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ABSTRACT 
 

MODEL SELECTION AND DATA WEIGHTING METHODS FOR STATISTICAL 
CATCH-AT-AGE ANALYSIS: APPLICATION TO 1836 TREATY WATER STOCK 

ASSESSMENTS 
 

By 
 

Brian C. Linton 
 

Recommended harvest limits for lake trout Salvelinus namaycush and lake 

whitefish Coregonus clupeaformis stocks in the 1836 Treaty Waters of the Great Lakes 

are based on statistical catch-at-age analysis (SCAA).  The assessment models and 

methods are similar to those used to assess fish stocks in many of the word’s major 

fisheries.  My objective was to evaluate these methods with an eye towards suggesting 

improvements both for 1836 treaty waters and more generally.  My results provide 

general guidance to stock assessment scientists with regard to data weighting and 

selecting among alternative assessment models.  As a first step, I performed an analysis 

of the Lake Huron lake whitefish models’ sensitivity to changes in “known” inputs and 

model structure, selected as examples of basic type of assessment used throughout treaty 

waters for lake whitefish and lake trout. All of the Lake Huron lake whitefish models 

were sensitive to changes in the methods used to estimate recruitment and time-varying 

selectivity, as well as to changes in their objective functions, and this indicated that 

further study of these aspects of the assessment methods was warranted. 

Specifically with regard to the objective function, the assessment models were 

sensitive to changes in pre-specified variances associated with process and observation 

errors, which are used to weight the different data sources.  This result is consistent with 

concerns expressed more broadly in the literature.  I evaluated alternative approaches for 



 

estimating log catchability (process error) and log total catch (observation error) standard 

deviations within SCAA using Monte Carlo simulations: an ad hoc approach that tunes 

the model predicted log total catch standard deviation to match a prior value, and a 

Bayesian approach using either strongly or weakly informative priors for log catchability 

standard deviation.  When process error variance is large relative to observation error 

(likely for many fisheries), reliable estimates of log catchability and log total catch 

standard deviations can be obtained in SCAA using a Bayesian approach with only a 

weakly informative prior on log catchability standard deviation.   

The sensitivity of the Lake Huron whitefish models to the method used to model 

time-varying selectivity is also consistent with indications in the broader literature that 

SCAA assessments can be sensitive to misspecification of selectivity.  I therefore 

evaluated four approaches for modeling time-varying selectivity within SCAA using 

Monte Carlo simulations: double logistic functions with one, two and all four of the 

function parameters varying over time, as well as age-specific selectivity parameters that 

all varied over time.  None of these estimation methods out performed the others in all 

cases.  In addition, I compared model selection methods to identify good (i.e., accurately 

matching the true fish population) estimation models.  Degree of retrospectivity, the best 

selection method, was based on a retrospective analysis of bias in model parameter 

estimates as the data time series for estimation is sequentially shortened.  I recommend 

this method of model section when considering different time-varying selectivity 

estimation approaches in SCAA.
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CHAPTER 1 
 

SENSITIVITY ANALYSIS OF LAKE WHITEFISH STOCK ASSESSMENT MODELS 
 

USED IN THE 1836 TREATY WATERS OF LAKE HURON 
 
 

Introduction 

In 1836, Native American Bands in the region to become the state of Michigan 

signed a treaty with the U.S. government which reserved their right to fish in the 

Michigan waters of lakes Huron, Michigan, and Superior.  These fishing rights were 

reaffirmed by the U.S. federal courts in 1979.  The federal district court later approved 

the fishery regulations created by the Chippewa/Ottawa Treaty Fishery Management 

Authority (COTFMA) in 1982, while mandating that total allowable catches (TACs) or 

harvest regulating guidelines (HRGs) be established for important fish species in order to 

prevent over-fishing.  Federal, state, and tribal biologists worked together to estimate 

TACs for lake whitefish Coregonus clupeaformis during 1979-1982.  During this period, 

the stock assessment methods used in the treaty waters were evolving and constrained by 

limited data.  Where possible stock sizes were estimated by application of a simple age-

structured model.  Although there was no formal harvest policy, TACs were generally set 

near the estimated maximum sustainable yield if the stock size was near the associated 

biomass and to lower values when stock sizes were lower (e.g., AHWG 1979). 

The 1985 Consent Decree laid out a 15 year agreement between federal, state and 

tribal agencies for the allocation of fishery harvest between the parties.  The Technical 

Fisheries Review Committee (TFRC) was created by the decree to assess stocks of 

important fish species.  As part of this mandate, the TFRC recommended TAC/HRGs for 
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lake whitefish stocks within the ceded territory to federal, state and tribal governments.  

Stock assessments produced for the TFRC were generally based on simple age-structured 

models (Clark and Smith 1984).  The 1985 decree did not specify a harvest policy, but 

based on TTWG (1984) the TFRC adopted a policy to limit total mortality to specified 

levels less than 70%. 

The 2000 Consent Decree was a new 20 year agreement, which set guidelines for 

the management of important fish species, as well as allocating fishery harvest.  As part 

of the new decree, the Technical Fisheries Committee (TFC) was formed, which serves 

many of the same functions as did the TFRC under the previous decree.  Also at this 

time, COTFMA was reorganized as the Chippewa/Ottawa Resource Authority (CORA).  

Unlike the previous decree, a reference mortality rate for lake whitefish of 65% was 

specified, which partially defines a harvest policy.  New methods for conducting lake 

whitefish stock assessments and projecting TAC/HRGs were developed during the 

negotiation period for the 2000 Consent Decree by an interagency modeling group.  The 

decree specifies that a newly formalized Modeling Subcommittee (MSC) of the TFC 

should build upon the work of the interagency modeling group to continue the lake 

whitefish stock assessment program.   

The new stock assessment methods employed statistical catch-at-age models, 

which were created for each lake whitefish stock by the interagency modeling group and 

further developed by the MSC.  These stock assessment models used catch-at-age and 

effort data from the commercial fisheries to estimate population abundances, mortality 

rates, fishery harvests, and other population parameters of interest.  Estimated quantities 

from the assessment models were used to project each stock’s abundance and mortality 
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rates into the future, and then TAC/HRGs were calculated from these projections and a 

reference mortality rate.   

The 2000 Consent Decree established requirements governing the calculation of 

TAC/HRGs.  The reference level of total annual mortality (65%) specified for lake 

whitefish plays a different role depending on whether the yield from a particular 

management unit is allocated entirely to the tribes (tribal unit) or partially allocated to the 

state (shared unit).  For shared units, 65% total mortality is treated as an upper limit and 

TACs are established so as to allocate the yield between the parties as specified in the 

decree.  State and tribal management agencies are responsible for separately 

implementing management actions (e.g., limits on entry to the fishery, gear restrictions, 

size limits, and trip limits) to constrain fishery yield at or below levels specified by 

TACs.  If state or tribal fishery harvest exceeded their TAC/HRG by 25% or more, either 

in a single year or over the course of five years, then that party’s TAC in the following 

year is reduced by the amount that the previous TAC was exceeded.  For tribal units, 65% 

total mortality is viewed as an upper target level, and management actions by the tribes 

are intended to prevent this level from being exceeded on average.   

One of the complications of applying a reference mortality rate to the results of 

the new age-structured assessment models is that these models account for the fact that 

fishing mortality varies with age.  The MSC chose a conservative solution to the problem 

for lake whitefish by further defining the reference mortality rate.  First, for the reference 

mortality rate, the maximum total mortality across all ages was not to exceed the 

specified value of 65% (for most units).  In addition, the spawning stock biomass per 

recruit (SSBR) at this mortality schedule was required to be at least 20% of the SSBR for 
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the unfished stock.  If the SSBR was below the 20% threshold, then the maximum total 

mortality was reduced until the resulting SSBR was at least 20% of the unfished SSBR.   

Due to the rapid development and implementation of the stock assessment 

models, not all of the approaches used in the models have been fully evaluated.  For 

example, there were numerous methods for modeling each of the biological processes 

represented within the models from which the MSC analysts could select.  Once a 

particular method for modeling a process was chosen, reasonable parameter starting 

values and bounds on what values those parameters could take also had to be selected by 

the analysts.  It was unknown how much these choices affected stock assessment results.  

Therefore, my objective was to further evaluate the stock assessment models for lake 

whitefish in the 1836 treaty waters of Lake Huron, with a view toward suggesting 

possible improvements.  This objective linked to a broader goal for my work, to form the 

basis for advice that is broadly applicable in the field of fishery stock assessment.  As a 

first step to achieve this objective, I performed a general analysis of the models’ 

sensitivity to changes in “known” inputs and model structure. 

Methods 

The 1836 treaty waters of Lake Huron were divided into five lake whitefish 

management units, each thought to contain a distinct lake whitefish stock (Figure 1.1).  

Separate stock assessment models were developed for each of the lake whitefish 

management units.  When the models were originally developed, it was assumed that the 

net movement of lake whitefish between management units was nil.   
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Stock Assessment Model 

Here I provide an overview of the stock assessment models’ general structure.  

Ebener et al. (2005) provides a detailed description of the models.  All of the stock 

assessment models consisted of two basic submodels, a population submodel and an 

observation submodel.  The population submodel described the population dynamics of 

the stock in terms of abundance-at-age excluding the first year and the first age in 

subsequent years: 

yaZ
yaya eNN ,

,1,1
−

++ = , 

where Na,y was the number of fish in age a and year y and Za,y was the total 

instantaneous mortality rate in age a and year y.  Numbers-at-age in the first year were 

estimated as a vector of relative population variation parameters (i.e. a vector of 

deviations that must sum to zero).  A population scaling parameter then converted these 

deviations to numbers-at-age.  Numbers of fish in the first age of each year also were 

estimated as a series of scaled deviations using the same population scaling parameter, 

but were penalized for deviating too greatly from a Ricker stock-recruitment function: 

( )
1010,0

−−−
−− −= ayG

ayya eGN
β

α , 

where yaN ,0  was the number of fish in the first age a0 and year y, ( )10 −− ayG  was the 

number of eggs produced a0-1 years prior to year y, α was the productivity parameter, 

and β was the density dependent parameter. The number of eggs was calculated within 

the submodel, based on a constant weight-specific fecundity.  The productivity and 

density dependent parameters were estimated within the submodel.  Numbers-at-age were 
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converted to biomass using observed mean weight-at-age data.  Total mortality consisted 

of four component parts: 

yaTyaGyaLya FFMMZ ,,,,,,, +++= , 

where M was the natural mortality rate, ML,a,y was the sea lamprey induced mortality rate 

in age a and year y, FG,a,y was the gill net fishing mortality rate in age a and year y, and 

FT,a,y was the trap net fishing mortality rate in age a and year y.  Natural mortality was 

assumed to be constant for all ages and years, and was estimated as a model parameter.  

Pauly’s equation (Pauly 1980) was used to calculate an initial value for the natural 

mortality parameter to provide a reasonable starting point for parameter estimation.  Sea 

lamprey mortality was calculated externally to the model based on observed sea lamprey 

wounding rates.  Fishing mortality was estimated by relaxing the assumptions of the fully 

separable fishing mortality model and allowing gear selectivity to vary with time: 

yiyiiyaiyai EqSF ,,,,,, ζ= , 

where Si,a,y was the gear selectivity of age a fish in fishery i and year y, qi was the 

catchability in fishery i, Ei,y was the observed fishing effort in fishery i and year y, and 

ζi,y was the deviation in fishing mortality from direct proportionality to observed fishing 

effort in fishery i and year y.  Selectivity was estimated with a double logistic function of 

age, and one of the parameters of the function was allowed to change with time according 

to a quadratic function.  This allowed age-specific selectivity to change gradually over 

time.  An adjustment factor was applied to the observed gill net effort in order to account 

for changes in the number of meshes deep that were set through time. 
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The observation submodel predicted catch-at-age for the gill net and trap net 

fisheries.  Catch-at-age was predicted using Baranov’s catch equation: 

⎟
⎠
⎞⎜

⎝
⎛ −=

− yaZ
ya

ya

yai
yai eN

Z
F

C ,
.

,

,,
,, 1 , 

where Ci,a,y was the number of age a fish caught in fishery i during year y, and all of the 

other parameters were estimated in the population submodel.  Predicted catch-at-age was 

converted to a total annual catch and a proportion of catch-at-age for each fishery.  An 

underreporting factor, representing the proportion of the actual catch that was reported, 

was applied to the total catch in order to account for underreporting and discards in the 

fisheries.  The underreporting factor was obtained by comparing reported fishery landings 

to actual sales.   

The parameter values providing the best fit were found using Bayesian methods 

(i.e., prior densities were assigned to all parameters).  In particular, best fit parameter 

estimates maximized the joint posterior density, and for numerical reasons this was done 

by finding parameter values that minimized the weighted sum of the negative log 

likelihoods and the negative log prior densities.  Separate likelihood components were 

calculated for gill net total catch, gill net proportion of catch-at-age, trap net total catch, 

and trap net proportion of catch-at-age.  Total annual catch was assumed to follow a 

lognormal distribution, with the negative log likelihood (ignoring some additive 

constants) given by: 
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where σi was the standard deviation for log-scale observed total catch in fishery i, Ci,y 

was observed total numbers of fish caught in fishery i and year y, yiC ,
ˆ  was predicted 

total numbers of fish caught in fishery i and year y, and n was the total number of years 

included in the model.  Observed catch was reported as weight of fish harvested, which 

was converted to numbers of fish using the observed mean weight of a harvested fish.  

Proportion of catch-at-age was assumed to follow a multinomial distribution, with the 

negative log likelihood (ignoring some additive constants) expressed as: 

( ) ( )∑ ∑
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n

y
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a
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1 1
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where NE,i,y was the effective number of fish used to calculate the age composition in 

fishery i and year y (Fournier and Archibald 1982), Pi,y,a was the observed proportion of 

catch-at-age a in fishery i and year y, ayiP ,,
ˆ  was the predicted proportion of catch-at-age 

a in fishery i and year y, n was the total number of years included in the model, and m 

was the total number of ages included in the model.  In addition to the likelihood 

components, the joint posterior density included terms related to prior densities for the 

model parameters.  First, deviations of predicted recruitments from the Ricker stock-

recruitment function were assumed to follow a lognormal distribution.  Second, deviation 

of predicted natural mortality from the prior natural mortality value (i.e. the Pauly’s 

equation value) was assumed to follow a lognormal distribution.  Third, deviations in the 

fishing mortality from direct proportionality to observed fishing effort were assumed to 

follow a lognormal distribution.  The log of all remaining model parameters were 

assigned proper uniform prior densities, which follows common practice with the intent 
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of being weakly informative.  Therefore, prior densities of the log of the remaining 

parameters were constants for all parameter values. 

Each likelihood component, the prior density for deviations between recruitment 

and the stock-recruitment function predictions, the prior density for natural mortality, and 

the prior density for deviations in the fishing mortality from direct proportionality to 

observed fishing effort were weighted by an emphasis factor as described by Methot 

(1990).  If all likelihood components, prior densities, and their associated standard 

deviations or effective sample sizes were correctly specified, then the emphasis factors 

should all be 1.0.  If there was a misspecification in the objective function, then the 

emphasis factors provide a simple way for analysts to adjust how closely the model 

attempts to fit observed and predicted data for each likelihood component. 

Projection Model 

Recommended yields for a reference (sometimes called target) mortality rate were 

then calculated using stock assessment model output in a projection model.  The stock 

assessment model output included estimated numbers-at-age, estimated total mortality, 

estimated natural mortality, and assumed sea lamprey mortality, all from the last year of 

the model, as well as, estimated trap net and gill net mortality rates that were averaged 

over the last three years of the model, and estimated average recruitment (over the last ten 

years) of the model.   Along with the stock assessment model output, observed weight-at-

age in the fisheries, observed mean proportion of females in the population, observed 

maturity schedules represented as year and age-specific proportions, and observed time of 

year of spawning represented as a proportion of the year were also used in the projection 

model for SSBR calculations. 
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  The projection model took the abundance-at-age estimates from the beginning of 

the last year of the stock assessment model, projected abundance to the beginning of the 

year for which recommended yields were desired, then projected yields for the trap net 

and gill net fisheries.  Trap net and gill net fishery multiplier parameters were used to 

adjust age-specific fishing mortality rates by the same proportion for each age.  The 

values of the two multipliers were set so as to achieve the reference mortality rate, while 

maintaining a desired allocation between trap net and gill net yield.  There were two steps 

to determining the appropriate values for the multipliers, which corresponded to how the 

reference mortality was defined.    First, the multipliers were adjusted so that the 

maximum total annual mortality for any age did not exceed the reference (typically 65%).  

Second, the ratio of SSBR at this mortality schedule to SSBR without fishing was 

calculated (hereafter the SSBR ratio).  If this ratio was less than 0.2, then the multipliers 

were decreased until the SSBR ratio equaled 0.2.   

Sensitivity Analysis 

Sensitivity analysis quantifies the effect of changes made to a model’s input 

values and underlying assumptions on the model’s output (Morgan and Henrion 1990).  

My sensitivity analysis tested changes to the stock assessment models’ input quantities 

and model structure (i.e., underlying model assumptions).  Changes to observed input 

data represented possible changes in data collection (e.g., collecting more or less data), 

while changes to input values based on expert judgment (e.g., parameter starting values) 

represented a changes made by the analyst during the model fitting process.  Changes in 

model structure were based on alternative modeling procedures suggested in the 
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literature.  The WFH-03 management unit model was not included in the following 

analysis, due to a lack of convergence to a satisfactory solution. 

The stock assessment models were tested for their sensitivity to changes in input 

values.  The observed mean weight-at-age of harvested fish was varied for all ages at 

once by ±10% of the original values.  The year- and age-specific maturity schedule was 

varied by reassigning maturity values from each age to the next oldest age (e.g., maturity 

values for age 4 fish became the maturity values for age 5 fish).  Then the first age was 

given a maturity value of zero.  Similarly, the maturity schedule was varied by 

reassigning maturity values from each age to the next youngest age (e.g., maturity values 

for age 4 fish became the maturity values for age 3 fish), and setting the maturity in the 

last age equal to 1.00.  Fecundity was adjusted by making it a linear function of average 

weight-at-age at the time of spawning.  The gill net adjustment factors for number of 

meshes deep set through time were set equal to 1.00 to test the overall effect of the 

adjustments.  The gill net adjustment factors also were varied using the following 

formula, which assumed the trend in the factors over time was alternatively more and less 

extreme than originally thought:   

( )xxcxx yy −+= ,0 , 

where xy was the new adjustment factor in year y, x  was the average of the original 

adjustment factors across all years, x0,y was the original adjustment factor in year y, and 

scalar c alternatively equaled 0.8 to represent a less extreme trend and 1.2 to represent a 

more extreme trend.  Adjustment factors were included in the original models to account 

for underreporting in each year of the fisheries.  The underreporting factors were set to 

1.00 for one fishery at a time to test the overall effect of the adjustments.  The 
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underreporting factors were increased and decreased by a value of 0.2 for one fishery at a 

time.  The proportion of females in the population was set to 0.5.  The proportion of 

females also was increased and decreased by a value of 0.2.  The time of year of 

spawning was increased and decreased by a value of 0.2.  Bounds for each model 

parameter, which limited the range of values a given parameter could take, were 

increased one at a time by decreasing the lower bound by 20% of the original value and 

increasing the upper bound by 20% of the original value.  Bounds for each model 

parameter were decreased one at a time by increasing the lower bound by 20% of the 

original value and decreasing the upper bound by 20% of the original value.  Starting 

values for each model parameter were increased and decreased one at a time by 20% of 

the original values.  Natural mortality was altered by fixing the parameter to the starting 

value and by increasing and decreasing the starting value by 20% of the original starting 

value.   

The stock assessment models were tested for their sensitivity to changes in model 

structure.  Recruitment in each year was estimated as a free parameter without any 

penalty for deviating from stock-recruitment model predictions.  Also, a Beverton-Holt 

stock-recruitment function, rather than a Ricker stock-recruitment function, was used to 

predict recruitment (Beverton and Holt 1957):   
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Rather than using deviations between observed and predicted numbers of fish caught in 

the objective function, deviations between observed and predicted biomass of fish caught 

were used.  The predicted numbers of fish caught were converted to mass of fish caught, 

using the mass-at-age of a harvested fish, comparing them assuming a lognormal 
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distribution.  The likelihood component emphasis factors were doubled and halved one at 

a time.  Gamma likelihood components were substituted for all lognormal likelihood 

components, keeping the same coefficient of variation: 
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 where φi was the inverse of the squared coefficient of variation for observed harvest in 

fishery i (Cadigan and Myers 2001) and the other variables were the same as in the 

lognormal likelihood component.  Dirichlet likelihood components were substituted for 

all multinomial likelihood components, with fixed parameters setting the effective sample 

size equal 100: 
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where γi represented the effective sample size for fishery i, Γ was the gamma function, 

and the other variables were the same as in the multinomial likelihood component. 

Each stock assessment model was rerun for each of the changes tested.  In order 

to better specify the standard deviation around the stock recruitment relationship, an 

initial recruitment standard deviation was input into the model.  The standard deviation of 

predicted recruitment was then calculated at the conclusion of model fitting.  The 

predicted recruitment standard deviation then replaced the former input standard 

deviation, and the model was rerun leading to a new predicted recruitment standard 

deviation.  This process was repeated 50 times with the goal of getting the ratio between 

input recruitment standard deviation and predicted recruitment standard variation as close 

to unity as possible.  After the 50 runs, the model was considered to have converged to a 
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satisfactory solution if:  1.) the ratio of recruitment standard deviations was between 0.98 

and 1.02; 2.) the maximum gradient component, which measures the maximum amount 

of change in parameter estimates during model fitting, was less than 1 x 10-2; and 3.) the 

Hessian matrix, which is used to calculate standard deviations for the parameter 

estimates, was positive definite.  

The sensitivity of the stock assessment models to change was monitored by 

tracking several of the models’ output quantities.  The output quantities of interest 

included: the estimated fully selected gill net and trap net fishing mortality rates averaged 

for the last three years of the assessment, estimated population biomass averaged for the 

last three years of the assessment, estimated SSBR of the unfished population, predicted 

SSBR at reference mortality levels, estimated SSBR ratio, and the estimated yield 

calculated for reference mortality rates for the projected population.  Model sensitivity 

was calculated as the percent difference of the test quantity of the adjusted model from 

the baseline value of the test quantity of the original model (Table 1.1): 

100
0

0
% ×

−′
=

θ
θθ

D , 

where D% was the percent difference, θ0 was the baseline value of the test quantity, 

andθ` was the value of the test quantity from the adjusted model.  I considered a model to 

be sensitive to a change if that change produced a 10% or greater change in one of the 

output quantities. 
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Results 

All of the stock assessment models were sensitive to changes in the input values.  

As expected, increasing observed mean weight-at-age of a harvested fish led to an 

increase in the projected TAC/HRG in all of the projection models (Table 1.2).  

Likewise, decreasing mean weight-at-age led to a decrease in the projected TAC/HRG in 

all of the projection models.  These effects upon projected TAC/HRGs were greater for 

the gill net fishery in WFH-01 and WFH-04, and were greater for the trap net fishery in 

WFH-02 and WFH-05.  Changes in mean weight-at-age of a harvested fish in the gill net 

fishery had no effect upon the projected TAC/HRG in the WFH-05 model, due to the 

small size of the gill net fishery in that management unit. 

Surprisingly, setting gill net effort adjustment factors for number of meshes deep 

set through time to one, increasing gill net effort adjustment factors, and decreasing gill 

net effort adjustment factors increased the projected TAC/HRG by 34.7% and changed 

the remaining test quantities to a lesser degree (0.1-4.6%), except for SSBR of the 

unfished population which was unaffected, in the WFH-02 model (Table 1.2).  All of 

these changes to gill net effort adjustment factors had slight effects (0.1-3.3%) on all of 

the test quantities, except for SSBR of the unfished population, in all of the other models; 

though no clear patterns were apparent.  The WFH-01 model failed to converge when gill 

net effort adjustment factors were set equal to one. 

As anticipated, shifting the maturity schedule later by one age led to substantial 

decreases (21.2-48.2%) in the SSBR of the unfished population and SSBR at the 

reference mortality schedule, with a greater decrease in SSBR at the target schedule, 

because the fish were maturing later after more mortality had occurred, and mortality was 
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higher for the reference schedule (Table 1.3).  The greater decrease in SSBR at reference 

mortality schedule led to a decrease in the SSBR ratio.  Likewise, shifting the maturity 

schedule earlier by one age led to substantial increases (13.6-55.4%) in the SSBR of the 

unfished population, SSBR at the reference mortality schedule, and the SSBR ratio in all 

of the models, due to the resulting increase in spawning biomass.  Unexpectedly, shifting 

the maturity schedule later by one age increased the projected TAC/HRG in WFH-02 and 

WFH-04 by 38.5% and 14.4% respectively.  Changes in the maturity schedule also had 

modest influence on fully selected gill net and trap net mortality, biomass, and projected 

TAC/HRG (0.1-5.9%) in all of the models.  There was some influence because maturity 

schedule values are used to calculate the number of eggs produced for the stock-

recruitment function, and this affects the objective function.  The WFH-02 model failed 

to converge when the maturity schedule was shifted earlier by one age. 

Setting the average proportion of females in the population equal to 0.5 led to an 

increase (21.8-31.6%) in SSBR of the unfished population and SSBR at the reference 

mortality schedule in all of the models, except the WFH-04 model which failed to 

converge (Table 1.3).  As expected, increasing the proportion of females led to an 

increase (47.9-52.6%) in SSBR of the unfished population and SSBR at the reference 

mortality schedule in all of the models, because the spawning stock was considered to be 

the mature females within the population.  Decreasing the proportion of females led to a 

decrease (48.9-52.6%) in SSBR of the unfished population and SSBR at the reference 

mortality schedule in all of the models, due to the resulting decrease in spawning stock.  

All of the adjustments made to the proportion of females led to slight changes (0.1-5.4%) 
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in the fully selected fishing mortalities, biomass, and SSBR ratio; and larger changes 

(23.8-37.2%) in the projected TAC/HRG for the WFH-02 model. 

   As expected, increasing trap net fishery underreporting adjustment factors led to 

increases in fully selected trap net mortality (12.8-18.1%) in order to account for the 

increased trap net harvest, except for a 1.3% decrease in trap net mortality in the WFH-05 

model, and decreases in fully selected gill net mortality (7.6-22.3%; Table 1.4).  

Decreasing trap net fishery underreporting adjustment factors led to decreases in fully 

selected trap net mortality (10.7-13.4%) due to the lower trap net harvest, except for a 

1.1% increase in trap net mortality in the WFH-05 model, and increases in fully selected 

gill net mortality (5.5-22.6%).  Likewise, increasing gill net fishery underreporting 

adjustment factors led to increases in fully selected gill net mortality (6.8-29.8%) and 

decreases in fully selected trap net mortality (13.4-16.7%) due to increased gill net 

harvest, except for a 1.8% increase in trap net mortality in the WFH-05 model.  

Decreasing gill net fishery underreporting adjustment factors led to decreases in fully 

selected gill net mortality (6.1-18.7%) and increases in fully selected trap net mortality 

(10.3-14.5%) due to decreased gill net harvest, except for a 1.2% decrease in trap net 

mortality in the WFH-05 model.   The small, but unforeseen, changes in fully selected 

fishing mortality rates (< 2%) in the WFH-05 model appeared to be due to the small gill 

net fishery, which effectively makes WFH-05 a one (trap net) fishery system.  It appears 

the WFH-05 assessment model accounted for adjustments in observed trap net harvest by 

making large changes to the biomass and small changes to fishing mortality.  Likewise, 

changes in gill net harvest led to only small adjustments of the biomass and trap net 

fishing mortality because of the small size of the fishery.  Changes in the fishery 
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underreporting adjustment factors also affected biomass (0.5-28.5%), SSBR at the target 

mortality schedule (0-4.4%), and SSBR ratio (0-4.4%), though no patterns were apparent.  

Changes in the fishery underreporting adjustment factors had no effect on the SSBR of 

the unfished population. 

As anticipated, increasing the time of year of spawning led to a decrease (2.7-

12.4%) in SSBR of the unfished population, SSBR at the reference mortality schedule, 

and SSBR ratio because fewer fish survived to spawn later in the year (Table 1.3).  

Increasing the time of year of spawning also led to an increase (0.3-36.2%) in the 

projected TAC/HRG for all of the models because the spawning stock was exposed to the 

fisheries for a longer period of time before spawning.  Decreasing the time of spawning 

led to an increase (2.8-14.5%) in SSBR of the unfished population, SSBR at the reference 

mortality schedule, and SSBR ratio because more fish would survive to spawn earlier in 

the year. Decreasing the time of spawning also led to a decrease (0.4-1.1%) in the 

projected TAC/HRG for all of the models because the spawning stock was exposed to the 

fisheries for a shorter period of time, except in the WFH-02 model which had an 

unexpected increase in the TAC/HRG of 33.0%.  Adjustments to the time of spawning 

led to slight changes (0-5.1%) in the fully selected fishing mortalities and biomass with 

no clear pattern in all of the models.  These slight changes appeared because time of 

spawning is used to calculate the number of eggs produced for the stock-recruitment 

function, which influenced the objective function. 

Both increasing and decreasing the parameter bounds for natural mortality led the 

WFH-02 model to converge to the same solution, different from the original one, where 

fully selected trap net mortality decreased by 0.2%, fully selected gill net mortality 
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increased by 1.2%, biomass increased by 4.6%, SSBR of the unfished population 

remained unchanged, SSBR and SSBR ratio decreased by 0.1%, and projected 

TAC/HRG increased by 34.7% (Table 1.5).  This alternate solution was very similar to 

the one reached by the model for this unit when changes were made to the gill net effort 

adjustment factors.  Increasing and decreasing the natural mortality parameter’s starting 

value for this unit also led to the same solution described above.  Decreasing natural 

mortality’s starting value led to 0.1% changes in fully selected trap net mortality, 

biomass, SSBR and SSBR ratio, and projected TAC/HRG in the WFH-04 model.  The 

WFH-01 and WFH-05 models were unaffected by changes to natural mortality. 

Surprisingly, decreasing trap net catchability bounds and increasing and 

decreasing gill net catchability bounds in the WFH-02 model led to the same alternate 

solution described above, where projected TAC/HRG increases by 34.7% while all the 

other test quantities, except for SSBR of the unfished population, changed from 0.1-4.6% 

(Table 1.6).  Increasing and decreasing the trap net catchability starting value and 

increasing the gill net starting value again led to the same alternate solution for WFH-02 

with the 34.7% increase in projected TAC/HRG.  None of the other models showed any 

sensitivity to changes in the catchability parameters. 

Increasing and decreasing the population scaling parameter’s bounds, and 

decreasing the population scaling parameter’s starting value led to the state with the 

34.7% increase in projected TAC/HRG in the WFH-02 model (Table 1.7).  Decreasing 

the relative population variation parameters’ bounds led to a 31.9% increase in fully 

selected gill net mortality, a 25.2% increase in the projected TAC/HRG, and smaller 

changes (2.2-8.0%) in fully selected trap net mortality, biomass, and SSBR and SSBR 
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ratio in the WFH-02 model.  The other models were unaffected by changes to the 

population scaling parameter and relative population variation parameters. 

Increasing the bounds of the Ricker stock-recruitment function’s productivity 

parameter led to a 37.2% increase in projected TAC/HRG and smaller changes (0.4-

5.4%) in the fully selected fishing mortalities and biomass in the WFH-02 model (Table 

1.8).  Decreasing the bounds of the Ricker function’s productivity parameter led to 

changes (0.2-10.8%) in all of the test quantities, except for SSBR for the unfished 

population, for the WFH-01 and WFH-05 models.  The WFH-02 model failed to 

converge when both the Ricker function’s productivity parameter’s bounds and starting 

value were decreased.  Increasing the bounds of the Ricker function’s density dependence 

parameter, increasing the starting value of the productivity parameter, and increasing and 

decreasing the starting value of the density dependence parameter led to the state where 

the projected TAC/HRG increases by 34.7% in the WFH-02 model.  Increasing the 

bounds of the Ricker function’s density dependence parameter led to a 20.6-43.4% 

increase in the projected TAC/HRG and smaller changes (0.3-15.2%) in the remaining 

test quantities, except for SSBR of the unfished population, for the WFH-01 and WFH-04 

models.  

Increasing the bounds of the gill net selectivity function’s first inflection point and 

decreasing the bounds of the gill net selectivity function’s first slope parameter in the 

WFH-02 model led to the same state noted earlier with the 34.7% increase in the 

projected TAC/HRG (Table 1.9).  Decreasing the bounds of the gill net selectivity 

function’s first inflection point led to changes (3.0-15.4%) in all of the test quantities, 

except SSBR of the unfished population, in the WFH-02 and WFH-04 models.  The 
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WFH-02 model failed to converge when the bounds on the gill net selectivity function’s 

second inflection point were widened.  Decreasing the bounds of the trap net selectivity 

function’s first inflection point led to changes (5.3-18.1%) in all of the other test 

quantities, except for SSBR of the unfished population, in the WFH-04 model (Table 

1.10).  The WFH-01 model failed to converge when the starting value for the gill net 

selectivity function’s second slope parameter was increased.  Increasing and decreasing 

the starting values for the gill net selectivity function’s first and second inflection points, 

decreasing the starting values for the gill net selectivity function’s first and second slope 

parameters, decreasing the starting value for the trap net selectivity function’s first 

inflection point, increasing and decreasing the starting value for the trap net selectivity 

function’s second inflection point, and decreasing the starting value for the trap net 

selectivity function’s second slope parameter led to the alternate state with the 34.7% 

increase in the projected TAC/HRG in the WFH-02 model.  The WFH-02 model failed to 

converge when the starting value for the trap net selectivity function’s first inflection 

point was increased.  The WFH-04 model failed to converge when the starting value for 

the gill net selectivity function’s first inflection point was decreased.  Adjustments to the 

starting values for the gill net selectivity function’s parameters led to 0.2-131.0% changes 

in fully selected trap net mortality, 1.4-1,277.2% changes in fully selected gill net 

mortality, 1.6-50.9% changes in biomass, 0.7-14.4% changes in SSBR and SSBR ratio, 

2.4-87.7% changes in projected TAC/HRG, and no change to SSBR for the unfished 

population for the WFH-05 model.  Increasing the starting value for the trap net 

selectivity function’s second inflection point, and increasing and decreasing the starting 

value for the trap net selectivity function’s second slope parameter led to a 0.1% change 
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in fully selected trap net mortality for the WFH-01 model.  Decreasing the starting value 

for the trap net selectivity function’s second inflection point led to changes (0.1-0.4%) in 

all of the test quantities, except for SSBR of the unfished population, for the WFH-01 

model. 

Increasing and decreasing the likelihood emphasis factor for natural mortality led 

to the alternate solution with a 34.7% increase in the projected TAC/HRG for the WFH-

02 model (Table 1.11).  The WFH-01 model failed to converge when the trap net catch 

and age composition emphasis factors were increased.  The WFH-04 model failed to 

converge when the trap net catch emphasis factor was increased, and when the trap net 

and gill net age composition emphasis factors were decreased.  All the remaining 

adjustments to the likelihood emphasis factors led to positive and negative changes (0.1-

62.0%) that showed no pattern in all of the test quantities, except SSBR of the unfished 

population, for all of the models. 

All of the stock assessment models also were sensitive to changes in model 

structure.  Holding natural mortality constant at its starting value in the WFH-02 model 

led to the state with the 34.7% increase in projected TAC/HRG (Table 1.12).  Modeling 

fecundity as a linear function of weight led to changes (0-38.8%) in all of the test 

quantities, except for SSBR of the unfished population, for the WFH-01, WFH-02, and 

WFH-05 models, because fecundity was used to calculate the number of eggs produced 

(stock size) for the stock-recruitment function (Table 1.6).  The WFH-04 model failed to 

converge when fecundity was modeled as a linear function of weight. 

Estimating each year’s recruitment as a free parameter led to changes (0.1-39.8%) 

in all of the test quantities, except for SSBR of the unfished population, for the WFH-02 
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and WFH-05 (Table 1.12).  The WFH-01 and WFH-04 models failed to converge when 

recruitment was estimated as free parameters.  Estimating recruitment using a Beverton-

Holt stock-recruitment model led to (0.3-54.3%) changes in all of the test quantities, 

except for SSBR of the unfished population, in all of the models. 

Fitting mass, instead of numbers, of fish caught in the objective function led to 

changes (3.7-39.6%) in all of the test quantities, except for SSBR of the unfished 

population, for the WFH-02, WFH-04, and WFH-05 models (Table 1.12).  The WFH-01 

model failed to converge when the mass of fish caught was used in the objective function. 

The use of the gamma likelihood function in place of the lognormal likelihood 

function led to small changes (0.1-0.7%) in all of the test quantities, except for SSBR of 

the unfished population, in the WFH-01, WFH-04, and WFH-05 models (Table 1.12).  

The WFH-02 model failed to converge when the gamma likelihood function was used.  

The use of the Dirchlet likelihood function in place of the multinomial likelihood 

function led to changes (0-25.9%) in all of the test quantities, except for SSBR of the 

unfished population, for all of the models. 

Most of the adjustments made to the models led to negative log-likelihood values 

that were the same as, or higher than, the original likelihood values, which means that the 

model fit was not improved.  In particular, the alternate solution often arrived at by the 

WFH-02 model had a higher likelihood value (4,340.5) than the original model (4,337.6). 

There were, however, several changes that led to a decrease in the negative log-likelihood 

value, which means that the changes produced parameter estimates that fit the data better 

than the original parameter estimates.  In particular a better fit was obtained after 

decreasing the bounds of the Ricker recruitment function’s density dependence parameter 
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in the WFH-01 and WFH-04 models and after decreasing the starting value of the gill net 

selectivity function’s second slope parameter in the WFH-05 model (Table 1.13).  These 

instances of better model fit could be due to random chance given the large number of 

model changes explored.  Likelihood values could not be directly compared to determine 

better model fit in cases where the model structure was changed or when the likelihood 

emphasis factors were adjusted, because these changes altered the objective function. 

Discussion 

I performed a simple sensitivity analysis of the stock assessment models for lake 

whitefish in the 1836 treaty waters of Lake Huron to changes in input quantities and 

model structure.  The changes I tested could be divided into two alternate categories that 

affect the way in which the results are interpreted.  First, changes to the observed data 

and model structure led to changes in the objective function (negative log-likelihood) and 

thus altered the optimal solution (i.e., the best-fit parameter estimates) from the optimal 

solution of the baseline model.  In this case, changes in the output quantities represent the 

model seeking the new optimal solution.  Second, changes to the parameter starting 

values and parameter bounds did not alter the optimal solution from the optimal solution 

of the baseline model.  In this case, changes in the output quantities mean that the model 

has become trapped at a local minimum for the objective function or found the true 

global minimum for the objective function depending upon whether the likelihood value 

is greater than or less than, respectively, the baseline model’s likelihood value. 

A simple sensitivity analysis, like the one conducted here, can be useful for 

identifying models that are unstable and highly sensitive to change.  The WFH-02 stock 

assessment model appears to be such a sensitive model.  Thirty-five of the 111 changes 
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tested led the model to converge to an alternate solution, which provided a poorer fit 

between observed and predicted values than the original model.  The alternative solution 

was similar to the original model’s solution except for a large increase in the projected 

TAC/HRG, due to a change in the estimated selectivity patterns.  It appears that the 

WFH-02 model can easily become trapped at a local minimum for the objective function, 

which leads to this alternate solution, rather than finding the global minimum.  Besides 

identifying unstable models, sensitivity analysis can also provide clues for analysts as 

they seek the best fit for an unstable model.  Sensitivity analysis can reveal to which 

parameters of the model important outputs are most sensitive to change.  It is critical for 

analysts to try a wide range of starting values and bounds for those parameters in order to 

help ensure that the global minimum for the objective function is found each time the 

model is updated.   Failure to find the global minimum can lead to dangerous 

management decisions (e.g., setting harvest limits based on an overestimated projected 

yield, as in WFH-02).  To this end, I have created a program for the MSC to automate my 

sensitivity analysis, using AD Model Builder software (ADMB 2002).  This program will 

allow analysts to more easily evaluate the sensitivity of the stock assessment models 

whenever the models are updated.  

All of the stock assessment models were sensitive to changes in the stock-

recruitment function’s parameter bounds.  Decreasing the density dependence parameter 

bounds led to better fit parameter estimates for the WFH-01 and WFH-04 models, which 

significantly reduced the projected TAC/HRG in both models.  It appears particularly 

important to do sensitivity analysis using a range of starting values and bounds for 

recruitment parameters each time the models are updated. 
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Sensitivity analysis also can reveal patterns of sensitivity across models, which 

may point to assumptions about underlying basic model structure (i.e. the way various 

biological, fishery, and data producing processes are included in the models) that should 

receive more attention.  I found that the Lake Huron stock assessment models were 

sensitive to my assumptions embodied in stock-recruitment functions, gear selectivity, 

and assumed probability distributions used to define the likelihood functions.  Of 

particular importance, the WFH-02 and WFH-04 model test quantities underwent similar 

changes, which resulted in increased TAC/HRGs, when the Beverton-Holt recruitment 

function was employed.  A number of authors have considered the consequences of 

assuming different stock-recruitment relationships to the management advice stemming 

from those assumed relationships (Myers et al. 1994; Barrowman and Myers 2000).  

Other authors have discussed the relative merits of estimating stock-recruitment 

parameters inside stock assessment models versus outside them (Maunder and Deriso 

2003).  The issue here is somewhat different than is addressed in that work since I was 

only considering short-term projections.  My concern here is more on whether including 

stock-recruitment functions as a form of a “prior” influences and potentially improves 

estimates and resulting short-term management advice, given a harvest policy exists. A 

simulation study, where either freely estimated recruitment or priors based on different 

recruitment functions were used would allow for a more detailed analysis of how 

different approaches to estimation of recruitment fare.   

I did not explicitly consider alternative approaches to estimating selectivity.  

However, all of the models showed sensitivity to changes in gear selectivity starting 

values and parameter bounds.  While sometimes the changes were small, in other cases 
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changes were pronounced (e.g., WFH-02 and WFH-05).  These results reinforce concerns 

that have arisen about the general suitability of the current double logistic selectivity 

function during the development of the stock assessment models.  As a result of problems 

encountered during the original models’ development, all the selectivity parameters are 

estimated in only one of the Lake Huron lake whitefish assessment models (WFH-01).  In 

each of the other models, some of the selectivity parameters must be held constant in 

order for the models to even converge on a solution.  Thus, issues clearly go beyond 

simply finding the best starting values and parameter bounds.  Reduced or constrained 

versions of the double logistic are not the only alternatives.  For example, logistic curves 

(Punt et al. 2001), double logistic curves (Methot 1990), gamma-type functions (Deriso et 

al. 1985), and polynomials (Fournier 1983) have all been used to model selectivity.  

Kimura (1990) and Radomski et al. (2005) found that use of an inappropriate selectivity 

function can greatly increase the error in modeling results.  This is another area where a 

simulation study could be used to help evaluate the current and alternative approaches to 

modeling selectivity.  Alternatively, an empirical selectivity experiment could be used to 

determine the actual gear selectivity, but this would need to be done for both gill nets and 

trap nets. 

All of the models showed some sensitivity to changes in the negative log 

likelihood function, both when likelihood emphasis factors were altered and when 

alternate distributional assumptions were made.  In theory, if the assumed standard 

deviations for the natural mortality, catch, and effort data and the assumed maximum 

effective sample sizes for the age composition data are correct, then all of the likelihood 

emphasis factors should be set to one.  Methot (1990) warns that sensitivity to changes in 
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the emphasis factors indicates that there is some inconsistency between the data sources 

or that some process has not been modeled correctly.  Sensitivity analysis of the models 

to the likelihood emphasis factors should be tested whenever the emphasis factors are 

adjusted during model updates in order to report this sensitivity along with model results.  

Replacing the lognormal likelihood function with the gamma likelihood function led to 

only small changes in the test quantities.  Cadigan and Meyers (2001) found similar 

results when comparing the two likelihood functions, although they emphasized that the 

gamma likelihood function is more robust to invalid distributional assumptions than the 

lognormal.  Williams and Quinn (2000a, 2000b) successfully used the Dirchlet likelihood 

function to represent age composition data for Pacific herring, where sample sizes were 

large.  Replacing the multinomial likelihood function with the Dirchlet likelihood 

function led to some changes in the test quantities, particularly the TAC/HRGs, in all of 

the models.  Again I believe a simulation study could be used to evaluate the robustness 

of assessments based on these alternative distributions, and to evaluate potential 

approaches to selecting between them. 

In conclusion, sensitivity analysis provides a useful tool for analysts applying 

stock assessment models.  Running a sensitivity analysis whenever models are updated 

with new data can reveal unstable models which are highly sensitive to change.  

Furthermore, such analysis can identify particular parameters or assumptions that 

generally have a large influence on outputs of interest.  This can help focus attention on 

these aspects of the assessment models.  Such attention could come in the form of using 

simulations to evaluate performance of alternative modeling approaches or collecting 

new kinds of data to distinguish among modeling choices. 
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Table 1.1.  Predicted values for fully selected trap-net mortality (TN F), fully selected gill-net mortality (GN F), population biomass 
(lbs), SSBR for unfished population, SSBR at reference mortality schedule, SSBR ratio, projected TAC/HRG (lbs), and the negative 
log-likelihood values from the unmodified lake whitefish stock assessment models for the 1836 treaty-ceded waters of Lake Huron in 
2001. 

 Evaluation Quantities  
Model TN F GN F Biomass Unfished SSBR Ref SSBR SSBR ratio TAC/HRG Likelihood 

WFH-01 0.07 0.37 2,397,250 0.38 0.12 0.31 374,829 6,410.34 
WFH-02 0.59 0.25 2,000,810 0.63 0.28 0.44 146,597 4,337.59 
WFH-04 0.24 0.35 2,341,150 0.42 0.13 0.30 333,149 5,694.84 
WFH-05 0.35 0.003 4,776,130 0.34 0.17 0.49 874,957 2,987.65 
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Table 1.2.  Percent difference from baseline values for fully selected trap-net mortality (TN F), fully selected gill-net mortality (GN 
F), population biomass, SSBR for unfished population, SSBR at reference mortality schedule, SSBR ratio, and projected TAC/HRG 
from the lake whitefish stock assessment models for the 1836 treaty-ceded waters of Lake Huron in 2001, when data input values were 
increased (+), decreased (-), and set to specific values.  Some changes led the models to fail to converge (fc). 

 Evaluation Quantities 
 TN F GN F Biomass Unfished SSBR Ref SSBR SSBR ratio TAC/HRG 

Description of change + - + - + - + - + - + - + - 
WFH-01              

TN weight-at-age 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.6 -4.6 
GN weight-at-age 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.4 -15.4 
GN effort adjustment = 1.0 fc fc fc fc fc fc  fc  
GN effort adjustment -0.1 0.1 0.3 -0.4 0.0 0.0 0.0 0.0 -0.1 0.0 -0.1 0.0 -0.3 0.3 

WFH-02               
TN weight-at-age 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.5 -16.5 
GN weight-at-age 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.5 -3.5 
GN effort adjustment = 1.0 0.7 1.3 4.1 0.0 -0.3  -0.3  34.7  
GN effort adjustment -0.4 -0.1 1.1 1.3 4.6 4.5 0.0 0.0 -0.1 -0.1 -0.1 -0.1 34.7 34.6 

WFH-04               
TN weight-at-age 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.1 -8.1 
GN weight-at-age 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.0 -12.0 
GN effort adjustment = 1.0 -1.4  -2.1  1.2  0.0  0.2  0.2  1.4  
GN effort adjustment 0.3 -0.3 0.5 -0.5 -0.2 0.3 0.0 0.0 0.0 0.0 0.0 0.0 -0.3 0.3 

WFH-05               
TN weight-at-age 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.1 -20.0 
GN weight-at-age 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
GN effort adjustment = 1.0 -1.2  -3.3  2.8  0.0  1.1  1.1  2.3  
GN effort adjustment 0.3 -0.3 0.8 -0.8 -0.6 0.6 0.0 0.0 -0.3 0.3 -0.3 0.3 -0.5 0.5 
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Table 1.3.  Percent difference from baseline values for fully selected trap-net mortality (TN F), fully selected gill-net mortality (GN 
F), population biomass, SSBR for unfished population, SSBR at reference mortality schedule, SSBR ratio, and projected TAC/HRG 
from the lake whitefish stock assessment models for the 1836 treaty-ceded waters of Lake Huron in 2001, when data input values were 
increased (+), decreased (-), and set to specific values.  For maturity schedule, an increase (+) means maturity values were shifted up 
to the next oldest age, while a decrease (-) means maturity values were shifted down to the next youngest age.  Some changes led the 
models to fail to converge (fc). 

 Evaluation Quantities 
 TN F GN F Biomass Unfished SSBR Ref SSBR SSBR ratio TAC/HRG 

Description of change + - + - + - + - + - + - + - 
WFH-01               

Maturity schedule -0.2 0.3 -0.1 0.1 0.6 -0.9 -24.9 23.5 -48.2 53.5 -31.0 24.3 1.2 -1.8 
Proportion female = 0.5 0.0  0.0  0.0  31.6  31.6  0.0  0.0  
Proportion female 0.0 0.0 0.0 0.0 0.0 0.0 52.6 -52.6 52.6 -52.6 0.0 0.0 0.0 0.0 
Time of spawning 0.0 0.1 0.0 0.0 0.1 -0.2 -4.0 4.2 -11.0 13.1 -7.3 8.5 0.3 -0.4 

WFH-02               
Maturity schedule -0.5 fc 1.2 fc 5.9 fc -21.2 fc -37.2 fc -20.3 fc 38.5 fc 
Proportion female = 0.5 0.1  1.4  2.7  22.2  21.8  -0.4  28.9  
Proportion female 0.3 -0.4 1.3 1.1 1.2 5.4 48.9 -48.9 47.9 -48.9 -0.6 0.0 23.8 37.2
Time of spawning -0.3 -0.1 1.1 1.3 5.1 4.0 -2.7 2.8 -7.4 8.2 -4.8 5.3 36.2 33.0

WFH-04               
Maturity schedule -2.8 -2.1 -1.3 -0.1 2.7 3.9 -26.0 24.8 -43.2 55.4 -23.3 24.5 0.9 14.4
Proportion female = 0.5 fc  fc  fc  fc  fc  fc  fc  
Proportion female 0.0 0.0 0.0 0.0 0.0 0.0 50.0 -50.0 50.0 -50.0 0.0 0.0 0.0 0.0 
Time of spawning -0.6 0.2 -0.8 0.5 0.5 -0.1 -3.3 3.4 -12.4 14.5 -9.4 10.7 2.2 -1.1 

WFH-05               
Maturity schedule -2.2 1.9 -2.0 2.0 2.4 -2.4 -28.0 27.2 -40.5 44.5 -17.4 13.6 1.9 -1.9 
Proportion female = 0.5 0.0  0.0  0.0  25.6  25.6  0.0  0.0  
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Table 1.3 (cont’d).               
Proportion female 0.0 0.0 0.0 0.0 0.0 0.0 50.3 -50.3 50.3 -50.3 0.0 0.0 0.0 0.0 
Time of spawning -0.7 0.6 -0.5 0.5 0.6 -0.6 -4.5 4.7 -9.9 11.3 -5.6 6.3 0.7 -0.7 
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Table 1.4.  Percent difference from baseline values for fully selected trap-net mortality (TN F), fully selected gill-net mortality (GN 
F), population biomass, SSBR for unfished population, SSBR at reference mortality schedule, SSBR ratio, and projected TAC/HRG 
from the lake whitefish stock assessment models for the 1836 treaty-ceded waters of Lake Huron in 2001, when data input values were 
increased (+), decreased (-), and set to specific values. 

 Evaluation Quantities 
 TN F GN F Biomass Unfished SSBR Ref SSBR SSBR ratio TAC/HRG 

Description of change + - + - + - + - + - + - + - 
WFH-01               

TN harvest reporting = 1.0 -6.8  0.8  -1.4  0.0  -0.1  -0.1  -3.3  
TN harvest reporting -11.7 15.0 7.2 -9.7 -6.1 9.7 0.0 0.0 3.2 -4.4 3.2 -4.4 -8.7 14.3 
GN harvest reporting = 1.0 6.8  -1.4  -5.2  0.0  -0.4  -0.4  -4.4  
GN harvest reporting 11.9 -14.7 -7.8 8.6 -11.4 18.0 0.0 0.0 -3.6 3.8 -3.6 3.8 -8.7 14.3 

WFH-02               
TN harvest reporting = 1.0 -5.4  1.9  0.5  0.0  -0.7  -0.7  31.9  
TN harvest reporting -10.7 12.8 7.4 -7.6 -8.1 24.6 0.0 0.0 -0.6 0.5 -0.6 0.5 22.9 53.5 
GN harvest reporting = 1.0 5.3  -0.2  2.4  0.0  0.4  0.4  29.7  
GN harvest reporting 10.3 -13.4 -7.2 8.7 -4.3 13.5 0.0 0.0 0.7 -0.7 0.7 -0.7 -6.5 53.3 

WFH-04              
TN harvest reporting = 1.0 -4.6  2.3  -2.6  0.0  -0.5  -0.5  -2.9  
TN harvest reporting -13.4 18.1 5.5 -7.6 -5.8 9.1 0.0 0.0 0.0 0.2 0.0 0.2 -4.7 7.6 
GN harvest reporting = 1.0 5.0  -2.6  -4.2  0.0  -0.1  -0.1  -5.5  
GN harvest reporting 14.5 -16.7 -6.1 6.8 -11.8 18.5 0.0 0.0 0.0 0.2 0.0 0.2 -13.2 20.9 

WFH-05               
TN harvest reporting = 1.0 1.3  8.6  -7.6  0.0  -0.4  -0.4  -7.7  
TN harvest reporting 1.1 -1.3 22.6 -22.3 -18.3 28.5 0.0 0.0 0.0 0.1 0.0 0.1 -18.6 29.0 
GN harvest reporting = 1.0 -2.2  -9.9  3.4  0.0  1.0 1.0  3.1  
GN harvest reporting -1.2 1.8 -18.7 29.8 1.2 -1.7 0.0 0.0 0.1 -0.2 0.1 -0.2 1.4 -2.1 
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Table 1.5.  Percent difference from baseline values for fully selected trap-net mortality (TN F), fully selected gill-net mortality (GN 
F), population biomass, SSBR for unfished population, SSBR at reference mortality schedule, SSBR ratio, and projected TAC/HRG 
from the lake whitefish stock assessment models for the 1836 treaty-ceded waters of Lake Huron in 2001, when natural mortality 
parameters were increased (+) and decreased (-).  

 Evaluation Quantities 
 TN F GN F Biomass Unfished SSBR Ref SSBR SSBR ratio TAC/HRG

Description of change + - + - + - + - + - + - + - 
WFH-01               

Natural mortality bounds 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Natural mortality initial value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

WFH-02               
Natural mortality bounds -0.2 -0.2 1.2 1.2 4.6 4.6 0.0 0.0 -0.1 -0.1 -0.1 -0.1 34.7 34.7
Natural mortality initial value -0.2 -0.2 1.2 1.2 4.6 4.6 0.0 0.0 -0.1 -0.1 -0.1 -0.1 34.7 34.5

WFH-04               
Natural mortality bounds 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Natural mortality initial value 0.0 -0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.1 

WFH-05               
Natural mortality bounds 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Natural mortality initial value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Table 1.6.  Percent difference from baseline values for fully selected trap-net mortality (TN F), fully selected gill-net mortality (GN 
F), population biomass, SSBR for unfished population, SSBR at reference mortality schedule, SSBR ratio, and projected TAC/HRG 
from the lake whitefish stock assessment models for the 1836 treaty-ceded waters of Lake Huron in 2001, when catchability 
parameters were increased (+) and decreased (-). 

 Evaluation Quantities 
 TN F GN F Biomass Unfished SSBR Ref SSBR SSBR TAC/HRG

Description of change + - + - + - + - + - + - + - 
WFH-01               

TN catchability bounds 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
TN catchability initial value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
GN catchability bounds 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
GN catchability initial value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

WFH-02               
TN catchability bounds 0.0 -0.2 0.0 1.2 0.0 4.6 0.0 0.0 0.0 -0.1 0.0 -0.1 0.0 34.7
TN catchability initial value -0.2 -0.2 1.2 1.2 4.6 4.6 0.0 0.0 -0.1 -0.1 -0.1 -0.1 34.7 34.7
GN catchability bounds -0.2 -0.2 1.2 1.2 4.6 4.6 0.0 0.0 -0.1 -0.1 -0.1 -0.1 34.7 34.7
GN catchability initial value -0.2 0.0 1.2 0.0 4.6 0.0 0.0 0.0 -0.1 0.0 -0.1 0.0 34.7 0.0 

WFH-04               
TN catchability bounds 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
TN catchability initial value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
GN catchability bounds 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
GN catchability initial value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

WFH-05               
TN catchability bounds 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
TN catchability initial value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
GN catchability bounds 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
GN catchability initial value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Table 1.7.  Percent difference from baseline values for fully selected trap-net mortality (TN F), fully selected gill-net mortality (GN 
F), population biomass, SSBR for unfished population, SSBR at reference mortality schedule, SSBR ratio, and projected TAC/HRG 
from the lake whitefish stock assessment models for the 1836 treaty-ceded waters of Lake Huron in 2001, when data input values were 
increased (+) and decreased (-). 

 Evaluation Quantities 
 TN F GN F Biomass Unfished SSBR Ref SSBR SSBR ratio TAC/HRG

Description of change + - + - + - + - + - + - + - 
WFH-01               

Population scaler bounds 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Population scaler initial value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Relative population variation 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

WFH-02               
Population scaler bounds -0.2 -0.2 1.2 1.2 4.6 4.6 0.0 0.0 -0.1 -0.1 -0.1 -0.1 34.7 34.7
Population scaler initial value 0.0 -0.2 0.0 1.2 0.0 4.6 0.0 0.0 0.0 -0.1 0.0 -0.1 0.0 34.7
Relative population variation 0.0 8.0 0.0 31.9 0.0 0.0 0.0 0.0 0.0 2.2 0.0 2.2 0.0 25.2

WFH-04               
Population scaler bounds 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Population scaler initial value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Relative population variation 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

WFH-05               
Population scaler bounds 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Population scaler initial value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Relative population variation 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Table 1.8.  Percent difference from baseline values for fully selected trap-net mortality (TN F), fully selected gill-net mortality (GN 
F), population biomass, SSBR for unfished population, SSBR at reference mortality schedule, SSBR ratio, and projected TAC/HRG 
from the lake whitefish stock assessment models for the 1836 treaty-ceded waters of Lake Huron in 2001, when recruitment 
parameters were increased (+) and decreased (-).  Some changes led the models to fail to converge (fc). 

 Evaluation Quantities 
 TN F GN F Biomass Unfished SSBR Ref SSBR SSBR ratio TAC/HRG 

Description of change + - + - + - + - + - + - + - 
WFH-01               

Recruitment α bounds 0.0 0.9 0.0 0.2 0.0 -3.4 0.0 0.0 0.0 -0.6 0.0 -0.6 0.0 -9.2 
Recruitment α initial value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Recruitment β bounds 0.0 3.0 0.0 0.8 0.0 -15.2 0.0 0.0 0.0 -2.4 0.0 -2.4 0.0 -43.4
Recruitment β initial value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

WFH-02               
Recruitment α bounds -0.4 fc 1.1 fc 5.4 fc 0.0 fc 0.0 fc 0.0 fc 37.2 fc 
Recruitment α initial value -0.2 fc 1.2 fc 4.6 fc 0.0 fc -0.1 fc -0.1 fc 34.7 fc 
Recruitment β bounds -0.2 0.0 1.2 0.0 4.6 0.0 0.0 0.0 -0.1 0.0 -0.1 0.0 34.7 0.0 
Recruitment β initial value -0.2 -0.2 1.2 1.2 4.6 4.6 0.0 0.0 -0.1 -0.1 -0.1 -0.1 34.7 34.7 

WFH-04               
Recruitment α bounds 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Recruitment α initial value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Recruitment β bounds 0.0 -0.3 0.0 1.2 0.0 -2.1 0.0 0.0 0.0 2.4 0.0 2.4 0.0 -20.6
Recruitment β initial value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

WFH-05               
Recruitment α bounds 0.0 10.8 0.0 10.5 0.0 -5.4 0.0 0.0 0.0 1.0 0.0 1.0 0.0 -7.1 
Recruitment α initial value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Recruitment β bounds 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Recruitment β initial value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Table 1.9.  Percent difference from baseline values for fully selected trap-net mortality (TN F), fully selected gill-net mortality (GN 
F), population biomass, SSBR for unfished population, SSBR at reference mortality schedule, SSBR ratio, and projected TAC/HRG 
from the lake whitefish stock assessment models for the 1836 treaty-ceded waters of Lake Huron in 2001, when selectivity parameters 
were increased (+) and decreased (-).  The selectivity function parameters were the first inflection point (p1), first slope (p2), second 
inflection point (p3), and second slope (p4).  Some changes led the models to fail to converge (fc). 

 Evaluation Quantities 
 TN F GN F Biomass Unfished SSBR Ref SSBR SSBR ratio TAC/HRG 

Description of change + - + - + - + - + - + - + - 
WFH-01               

GN sel. p1 bounds 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
GN sel. p1 initial value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
GN sel. p2 bounds 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
GN sel. p2 initial value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
GN sel. p3 bounds 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
GN sel. p3 initial value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 
GN sel. p4 initial value fc 0.0 fc 0.0 fc 0.0 fc 0.0 fc 0.0 fc 0.0 fc 0.0 

WFH-02               
GN sel. p1 bounds -0.2 6.6 1.2 3.0 4.6 -15.4 0.0 0.0 -0.1 -8.3 -0.1 -8.3 34.7 14.7 
GN sel. p1 initial value -0.2 -0.2 1.2 1.2 4.6 4.6 0.0 0.0 -0.1 -0.1 -0.1 -0.1 34.7 34.7 
GN sel. p2 bounds 0.0 -0.2 0.0 1.2 0.0 4.6 0.0 0.0 0.0 -0.1 0.0 -0.1 0.0 34.7 
GN sel. p2 initial value 0.0 -0.2 0.0 1.2 0.0 4.6 0.0 0.0 0.0 -0.1 0.0 -0.1 0.0 34.7 
GN sel. p3 bounds fc 0.0 fc 0.0 fc 0.0 fc 0.0 fc 0.0 fc 0.0 fc 0.0 
GN sel. p3 initial value -0.2 -0.2 1.2 1.2 4.6 4.6 0.0 0.0 -0.1 -0.1 -0.1 -0.1 34.7 34.6 
GN sel. p4 initial value 0.0 -0.2 0.0 1.2 0.0 4.6 0.0 0.0 0.0 -0.1 0.0 -0.1 0.0 34.7 
WFH-04               
GN sel. p1 bounds 0.0 -4.8 0.0 -9.3 0.0 0.7 0.0 0.0 0.0 -7.9 0.0 -7.9 0.0 2.1 
GN sel. p1 initial value 0.0 fc 0.0 fc 0.0 fc 0.0 fc 0.0 fc 0.0 fc 0.0 fc 
GN sel. p2 bounds 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
GN sel. p2 initial value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Table 1.9 (cont’d).               
GN sel. p3 bounds 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
GN sel. p3 initial value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
GN sel. p4 initial value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
WFH-05               
GN sel. p1 bounds not estimated as a parameter 
GN sel. p1 initial value -9.3 -40.5 127.1 -64.6 44.6 30.9 0.0 0.0 14.4 -5.8 14.4 -5.8 41.7 27.8 
GN sel. p2 bounds not estimated as a parameter 
GN sel. p2 initial value -1.1 0.2 6.7 -8.1 4.6 -3.7 0.0 0.0 1.3 -1.2 1.3 -1.2 6.2 -5.6 
GN sel. p3 bounds not estimated as a parameter 
GN sel. p3 initial value 6.0 131.0 7.1 1277.2 -2.4 -50.9 0.0 0.0 1.1 10.5 1.1 10.5 -3.7 -87.7
GN sel. p4 initial value 3.9 -4.6 1.4 1.9 -1.6 2.1 0.0 0.0 0.7 -0.9 0.7 -0.9 -2.4 3.1 
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Table 1.10.  Percent difference from baseline values for fully selected trap-net mortality (TN F), fully selected gill-net mortality (GN 
F), population biomass, SSBR for unfished population, SSBR at reference mortality schedule, SSBR ratio, and projected TAC/HRG 
from the lake whitefish stock assessment models for the 1836 treaty-ceded waters of Lake Huron in 2001, when selectivity parameters 
were increased (+) and decreased (-).  The selectivity function parameters were the first inflection point (p1), first slope (p2), second 
inflection point (p3), and second slope (p4).  Some changes led the models to fail to converge (fc). 

 Evaluation Quantities 
 TN F GN F Biomass Unfished SSBR Ref SSBR SSBR ratio TAC/HRG 

Description of change + - + - + - + - + - + - + - 
WFH-01               

TN sel. p1 bounds 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
TN sel.p1 initial value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
TN sel. p3 initial value 0.1 -0.4 0.0 -0.2 0.0 0.1 0.0 0.0 0.0 -0.1 0.0 -0.1 0.0 0.1 
TN sel. p4 initial value 0.1 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

WFH-02               
TN sel. p1 bounds 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
TN sel. p1 initial value fc -0.2 fc 1.2 fc 4.6 fc 0.0 fc -0.1 fc -0.1 fc 34.7 
TN sel. p3 initial value -0.2 -0.3 1.2 1.2 4.6 4.6 0.0 0.0 -0.1 -0.1 -0.1 -0.1 34.7 34.7 
TN sel. p4 initial value 0.0 -0.2 0.0 1.2 0.0 4.6 0.0 0.0 0.0 -0.1 0.0 -0.1 0.0 34.7 
WFH-04               
TN sel. p1 bounds 0.0 -17.0 0.0 -12.5 0.0 9.0 0.0 0.0 0.0 -5.3 0.0 -5.3 0.0 18.1 
TN sel. p1 initial value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
TN sel. p3 initial value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
TN sel. p4 initial value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
WFH-05               
TN sel. p1 bounds 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
TN sel. p1 initial value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
TN sel. p3 initial value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
TN sel. p4 initial value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Table 1.11.  Percent difference from baseline values for fully selected trap-net mortality (TN F), fully selected gill-net mortality (GN 
F), population biomass, SSBR for unfished population, SSBR at reference mortality schedule, SSBR ratio, and projected TAC/HRG 
from the lake whitefish stock assessment models for the 1836 treaty-ceded waters of Lake Huron in 2001, when likelihood emphasis 
factors were increased (+) and decreased (-).  Some changes led the models to fail to converge (fc). 

 Evaluation Quantities 
 TN F GN F Biomass Unfished SSBR Ref SSBR SSBR ratio TAC/HRG 

Description of change + - + - + - + - + - + - + - 
WFH-01               

Natural mortality like. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
TN catch like.  fc 0.2 fc 1.8 fc -4.2 fc 0.0 fc -0.4 fc -0.4 fc -6.3 
TN effort like.  -7.9 13.6 -3.8 6.1 10.4 -11.7 0.0 0.0 1.0 -1.1 0.9 -1.1 17.5 -17.3
TN age comp like.  fc 0.4 fc 10.2 fc 1.6 fc 0.0 fc 0.4 fc 0.4 fc 14.3 
GN catch like.  0.2 -0.4 0.0 0.2 -0.2 0.5 0.0 0.0 0.3 -0.4 0.3 -0.4 0.3 -0.5 
GN effort like.  2.1 -2.7 5.8 -8.0 -1.0 1.7 0.0 0.0 1.8 -2.9 1.8 -2.9 -1.3 3.4 
GN age comp like.  10.1 -5.5 6.6 -4.0 -12.6 9.0 0.0 0.0 -5.0 8.0 -5.0 8.0 -16.5 11.6 

WFH-02               
Natural mortality like.  -0.2 -0.2 1.2 1.2 4.6 4.6 0.0 0.0 -0.1 -0.1 -0.1 -0.1 34.7 34.6 
TN catch like.  -0.7 0.3 -0.1 3.4 6.4 1.3 0.0 0.0 0.0 -0.3 0.0 -0.3 37.2 30.3 
TN effort like.  -3.0 3.0 -0.9 3.5 11.1 -2.3 0.0 0.0 1.1 -1.7 1.1 -1.7 45.9 23.1 
TN age comp like.  -4.4 3.9 -8.1 17.2 6.1 0.0 0.0 0.0 -1.1 -0.1 -1.1 -0.1 37.1 27.9 
GN catch like.  0.2 7.3 -0.8 34.2 -0.5 1.0 0.0 0.0 -0.2 2.5 -0.2 2.5 -0.8 25.8 
GN effort like.  -0.5 0.6 2.7 -0.6 4.0 4.9 0.0 0.0 -0.1 -0.3 -0.1 -0.3 33.7 36.2 
GN age comp like.  19.4 -6.5 58.3 -9.9 -16.4 15.4 0.0 0.0 0.4 0.3 0.4 0.3 -8.7 62.0 
WFH-04               
Natural mortality like.  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
TN catch like.  fc -2.2 fc 2.3 fc -2.4 fc 0.0 fc 0.6 fc 0.6 fc -3.7 
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Table 1.11 (cont’d).               
TN effort like.  -8.6 11.6 -2.9 4.4 2.3 -1.9 0.0 0.0 -2.0 3.4 -2.0 3.4 13.9 -9.8 
TN age comp like.  -5.3 fc -3.5 fc 5.2 fc 0.0 fc 5.1 fc 5.1 fc -0.3 fc 
GN catch like.  -0.9 1.1 -0.7 0.9 0.3 -0.1 0.0 0.0 -0.6 0.9 -0.6 0.9 0.7 -0.8 
GN effort like.  -0.9 -1.2 0.1 -2.6 0.4 1.2 0.0 0.0 -0.4 0.2 -0.4 0.2 4.4 -0.6 
GN age comp like.  13.7 fc 12.1 fc -5.7 fc 0.0 fc 3.3 fc 3.3 fc -11.3 fc 
WFH-05               
Natural mortality like.  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
TN catch like.  -2.5 4.1 -3.8 6.8 4.4 -7.2 0.0 0.0 -0.7 1.2 -0.7 1.2 5.8 -9.3 
TN effort like.  -9.4 18.9 -2.5 6.3 4.2 -8.4 0.0 0.0 -2.3 3.0 -2.3 3.0 9.9 -16.3
TN age comp like.  1.0 8.7 -2.1 10.4 19.7 -15.5 0.0 0.0 8.4 -7.3 8.4 -7.2 23.3 -15.4
GN catch like.  1.6 -2.3 -3.9 7.6 -2.7 4.4 0.0 0.0 -0.9 1.4 -0.9 1.4 -2.4 4.1 
GN effort like.  3.7 -2.6 14.1 -10.5 -7.9 8.0 0.0 0.0 -3.0 3.0 -3.0 3.0 -7.6 7.7 
GN age comp like.  19.0 -12.5 12.2 -8.8 -8.9 7.3 0.0 0.0 3.2 -2.6 3.2 -2.6 -15.6 13.1 
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 Table 1.12.  Percent difference from baseline values for fully selected trap-net mortality (TN F), fully selected gill-net mortality (GN 
F), population biomass, SSBR for unfished population, SSBR at reference mortality schedule, SSBR ratio, and projected TAC/HRG 
from the lake whitefish stock assessment models for the 1836 treaty-ceded waters of Lake Huron in 2001, when model structure was 
modified.  Some changes led the models to fail to converge (fc). 

 Evaluation Quantities 
Description of change TN F GN F Biomass Unfished SSBR Ref SSBR SSBR ratio TAC/HRG

WFH-01        
Natural mortality constant at initial value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Fecunditiy linear function of age 0.0 0.0 0.3 0.0 0.1 0.1 0.8 
Recruitment unconstrained fc fc fc fc fc fc fc 
Recruitment Beverton-Holt model 0.4 0.5 0.3 0.0 0.3 0.3 1.7 
Fit fishery biomass fc fc fc fc fc fc fc 
Gamma likelihood component 0.1 -0.1 0.3 0.0 0.1 0.1 0.5 
Dirichlet likelihood component -2.9 20.1 -8.4 0.0 17.6 17.6 -16.9 

WFH-02        
Natural mortality constant at initial value -0.2 1.2 4.6 0.0 -0.1 -0.1 34.7 
Fecunditiy linear function of age -0.5 1.0 5.9 0.0 0.0 0.0 38.8 
Recruitment unconstrained -0.1 -0.1 0.2 0.0 0.0 0.0 0.6 
Recruitment Beverton-Holt model -1.0 0.7 8.0 0.0 0.4 0.4 42.9 
Fit fishery biomass 8.4 39.6 6.9 0.0 5.4 5.4 3.7 
Gamma likelihood component fc fc fc fc fc fc fc 
Dirichlet likelihood component 6.2 1.5 -0.4 0.0 -3.8 -3.8 25.9 

WFH-04        
Natural mortality constant at initial value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Fecunditiy linear function of age fc fc fc fc fc fc fc 
Recruitment unconstrained fc fc fc fc fc fc fc 
Recruitment Beverton-Holt model -10.0 -3.5 18.6 0.0 6.9 6.9 54.3 
Fit fishery biomass -6.2 -4.9 15.7 0.0 5.0 5.0 14.6 
Gamma likelihood component 0.1 -0.3 0.3 0.0 0.0 0.0 0.5 
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Table 1.12 (cont’d).        
Dirichlet likelihood component -0.1 -4.7 2.2 0.0 0.0 0.0 0.5 

WFH-05        
Natural mortality constant at initial value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Fecunditiy linear function of age 1.0 0.4 -3.2 0.0 -0.6 -0.6 -5.1 
Recruitment unconstrained -3.8 -1.5 23.0 0.0 4.5 4.5 39.8 
Recruitment Beverton-Holt model -5.5 -5.7 16.7 0.0 4.3 4.3 20.8 
Fit fishery biomass -2.9 -10.2 19.3 0.0 8.2 8.2 12.8 
Gamma likelihood component -0.1 0.7 0.4 0.0 0.1 0.1 0.4 
Dirichlet likelihood component 9.9 5.1 -11.6 0.0 -1.4 -1.4 -18.0 
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Table 1.13.  Predicted values for fully selected trap-net mortality (TN F), fully selected gill-net mortality (GN F), population biomass 
(lbs), SSBR for unfished population, SSBR at reference mortality schedule, SSBR ratio, projected TAC/HRG (lbs), and the negative 
log-likelihood values from the lake whitefish stock assessment models for the 1836 treaty-ceded waters of Lake Huron in 2001, when 
changes improved model fit.  The selectivity function parameter p4 was the second slope.  Selectivity was abbreviated sel., and 
decrease was abbreviated dec. 

 Evaluation Quantities  
Description of change TN F GN F Biomass Unfished SSBR Ref SSBR SSBR ratio TAC/HRG Likelihood

WFH-01         
Recruitment β bounds dec. 0.07 0.38 2,032,260 0.38 0.12 0.30 212,169 6,405.53 

WFH-04         
Recruitment β bounds dec. 0.23 0.36 2,292,740 0.42 0.13 0.31 264,482 5,688.16 

WFH-05         
GN sel. p4 initial value dec. 0.34 0.003 4,876,080 0.34 0.17 0.49 902,314 2,981.44 
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Figure 1.1.  1836 treaty-ceded waters and lake whitefish management units in lakes 
Huron, Michigan and Superior. 
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CHAPTER 2 
 

EVALUATING METHODS FOR ESTIMATING PROCESS AND OBSERVATION  
 

ERRORS IN STATISTICAL CATCH-AT-AGE ANALYSIS 
 
 

Introduction 

Modern statistically-based stock assessment models allow a stock assessment 

analyst to explicitly account for process and observation errors.  Observation errors 

within statistical catch-at-age analysis (SCAA) commonly take the form of differences 

between observed and true fishery catch or survey indices of abundance.  Process errors 

within SCAA generally take the form of annual deviations in recruitment, catchability, or 

fishery selectivity.  Errors within SCAA also can be combinations of observation and 

process error.  For instance, fishing effort can be predicted within SCAA using estimates 

of annual fishing mortality rates on fully selected fish and fishery catchability.  Some 

analysts implicitly treat the deviations between observed and predicted effort as 

observation error.  In reality these deviations are due to interannual variation in 

catchability (process error, which will often dominate) as well as errors in observing the 

nominal amount of fishing effort.  Similarly, deviations between model and observed 

values of fishery catch per unit effort (CPUE) arise from a combination of observation 

error and interannual variation in catchability.  The variances associated with all of these 

error sources or the ratios of those variances are used in SCAA to weight the different 

data sources during the model fitting process (Fournier and Archibald 1982; Deriso et al. 

1985).   
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It is important to understand how values for process and observation error 

variances are obtained because those values can affect SCAA results.  Deriso et al. (1985) 

demonstrated that altering the assumed known ratio of catch variance to effort variance, 

which they used to weight fishing effort and catch data, affected estimates of fully-

selected fishing mortality, surplus production and year-class strength of halibut.  Chen 

and Paloheimo (1998) found that misspecifying the ratio of catch variance to effort 

variance could lead to increased estimation bias in catchability and natural mortality.  The 

National Research Council (1998) recognized the importance of correctly weighting 

different data sources within stock assessments, and recommended that more research is 

needed to determine how those weights should be set.    

Process and observation error variance values can be derived either separately 

from SCAA or estimated within SCAA.  Derivation of error variance values separate 

from SCAA is the more common approach, with these estimates or their ratio then 

assumed known during the subsequent SCAA.  A plausible estimate of observation error 

variance for data subsets such as observed annual catch, effort, or abundance indices 

often can be obtained through analysis of the raw data used to derive these quantities, 

taking into account the sampling designs (Law and Kelton 1982; Sitar et al. 1999).  

Process error variances cannot be estimated in the same way, by analysis of assessment 

data subsets external to the model, because by themselves these data are not informative 

about how model parameters such as catchability are varying.  As a result, assessment 

scientists often rely on expert opinion to obtain estimates of this component of variance.  

Merritt and Quinn (2000) applied this expert opinion approach and other empirical data 

weighting approaches to the assessment of a recreational fishery, and judged that the 
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expert opinion approach produced the best model based on an analytic hierarchy process, 

a decision making technique.  Since they were working with actual fishery data, Merritt 

and Quinn (2000) could not evaluate the accuracy of the variance estimates produced by 

expert opinion.  With estimates (or educated guesses) of observation and process error 

variances in hand, the assessment often then proceeds assuming these values or their ratio 

is known.  There are several potential disadvantages to such a two-step procedure.  First, 

uncertainty surrounding the error variance estimates is ignored in the subsequent SCAA 

(Maunder 2001).  Second, the reliability of process error variances based on expert 

judgment can be questioned.  Francis et al. (2003) discovered that the standard values 

used in New Zealand stock assessments for the coefficients of variation (CV) for 

commercial CPUE (effectively the CV for process errors in catchability), which primarily 

are derived from expert opinion, typically were too low to be consistent with the resulting 

interannual variation in assessment model estimates of fishing mortality.  In contrast, they 

found the prespecified trawl survey CVs were too large to be consistent with the resulting 

deviations between assessment model estimates of catchable stock abundance and 

observed survey indices.     

Process and observation error variances generally are not estimated within SCAA 

due to difficulties in estimating the variances as parameters.  This task is particularly 

difficult when multiple variances are being estimated.  The potential advantages of 

estimating variances in SCAA are that 1) all of the data in the analysis can be synthesized 

to obtain the variance estimates, and 2) for some methods, uncertainty surrounding the 

variance estimates can be quantified and accounted for in the analysis.  Two main 

statistical methods exist for estimating process and observation error variances in SCAA 
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(Schnute 1994).  First, a Bayesian approach could be taken, in which prior information 

about the process and observation error variances is incorporated into the analysis to 

derive marginal posterior densities of the variance estimates as well as other parameters 

and quantities of interest.  Second, a mixed model approach could be taken, in which the 

process errors are treated as random effects, rather than parameters, which can sometimes 

allow for the estimation of both the process and observation error variances as model 

parameters.  Richards et al. (1997) suggested a third approach to estimating process and 

observation error variances.  This method requires a prior point estimate of observation 

error variance.  In essence the method is to repeatedly fit the assessment model, each time 

using a different assumed known variance ratio, and choose the ratio that produces 

deviations between observed data and model predictions that are most consistent with the 

prior estimate of observation error variance.  Unlike the other two methods, this approach 

does not account for uncertainty in variance estimates in the analysis, and I refer to it as 

the ad hoc method, because the approach to estimating the ratio of the variances was not 

based on a formal statistical justification.  To my knowledge, no previous attempt has 

been made to compare these different approaches within SCAA. 

My objective was to determine whether or not process and observation error 

variances could be reliably estimated within SCAA.  To answer this question, I evaluated 

two different methods for estimating the variances associated with annual variations in 

catchability (i.e., process error) and total catch (i.e., observation error) in SCAA.  The 

two methods I examined were the ad hoc approach described by Richards et al. (1997) 

and a Bayesian approach.  I looked at using both strongly and weakly informative priors 

on catchability variance for the Bayesian approach.  In addition, I initially attempted to 
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implement a mixed model approach using the random effects module for AD Model 

Builder (Otter Research Limited 2005), but that estimation model failed to converge to a 

solution for any of the simulated data sets with which I tested it.  The mixed model’s 

failure to converge likely was due to the highly complex nature of the model which 

prevented the estimation of the random effects and associated variance parameters.  The 

random effects module of AD Model Builder has not been used to estimate variance 

parameters in SCAA before to my knowledge.  Additional experimentation with this 

software may produce statistical catch-at-age mixed models with better convergence 

properties.  Monte Carlo simulations were used to investigate the performance of the 

different methods. 

Methods 

I used a simulation study to evaluate different methods of estimating process and 

observation error variances in SCAA.  A data generating model was used to simulate data 

sets from a hypothetical fish population.  The estimation models, each using a different 

error estimation method, were fit to the simulated data sets.  The data generating model, 

ad hoc and Bayesian estimation models were all built using AD Model Builder software 

(Otter Research Limited 2004).  For the following discussion, descriptions of all the 

symbols are given in Table 2.1, while many of the equations describing my models are 

given in Tables 2.2 and 2.3.  I reference these equations as Equation x.y, where equation y 

is found in Table x. 
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Data Generating Model 

I developed a data generating model to simulate the dynamics of a hypothetical 

fish population based on lake whitefish stocks in the upper Great Lakes.  The population 

dynamics were described using abundance-at-age and age-specific mortality rates created 

by the model.  A gill net fishery operating on the population produced observed total 

annual catch, age composition and fishing effort data.   

I generated abundance-at-age using an exponential population function (Equation 

2.2.1).  To produce abundance-at-age in the first year (Equation 2.2.2), mortality was 

applied to randomly generated numbers of age-1 fish, which were drawn from a 

lognormal distribution (Table 2.4).  The mean of the distribution was chosen by assuming 

the population experienced equilibrium recruitment prior to the model time series.  

Recruitment to the first age in subsequent years was calculated with a Ricker stock-

recruitment function (Equation 2.2.3; Table 2.4).  The number of female spawners was 

calculated as one-half of the number of fish age-3 and older, thereby assuming knife-edge 

maturity and a 1:1 sex ratio. 

Total mortality was partitioned into natural mortality and fishing mortality 

sources (Equation 2.2.4).  Natural mortality was a constant value for all years and ages 

(Table 2.4).  Fishing mortality was generated using a fully separable fishing mortality 

model (Equation 2.2.5), where the age effect consisted of age-specific selectivity and the 

year effect consisted of year-specific catchability and observed fishing effort.  Age-

specific selectivity values were specified to create a dome-shaped selectivity curve, 

which is typical of gill net fisheries (Table 2.4).  Catchability varied from year to year 

according to a lognormal white noise model (Table 2.4): 
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(1) yq
y eqq ,ε

= , 

 ( )2
, ,0~ qyq N σε . 

The value for the standard deviation of log catchability σq was randomly generated from 

a lognormal distribution with three different means representing low, medium and high 

levels of catchability variation (Table 2.4).  An “observed” point estimate of the log 

catchability standard deviation was generated, which simulated information that a stock 

assessment analyst might possess.  The observed point estimate was drawn from a 

lognormal distribution: 
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The log-scale standard deviation of the log catchability standard deviation qσσ  was 

given the same value as was used to cause the true standard deviation of log catchability 

to depart from its underlying median.  Therefore, I effectively assumed that the observed 

point estimate of the standard deviation of log catchability came from a lognormal 

distribution with the same median as the true standard deviation of log catchability, but 

with double the log-scale standard deviation as did the true standard deviation’s 

generating distribution.  Doubling the standard deviation represents the addition of 

observation error to the measurement of the log catchability standard deviation.  Fishing 

effort was specified so that effort increases to a maximum in the middle of the time series 

and then decreases to the end of the time series (Table 2.4).  This fishing effort pattern 

simulated a growing fishery that was regulated by effort limitations during the second 
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half of the time series.  Total mortality Z0 used to produce abundance-at-age in the first 

year (Equation 2.2.2) was generated with Equations 2.2.4 and 2.2.5 with the assumption 

that fishing effort in years prior to the first year of the analysis was equal to fishing effort 

in the first year of the analysis.   

I generated observed data from a gill net fishery from simulated abundance-at-age 

and mortality rates.  Catch-at-age was calculated using Baranov’s catch equation 

(Equation 2.2.6).  Observed total annual catch yC~  was calculated by summing catch-at-

age Cy,a across ages for each year and incorporating observation error εC,y: 

(3) yC
m

a
ayy eCC ,

1
,

~ ε

⎥
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⎦
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I chose to use multiplicative lognormal errors because this is a standard assumption in 

SCAA (Fournier and Archibald 1982; Deriso et al. 1985). The value for the standard 

deviation of log total catch σC was randomly generated from a lognormal distribution 

with two different means representing low and high levels of observation error (Table 

2.4).  An “observed” point estimate of the log total catch standard deviation was 

generated, which simulated information that a stock assessment analyst likely would 

possess.  The observed estimate Cσ ′  was drawn from a lognormal distribution: 

(4) CCC eζσσ =′ , 

 ⎟
⎠
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The log-scale standard deviation of the log total catch standard deviation Cσσ  was given 

the same value as was used to cause the true standard deviation of log total catch to 

depart from its underlying median.  Observed fishery age composition data was generated 

by drawing a random sample from a multinomial distribution with a sample size of 100, 

and proportions calculated from catch-at-age in the fishery (Equation 2.2.7).  Any errors 

in measuring fishing effort were lumped with interannual variation in catchability as 

process error.  Natural mortality was known without error.     

Estimation Models 

The estimation models used the same equations as the data generating model 

except when estimating abundance-at-age in the first year, recruitment, and selectivity.  

Annual recruitment was estimated as a mean recruitment parameter and a vector of 

annual recruitment deviation parameters (i.e., a vector of deviations that must sum to 

zero).  Abundance-at-age in the first year was estimated as a mean abundance parameter 

and a vector of abundance deviation parameters (i.e., a vector of deviations that must sum 

to zero).  Selectivity was estimated as a double logistic function of age (Equation 2.2.8).  

Abundance-at-age (Equation 2.2.1), total mortality (Equation 2.2.4), fishing mortality 

(Equation 2.2.5), catchability (Equation 2.1), catch-at-age (Equation 2.2.6), total catch 

(Equation 3), and proportion of catch-at-age (Equation 2.2.7) were calculated as in the 

data generating model.  True parameter values produced by the data generating model 

were used as starting values for parameters in the estimation models, to expedite 

numerical searches during the simulations. 

The estimation models differed from each other in the method used to estimate 

variances for process error in catchability and observation error in total catch.  First, an 
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ad hoc approach was used in which the proportion of process error variance was set so 

that predicted observation error variance was consistent with an observed point estimate 

of observation error variance (Richards et al. 1997).  This approach has Bayesian aspects 

because conditional on the value of the proportion of process error variance, point 

estimates are obtained by maximizing the posterior density (Schnute 1994).  Second, a 

Bayesian approach with explicit priors on the variances was used in which the marginal 

posterior densities of the variances were estimated.  I considered two variants of the 

Bayesian approach, one with an informative lognormal prior for log catchability variation 

and the second with only a weakly informative lognormal prior for this variation.     

Ad Hoc Estimation Model 

In the ad hoc approach, I estimated the variances using a technique developed by 

Richards et al. (1997).  This approach requires repeated fits of the model with the 

proportion of total variance due to log catchability variance ρ: 

(5) 
2

2

κ

σ
ρ q= , 

(6) 222
Cq σσκ += , 

being varied among fits.  During each fit of the model, total variance was estimated as a 

model parameter, and from this parameter the variances of log catchability 2
qσ  and log 

total catch 2
Cσ  were calculated as follows: 

(7) 22 ρκσ =q , 

(8) ( ) 22 1 κρσ −=C . 
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I varied the proportion of log catchability variance from 0.1 to 0.95 in increments of 0.05, 

and refit the estimation model to a given data set for each value of ρ .  I chose as best 

among these model fits the one where the predicted standard deviation of log total catch 

was closest to the “observed” point estimate of the log total catch standard deviation 

created by the data generating model.   

For a given model fit (specific ρ ) using the ad hoc approach, highest posterior 

density estimates of the parameters (a widely used approach, see Schnute 1994) were 

obtained by maximizing the posterior density of the parameters conditional on the 

observed data (Equations 2.3.1, 2.3.2a, and 2.3.3).  I chose to minimize the negative log 

posterior density (Equation 2.3.4) for ease of computation.  

The probability density of the data conditional on the parameters was separated 

into two components for total annual catch and proportion of catch-at-age (Equation 

2.3.5).  Total annual catch was assumed to follow a lognormal distribution, with the log 

density (ignoring some additive constants) given by Equation 2.3.6.  Proportion of catch-

at-age was assumed to follow a distribution that would arise if NE fish were observed, 

with numbers observed at each age following a multinomial distribution, with the log 

density (ignoring some additive constants) given by Equation 2.3.7.  Note that the 

probability density of the data conditional on the parameters is equivalent to the classical 

likelihood function.  Therefore, the highest posterior density parameter estimates are 

equivalent to the maximum likelihood estimates.  

The prior probability density of the parameters was separated into three 

components for the general model parameters φ , catchability deviations εq, and total 
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variance κ2 (Equation 2.3.8a).  Deviations in catchability were assumed to follow a 

lognormal distribution, with the log prior density (ignoring some additive constants) 

given by Equation 2.3.9.  The prior densities of the log of all model parameters in φ  and 

κ2 were assigned proper uniform prior densities, which follows common practice with the 

intent of being weakly informative.  Therefore, prior density of the log of φ  and κ  were 

constants for all parameter values.   

Bayesian Estimation Models 

In the Bayesian approaches statistical inference was made on the posterior density 

of the parameters conditional on the observed data (Equation 2.3.1) which was derived 

using a Markov Chain Monte Carlo (MCMC) method.  I chose to work with the negative 

log posterior density for ease of computation (Equation 2.3.4).  The standard deviations 

of log-scale catchability and total catch were included as parameters to be estimated in 

the model (Equation 2.3.2b).  The probability density of the data conditional on the 

parameters was separated into two components for total annual catch and proportion of 

catch-at-age (Equation 2.3.5).  The log densities for each of the components were the 

same as in the ad hoc estimation model (Equations 2.3.6 and 2.3.7). 

The prior probability density of the parameters was separated into four 

components for the prior probability densities of the general model parameters φ , 

catchability deviations εq, log catchability standard deviation σq, and log total catch 

standard deviation σC (Equation 2.3.8b).  Deviations in catchability were assumed to 

follow a lognormal distribution as in the ad hoc estimation model (Equation 2.3.9).  In 
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the first version of the full Bayesian approach, hereafter referred to as the informative 

Bayesian approach, the standard deviations for log total catch and log catchability were 

assumed to follow a lognormal distribution, with log prior density (ignoring some 

additive constants) expressed as: 

(9) ( )[ ] ( ) iii

i

ip σ
σ

σσσ
σ

σ lnlnln
2

1ln
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2
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where i indexes the two error sources (i.e., total catch and catchability).  The values for 

the prior standard deviations for the standard deviations of log total catch and log 

catchability were the same values used to create the true standard deviations in the data 

generating model.  The prior densities of the log of all general model parameters φ were 

assigned weakly informative proper uniform prior densities.  Therefore, prior density of 

the log of φ  was a constant for all parameter values.   

Marginal posterior densities for the standard deviations of total catch and 

catchability were estimated using a MCMC method.  The highest posterior density 

parameter estimates served as starting values for the MCMC chain.  A Metropolis-

Hastings algorithm with a scaled multivariate normal candidate generating distribution 

was used to determine the marginal posterior densities (Gelman et al. 2004).  The MCMC 

chain was run for 500,000 cycles with values being saved every 25th cycle.  The first 

2,000 saved cycles of the MCMC chain were dropped as a burn-in period, in order to 

remove the effect of the starting values (Gelman et al. 2004). 

In reality, stock assessment analysts rarely have the data necessary to set such an 

informative prior on the standard deviation of log catchability as I did in the informative 

Bayesian estimation approach.  Therefore, I also evaluated performance of the full 
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Bayesian method using a less informative prior.  I refer to this as the objective Bayesian 

approach.  This approach was identical to the informative Bayesian approach except that 

the prior density for the standard deviation of log catchability was assumed to follow a 

lognormal distribution (Equation 9) with mean (0.35) and variance (0.49) specified so 

that the prior density spanned all three levels of catchability variation.   

Estimation Model Evaluation 

My Monte Carlo simulation included six scenarios based on the three levels of 

catchability variation and two levels of total catch variation.  Five hundred data sets were 

generated for each scenario for a total of 3,000 simulated data sets.  Each estimation 

model was fit to each of the simulated data sets.  Estimation model runs were dropped 

from the analysis if they exhibited poor convergence characteristics.  After examining 

preliminary results, ad hoc estimation model convergence was judged to be poor if the 

maximum gradient component was greater than 1x10-4.  After examining preliminary 

results, informative and objective Bayesian estimation model convergence was judged to 

be poor if the effective sample size for log catchability standard deviation, log total catch 

standard deviation, total abundance in the last year of analysis or highest posterior density 

value was less than 200.  Effective sample sizes were calculated from MCMC chains 

using the method described by Thiebauz and Zwiers (1984) with lags out to 100 for 

autocorrelation calculations. 

The three approaches for estimating process and observation errors were 

evaluated using the relative error (RE) of the standard deviations of log catchability, 

standard deviation of log total catch and total abundance in the last year of the analysis.  

The RE of the standard deviations of log catchability and log total catch indicated how 
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well the variances were estimated, while the RE of total abundance indicated how well 

the approaches estimated a key management quantity.  Relative error was calculated as 

follows: 

(10) 
X

XXRE −
=

ˆ
, 

where X̂  is a point estimate of the quantity of interest from the estimation model, and X 

is the true value of the quantity of interest from the data generating model.  For the 

Bayesian methods I used the median of the marginal posterior distribution as a point 

estimate, whereas for the ad hoc method the highest posterior density estimates were 

used.  The median of the relative errors (MRE) was used to examine systematic bias in 

estimates from the estimation models.  Median absolute relative error (MARE) , which 

captures elements of bias and precision, was used to compare the range of relative errors 

estimated by the estimation models. 

Results 

The following results are based on sample sizes of 500 model runs per scenario 

for the ad hoc approach, 380 to 431 model runs per scenario for the informative Bayesian 

approach, and 345 to 396 model runs per scenario for the objective Bayesian approach.  

The number of poorly converged model runs for the informative and objective Bayesian 

approaches is likely an artifact of my simulation study design.  I had to limit the length of 

the MCMC chains to reduce computational times and make the study feasible.  Under 

normal circumstances, an analyst would probably run longer MCMC chains or run 

multiple chains from different starting points to improve convergence properties. 
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The informative Bayesian approach outperformed the ad hoc and objective 

Bayesian approaches in the estimation of log total catch standard deviation.  The 

informative Bayesian approach was less biased than ad hoc and objective Bayesian 

approaches in estimating standard deviation of log total catch (Figure 2.1).  Informative 

Bayesian approach MRE values for all six scenarios were close to zero and ranged from -

0.023 to 0.018.  Objective Bayesian approach MRE values for all six scenarios exhibited 

positive bias and ranged from 0.021 to 0.153.  Ad hoc approach MRE values exhibited 

negative bias and ranged from -0.338 to -0.019, except for the high catchability-low total 

catch variance scenario (0.004).  

Informative and objective Bayesian approaches demonstrated higher levels of 

precision than the ad hoc approach in the estimation of log total catch standard deviation 

(Figure 2.1).  The differences in MARE values between informative Bayesian and ad hoc 

approaches were small (-0.030 to 0.001) for medium catchability-low total catch, high 

catchability-low total catch, and high catchability-high total catch variance scenarios 

(Figure 2.2).  The differences in MARE values between informative Bayesian and ad hoc 

approaches were larger (-0.249 to -0.114) for low catchability-low total catch, low 

catchability-high total catch, and medium catchability-high total catch variance scenarios 

(Figure 2.2).  The differences in MARE values between objective Bayesian and ad hoc 

approaches were small (-0.074 to 0.050), except for the low catchability-high total catch 

variance scenario (-0.246) (Figure 2.3).     

The informative Bayesian approach also out performed the ad hoc and objective 

Bayesian approaches in the estimation of the log catchability standard deviation.  The 

informative Bayesian approach was less biased than the ad hoc and objective Bayesian 
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approaches in estimating the standard deviation of log catchability (Figure 2.4).  

Informative Bayesian approach MRE values for all six scenarios were close to zero, with 

a small positive bias, ranging from 0.002 to 0.023.  Objective Bayesian approach MRE 

values generally were close to -1.0.  The two exceptions were the medium catchability-

low total catch variance and high catchability-low total catch variance scenarios for 

which the objective Bayesian approach MRE values were -0.048 and -0.064 respectively.  

Ad hoc MRE values were negatively biased and ranged from -0.758 to -0.377. 

The informative Bayesian approach was more precise than the ad hoc and 

objective Bayesian approaches in estimating the standard deviation of log catchability 

(Figure 2.4), although all methods had much lower precision for estimating the standard 

deviation of catchability than for estimating the standard deviation of catch (note 

difference in scale between Figure 2.1 and Figure 2.4).  The differences in MARE values 

between informative Bayesian and ad hoc approaches were substantial and ranged from -

0.637 to -0.292 (Figure 2.2), where the informative Bayesian approach was more precise.  

The differences in MARE values between objective Bayesian and ad hoc approaches 

generally were large and ranged from 0.235 to 0.548 (Figure 2.3), where the ad hoc 

approach was more precise than the objective Bayesian approach.  The two exceptions 

were the medium catchability-low total catch variance and high catchability-low total 

catch variance scenarios, -0.321 and -0.262 respectively, where the objective Bayesian 

approach was more precise than the ad hoc approach.     

Differences in performance between ad hoc, informative and objective Bayesian 

approaches in the estimation of the total abundance in the last year of the analysis were 

less marked than for variance estimates.  For all three methods, the bias of the estimates 
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of total abundance in the last year increased at high catchability and total catch variance 

levels (Figure 2.5).  Ad hoc approach MRE values were negatively biased, and ranged 

from -0.271 to -0.033.  Informative Bayesian approach MRE values generally were close 

to zero, positively biased, and ranged from 0.001 to 0.054.  The one exception was the 

high catchability-high total catch variance scenario which was 0.107.  Objective Bayesian 

approach MRE values generally were close to zero and ranged from -0.067 to 0.017.  The 

one exception was the high catchability-high total catch variance scenario which was -

0.124.   

Precision of ad hoc, informative and objective Bayesian approach estimates of 

total abundance in the last year decreased as catchability and total catch variance levels 

increased (Figure 2.5).  The Ad hoc approach was slightly less precise than the 

informative Bayesian approach, with differences in MARE values ranging from -0.024 to 

0.011 (Figure 2.2).  Differences between objective Bayesian and ad hoc approach MARE 

values were small and ranged from -0.015 to 0.059 (Figure 2.3).     

Discussion 

My results show that observation error variance will be more reliably estimated 

than process error variance in SCAA.  Observation error variance is better estimated due 

to the availability of better prior information about observation errors.  Estimates of 

observation error variance obtained separately from SCAA, through analysis of the raw 

data used to derive such quantities as observed total catch, provide a good source of prior 

information for estimating observation error variance in SCAA.  Such prior information 

does not exist for process error variance because separate from SCAA the raw observed 

data are not informative about how model parameters such as catchability vary.  This was 
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demonstrated in my study when the ad hoc and objective Bayesian approaches produced 

more accurate and precise estimates of log total catch standard deviation then of log 

catchability standard deviation.  These two approaches used more weakly informative 

prior information or no prior information for log catchability standard deviation than for 

log total catch standard deviation. 

Use of the Bayesian approach allows for reliable estimation of both observation 

and process error variances using a realistic, weakly informative prior for the process 

error variance, when process error variability is greater than observation error variability.  

Under this condition, the relatively strong informative prior for the observation error 

variance and the strong signal for the process errors in the observed data allow SCAA to 

reliably estimate the amount of total variance and successfully partition that variance 

between observation and process error variances.  In my study, this was evident when the 

objective Bayesian approach was able to accurately estimate the log total catch and log 

catchability standard deviations in scenarios where annual variability in catchability was 

the dominant error source.  Schnute and Richards (1995) found that, in general, their 

catch-at-age estimation models performed better in a Monte Carlo simulation when 

process error in recruitment was greater than observation error in an index of abundance.  

Their estimation models estimated the process and observation error variances by 

specifying the proportion of total variance due to process error variance, similar to the ad 

hoc approach, and obtaining maximum likelihood estimates of the variances analytically.  

Unfortunately, Schnute and Richards (1995) did not look specifically at how their 

estimation models performed at estimating the error variances.  I hypothesize that process 

error variability likely will be greater than observation error variability, and hence the 
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associated variances can be estimated, in any well monitored commercial fishery, as well 

as most well monitored recreational fisheries.  Chen and Paloheimo (1998) also have 

suggested that errors due to environmental variation (i.e., process errors) may be greater 

than observation errors for many fisheries.  This finding emphasizes that another means 

of improving the estimation of process and observation error variances, as well as stock 

assessments in general, is to improve the quality of fishery monitoring data. 

The ad hoc approach failed to reliably estimate the process and observation error 

variances in my study.  I was not surprised by this finding since the ad hoc approach 

utilized the least amount of prior information (i.e., a single point estimate of log total 

catch standard deviation) to estimate both of the standard deviations.  More interesting 

was the consistent underestimation of total variance in the system when using the ad hoc 

approach.  This negative bias might in part be explained by the statistical properties of the 

estimator for the variances.  Unlike the Bayesian approach which derived variance 

estimates from the median of the posterior probability density, the ad hoc approach 

simply used highest posterior density estimates to obtain variance estimates.  Highest 

posterior density parameter estimates share many similar properties with likelihood-based 

parameter estimates, since highest posterior density estimates are obtained by 

maximizing the probability density of the data given the parameters ( )θxp  (Equation 

2.3.1), which is identical to the likelihood function.  Under this paradigm, the prior 

probability densities ( )θp  could be thought of as penalty terms added to the likelihood 

function.  The maximum likelihood estimator of variance is known to be negatively 

biased, thus the highest posterior density estimate of variance probably would possess the 

same negative bias. 
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The ad hoc approach produced unbiased estimates of the log total catch standard 

deviation in scenarios where catchability variation was greater than total catch variation, 

but this apparent success is deceptive and potentially dangerous for analysts.  Even in the 

scenarios where catchability variation was dominant, the estimation model still 

underestimated the total variance as evidenced by the associated negative bias in 

estimates of the log catchability standard deviation.  The estimation model was able to 

match predicted and observed log total catch standard deviation values by adjusting the 

proportion of total variance due to catchability variance, but the selected catchability 

variance proportion did not match the true proportion from the data generating model.  In 

a real stock assessment where the true variances are unknown, such a result would lead 

the analyst to believe that the total variance had been well estimated when, in fact, it had 

been underestimated.  This problem might be solved by correcting the predicted total 

variance by the number of parameters estimated in the model, thus producing an unbiased 

estimate of the total variance.  Further study is needed to determine how well this total 

variance correction would work, but it has the potential of making the ad hoc approach a 

viable variance estimation technique. 

I should point out that my study examined the ability of the ad hoc approach to 

estimate one form of process error (i.e., catchability variation).  The only other published 

use of the ad hoc approach was to produce estimates of recruitment variability in a state-

space age-structured model, but the approach was applied to actual fishery data and its 

performance was not quantified nor evaluated (Richards et al. 1997).  The ad hoc 

approach can be classified with other methods that use residual model error to estimate 

associated variances, because the ad hoc approach employs the measured interannual 
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variation in the observed data as prior information for the stock assessment model 

estimates of the process and observation error variances.  As another example of this 

class of methods, Francis et al. (2003) compared standard specified values of commercial 

CPUE and trawl survey CVs to resulting residual variation between observed values and 

stock assessment predictions of CPUE.  This approach could be applied in an iterative 

method to obtain variance estimates.  An initial variance value would be specified and the 

stock assessment model fit to the observed data.  The resulting residual variation in 

model results would be used to specify a new variance value for the next model run.  This 

process would be repeated until the specified variance value matched the resulting 

residual variation in model results.  The assessment models used for lake whitefish in 

1836 treaty waters have used a such an iterative approach to setting the variance 

associated with variability about an assumed stock-recruitment relationship (Ebener et al. 

2005).  The Francis et al. (2003) study examined actual data from New Zealand fisheries, 

and the whitefish assessments use actual data also, so it is unknown how accurately 

residual variation in stock assessment model results measures the true underlying 

variance.  Further study of the ability of these residual-based variance estimation 

approaches to estimate other forms of process error variability, such as time-varying 

selectivity and annual recruitment variations, would be useful and informative. 

The ad hoc and Bayesian approaches performed equally well at estimating 

numbers of fish in the last year of the analysis, even though the ad hoc approach 

consistently underestimated the process and observation error variances.  In theory, the 

poor performance of the ad hoc approach in estimating the variances should have resulted 

in poorer estimates of the final number of fish.  To address this issue, it is necessary to 
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consider when it is important to properly estimate the error variances.  Methot (1990) 

suggested that when the different data sources used in SCAA do not trend over time, or 

when trends are consistent between data sources, assessment model results will be less 

sensitive to changes in the variances which are used to weight the different data sources.  

It is when trends in the different data sources are inconsistent with each other that 

assessment model results will be sensitive to changes in the variance values (Methot 

1990).  Therefore, it is most important to properly estimate the error variances when the 

data sources are sending mixed signals about the population dynamics to the assessment 

model.  In my study, total catch did trend over time, but catchability did not since the 

catchability deviations were generated using a white noise model.  If I had generated 

catchability so that it trended over time, then it is likely that I would have seen 

differences in the estimation model performances when it came to estimating the final 

number of fish.  Such an analysis was beyond the scope of this study, since I wanted to 

determine if it were possible to estimate the error variances under the simplest conditions 

I could imagine.  Actual stock assessments are generally more complex, incorporating 

multiple sources of observation and process error.  As a result, I feel it would be 

informative to evaluate the Bayesian and ad hoc approaches when estimating more than 

two sources of variation. 

I recommend that stock assessment analysts use the Bayesian approach when 

attempting to estimate process and observation error variances in SCAA.  The Bayesian 

approach is fairly robust when existing data allow for the designation of strongly 

informative priors for the error variances, particularly process error variance.  The 

Bayesian approach still can produce reliable estimates of the error variances with a 
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weakly informative prior for the process error variance, as long as high quality 

monitoring data are available.  I do not recommend the use of the ad hoc approach based 

on my findings.  The ad hoc approach consistently underestimates the error variances, 

which could lead to biased estimates of important management quantities when the 

different data sources send inconsistent signals concerning the dynamics of the 

population. 
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Table 2.1.  Symbols and descriptions of variables used in data generating and estimation 
models. 

Symbols Description Application

Cy,a Number of fish caught by year and age Both 
 
 Observed number of fish caught by year Both 
Ey Fishery effort by year Both 
Fy,a Instantaneous fishing mortality by year and age Both 

M Instantaneous natural mortality Both 
Ny,a Abundance by year and age Both 
N0 Mean abundance for abundance in first year Estimation 
NE Number of fish used to calculate age composition each year Both 

Py,a Proportion of catch by year and age Both 
 

ayP ,
~

 Observed proportion of catch by year and age Both 
R0 Mean recruitment Estimation 
Sy Number of female spawners by year Generation 
Zy,a Instantaneous total mortality by year and age Both 
Z0,a Instantaneous total mortality for abundance in first year by age Generation 
b1 First inflection point of double logistic selectivity function Estimation 
b2 First slope of double logistic selectivity funcion Estimation 
b3 Second inflection point of double logistic selectivity function Estimation 
b4 Second slope of double logistic selectivity funcion Estimation 

m Total number of ages Both 

n Total number of years Both 
 
 Posterior probability density of parameters conditional on data Estimation 
 

Probability density of data conditional on parameters Estimation 
 

Prior probability density of parameters Estimation 
qy Fishery catchability by year Both 
 
 Median catchability Both 
sa Fishery selectivity by age Both 

α Productivity parameter of Ricker recruitment function Generation 

   

q

yC~

( )xp θ

( )θxp

( )θp
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Table 2.1 (cont’d).  

β Density dependent parameter of Ricker recruitment function Generation 
εR,y Process error in recruitment by year Generation 
εq,y Process error in catchability by year Both 
εC,y Observation error in number of fish caught by year Both 
 
 

Subset of model parameters common to both estimation 
models Estimation 

κ2 Total variance Estimation 
µN Mean age-1 abundance for abundance in first year Generation 

θ Set of all model parameters Estimation 

ρ Proportion of total variance due to catchability variance Estimation 

σN 
Standard deviation of age-1 abundance for abundance in first 
year Generation 

σR Standard deviation of log-scale recruitment Generation 
σq Standard deviation of log-scale catchability Both 
 
 Observed point estimate of log catchability standard deviation Both 
 
 

Log-scale standard deviation of log catchability standard 
deviation Generation 

σC Standard deviation of log-scale total catch Both 
 
 Observed point estimate of log total catch standard deviation Both 
 
 

Log-scale standard deviation of log total catch standard 
deviation Generation 

υy Process error in recruitment by year Estimation 
ψa Process error for abundance in first year by age Estimation 
 
 Observation error in log catchability standard deviation Generation 
 
 Observation error in log total catch standard deviation Generation 

 

qσ ′

qζ

Cσ ′

Cζ

Cσσ

φ

qσσ
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Table 2.2.  Data generating and estimation model equations. 

    Equations   Application 
2.2.1    Both 

2.2.2  

1for  ;
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Table 2.3.  Posterior probability density equations for estimation models. 

    Equations   Application 
2.3.1 

 

 

 

Both 

2.3.2a 

 

 

 

Ad hoc 

2.3.2b 

 

 

 

Bayesian 

2.3.3 

 

 

 

Both 

2.3.4 
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Table 2.4.  Values of variables used in data generating model to create simulated data 
sets.   
Variable Level Value 
n  20 
m  8 
µΝ 

 355000 

σΝ 
 0.4 

α  10.1 
β  5.10E-06 

σR 
 0.4 

M  0.24 
Ey 

 0.1, 2.0, 3.0, 3.1, 3.3, 3.7, 4.4, 5.3, 6.5, 8.0, 8.0, 6.5, 5.3, 4.4, 3.7, 
3.3, 3.1, 3.0, 2.0, 0.1 

sa 
 0.04, 0.15, 0.43, 0.85, 1.00, 0.82, 0.57, 0.37 

q   0.15 
qσ  Low 0.2 

 Medium 0.5 
 High 0.8 

qσσ   0.2 

Cσ  Low 0.25 
 High 0.75 

Cσσ   0.2 

NE 
 100 
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Figure 2.1.  Box plots representing relative error distributions for estimates of log total 
catch standard deviation across different levels of catchability and total catch variance.  
The bars represent median relative errors.  The boxes, whiskers, and circles represent 
25th and 75th, 10th and 90th, and 5th and 95th percentiles of the distributions, 
respectively.  
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Figure 2.2.  Differences in median absolute relative errors (MARE) between informative 
Bayesian approach and ad hoc approach across different levels of catchability and total 
catch variance.  Symbols represent informative Bayesian approach MARE values minus 
ad hoc approach MARE values. 
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Figure 2.3.  Differences in median absolute relative errors (MARE) between the objective 
Bayesian approach and the ad hoc approach across different levels of catchability and 
total catch variance.  Symbols represent objective Bayesian approach MARE values 
minus ad hoc approach MARE values. 
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Figure 2.4.  Box plots representing relative error distributions for estimates of log 
catchability standard deviation across different levels of catchability and total catch 
variance.  The bars represent median relative errors.  The boxes, whiskers, and circles 
represent 25th and 75th, 10th and 90th, and 5th and 95th percentiles of the distributions, 
respectively.  
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Figure 2.5.  Box plots representing relative error distributions for estimates of total 
abundance in the last year of analysis across different levels of catchability and total 
catch variance.  The bars represent median relative errors.  The boxes, whiskers, and 
circles represent 25th and 75th, 10th and 90th, and 5th and 95th percentiles of the 
distributions, respectively. 
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CHAPTER 3 
 

EVALUATING AND SELECTING METHODS FOR ESTIMATING TIME-VARYING  
 

SELECTIVITY IN STATISTICAL CATCH-AT-AGE ANALYSIS 
 
 

Introduction 

Statistical catch-at-age analysis (SCAA) is a common method of fisheries stock 

assessment.  Age-structured catch data from a fishery are used to estimate quantities of 

interest, such as population abundance and mortality rates, using likelihood methods 

(Fournier and Archibald 1982).  Auxiliary data that provide an index of abundance either 

directly or indirectly, such as survey catch-per-unit-effort (CPE) or fishery effort, are 

essential for reliable estimation (Deriso et al. 1985; Methot 1990).  Estimated population 

quantities from the last year of the analysis are typically used as a starting point for short-

term projections that are the basis for recommending harvest limits or targets. 

In many SCAA models fishing mortality is assumed to be separable into year and 

age effects, with their product being the fishing mortality rate for a given year and age 

(Doubleday 1976).  Here I refer to the year effect as fishing intensity, and to the age 

effect as fishery selectivity.  Selectivity refers to the relative vulnerability of specific ages 

of fish to a fishery, so that age classes that are highly selected tend to be overrepresented 

in the catch in comparison to their relative abundance in the population.  Selectivity is 

influenced by fishing gear characteristics, as well as fishing and fish behavior. 

Selectivity often is modeled either as a function of age or it is allowed to vary 

freely among ages.  The parameters of the selectivity function or the selectivity values for 

each age are estimated within SCAA along with other model parameters.  Logistic 



 
86

(Millar 1995; Punt et al. 2001), double logistic (Methot 1990; Ebener et al. 2005), 

exponential-logistic (Thompson 1994), normal (Millar 1995), lognormal (Millar 1995), 

gamma (Deriso et al. 1985; Millar 1995), and polynomials (Fournier 1983) are some of 

the functions used to model selectivity.  Regardless of how selectivity is modeled, a 

restriction often must be applied to ensure a unique parameterization of the age and year 

effects (Doubleday 1976).  Selectivity functions generally are constrained by normalizing 

the function to a reference age or to the age of maximum estimated selectivity.  When 

selectivity is allowed to vary freely with age, selectivity commonly is constrained by 

setting selectivity at some reference age(s) equal to one. 

The separability assumption can be relaxed, allowing selectivity to change over 

time, when there is evidence to suggest that selectivity is not constant (i.e., gear 

characteristics or fish behavior have changed).  Separate selectivity values can be 

estimated for different blocks of time within SCAA (Radomski et al. 2005).  Some of the 

selectivity function’s parameters can vary over time independently from year to year 

(Bence and Rogers 1993), according to a polynomial in time (Ebener et al. 2005) or 

random walk process (Gudmundsson 1994; Ianelli 1996).  Nonadditive models have been 

used to allow selectivity to vary with changes in fishing mortality (Myers and Quinn 

2002; Radomski et al. 2005). 

Statistical catch-at-age analysis has been shown to be sensitive to the choice of 

how selectivity is modeled.  Incorrect assumptions about selectivity have been shown to 

generate errors in SCAA estimates of biomass (Kimura 1990), spawning biomass (Punt et 

al. 2002; Radomski et al. 2005), exploitation rate (Radomski et al. 2005), and the ratio of 
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stock biomass in the first year to the stock biomass in the final year of analysis (Yin and 

Sampson 2004).     

Radomski et al. (2005) looked specifically at how specification of time-varying 

selectivity affected SCAA.   They compared three methods for estimating selectivity: 

constant, time-blocked and nonadditive and found no one method for estimating time-

selectivity performed best in all situations, but they did discover that time-varying 

selectivity SCAA models performed as well as constant selectivity SCAA models when 

selectivity was constant, and outperformed constant selectivity SCAA models when 

selectivity varied with time.  They speculated that allowing selectivity to vary according 

to a random walk might improve the estimation of time-varying selectivity (Radomski et 

al. 2005).  Radomski et al. (2005) also recommended that research was needed to 

determine the extent to which correct or adequate selectivity models could be identified.     

The objective of my study was to compare the performance of different time-

varying selectivity functions within SCAA.  In addition, I strove to identify a model 

selection method that could allow analysts to select among alternative time-varying 

selectivity functions within a specific SCAA.  This contrasts with an objective of 

determining a single “best” time-varying selectivity estimation method, which works well 

in most situations.  Of course, one possible outcome of my work could have been that an 

omnibus procedure for modeling selectivity works better than selecting among 

alternatives.  I addressed my objectives through Monte Carlo simulations, in which I 

evaluated different methods of both modeling time-varying selectivity within a stock 

assessment and selecting among the methods.     
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Methods 

I used Monte Carlo simulations to compare four time-varying selectivity 

estimation methods and evaluate three model selection techniques.  I used a data 

generating model to simulate data sets from a hypothetical fish population.  The data 

generating model used two different approaches to simulate time-varying selectivity: 1) a 

double logistic function in which the first inflection point varied according to a first order 

autoregressive process, and 2) selectivity for each age varied independently according to 

a first order autoregressive process.  I chose these two approaches to provide contrast in 

how freely selectivity varies over time.  The double logistic function is constrained so 

that only selectivity of younger age fish changes over time.  The age-specific selectivity 

parameters allow selectivity to vary more freely, with age-specific selectivity values 

changing independently of each other.  I fit four estimation models, each using a different 

time-varying selectivity estimation method, to the simulated data sets.  The selectivity 

estimation methods consisted of 1) a double logistic function in which the first inflection 

point varied according to a random walk, 2) a double logistic function in which the first 

and second inflection points varied according to random walks, 3) a double logistic 

function in which all four parameters varied according to random walks, and 4) 

selectivity for each age varied according to a random walk with a smoothing function 

across ages.  I chose these estimation approaches because they represent the two general 

approaches for estimating selectivity in SCAA, namely modeling selectivity as a function 

of age and estimating age-specific selectivity parameters.  In addition, these four 

estimation approaches form a continuum of increasing flexibility in how selectivity is 

allowed to vary over time.  The three model selection techniques included 1) root mean 



 
89

square error (RMSE), 2) degree of retrospectivity, and 3) the Deviance Information 

Criterion (DIC).  The data generating model and four estimation models were all built 

using AD Model Builder software (Otter Research Limited 2004).  For the following 

discussion, descriptions of all the symbols are given in Table 3.1, while most of the 

equations describing my models are given in Tables 3.2 and 3.3.  I reference equations as 

Equation x.y, where equation y is found in Table x. 

My Monte Carlo simulation included two scenarios based on two different 

methods for generating time-varying selectivity.  Five hundred data sets were generated 

for each scenario for a total of 1,000 simulated data sets.  Each of the four estimation 

models was fit to each of the simulated data sets.  I applied the three model selection 

techniques to each estimation model fit to a simulated data set. 

Data Generating Model 

I developed a data generating model to simulate the dynamics of a hypothetical 

fish population based on lake whitefish stocks in the upper Great Lakes.  The population 

dynamics were described using abundance-at-age and age-specific mortality rates created 

by the model.  A gill net fishery operating on the population produced observed total 

annual catch, age composition and fishing effort data.  Each simulated data set included 

20 years of data for fish ages 1 to 8+, where 8+ is a plus group containing all fish age-8 

and older.   

I generated abundance-at-age using an exponential population equation (Equation 

3.2.1).  In order to produce abundance-at-age in the first year, mortality was applied to 

randomly generated numbers of age-1 fish (Equation 3.2.2).  The number of age-1 fish 

was randomly drawn from a lognormal distribution (Table 3.4).  I selected the mean of 
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the distribution by assuming the population experienced equilibrium recruitment prior to 

the simulated time series.  I calculated recruitment to the first age in each year with a 

Ricker stock-recruitment function (Equation 3.2.3; Table 3.4).  I calculated the number of 

female spawners as one-half of the number of fish age-3 and older, thereby assuming 

knife-edge maturity and a 1:1 sex ratio.     

I partitioned total mortality into natural and fishing mortality components 

(Equation 3.2.4).  Natural mortality was a constant value for all years and ages (Table 

3.4).  I modeled fishing mortality by relaxing the assumption of full separability 

(Equation 3.2.5).  I generated year and age-specific selectivity using two different 

methods to create a dome-shaped selectivity curve, which is typical of gill net fisheries.  I 

defined fishing intensity as a function of fishing effort (Equation 3.2.6).  The errors 

associated with fishing intensity were a combination of process error due to annual 

variation in catchability and observation error in nominal fishing effort.  I assumed that 

variation in catchability would outweigh observation error in fishing effort and, therefore, 

treat the fishing intensity errors as process error.  The value for the standard deviation of 

log fishing intensity σλ was randomly generated from a lognormal distribution for each 

simulated data set (Table 3.4).  I specified fishing effort so that effort increased to a 

maximum in the middle of the time series and then decreased to the end of the time series 

(Table 3.4).  This fishing effort pattern simulated a growing fishery during the first half 

of the time series that was regulated by effort limits during the second half of the time 

series.  I generated the total mortality used to produce abundance-at-age in the first year 

Z0 (Equation 3.2.2) using Equations 3.2.4, 3.2.5 and 3.2.6 with the assumption that 

fishing effort in years prior to the first year of the analysis was equal to fishing effort in 
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the first year of the analysis, and selectivity in years prior to the first year of the analysis 

was constant at the initial values. 

The two methods I chose to generate time-varying selectivity provide contrast in 

how selectivity changes over time.  For the first method, I generated selectivity using a 

double logistic function of age (Methot 1990):
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I varied the first inflection point over time from an initial value according to a first order 

autoregressive process (Table 3.4): ( )2,0~ δσδ Ny  

(2) ( ) yeyeeye bbbb δρ +′−+′=+ 1,1111,1 loglogloglog , 

 ( )2,0~ δσδ Ny . 

I randomly drew the initial value of the first inflection point from a lognormal 

distribution with mean 1b  and standard deviation σδ.  The value for the standard 

deviation of log first inflection point σδ was randomly generated from a lognormal 

distribution for each simulated data set (Table 3.4).  I normalized age-specific selectivity 

in a given year using the maximum generated age-specific selectivity value for that year.  

By allowing the first inflection point to vary over time, I was simulating a scenario in 

which the vulnerability of young fish to the fishery was changing over time.  For the 

second method, I chose a more flexible approach to generating time-varying selectivity 

based on a method used by Butterworth et al. (2003).  In this approach, age-specific 

selectivity varied over time from initial values according to a first order autoregressive 

process (Table 3.4): 
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(3) ( ) ayaeayeaeaye ssss ,,2,1 loglogloglog γρ +′−+′=+ , 

 ( )2
, ,0~ γσγ Nay . 

I used the same correlation and standard deviation parameters for all ages.  I randomly 

drew the initial values for selectivity at each age from lognormal distributions with means 

as  and standard deviation σγ.  The value for the standard deviation of log selectivity σγ 

was randomly generated from a lognormal distribution for each simulated data set (Table 

3.4).  I normalized age-specific selectivity in a given year using the maximum generated 

age-specific selectivity value for that year.  By allowing age-specific selectivity values to 

vary over time, I simulated a scenario in which the vulnerability of all age classes of fish 

to the fishery changed independently over time. 

I generated observed data from a gill net fishery from simulated abundance-at-age 

and mortality rates.  I calculated catch-at-age using Baranov’s catch equation (Equation 

3.2.7).  I calculated observed total annual catch by summing catch-at-age across ages for 

each year and incorporating observation errors (Equation 3.2.8; Table 3.4).    The value 

for the standard deviation of log total catch σν was randomly generated from a lognormal 

distribution for each simulated data set (Table 3.4).  I generated observed fishery age 

composition data by drawing a random sample from a multinomial distribution with a 

sample size of 400, and proportions calculated from catch-at-age in the fishery (Equation 

3.2.9).  Natural mortality and observed fishing effort were known without error (Table 

3.4). 
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Estimation Models 

The estimation models used the same equations as the data generating model 

except when estimating abundance-at-age in the first year, recruitment, and selectivity.  I 

estimated annual recruitment as a mean recruitment parameter and a vector of annual 

recruitment deviation parameters (i.e., a vector of deviations that must sum to zero).  I 

estimated abundance-at-age in the first year as a mean abundance parameter and a vector 

of abundance deviation parameters (i.e., a vector of deviations that must sum to zero).  I 

calculated abundance-at-age (Equation 3.2.1), total mortality (Equation 3.2.4), fishing 

mortality (Equation 3.2.5), fishing intensity (Equation 3.2.6), catch-at-age (Equation 

3.2.7), total catch (Equation 3.2.8), and proportion of catch-at-age (Equation 3.2.9) using 

the equations described for the data generating model.  I used true parameter values 

produced by the data generating model as starting values for parameters in the estimation 

models to expedite numerical convergence during simulations. 

The estimation models differed from each other in the method used to estimate 

time-varying selectivity for the fishery.  The four methods I chose represent increasing 

flexibility in the estimation of time-varying selectivity.  The cost associated with 

increased flexibility is an increase in the number of parameters that must be estimated.  In 

the first estimation approach, I allowed the first inflection point of the double logistic 

function to vary over time according to a random walk:
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This approach is the least flexible of those I examined since it only changes the lower 

ages at which selectivity increases most rapidly over time.  In the second estimation 

approach, I allowed the first and second inflection points of the double logistic function 

to vary over time according to random walks: 
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where i indexes the inflection points of the double logistic function (i.e., b1,y and b3,y).  I 

made the simplifying assumption that the standard deviations of the two log-scale 

inflection points were equal.  This approach of varying the two inflection points allows 

the ascending and descending limbs of the selectivity curve to expand and contract over 

the course of time.  In the third estimation approach, I allowed the two inflection points 

and the two slopes of the double logistic function to vary over time according to random 

walks: 
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where i indexes the inflection points and  j indexes the slopes (i.e., b2,y and b4,y) of the 

double logistic function.  Again, as I did for the infection points, I assumed that the 

standard deviations of the two log-scale slopes were equal.  This approach of allowing all 

of the double logistic function parameters to vary over time provides maximum flexibility 
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in the estimation of time-varying selectivity for this functional form.  In the fourth 

estimation approach, I allowed age specific selectivity values to vary over time according 

to random walks (Butterworth 2003): 

(7) ayayeaye ss ,,,1 loglog ϖ+=+ , 

 ( )2
, ,0~ ϖσϖ Nay . 

I made the simplifying assumption that the year-specific standard deviations of log 

selectivity were equal for all years.  I constrained age-specific selectivity with a curvature 

penalty using squared third-differences to ensure smoothness in selectivity across age 

classes (Butterworth 2003): 
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I made the simplifying assumption that the age-specific standard deviation of log-scale 

selectivity was the same for all ages.  I added this curvature penalty term to the negative 

log posterior density.  In all four time-varying selectivity estimation approaches, I 

normalized age-specific selectivity using the maximum estimated age-specific selectivity 

value.  I estimated the variances associated with log total catch, log fishing intensity and 

log selectivity using a Bayesian approach in which the marginal posterior densities were 

estimated with Markov Chain Monte Carlo simulations. 

I made statistical inference on the posterior density of the parameters conditional 

on the observed data (Equation 3.3.1) which was derived using a Markov Chain Monte 

Carlo (MCMC) method.  More specifically, I used MCMC with the Metropolis-Hastings 

algorithm as it is implemented in AD Model Builder (Otter Research Limited 2004).  

Maximum likelihood parameter estimates were used as starting values for each MCMC 
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chain.  I ran the MCMC chain for each model for 1,000,000 cycles, saving parameter 

values every 10th cycle.  I dropped the first 40,000 cycles from the chain of saved 

MCMC values as a burn in period, which reduced the effect of chain starting values on 

final MCMC estimates (Gelman et al. 2004).  I dropped model runs with poor 

convergence properties from the analysis.  I judged MCMC chain convergence to be poor 

if the effective sample size for the highest posterior density value was less than 300.  I 

selected the highest posterior density value because it provides an overall measure of how 

the MCMC chains are mixing.  Effective sample sizes were calculated from MCMC 

chains using the method described by Thiebauz and Zwiers (1984) with lags out to 100 

for autocorrelation calculations.  I chose to minimize the negative log posterior density 

(Equation 3.3.2a) for ease of computation.  For the fourth estimation approach in which 

age-specific selectivity values varied over time, I added the curvature penalty term 

(Equation 8) to my negative log posterior density (Equation 3.3.2b).  The parameters 

estimated in the model (Equation 3.3.3) included the subset of parameters common to all 

of the estimation models and the subset of time-varying selectivity parameters φ specific 

to each estimation model.  

 The subset of parameters used to model time-varying selectivity depended upon 

the method used to estimate selectivity.  For the first estimation approach in which the 

first inflection point of the double logistic function varied with time, the selectivity 

parameters included the first inflection point in the first year, annual deviations in the 

first inflection point, standard deviation of the log-scale first inflection point, and the 

other three parameters of the double logistic function (Equation 3.3.4a).  For the second 

estimation approach in which both inflection points of the double logistic function varied 
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with time, the second inflection point was replaced by a second inflection point in the 

first year, annual deviations in the second inflection point, and a standard deviation of the 

log-scale second inflection point selectivity deviations (Equation 3.3.4b).  For the third 

estimation approach in which all four parameters of the double logistic function varied 

with time, both slopes were also replaced by corresponding slopes in the first year, annual 

deviations for each of these parameters (Equation 3.3.4c).  For the fourth estimation 

approach in which the age-specific selectivity values varied with time, the selectivity 

parameters included the age-specific selectivity values in the first year, annual deviations 

for each age-specific selectivity value, and standard deviations for the year and age-

specific log selectivity values (Equation 3.3.4d) 

I separated the probability density of the data conditional on the parameters into 

two components for total catch and proportion of catch-at-age (Equation 3.3.5).  I 

assumed total annual catch followed a lognormal distribution, with the log density 

(ignoring some additive constants) given by Equation 3.3.6.  I assumed proportion of 

catch-at-age followed a distribution that would arise if NE fish were observed, with 

numbers observed at each age following a multinomial distribution, with the log density 

(ignoring some additive constants) expressed by Equation 3.3.7. 

For all of the time-varying selectivity estimation approaches, I assumed the prior 

probability densities of the random walk deviations for selectivity parameters followed 

lognormal distributions, with the log prior densities (ignoring some additive constants) 

expressed as: 
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where i indexes the time-varying selectivity parameters (e.g., first inflection point of 

double logistic function).  I assumed the prior probability densities of the log total catch, 

log catchability, and log selectivity standard deviations followed lognormal distributions, 

with the log prior densities (ignoring some additive constants) expressed as: 
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where i indexes the error sources (e.g., observation errors in total catch).  I assigned a 

strong informative prior density (i.e., identical to the generating distribution from the data 

generating model) to the log total catch standard deviation (Table 3.5).  Thus, I assumed 

the analyst had good prior information on how observation errors in total catch were 

distributed, which is a reasonable assumption for a well monitored commercial fishery.  I 

assumed the analyst would not have such strong prior information for the other standard 

deviations.  Therefore, I assigned more weakly informative prior densities which allowed 

the remaining standard deviations to vary over a realistic range of values (Table 3.5).  

The time-varying age-specific selectivity parameter estimation model failed to converge 

to a solution when weakly informative prior densities were assigned to the year and age-

specific log selectivity standard deviations, σϖ and σϕ respectively.  As a result, I fixed 

the values for the year and age-specific log selectivity standard deviations at 0.15 and 

0.08 respectively for all simulations.  This solution followed the common practice of 

assuming variances to be known when they cannot be estimated in the estimation model.  

I assigned weakly informative uniform prior densities to the logs of all other model 

parameters.  Therefore, prior densities for each log-scale model parameter, excluding the 
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selectivity random walk deviations and their associated variances, were constants for all 

parameter values.  

I compared the performance of the four estimation models by calculating the 

relative error (RE) of population biomass and exploitation rate in the last year of the 

analysis, for each simulated data set:   

(11) 
X

XXRE −
=

ˆ
, 

where X̂  is the point estimate of the quantity of interest from the estimation model, and 

X is the true value of the quantity of interest from the data generating model.  I used the 

median of the marginal posterior distribution as a point estimate.  Estimated biomass and 

exploitation rate in the last year often play an important role when stock assessment 

results are used to inform management actions.  In addition, I used the median of the 

relative errors (MRE) to examine whether there was systematic bias in estimates from the 

estimation models.  I used the median absolute relative error (MARE), which captures 

elements of bias and precision, to compare the range of relative errors made when using 

the estimation models. 

Model Selection Methods 

I evaluated the performance of three model selection techniques to determine 

which technique(s), if any, could identify consistently the “best” time-varying selectivity 

estimation approach.  The three model selection techniques I used to identify the best 

time-varying selectivity estimation approach were RMSE, degree of retrospectivity, and 

DIC.  By best selectivity estimation approach, I mean the estimation approach which 

most closely predicts the true fish population as produced by the data generating model.  
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More specifically, for each simulated data set I measured relative performance of the 

different estimation models based on the RE of population biomass and exploitation rate 

in the last year of the analysis.  I used three definitions of the best or nearly best 

estimation model(s) for a given simulation run: 1) the estimation model producing the 

lowest final population biomass or exploitation rate RE, 2) estimation models producing 

REs within 0.05 of the lowest RE, and 3) estimation model producing REs within 0.1 of 

the lowest RE.  I allowed for this relaxation in the definition of best or nearly best 

estimation model because in a real stock assessment, where the true population 

characteristics are unknown, alternative estimation models which produce similar results 

often would be treated as equally viable.  In particular, I chose the values 0.05 and 0.1 

because they represented a difference in model results that most analysts would consider 

negligible.  In addition, I used the MRE and MARE to examine bias and precision in 

estimates from the estimation models chosen by each selection method.  Comparison of 

the model selection methods was made using the subset of simulation runs in which all 

four estimation models converged on adequate solutions to avoid problems with different 

convergence rates between the estimation models. 

My first model selection procedure focused on proportion of catch-at-age 

residuals, with the selected model minimizing the RMSE for these residuals.  I chose this 

as one possible method because I thought generally large proportion of catch-at-age 

residuals might occur for estimation models that incorrectly modeled selectivity patterns.  

These residuals were calculated from the posterior medians of predicted proportions of 

catch-at-age.  
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 My second model selection method is based on retrospective analysis, which 

involves the comparison of successive estimates of model output quantities as additional 

years of data are added to the stock assessment (Parma 1993; Mohn 1999).  For this 

selection method I selected the model that minimized the absolute value of Mohn’s 

(1999) degree of retrospectivity statistic: 
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where X(1:y),y is the predicted value of quantity X in year y estimated from the data set 

spanning year 1 to year y and X(1:n),y is the predicted value of quantity X in year y 

estimated from the data set spanning year 1 to the last year of the full data set n.  Here I 

conducted a retrospective analysis for each estimation model-simulated data set fit by 

dropping a year of data from the simulated data set and refitting the estimation model, 

repeating this process until the last 10 years of data had been sequentially removed from 

the analysis.  Systematic retrospective patterns in model quantities can occur when time-

varying processes are modeled as being constant over time (Mohn 1999).  Though all of 

my estimation models allowed selectivity to change over time, I expected to see 

retrospective patterns in cases where an estimation model had difficulty tracking changes 

in selectivity. To make this approach practical, I used highest posterior density estimates 

of the parameters with the variance parameters fixed at their point estimates from the 

analysis of the full data set.  

My final selection method was to select the model that minimized the Deviance 

Information Criterion (Spiegelhalter et al. 2002).  Information-theoretic model selection 

criteria generally work by balancing model goodness of fit against model complexity 
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(i.e., the number of parameters in the model).  The effective number of parameters in 

complex models, such as my SCAA models, is often less than the actual number of 

parameters due to various constraints placed upon those parameters.  I chose to use DIC, 

as opposed to the more commonly used Akaike’s Information Criterion (AIC; Akaike 

1973) and Bayesian Information Criterion (BIC; Schwartz 1978), because DIC provides a 

means of estimating the effective number of parameters.  Wilberg (2005) demonstrated in 

a different SCAA application that selection by DIC could result in estimates with lower 

mean square errors, than always using any particular single model.   

Deviance Information Criterion is composed of two components (Spiegelhalter et 

al. 2002): 

(13) DpDDIC += , 

where D  is the average deviance and pD is the effective number of parameters.  I 

estimated the average deviance as (Spiegelhalter et al. 2002): 
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where C is the number of MCMC cycles saved minus the burn in and ( )cxp θ  is the 

probability of data x conditional on parameters θ from MCMC cycle c.  I estimated the 

effective number of parameters as (Wilberg 2005): 

(15) ( )MLD DDp θ−= , 

where D(θML) is the deviance evaluated at the maximum likelihood parameter estimates 

and the other variables are described above.   
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For each model selection method, I calculated in what percentage of the 

simulation runs the method selected the best or nearly best estimation models.  In 

addition, for each selection method I examined the distribution of REs for final 

population biomass and exploitation rate estimates.   

I compared the performance of using estimation models selected by degree of 

retrospectivity to the performance of always using the same estimation model, for each of 

the estimation models.  The objective here was to determine if this model selection 

technique outperformed the omnibus approach of always using the same estimation 

model.  I used model selection by degree of retrospectivity in this evaluation because of 

the good performance of this model selection method (see Results).  To properly make 

this comparison, I used degree of retrospectivity to select the best estimation based on 

final population biomass and exploitation rate for each simulation run, rather than for the 

subset of simulation runs where all four estimation models converged on solutions.  

Comparisons were made using MRE and MARE values for final population biomass and 

exploitation rate selected by degree of retrospectivity and estimated by each of the 

estimation models. 

Results 

Model runs exhibiting poor convergence characteristics were dropped from the 

analysis.  The following results are based on sample sizes of 333 to 425 model runs per 

scenario (Table 3.6).  All of the dropped model runs failed to converge to highest 

posterior density solutions, thus MCMC simulations could not be run.  I suspect that with 

sufficient effort, which would be warranted for a real assessment, an analyst could have 

made adjustments in many of these cases to achieve convergence.  This was not practical 



 
104

in the context of this simulation study.  It should be noted that the subsets of simulation 

runs demonstrating poor convergence characteristics generally were different for each of 

the estimation models (i.e., incidents of poor convergence were not due to characteristics 

of particular simulated data sets). 

Estimation Models 

There was little difference in the biases of the four estimation models’ estimates 

of population biomass in the last year of analysis within each data generating scenario 

(Figure 3.1).  The four estimation models produced less biased estimates of the final 

population biomass in the double logistic generating scenario compared to the age-

specific selectivity parameters generating scenario.  Median relative error values for final 

population biomass ranged from 0.01 to 0.13 for the double logistic function generating 

scenario (Table 3.6).  In contrast, MRE values for final population biomass ranged from -

0.23 to 0.55 for the age-specific selectivity parameters generating scenario.  The 

estimation model using the double logistic function with four time-varying parameters 

produced the most biased estimates of population biomass in both data generating 

scenarios. 

The four estimation models produced more precise estimates of population 

biomass in the last year of analysis when the estimation models more accurately 

represented the true underlying population (i.e., when selectivity estimation and data 

generating models were similar) (Figure 3.1).  Median absolute relative error values for 

final population biomass varied from 0.20 to 0.26 for the three double logistic function 

estimation models in the double logistic function generating scenario (Table 3.6).  On the 

other hand, the age-specific selectivity parameters estimation model had a final 
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population biomass MARE value of 0.54 for the double logistic function generating 

scenario.  The age-specific selectivity parameters estimation model had final population 

biomass MARE value of 0.35 for the age-specific selectivity parameters generating 

function.  In contrast, the three double logistic function estimation models had final 

population biomass MARE values ranging from 0.50 to 0.61 for the age-specific 

selectivity parameters generating scenario.  The estimation model using the double 

logistic function with four time-varying parameters produced estimates of final 

population biomass that were less precise than the estimation models using double 

logistic functions with one and two time-varying parameters (Figure 3.1). 

There was little difference in the biases of the four estimation models’ estimates 

of exploitation rate in the last year of analysis within each data generating scenario 

(Figure 3.2).  The four estimation models produced less biased estimates of the final 

exploitation rate in the double logistic generating scenario compared to the age-specific 

selectivity parameters generating scenario.  Median relative error values for final 

exploitation rate ranged from -0.10 to -0.02 for all four of the estimation models in the 

double logistic function generating scenario (Table 3.6).  In contrast, the MRE values for 

exploitation rate ranged from -0.36 to -0.18 for all four estimation models in the age-

specific selectivity parameters generating scenario.  The estimation model using the 

double logistic function with four time-varying parameters produced the most biased 

estimates of population biomass in both data generating scenarios. 

The four estimation models produced more precise estimates of exploitation rate 

in the last year of analysis when the estimation models more accurately represented the 

true underlying population, though the difference was not as pronounced in the age-
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specific selectivity parameters generating scenario (Figure 3.2).  Median absolute relative 

error values for the final exploitation rate varied from 0.20 to 0.25 for the three double 

logistic function estimation models in the double logistic generating scenario (Table 3.6).  

On the other hand, the age-specific selectivity parameters estimation model had an 

exploitation rate MARE value of 0.58 for the double logistic generating scenario.  The 

age-specific selectivity parameters estimation model had a final exploitation rate MARE 

value of 0.38 for the age-specific selectivity parameters generating function.  In contrast, 

the three double logistic function estimation models had final exploitation rate MARE 

values ranging from 0.48 to 0.57 for the age-specific selectivity parameters generating 

scenario. 

Model Selection 

I compared the performance of the model selection methods by examining the 

subset of simulation runs where all four of the estimation models exhibited good 

convergence properties.  All of the estimation models converged on good solutions for 

438 of the 1,000 simulation runs.   

Degree of retrospectivity selected the best or nearly best estimation model, based 

on final population biomass and exploitation rate REs, as often as or more often than DIC 

and RMSE (Figure 3.3).  Degree of retrospectivity selected the best or nearly best model 

in 34-57% of the simulation runs when the best or nearly best model was chosen based on 

final population biomass RE, and in 33-52% of the simulation runs based on final 

exploitation rate RE.  Deviance information criterion selected the best or nearly best 

model in 27-48% of the simulation runs when the best or nearly best model was chosen 

based on final population biomass RE, and in 27-50% of the simulation runs based on 
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final exploitation rate RE.  Root mean square error selected the best or nearly best model 

in 29-49% of the simulation runs when the best or nearly best model was chosen based on 

final population biomass RE, and in 33-49% of the simulation runs based on final 

exploitation rate RE. 

Selecting estimation models using degree of retrospectivity produced estimates of 

population biomass and exploitation rate in the last year of analysis that were as biased 

and precise as or less biased and more precise than estimation models selected using DIC 

and RMSE (Figures 3.5 and 3.6).  In particular, degree of retrospectivity selected 

estimation models that produced final population biomass and exploitation rate estimates 

that were less biased and more precise than estimates selected by DIC and RMSE in the 

age-specific selectivity parameters generating scenario (Table 3.7). 

  Degree of retrospectivity performed as well as or better than the individual 

estimation models at estimating final population biomass and exploitation rate.  Degree 

of retrospecitivity produced a final population biomass MRE of 0.05 and MARE of 0.24 

in the double logistic generating scenario, which is comparable to the estimation 

performances of the three time-varying double logistic functions in that same scenario 

(Table 3.6).  Degree of retrospecitivity produced a final population biomass MRE of -

0.01 and MARE of 0.40 in the age-specific selectivity parameters generating scenario, 

which is less biased than any of the individual estimation models and of intermediate 

precision between the age-specific selectivity parameters and double logistic function 

estimation models in that same scenario (Table 3.6).  Degree of retrospecitivity produced 

a final exploitation rate MRE of -0.05 and MARE of 0.24 in the double logistic 

generating scenario, which is comparable to the estimation performances of the three 



 
108

time-varying double logistic functions in that same scenario (Table 3.6).  Degree of 

retrospecitivity produced a final exploitation rate MRE of 0.03 and MARE of 0.42 in the 

age-specific selectivity parameters generating scenario, which is less biased than any of 

the individual estimation models and of intermediate precision between the age-specific 

selectivity parameters and double logistic function estimation models in that same 

scenario (Table 3.6). 

Discussion 

There was no single time-varying selectivity estimation model that outperformed 

the others in all situations that I examined.  Rather, the estimation model(s) that produced 

the estimates most tightly distributed about true population biomass and exploitation rate 

in the last year of analysis was the one that most closely represented the true underlying 

population.  The three estimation models that used variants of the double logistic function 

to model time-varying selectivity produced better estimates of final population biomass 

and exploitation rate than the age-specific selectivity parameters estimation model when 

the selectivity of the true population was generated with a double logistic function.  

Likewise, the age-specific selectivity parameters estimation model produced better 

estimates of final population biomass and exploitation rate than the three double logistic 

function estimation models when the selectivity of the true population was generated with 

age-specific selectivity parameters.  This sort of result is common to simulation studies 

where there are similarities between data generating and estimation models (e.g., 

Radomski et al. 2005; Wilberg and Bence 2006).   

My study suggests that if an analyst knows the underlying form that selectivity 

takes in a fish population, then he or she can model time-varying-selectivity reasonably 
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well.  This begs the question, how well can an analyst know true selectivity patterns and 

how they vary over time?  Many fishing gears such as gill nets and trap nets are size 

selective.  If one makes the assumption that the size and age of fish are correlated and by 

extension selectivity and age of fish are correlated, then modeling selectivity as some 

function of ages, which produces a smooth selectivity curve, is a reasonable approach.  It 

is more difficult to think of situations where age-specific selectivity values vary relatively 

independently of each other over time.  Kimura (1990) demonstrated that estimating age-

specific selectivity parameters outperformed the use of a selectivity function when the 

function was incorrectly specified.  The approach of Butterworth et al. (2003) that I used 

in this study is an extension of Kimura’s (1990) approach, which allows the age-specific 

selectivity parameters to vary over time.  Further study is needed to determine whether 

estimation models that assume time-varying age-specific selectivity parameters 

outperform a time-varying selectivity function when the function is misspecified. 

Model complexity is another issue that must be addressed when evaluating 

different time-varying selectivity models.  Increased model complexity means an 

increased number of parameters that must be estimated, which can lead to over-

parameterization of the model.  An over-parameterized model can produce poor 

parameter estimates with high variances (Burnham and Anderson 2002).  In my study, 

the issue of model complexity was most clearly demonstrated in the performance of the 

double logistic function with four time-varying parameters and two associated variances.  

I expected the four time-varying parameter selectivity estimation method to outperform 

the other double logistic function approaches when the observed data were generated 

using age-specific selectivity parameters, due to the increased flexibility granted by 
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allowing all four double logistic function parameters to vary over time.  Instead, I found 

that the four time-varying parameter double logistic function produced more biased 

estimates of final population biomass than the other double logistic function estimation 

approaches when the observed data were generated using age-specific selectivity 

parameters.  One of the two variances associated with the slopes and inflection points of 

the four time-varying parameter double logistic function was estimated as nearly zero 

(i.e., making it effectively the same as the two time-varying parameter double logistic 

function) in many of the simulation runs, which suggests that the observed data were not 

informative enough to estimate all of the selectivity parameters.   

The performance of the four time-varying parameter double logistic function in 

my study could be due to my data generating model design.  The observed data were 

generated by allowing selectivity parameters to vary over time according to a first order 

autoregressive process, which did not follow any trend over time, and for which the 

deviations among ages were not correlated.  The performance of the time-varying double 

logistic methods, may have improved had the generating selectivity function produced 

correlated changes in selectivity for adjacent ages, like those that would be generated by 

variations in one or more parameters of a function.     

I was surprised to see how well degree of retrospectivity performed as a time-

varying selectivity model selection method compared to DIC and RMSE.  Estimation 

models selected using degree of retrospectivity produced final population biomass and 

exploitation rate estimates that were more or equally accurate and precise compared to 

estimates selected by DIC and RMSE for the data generating scenarios I examined.  In 

particular, degree of retrospectivity selected final population biomass estimates that were 
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much more accurate and precise than those estimates selected by DIC and RMSE when 

observed data sets were generated using age-specific selectivity parameters.  The 

robustness of degree of retrospectivity as a time-varying selectivity estimation model 

selection method probably is due to the fact that it can detect consistent patterns in model 

estimates over time (i.e., as new years of data are added to the model).  As I expected, 

these consistent or retrospective patterns do appear to be indicative of an estimation 

model that has difficulty estimating time-varying selectivity.  Deviance information 

criterion and RMSE lack this ability to detect retrospective patterns since they merely 

evaluate the model fit to the complete time series of observed data.  Parma (1993) 

developed an alternative metric for identifying retrospective patterns using the square 

root of the mean square error between the retrospective estimate of a model quantity and 

a corresponding reference estimate on the log scale.  Mohn (1999) points out that this 

mean square error metric is unable to differentiate between retrospective and random 

patterns since it uses a mean square, rather than signed sum, in its calculation.  Though I 

did not test Parma’s (1993) metric, I suspect that it would perform similarly to my DIC 

and RMSE methods.  I recommend that degree of retrospectivity be used to select 

between estimation models using different methods of estimating time-varying 

selectivity, based on its performance in my study.   

Selecting from multiple estimation models using degree of retrospectivity worked 

better than choosing a single estimation model in my study.  Nothing is lost in estimation 

performance by using degree of retrospectivity, even if an analyst is able to correctly 

specify time-varying selectivity.  In addition, degree of retrospectivity outperforms 

estimation models which misspecifiy time-varying selectivity (i.e., assuming a double 
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logisitic function when true age-specific selectivity values vary over time).  Therefore, I 

recommend that degree of retrospectivity be used to select between time-varying 

selectivity models. 

I should note that my study only looked at the performance of model selection 

methods on an individual basis.  The ability to select the best estimation model may be 

improved by using combinations of different selection techniques.  For example, 

estimation models could be ranked based on their degree of retrospectivity.  If multiple 

estimation models have equal or nearly equal degree of retrospecitvity values, then DIC 

or RMSE values could be used to select between those models with degree of 

retrospecitvity values close to zero.  Further study of using such multiple model selection 

methods would be informative.   
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Table 3.1.  Symbols and descriptions of variables used in data generating and estimation 
models. 

Symbol Description Application

Cy,a Number of fish caught by year and age Both 

yC~  Observed number of fish caught by year Both 

Ey Fishery effort by year Both 

Fy,a Instantaneous fishing mortality by year and age Both 

M Instantaneous natural mortality Both 

Ny,a Abundance by year and age Both 

N0 Mean abundance for abundance in first year Estimation 

NE Number of fish used to calculate age composition each year Both 

Py,a Proportion of catch by year and age Both 

ayP ,
~

 Observed proportion of catch by year and age Both 

R0 Mean recruitment Estimation 

Sy Number of female spawners by year Generation 

Zy,a Instantaneous total mortality by year and age Both 

Z0,a Instantaneous total mortality for abundance in first year by age Generation 

b1,y First inflection pt. of double logistic selectivity function by year Both 

b2 First slope of double logistic selectivity funcion Both 

b3 Second inflection pt. of double logistic selectivity function Both 

b4 Second slope of double logistic selectivity funcion Both 

1b′  Mean of first inflection pt. of double logistic selectivity function Estimation 

fy Fishing intensity by year Both 

m Total number of ages Both 

n Total number of years Both 
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Table 3.1 (cont’d).  
 
 

Posterior probability density of parameters conditional on data Estimation 

 
 

Probability density of data conditional on parameters Estimation 

 
 

Prior probability density of parameters Estimation 

q Fishery catchability Both 

sy,a Fishery selectivity by year and age Both 

 
 

Mean fishery selectivity by age Generation 

wa 
Mean fish weight by age Both 

α Productivity parameter of Ricker recruitment function Generation 

β Density dependent parameter of Ricker recruitment function Generation 

χi,y Process error in selectivity parameter i by year Estimation 

δy Process error in first inflection point of double logistic function 
by year 

Generation 

εy Process error in recruitment by year Generation 

φ Subset of time-varying selectivity parameters Estimation 

γy,a Process error in selectivity by year and age Generation 

ηy Process error in inflection points of double logistic function by 
year 

Estimation 

λy Error in fishing intensity by year Both 

µN Mean number of age-1 fish for abundance in first year Generation 

θ Set of all model parameters Estimation 

λϑ  Prior standard deviation of log-scale fishing intensity standard 
deviation 

Estimation 

ηϑ  Prior standard deviation of log-scale inflection points standard 
deviation 

Estimation 

νϑ  Prior standard deviation of log-scale total catch standard 
deviation 

Estimation 

τϑ  Prior standard deviation of log-scale slopes standard deviation Estimation 

ρ1 First correlation parameter for first order autoregressive process Generation 

   

( )xp θ

( )θxp

( )θp

as′
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Table 3.1 (cont’d).  
ρ2 Second correlation parameter for first order autoregressive 

process 
Generation 

σN Standard deviation of number of age-1 fish for abundance in 
first year 

Generation 

σδ Standard deviation of log-scale first inflection point Generation 

δσ ′  Generating mean of log-scale first inflection point standard 
deviation 

Generation 

σε Standard deviation of log-scale recruitment Generation 

σγ Standard deviation of log-scale selectivity Generation 

γσ ′  Generating mean of log-scale selectivity standard deviation Generation 

ση Standard deviation of log-scale inflection points Estimation 

ησ ′  Prior mean of log-scale inflection points standard deviation Estimation 

σϕ Age-specific standard deviation of log-scale selectivity Estimation 

σλ Standard deviation of log-scale fishing intensity Both 

λσ ′  Generating and prior mean of log-scale fishing intensity 
standard deviation 

Both 

στ Standard deviation of log-scale slopes Estimation 

τσ ′  Prior mean of log-scale slopes standard deviation Estimation 

συ Standard deviation of log-scale total catch Both 

νσ ′  Generating and prior mean of log-scale total catch standard 
deviation 

Both 

σϖ Year-specific standard deviation of log-scale selectivity Estimation 

τy Process error in slopes of double logistic function by year Estimation 

υy Observation error in number of fish caught by year Both 

ϖy,a Process error in selectivity by year and age Estimation 

ωy Process error in recruitment by year Estimation 

ψa Process error for abundance in first year by age Estimation 

ζδ 
Generating standard deviation of log-scale first inflection point 
standard deviation 

Generation 
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Table 3.1 (cont’d).  
ζγ 

Generating standard deviation of log-scale selectivity standard 
deviation 

Generation 

ζλ 
Generating standard deviation of log-scale fishing intensity 
standard deviation 

Generation 

ζν 
Generating standard deviation of log-scale total catch standard 
deviation 

Generation 
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Table 3.2.  Data generating and estimation model equations. 

  Equation Application 
3.2.1 ayZ

ayay eNN ,
,1,1

−
++ =  

Both 

3.2.2  Generation 

3.2.3  Generation 

3.2.4  Both 

3.2.5  Both 

3.2.6  Both 

3.2.7  Both 

3.2.8  Both 

3.2.9  Both 

 

ayay FMZ ,, +=
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Table 3.3.  Posterior probability density equations for estimation models. 

  Equation 
3.3.1  

3.3.2a  

3.3.2b ( )[ ] ( ) ( )[ ] ( )[ ] ( )2
,

2
, ;lnln;ln ϕϕ σθθσθ ayay sgpxpsgxp +−−∝+−  
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yy ησηφ −
=

=  
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Table 3.4.  Values of quantities used in data generating model to create simulation data 
sets.   
Quantity Value 
n 20 
m 8 

µΝ 355,000 

σΝ 0.4 
α 10.1 
β 5.10E-06 

σε 0.4 

[ ]maaw 1=  0.20, 0.48, 0.73, 0.91, 1.32, 1.52, 1.76, 2.15 

M 0.24 

[ ]n
yyE 1=

 
0.8, 1.6, 2.4, 3.2, 4.0, 4.8, 5.6, 6.4, 7.2, 8.0, 8.0, 7.2, 6.4, 5.6, 4.8, 4.0, 3.2, 
2.4, 1.6, 0.8 

q 0.15 

λσ ′  0.4 

λζ  0.1 

1b′  4.01 

[ ]4 2=iib  1.40, 3.49, 0.50 

[ ]maas 1=′  0.04, 0.15, 0.43, 0.85, 1.00, 0.82, 0.57, 0.37 

ρ1 0.9 

δσ ′  0.2 

δζ  0.1 

ρ2 0.9 

γσ ′  0.15 

γζ  0.1 

υσ ′  0.05 

νζ  0.1 

NE 400 
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Table 3.5.  Values used to define prior probability densities in estimation models. 
Quantity Value 

λσ ′  0.4 

λϑ  0.25 

ησ ′  0.2 

ηϑ  0.42 

νσ ′  0.05 

νϑ  0.1 

τσ ′  0.2 

τϑ  0.42 
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Table 3.6.  Median relative errors (MRE), median absolute relative errors (MARE), and 
number of replicates (N) for estimates of final population biomass and exploitation rate 
produced by the time-varying selectivity estimation models: double logistic functions 
with one (DL1), two (DL2), and four (DL4) time-varying parameters, and time-varying 
age-specific selectivity parameters (ASP). 
    Population Biomass 
Estimation  DL1  ASP 
Model   MRE MARE N  MRE MARE N 
DL1  0.05 0.20 414  0.23 0.50 411 
DL2  0.06 0.22 361  0.33 0.57 425 
DL4  0.13 0.26 333  0.55 0.61 430 
ASP  0.01 0.54 382  -0.23 0.35 409 
  Exploitation Rate 
DL1  -0.04 0.20 414  -0.18 0.50 411 
DL2  -0.06 0.21 361  -0.24 0.51 425 
DL4  -0.10 0.25 333  -0.36 0.48 430 
ASP   -0.02 0.58 382  0.30 0.38 409 
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Table 3.7.  Median relative errors (MRE), median absolute relative errors (MARE), and 
number of replicates (N) for estimates of final population biomass and exploitation rate 
chosen by the model selection methods: root mean square error (RMSE), deviance 
information criterion (DIC), and degree of retrospectivity (DR). 
    Population Biomass 
Model  DL1  ASP 
Selection   MRE MARE N  MRE MARE N 
RMSE  0.10 0.21 179  0.43 0.53 259 
DIC  0.10 0.22 179  0.40 0.51 259 
DR  0.07 0.22 179  -0.05 0.35 259 
  Exploitation Rate 
RMSE  -0.08 0.21 179  -0.32 0.54 259 
DIC  -0.09 0.22 179  -0.29 0.50 259 
DR   -0.06 0.24 179  0.10 0.37 259 
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Figure 3.1.  Box plots representing relative error distributions for estimates of population 
biomass in the last year of analysis across different data generating models.  The data 
generating and estimation models include double logistic functions with one (DL1), two 
(DL2), and four (DL4) time-varying parameters, and time-varying age-specific selectivity 
parameters (ASP).  The bars represent median relative errors.  The boxes, whiskers, and 
circles represent 25th and 75th, 10th and 90th, and 5th and 95th percentiles of the 
distributions, respectively.  
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Figure 3.2.  Box plots representing relative error distributions for estimates of 
exploitation rate in the last year of analysis across different data generating models.  The 
data generating and estimation models include double logistic functions with one (DL1), 
two (DL2), and four (DL4) time-varying parameters, and time-varying age-specific 
selectivity parameters (ASP).  The bars represent median relative errors.  The boxes, 
whiskers, and circles represent 25th and 75th, 10th and 90th, and 5th and 95th percentiles 
of the distributions, respectively. 
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Figure 3.3.  The percentage of model runs when the model selection methods chose the 
best or nearly best estimation model based on estimates of final population biomass.  The 
model selection methods include root mean square error (RMSE), deviance information 
criterion (DIC), and degree of retrospectivity (DR).  The best or nearly best estimation 
model(s) is defined as the model(s) producing A) the lowest final population biomass 
relative error, B) within 5% of the lowest final population biomass relative error, and C) 
within 10% of the lowest final population biomass relative error. 
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Figure 3.4.  The percentage of model runs when the model selection methods chose the 
best or nearly best estimation model based on estimates of final exploitation rate.  The 
model selection methods include root mean square error (RMSE), deviance information 
criterion (DIC), and degree of retrospectivity (DR).  The best or nearly best estimation 
model(s) is defined as the model(s) producing A) the lowest final exploitation rate 
relative error, B) within 5% of the lowest final exploitation rate relative error, and C) 
within 10% of the lowest final exploitation rate relative error. 



 
131

 
 

DR 
18.7 

DIC 
7.5

RMSE 
11.2 NS 

38.4 

2.7 

10.3 4.6 
6.6 

A) 

DR 
17.4 

DIC 
6.8

RMSE 
5.0 NS 

23.1 

3.4 

13.2 5.0 
26.0 

C) 

DR 
18.5 

DIC 
6.8

RMSE 
7.1 NS 

27.9 

3.2 

12.6 5.7 
18.3 

B) 



 
132

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.5.  Box plots representing relative error distributions for estimates of population 
biomass in the last year of analysis chosen by model selection methods across different 
data generating models.  The data generating models include double logistic functions 
with one time-varying parameter (DL1) and time-varying age-specific selectivity 
parameters (ASP).  The model selection methods include root mean square error 
(RMSE), deviance information criterion (DIC), and degree of retrospectivity (DR).  The 
bars represent median relative errors.  The boxes, whiskers, and circles represent 25th and 
75th, 10th and 90th, and 5th and 95th percentiles of the distributions, respectively. 
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Figure 3.6.  Box plots representing relative error distributions for estimates of 
exploitation rate in the last year of analysis chosen by model selection methods across 
different data generating models.  The data generating models include double logistic 
functions with one time-varying parameter (DL1) and time-varying age-specific 
selectivity parameters (ASP).  The model selection methods include root mean square 
error (RMSE), deviance information criterion (DIC), and degree of retrospectivity (DR).  
The bars represent median relative errors.  The boxes, whiskers, and circles represent 
25th and 75th, 10th and 90th, and 5th and 95th percentiles of the distributions, 
respectively.   
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