some other method) because estimates 

from a single model ignore uncertainty in model selection (Hoeting et al. 1999; Burnham 

and Anderson 2002; Burnham and Anderson 2004 and references therein).  Therefore, I 

calculated model average estimates of biomass in the last year with the approximate 

Bayesian posterior model probabilities and posterior model probabilities derived from 

DIC differences (by adapting the method of Burnham and Anderson (2002) for AIC).  
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Both methods of model averaging had slightly larger MREs (about 1%) and slightly 

smaller MSEs (0.1-0.3%) than using only the “best” model.  Differences in performance 

between the best model and the model average were probably slight because the best 

models were the same as or quite similar to the data-generating models.  However, in real 

world applications it is unlikely that the estimation models will be as similar to the data-

generating reality as was the case in this study.  Therefore, model average estimates may 

provide a larger increase in performance than in this study.  Interestingly, using DIC 

differences to estimate model probabilities and average model results seemed to perform 

reasonably well, although Spiegelhalter et al. (2002) describe this as an area requiring 

more research. 

Certainly DIC and approximate Bayes factors are not exhaustive tools for model 

selection.  Factors such as model plausibility, sensitivity, and examination of residual 

patterns should also be considered when choosing among models.  However, DIC does 

show some promise for helping select among stock assessment models even when models 

are quite similar. 
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Table 3.1. Symbols and descriptions of variables for data-generating and estimation 

models. 

Symbol Description Value (if needed in the 

data-generating model) 

R  Average recruitment 1,000,000 

Ny,a 
Abundance by age and year  

By 
Biomass  

Zy,a 
Total instantaneous mortality rate by age and 

year 

 

Fy,a 
Instantaneous fishing mortality rate by age 

and year 

 

M Instantaneous natural mortality rate 0.25 

sa,f 
Fishery age-specific selectivity See figure 3.2 

sa,s Survey age-specific selectivity See figure 3.2 

Ey 
Fishery effort See figure 3.1 

qy,f 
Fishery catchability  

yE~  Observed fishery effort  

qs 
Survey catchability 0.0001 

fq  Mean fishery catchability 0.05 
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Cy,a 
Expected fishery catch-at-age  

Iy,a 
Expected survey catch-at-age  

yC~  Observed total fishery catch  

yI~  Observed total survey catch  

uy,a,f 
Proportion of catch-at-age in fishery  

uy,a,s Proportion of catch-at-age in survey  

wa 
Mean weight at age 0.16, 0.45, 0.82, 1.2, 1.55, 

1.86, 2.11, 2.3 

yδ  Deviations for white noise catchability  

yε  Deviations for linear increase catchability  

yω  Deviations for random walk catchability  

a, b Parameters for linear increase in catchability 0.032, 0.00225 

fy 
Fishing intensity by year  

γσ  Standard deviation for loge recruitment 

variation 

1.0 

τσ  Standard deviation for loge fishery 

measurement error 

0.1 

υσ  Standard deviation for loge of survey 0.2-0.8 
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measurement error 

δσ  Standard deviation for loge catchability 

deviations for white noise 

0.2 

εσ  Standard deviation for loge catchability 

deviations 

0.05 

δσ  Standard deviation for loge random walk 

catchability deviations 

0.2 
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 Table 3.2.  Data-generating and estimation model equations. 

 Population model equations Application 

(T3.2.1) 
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Table 3.3.  Objective function equations for statistical catch-at-age analysis simulation 

study.   
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Table 3.4.  Mean relative error (MRE) and mean square error (MSE) of models selected 

using deviance information criterion (DIC), approximate Bayes factors (ABF), only white 

noise catchability estimation model (WN), only random walk catchability estimation 

model (RW), and only using the estimation model that estimated fishing mortality for 

each year independent of effort (FF). 

 DIC ABF WN RW FF 

Biomass MRE 0.182 0.189 0.279 0.203 0.246

Biomass MSE 0.077 0.087 0.151 0.092 0.159

Fishing Mortality MRE -0.028 -0.037 -0.111 -0.016 0.005

Fishing Mortality MSE 0.046 0.056 0.058 0.066 0.080
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Figure 3.1.  Baseline effort series used in data-generating models.
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Figure 3.2. Fishery and survey selectivity patterns used in data-generating models. 
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Figure 3.3.  Deviance Information Criterion (DIC) differences among models.  

Differences from the best model for each data set are shown.  Data-generating models are 

indicated by WN for white noise catchability, LI for linear increase in catchability, and 

UE for the case where observed effort data were uninformative.  Estimation model 

comparisons are indicated by X vs. Y (legend), where Y is the hypothetical best 

estimation model for the scenario.  Positive DIC differences indicate that the model Y is 

better than model X.  Points are randomly jittered to reduce overlap. 
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Figure 3.4.  Box plots of relative error of estimates of biomass and average fishing 

mortality in year 15.  The middle line indicates the median, the box indicates the 

interquartile range, and the whiskers indicate the 95% quantile range.  Estimation 

methods are indicated by ABF for approximate Bayes factors, DIC for deviance 

information criterion, FF for the estimation model that freely estimated F, RW for the 

estimation model with random walk catchability, and WN for the estimation model with 

white noise catchability. 
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APPENDIX A 

Appendix A describes the yellow perch assessment models and additional results 

for chapter 1. 

Description of Yellow Perch Models 

The population submodel predicted how yellow perch numbers-at-age and size-at-

age changed over time, while the observation submodel predicted observed quantities 

given the predicted dynamics.  Symbols used in the population and observation 

submodels are in Table A.1, and equations for these submodels are in Table A.2. We 

used the posterior likelihood to determine the best fit parameters.  

Population Submodel 

Total recruitment (defined as age-2 numbers) at the start of each year was 

estimated as a free parameter, and the sex ratio at recruitment was assumed to be 1:1 (eq. 

A.2.1).  Numbers-at-ages 3 and 4 for each sex in the first year (1986) were also estimated 

as parameters.  Numbers at ages 5-9+ in 1986 were calculated based on an assumption 

that each of those cohorts had the same abundance at age-4 as was estimated for age-4 in 

1986 and suffered an estimated mortality rate that was sex specific (Wisconsin) or the 

same for both sexes (Illinois) (eq. A.2.2 and eq. A.2.3).  We used this approach because 

sample sizes for ages five and above were low and these cohorts were not observed for 

many subsequent years. For Illinois we used a common mortality parameter for both 

sexes because sexes were aggregated in the Illinois survey data for 1986-1988. These 

assumptions about numbers-at-age in the first year have a relatively small effect on 

model estimates, because there were few old yellow perch in 1986. 
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Abundance-at-age of these cohorts were then tracked over time by applying age- 

and sex-specific mortality rates (eq A.2.10).  Biomass was simply the product of the 

number of fish in a given length bin and their length-specific weight summed over sexes, 

ages, and lengths.  Spawning stock biomass (SSB) was calculated using only females and 

a time-invariant maturity schedule based on length, which we estimated by fitting a 

logistic function to maturity-at-length data from Indiana waters of Lake Michigan (Ball 

State University, unpublished data) outside the model fitting process.   

Total mortality rate for a given age and sex was the sum of the natural mortality 

rate and the age-, sex-, and year-specific fishing mortality rates for the two fisheries 

(recreational and commercial) (eq. A.2.5).  Fishing mortality rates at age for a sex were 

calculated as a weighted average of the length specific fishing mortality rates, with 

weights equal to the proportion of fish that were a given age, sex, and length (eq. A.2.6).  

 The age specific rates were calculated from length specific ones.  For each 

fishery, fishing mortality rates for a given length bin of yellow perch for the commercial 

and recreational fisheries was the product of catchability, effort, and selectivity, and the 

log of catchability followed a random walk (eq. A.2.7) and therefore was year-specific 

for each fishery.  We modeled selectivity as constant functions of length, based on the 

midpoint for each length bin.  Note that the fishing process influences fish in the same 

length in the same way, irrespective of their sex or age.  We used a double logistic 

function to model the dome-shaped selectivity pattern (Quinn and Deriso 1999) for the 

commercial gill net fisheries  (Kraft and Johnson 1992) and for the Illinois recreational 

fishery during 1997-2000 when a slot limit was in effect (eq. A.2.8).  For the Illinois and 
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Wisconsin recreational fisheries (except for the Illinois fishery during 1997-2000), we 

modeled the selectivity pattern with an asymptotic logistic function (eq. A.2.9). 

 Growth was modeled using a stochastic von Bertalanffy growth model, where the 

parameters were allowed to vary over time (Szalai et al. 2003).  For 1986, mean length at 

age (for the beginning of the year) was calculated assuming these fish had lived under 

constant growth conditions with all cohorts starting with mean length-at-age 2 as in 1986, 

and experiencing constant L∞ and K pre-1986 values (eq. A.2.4).  Mean length-at-age 2 

was equal for males and females, but changed over time with a random walk (eq. A.2.14).  

For years after 1986, mean length-at-ages 3-8 were equal to the mean from the previous 

age and year plus the increments from the von Bertalanffy model (eq. A.2.11).  The same 

model was used to estimate the mean length for the aggregated age-9 and older group, but 

this was based on a weighted average of growth expected for age-8 and age-9 fish, with 

weights determined by the contribution of the two ages to this group in the next year (eq. 

A.2.12).  To estimate mean length at age in the fall, fish were grown for 8/10th of the year 

(eq. A.2.13).  Like length at-age-2, asymptotic mean length and the Brody growth 

coefficient also changed over time with with a random walk (eq. A.2.14), which were 

modeled separately for males and females.  The modeled length composition for a given 

age was normally distributed with a mean predicted by the von Bertalanffy equation.  The 

proportion in each one cm length bin was calculated from the corresponding standard 

normal cumulative distribution function (Ф ) (eq. A.2.15).  The standard deviation of 

each normal distribution was the product of the mean length-at-age and an age and sex-

specific coefficient of variation (CV).  We used a hockey stick function to describe how 

the CV decreased with increasing age for ages 2 to 5, and then remained constant after 
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age 5.  This pattern of decreasing variation in length-at-age with increasing age is 

common to many teleost fishes (Bowker 1995), and the CVs we used were based on 

observed variation of length-at-age (WDNR, unpublished data).   

Observation Submodel      

Catch-at-length (in numbers) for the commercial and recreational fisheries was 

calculated with the Baranov catch equation (eq. A.2.16 and eq A.2.17).  Commercial 

catch calculations used numbers-at-length calculated from numbers-at-age reassigned to 

length categories based on the fall distribution of length-at-age whereas recreational catch 

calculations were based on spring length distributions. This is an approximation that is 

intended to account for the fact that the two fisheries are prosecuted at different times 

during the year (commercial fishery centered in the fall, recreational fishery in the spring 

and summer), that fish grow during the year, and that fishery selectivity is length-based.  

Total catch in numbers was simply the sum over length bins of catch-at-length.  

Commercial yield was calculated by multiplying catch-at-length by weight-at-length 

(from fall lengths) and summing over length categories.  

Catch per effort (CPE) at-length and sex for the survey were calculated as the 

product of catchability, selectivity, and numbers-at-length (eq. A2.18).  Catchability of 

the survey was sex-specific for Illinois, but the same for males and females in Wisconsin, 

because of differences in survey design between the two surveys.  We modeled survey 

selectivity using the same logistic function of length used for recreational fishery 

selectivity (eq, A.2.9).  Total CPE by sex for the survey was the sum over lengths of the 

length-specific survey CPEs.  CPE at-age and sex for the survey was calculated as the 

product of the survey catchability, numbers at age and sex, and the age- and sex-specific 
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survey selectivity (given by a weighted sum of length specific selectivity values) (eq. 

A.2.19).  For each year proportions of the catch for the fisheries and the survey falling 

into each length bin and proportions of the survey catch for each age were calculated for 

comparison with observed proportions.   

Model predictions of mean length-at-age seen in the survey were calculated by 

taking the modeled population length distribution at age and adjusting it for the estimated 

survey selectivity (eq. A.2.20).   

Likelihood Equations 

 Our objective function was the posterior negative log-likelihood, ∑=∆
i il , with 

individual negative log-likelihood components and priors (dropping some ignored 

constants) given by il .  Our point estimates minimized this function.  One set of 

components had the general form: 

∑=
j jXi (A1)     2

2
1

l  

Where Xj is an assumed standard normal variate and j is an index distinguishing the terms 

being summed for the ith component.  These likelihood components were based on an 

assumed independent normal (mean length-at-age) or lognormal distribution (fishery total 

catch or survey total catch per unit effort) for deviations between observed quantities and 

model predictions or an informative normal prior distribution for random walk errors (for 

mean length-at-age 2, L∞, K, and catchability for the commercial and recreational 

fisheries) and for two parameters of the Illinois commercial fishery selectivity function 

(Table A.3).  We used an informative prior for two of the four Illinois commercial fishery 
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selectivity parameters because the observed length composition of the Illinois 

commercial catch contained relatively few measurements, and we based these priors on 

the point estimates and standard errors for of the same parameters from the Wisconsin 

model.  Small constants were added to observed and predicted values (for the lognormal 

distributions) to reduce the influence of very small values (Hampton and Fournier 2001). 

 An additional set of components took the general form: 

(A2)     ),ˆ(log,∑ ∑∑ +−=
k y T

ckTuekTuknil  

based on our assumption that multinomial distributions led to the observed proportions at 

length and age for all data sources for which there were observations.  This included a 

component for the fishery length compositions, and components for the survey length and 

age compositions.  The outer sum is over categories of data (k), which were fisheries 1 

and 2 (for the fishery length compositions) and sexes (for survey age and length 

compositions), and the inner sum was over types (T) of fish within a category and year 

(lengths bins or ages).    Small constants (c = 0.0001 for length compositions and c = 

0.001 for age compositions) were added to likelihood functions to reduce the effect of 

small proportions during model fitting (Fournier and Archibald 1982).   

For completeness we note that for parameters other than those with the normal 

priors described above, we assumed uniformly distributed priors on the scale they were 

estimated.  These priors did not enter explicitly into the objective function because they 

were implemented by placing bounds on the allowed parameter range during estimation. 
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Table A.1.  Symbols representing parameters, data, and calculated quantities for 

assessment models. 

Parameter Definition 

                         Indicator Variables 

a Age-class; 2-9+ 

y Year; 1986-2001 

l Midpoint of each length bin; 8-38 cm 

G Sex; male or female 

f Fishery; commercial = 1, recreational = 2 or, survey = 3 

                          Estimated Parameters 

Ry 
Recruitments for each year 

GaN ,,1986
 Numbers at age in 1986 for ages 3 and 4 

GinitZ  Mortality rate for the final five age classes in the first year 

qf 
Catchability 

λf 
Parameters for logistic and double logistic selectivity functions 

Gy
L

,∞
 Asymptotic length 

GyK ,  
Brody growth coefficient 

Ly,2 
Mean length-at-age 2 

M Rate of natural mortality time-, sex-, and age-invariant 
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yδ  Random walk deviations for mean length-at-age 2 

Gy ,γ  Random walk deviations for 
Gy

L
,∞

 

Gy,ϖ  Random walk deviations for GyK ,  

fy,ε  Random walk deviations for catchability 

                         Calculated Quantities 

GlayZ ,,,  Total instantaneous mortality rate 

fGlayF ,,,,  

Instantaneous rate of fishing mortality 

Glayp ,,,  
Proportions-at-length for each age 

GlayN ,,,  
Numbers-at-age, length in the beginning of the year, and sex in year y 

GlayN ,,,
&  

Numbers-at-age, length in the fall of the year, and sex in year y 

GayL ,,  
Mean length-at-age in population in beginning of year 

GayL ,,
~̂

 
Model predicted mean length-at-age measured by survey 

GayL ,,
&  Mean length-at-age in population in fall 

sf
 Selectivity 

GlayI ,,,
ˆ  

Survey index of abundance 

fGlayu ,,,,ˆ  
Model prediction of proportions of catch-at-age, length, and sex 
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flyC ,,
ˆ  

Model prediction of catch 

lyW ,
ˆ  

Model predicted commercial yield (kg) 

                         Likelihood Weighting Components 

Glayn ,,,  Sample size of fish aged for the mean length-at-age likelihood function 

and effective sample size for age and length compositions 

fσ  CV for fishery catches  

δσ  Standard deviation for mean length-at-age 2 random walk deviations 

G,γσ  Standard deviation for 
Gy

L
,∞ random walk deviations 

G,ϖσ  Standard deviation for Ky,G random walk deviations 

f,εσ  
Standard deviation for fishery catchability random walk deviations 

iλ
σ  Standard deviation for commercial selectivity prior for Illinois 

                         Data 

GayL ,,
~

 
Observed mean length-at-age in the survey 

GlayI ,,,  
Observed CPE in the survey 

fGlayu ,,,,  
Observed proportions at age and length in the fisheries 

2,, =flyC  
Harvest (numbers) in the recreational fishery 

1,, =flyW  
Yield (kg) in the commercial fishery 



 

 122

fyE ,  
Fishery effort 

lw  Weight-at-length 

ωy,a,G 
Number of fish aged by age year and sex 

1,
~

=fiλ  
Mean parameter for the prior of commercial selectivity function for 

Illinois 

M Instantaneous rate of natural mortality (age- and sex-independent) 
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Table A.2.  Equations for population and observation submodels.   

Population submodel 

Recruitment, initial abundances at age, initial mean length at age 

2,2,
yR

GayN == .        (A.2.1) 
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eGayNGayN

)4(

,4,1986,,1986

−−

==== ; a>4, Wisconsin (A.2.2) 
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Population and length-at-age dynamics      
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Observation submodel 

∑
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Table A.3.  Specification of terms for normal and lognormal negative log-likelihood 

components (see equation A1).  

Standard normal variate Squared variates summed over 

these indices  

),,/,,/(),,
~̂

,,
~( GayGayGayLGayL ωσ−  y, a, G 

1/)1,
ˆlog1,(log ==−= ffyWefyWe σ  y 

2/))2,
ˆ(log)2,((log ==−= ffyCefyCe σ y 

3/)),
ˆ(log),((log =− fGyIeGyIe σ  y, G 

δσδ /y  y 

GGy ,/, γσγ      and    GGy ,/, ϖσϖ  y, G 

ffy εσε /,  y, f 

j

fjfj
λσ

λλ ⎟
⎠
⎞⎜

⎝
⎛

=−= 1,
~

1,  

j, j<3 
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Table A.4.  Results of sensitivity analyses of changes of weights of data sources in the 

objective function for yellow perch catch-at-age models for Illinois and Wisconsin waters 

of southwestern Lake Michigan.  Differences from baseline estimates are displayed as 

percentages.  Baseline model estimates of abundance (N; 1000s), biomass (B; 1000 kg), 

mean fishing mortality for females age-4 and older ( +4F  females), and mean fishing 

mortality for males age-4 and older ( +4F  males) for 2002 are displayed for comparison.  

In two cases the model’s parameter estimates failed to converge to values that minimized 

the objective function and these are denoted by NC. 

Illinois Baseline 

value 

Adjustment 

factors 

N B 
+4F  

females 

+4F  

males 

Baseline 4,790 818 0.058 0.025

Commercial yield 0.0025 5 -3.1 -3.1 3.3 3.2

Commercial yield 0.0025 0.2 0.7 0.7 -0.8 -0.7

Commercial catchability 0.06 5 -16.1 -16.6 12.8 5.8

Commercial catchability 0.06 0.2 41.7 43.1 -30.5 -28.7

Commercial length 32 5 -10.2 -10.9 12.8 5.8

Commercial length 32 0.2 -2.0 -0.7 0.4 5.0

Recreational harvest 0.01 5 2.3 2.0 -5.4 -6.7

Recreational harvest 0.01 0.2 -0.7 -0.6 3.4 4.1

Recreational catchability 0.06 5 3.5 2.9 -0.5 -2.7

Recreational catchability 0.06 0.2 -7.6 -6.2 3.4 9.5

Recreational length 367 5 -24.1 -24.4 34.1 7.6

Recreational length 367 0.2 17.6 11.5 -15.1 -12.1
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Survey CPE, females 0.19 5 30.7 29.3 -22.8 -25.8

Survey CPE, females 0.19 0.2 -32.6 -31.0 45.8 53.0

Survey female ages 27 5 17.2 11.0 -8.3 -30.7

Survey female ages 27 0.2 -10.1 -7.2 7.2 20.5

Survey female lengths 61 5 25.1 17.0 -20.4 -24.8

Survey female lengths 61 0.2 -21.8 -17.1 23.2 40.1

Survey CPE, males 0.22 5 4.3 4.2 -4.0 -4.5

Survey CPE, males 0.22 0.2 -5.5 -5.3 5.4 6.4

Survey male ages 53 5 -9.7 -6.8 7.3 21.5

Survey male ages 53 0.2 -8.9 -5.9 6.2 14.0

Survey male lengths 58 5 -4.9 2.7 -2.8 15.3

Survey male lengths 58 0.2 -17.0 -13.9 16.5 30.5

Female ∞L  0.0006 5 3.2 2.1 -3.8 -2.8

Female ∞L  0.0006 0.2 -0.5 -0.1 2.7 -1.9

Female K 0.0006 5 5.3 4.5 -4.4 -6.4

Female K 0.0006 0.2 -1.4 -1.2 1.8 0.9

Male ∞L  0.0006 5 -2.9 -4.7 5.4 -8.6

Male ∞L  0.0006 0.2 -19.1 -15.2 19.6 37.8

Male K 0.0006 5 0.0 -0.9 1.0 -1.8

Male K 0.0006 0.2 -0.2 0.2 -0.2 0.5

Length-at-age 2 0.01 5 -3.2 -3.1 3.2 5.0

Length-at-age 2 0.01 0.2 6.1 5.7 -5.4 -7.4

M 0.37 1.2 -9.3 -11.5 17.2 6.6

M 0.37 0.8 12.8 16.3 -15.8 -9.3
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Wisconsin       

Baseline 1,690 356 0.075 0.060

Commercial yield 0.0125 5 -3.7 -3.8 4.2 3.8

Commercial yield 0.0125 0.2 3.9 4.0 -4.0 -3.8

Commercial catchability 0.16 5 25.8 25.2 -20.3 -21.2

Commercial catchability 0.16 0.2 -22.8 -22.1 28.2 31.4

Commercial length 43 5 -7.9 -7.7 8.3 9.0

Commercial length 43 0.2 5.8 2.4 -0.8 -8.3

Recreational harvest 0.01 5 4.0 3.7 6.0 5.5

Recreational harvest 0.01 0.2 -2.0 -1.9 0.6 0.7

Recreational catchability 0.06 5 6.6 6.3 -7.8 -8.2

Recreational catchability 0.06 0.2 -16.1 -15.4 27.1 28.7

Recreational length 141 5 -1.4 3.2 -3.3 5.7

Recreational length 141 0.2 -7.7 -8.5 9.4 7.8

Survey CPE, females 1.06 5 4.0 3.8 -3.8 -3.9

Survey CPE, females 1.06 0.2 -4.2 -3.8 4.0 4.6

Survey female ages 31 5 13.6 10.7 -10.0 -7.9

Survey female ages 31 0.2 -17.9 -17.2 21.8 20.1

Survey female lengths 45 5 NC NC NC NC

Survey female lengths 45 0.2 0.2 -0.1 0.6 -0.1

Survey CPE, males 0.92 5 25.0 24.6 -20.1 -20.6

Survey CPE, males 0.92 0.2 -41.3 -40.9 72.0 74.1

Survey male ages 50 5 NC NC NC NC

Survey male ages 50 0.2 -33.3 -33.3 50.6 52.5
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Survey male lengths 63 5 20.0 14.4 -11.9 -19.6

Survey male lengths 63 0.2 6.6 8.9 -8.4 -5.3

Female ∞L  0.0025 5 -1.2 -1.0 
0.2 1.5

Female ∞L  0.0025 0.2 -0.4 -1.0 
1.5 0.1

Female K 0.0025 5 -1.3 -2.5 0.9 1.7

Female K 0.0025 0.2 -0.4 0.3 0.6 0.2

Male ∞L  0.0025 5 13.7 13.0 
-11.8 -13.1

Male ∞L  0.0025 0.2 -18.7 -18.3 
23.2 24.8

Male K 0.0025 5 -2.1 -2.0 2.0 2.0

Male K 0.0025 0.2 1.9 1.8 -1.7 -1.9

Length-at-age 2 0.01 5 0.7 0.3 -1.2 0.0

Length-at-age 2 0.01 0.2 -5.7 -5.6 7.4 6.0

M 0.37 1.2 -34.3 -35.0 59.0 58.3

M 0.37 0.8 49.4 50.8 -36.1 -35.5
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Figure A.1.  Estimated catchability coefficients for Wisconsin and Illinois recreational 

and commercial fisheries in southwestern Lake Michigan during 1986-2002. 
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APPENDIX B 

 

Appendix B describes the parameterization of estimation models used in chapter 3 

to reduce correlations among parameters.  The MCMC algorithm I used was very 

sensitive to parameter correlations greater than about 0.8.  Under these conditions, the 

MCMC algorithm mixed very poorly and produced very “sticky” MCMC chains (i.e., 

chains with high autocorrelation).  Therefore, I reparameterized aspects of the models to 

reduce these correlations.  All parameters described below were estimated on the log 

scale.  Two groups of parameters were highly correlated within each group:  parameters 

that determined overall scale of population size, and selectivity parameters for the fishery 

and survey.  Parameters that determine the overall scale of the population size included, 

in this case, mean recruitment, mean abundance at age in year 1, fishery catchability (or 

mean F in the model that ignored fishery effort data), and survey catchability.  In order to 

minimize correlation among these parameters, I parameterized the model by estimating 

the loge of mean recruitment and a deviation from this for each of these other “scale-

setting” parameters.  The other parameters that had high correlations were the selectivity 

at age for the fishery and the survey.  To reduce these correlations, the models were 

parameterized to estimate deviations from a mean loge selectivity that was forced to equal 

zero.  This constraint serves to make the selectivity parameters identifiable and not 

confounded with the associated catchability (for fishery or survey), in the same way that 

the more usual approach of setting selectivity to 1.0 for a fully selected age (e.g., 

Fournier and Archibald 1982) does. 


