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ABSTRACT 
 

HOW MANY FISH ARE THERE AND HOW MANY CAN WE KILL?  IMPROVING 
CATCH PER EFFORT INDICES OF ABUNDANCE AND EVALUATING HARVEST 

CONTROL RULES FOR LAKE WHITEFISH IN THE GREAT LAKES 
 

By 
 

Jonathan J. Deroba 
 

My dissertation has two main objectives: 1) to explore alternative ways to use 

commercial lake whitefish fishery catch per effort (CPE) data as an index of abundance 

in 1836 Treaty-ceded waters of the Great Lakes, and 2) to evaluate alternative harvest 

control rules for lake whitefish.  Chapter 1 was directed at exploring alternative ways to 

use commercial lake whitefish fishery CPE data, while Chapters 2 and 3 covered topics 

related to harvest control rules. 

Fishery CPE data is often used to assess relative fish abundance, and assessments 

used in 1836 Treaty-ceded waters of the Great Lakes assume that commercial CPE (i.e., 

ratio of aggregate catch to aggregate effort in each year) from gill-net and trap-net 

fisheries is proportional to abundance.   However, CPE may change due to factors other 

than abundance. In Chapter 1, I developed general linear mixed models (GLMMs) to 

account for sources of variation in CPE unrelated to abundance, and used the least-

squares means (LSMs) for each year as an alternative to the current index of abundance. 

Effects such as license holder, boat size, and month accounted for much of the variation 

in CPE. LSMs and the current CPE index displayed different temporal trends among 

years in some areas, suggesting the importance of adjusting fishery CPE for effects like 

boat size, season, and license holder. 

 



Harvest policies use control rules to dictate how fishing mortality or catch and 

yield levels are determined. Common control rules include constant catch, constant 

fishing mortality rate, and constant escapement. The “best” control rules for meeting 

common fishery objectives (e.g., maximizing yield) is a source of controversy in the 

literature, and results are seemingly contradictory. In Chapter 2, I conducted a detailed 

review of the relevant harvest control rule literature to compare control rules for their 

ability to meet widely used fishery objectives and identify potential causes for 

contradictory results.  The relative performance of control rules at meeting common 

fishery objectives was affected by: fishery objectives, whether uncertainty in estimated 

stock sizes was included in analyses, whether the maximum recruitment level was varied 

in an autocorrelated fashion over time, how policy parameters were chosen, and the 

amount of compensation in the stock–recruit relationship. More research is needed to 

compare control rules while considering these and related factors. 

In Chapter 3, I used an age-structured simulation model that incorporated 

stochasticity in life history traits and multiple uncertainties to compare the current harvest 

control rule for lake whitefish (constant fishing rate; CF) with a range of alternative 

control rules, including conditional constant catch (CCC), biomass-based (BB), and CF 

and BB rules with a 15% limit on the interannual change in the target catch.  The CF and 

BB rules simultaneously attained higher average yield and spawning stock biomass than 

other control rules, while the CCC rule and limiting the target catch changes by 15% had 

the lowest yearly variability in yield.  The low yearly variability in yield provided by 

limiting target catch changes to 15% comes at the cost of frequently reducing biomass to 

low levels, so that in many situations other control rules would be preferred. 
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INTRODUCTION AND SUMMARY 

 

Many fisheries are managed by using estimates of abundance and other 

parameters from model-based stock assessments (e.g., fitted statistical catch at age 

models) for setting annual fishery harvest quotas.  Stock assessments are often fit to an 

index of abundance, and so the estimates from the stock assessments can critically rely on 

the accuracy of both the index and a measure of uncertainty for the index (Maunder and 

Starr, 2003).  Harvest control rules are often used to set a quota as a function of the 

current estimate of the system state (e.g., an abundance estimate from an assessment).  

These topics, indices of abundance and harvest control rules, were the main foci of my 

research. 

1.  Indices of Abundance 

Catch per effort (CPE) is usually used as the index of abundance for most 

fisheries, and the common assumption is that CPE changes in proportion to abundance, 

which is also referred to as “constant catchability” (Quinn and Deriso, 1999).  Violations 

of this assumption can lead to inaccurate estimates of abundance from stock assessments, 

and consequently ineffective management, which sometimes results in fishery collapse 

(Rose and Kulka, 1999; Harley et al., 2001).  To avoid violations of this assumption, CPE 

indices of abundance are ideally based on fishery independent survey data (e.g., Helser et 

al., 2004).  Such surveys are not available for many fisheries and so many indices of 

abundance used in assessments are based on fishery dependent data.  Fishery dependent 

data is more likely to violate the constant catchability assumption due to things such as 

systematic changes in characteristics of the fishing fleet (e.g., technological 
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advancements, entrance and exit of individual vessels), non-random search effort, and the 

spatial distribution of the fish stock (Rose and Kulka, 1999; Harley et al., 2001; Maynou 

et al., 2003; Battaile and Quinn, 2004; Bishop et al., 2004; Campbell, 2004).   Even stock 

assessment models that allow for some temporal changes in catchability will tend to work 

better when such temporal variation is lower (Wilberg and Bence, 2006; Wilberg et al., 

2008). 

To account for some of the variation in CPE not attributable to changes in 

abundance, and provide a more accurate index, CPE data can be “standardized” by fitting 

statistical models to the catch and effort data, and then using “year-effect” estimates as 

the index of abundance (Maunder and Punt, 2004; Venables and Dichmont, 2004).  Year-

effect estimates are commonly used because detecting trends in abundance over time is 

usually the objective (Maunder and Punt, 2004).  Frequently, some form of general or 

generalized linear model is used to standardize the CPE data (Maunder and Punt 2004). 

1.1.  Chapter 1: Improving indices of abundance for lake whitefish 

My main objective in Chapter 1 was to produce standardized indices of 

abundance for lake whitefish in 1836 Treaty-ceded waters of Lakes Huron, Michigan, 

and Superior, but this work also allowed me to develop expertise in statistical techniques 

(e.g., mixed models) that I used to parameterize the simulation model of chapter 3.  

Currently, statistical catch at age assessments are fit in each of 18 management units, and 

a quota is also set for each unit.  The assessments are fit using two separate CPE indices 

of abundance from gill-nets and trap-nets, with CPE estimated as the ratio of sum of 

aggregate catch to sum of aggregate effort in each year.  I developed general linear mixed 

models (GLMM) for each gear type to standardize the fishery CPE data.  Factors 
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included in the GLMMs were fixed effects of year, month, and boatsize (gill-net fishery 

only), and random effects of license holder (i.e., analogous to boat captain), grid (i.e., 

location), and all two and three way interactions.  The effect of the standardization by 

using the GLMM method was evaluated by examining the temporal trends in the 

proportional difference (PD) between the least squares means for each year (LSM) and 

CPE (i.e., aggregate catch divided by aggregate effort for each year).  Since both the 

LSMs and CPE are relative indices, changes in PD over time were of interest and not 

whether average PD differed from 1.0.  Factors that were particularly influential in the 

GLMM models were month, boat size, and license holder, which was similar to factors 

important for marine commercial fisheries where standardization is more widely applied 

than in freshwater systems.  The proportional difference between the LSMs and CPE 

trended through time in some management units, suggesting that adjusting fishery CPE 

for effects such as boat size, season, and license holder was important.  So, I concluded 

that model-based indices of abundance should replace non-standardized CPE in some 

lake whitefish stock assessment models, especially those management units where the 

proportional difference trended through time.  In management units where the 

proportional difference did not trend through time, using a model-based index of 

abundance may still be beneficial.  Accounting for variability due to random effects led 

to year specific estimates of uncertainty (e.g., the standard errors for the LSMs) that were 

not available when using non-standardized CPE.  Using improved years-specific 

estimates of uncertainty to weight the influence of indices of abundance can increase the 

accuracy of stock assessment estimates (Helser et al., 2004; Maunder and Starr, 2003). 
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2.  Harvest Control Rules 

Harvest control rules are guidelines that specify an amount of catch, fishing effort, 

or fishing mortality as a specific, and usually simple, function of a current estimate of the 

system state (e.g, spawning biomass; Deroba and Bence, 2008).  Common control rules 

include constant catch, constant fishing mortality rate, constant escapement, or a few 

variations of these.  Each control rule is also defined by a number of policy parameters.  

For example, the constant fishing mortality rate control rule is defined by one policy 

parameter, the target level of fishing mortality.  Ideally, a harvest control rule is chosen 

because it meets fishery objectives (e.g., maximize yield, minimize interannual variability 

in yield).  However, which rules are best at meeting certain fishery objectives is a source 

of controversy in the literature.  Furthermore, the relative performance of control rules 

depends on specific characteristics of the fishery and underlying population dynamics 

that are incorporated into an evaluation.  Consequently, selecting a harvest control rule 

and policy parameters can be a difficult task. 

2.1.  Chapter 2: A review of harvest control rules 

In Chapter 2 I reviewed the harvest control rule literature with two objectives: 1) 

to compare and contrast the relative performance of various control rules at meeting 

common fishery objectives, and 2) to identify reasons for what seem to be contradictory 

results.  The findings were also relevant for designing the harvest control rule evaluation 

of Chapter 3 (see below).  I found that the relative performance of control rules at 

meeting common fishery objectives was affected by: the given fishery objective, whether 

uncertainty in estimated stock sizes was included in analyses (i.e., assessment error), 

whether the maximum recruitment level (e.g., the asymptote of a Beverton–Holt stock–
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recruit function) varied in an autocorrelated fashion over time, and the amount of 

compensation in the stock–recruit relationship.  Also, few studies have compared control 

rules using optimal parameters (e.g., those that maximize some objective function) that 

were found while including assessment error.  More commonly, parameters that are 

optimal without assessment error are used in a comparison of control rules that includes 

assessment error.  This approach can produce misleading results.  Lastly, more research is 

needed to compare control rules when accounting for uncertainty in key population 

parameters, when stock–recruitment or other population dynamic parameters vary over 

time, and for fisheries with non-yield-based or competing objectives. 

2.2.  Chapter 3: Evaluating harvest control rules for lake whitefish 

Chapter 3 addressed some of the harvest control rule research needs identified in 

Chapter 2, and was based on a simulation analysis with the objective of evaluating the 

ability of alternative control rules to meet fishery objectives for lake whitefish in 1836 

Treaty-ceded waters.  Currently, a quota is set for each management unit so that total 

annual mortality rate equals 65% for ages experiencing the highest levels of fishing 

mortality.  Because assessments in these waters assume a constant natural mortality rate 

across ages and time (Ebener et al., 2005), this is equivalent to a constant fishing 

mortality rate (constant-F) control rule.  The constant-F control rule and the parameter 

for the control rule (i.e., 65% total annual mortality rate) are based on analyses conducted 

over 30 years ago (Healey, 1975), and so may not be optimal for meeting fishery 

objectives. 

Lake whitefish stocks in 1836 Treaty-ceded waters are characterized by temporal 

and spatial variation in various population parameters.  For example, lake whitefish 
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growth in some areas of the Great Lakes declined during the 1990s and 2000s, coincident 

with declines in an important prey source, Diporeia (Hoyle et al., 1999; Pothoven et al., 

2001; Mohr and Nalepa, 2005), but similar declines have not occurred everywhere 

despite similar ecosystem changes (e.g., Cook et al., 2005; Lumb et al., 2007).  Growth 

rates, maturity ogives, natural mortality, and stock-recruit relationships also likely differ 

spatially among some of the management units (e.g., Wang et al., 2008). 

Drawing from my experiences with GLMMs from Chapter 1 and partially based 

on the results of Chapter 2, I developed a stochastic age-structured simulation model that 

incorporated stochasticity in life history traits, uncertainty in future lake whitefish 

growth, and other sources of uncertainty to compare the current harvest control rule with 

a range of alternative control rules, including conditional constant catch (CCC), constant-

F, biomass-based (BB), and constant-F and BB rules with a 15% limit on the interannual 

change in the target catch.  Separate sets of growth parameters were estimated for fast 

and slow growth stocks, and separate sets of simulations were done for these two 

categories of individual stocks.  Furthermore, I developed two variants of a growth model 

to represent alternative hypotheses about future lake whitefish growth; one with 

temporally autocorrelated changes in growth and another where growth remained similar 

to more recent patterns.  Uncertainty in the stock-recruitment relationship was 

incorporated by drawing stock-recruit parameters for each simulation from a set of 

possible values, which were based on data from each management unit and estimated 

using a GLMM (i.e., similar statistical model used in Chapter 1). The simulations also 

included assessment and implementation error.  Some of the model features mentioned 

above were included because the results of Chapter 2 indicated that these can affect 
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relative control rule performance, in particular, accounting for uncertainty in the stock-

recruit relationship and assessment error.  Each control rule was evaluated over a range of 

the policy parameters that define the control rules. The performance of the control rules 

was evaluated by examining trade-off plots of spawning stock biomass (SSB) versus yield 

(Y), interannual variability in yield (Yvar) versus the proportion of years that SSB fell 

below 20% of the unfished level (SSBF=0), Y versus Yvar, and Y versus the proportion of 

years that SSB fell below 20% of SSBF=0. 

While treating future growth as known, the rank order performance of the control 

rules for each of the performance metrics was generally robust to sources of uncertainty.  

For example, the constant-F and BB rules simultaneously attained higher average yield 

and spawning stock biomass than all other control rules.  The CCC rule and limiting the 

constant-F or BB rules to a 15% change in target catch had the lowest yearly variability 

in yield.  The low yearly variability in yield provided by limiting target catch changes to 

15%, however, came at the cost of frequently reducing biomass to low levels, so that in 

many situations other control rules would be preferred.   

The sensitivity of results to uncertainty about future lake whitefish growth was 

control rule specific and depended on whether stock growth was fast or slow. For fast 

growth stocks, selecting control rules and policy parameters by incorrectly assuming that 

future growth will be autocorrelated resulted in little cost from the optimum levels 

relative to the alternative of incorrectly assuming future growth will be similar to recent 

levels.  For slow growth stocks, however, the robustness to choosing policy parameters 

based on an erroneous assumption about future lake whitefish growth depended on the 

control rule and trade-off plot.  The decision about how best to select control rules and 
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policy parameters will ultimately depend on how competing fishery objectives are 

weighted relative to each other.  Generally, however, control rules and policy parameters 

for fast growth stocks should likely be selected assuming future growth will be 

autocorrelated, but a universal recommendation for slow growth stocks is less clear (i.e., 

depends on the control rule and fishery objectives). 

Depending on how important different fishery objectives are, a control rule and 

policy parameters other than the one currently in use (i.e., constant-F based on a total 

annual mortality rate of 65%) may be worth considering.  For example, a BB control rule 

with appropriately selected policy parameters could likely produce nearly the same or 

more yield, spawning stock biomass, and less risk with little cost in variability in yield 

relative to the currently used policy.  Similarly, the CCC control rule can likely provide 

less variability in yield, but at the cost of yield.  So, if maintaining low variability in yield 

is more desirable than maximizing yield, a CCC control rule may want to be considered. 

3.  Overall Conclusions and Future Directions 

The results of this dissertation have implications for the improved management of 

lake whitefish in the Great Lakes, but the results are also more generally applicable.  In 

Chapter 1, I found that model-based indices of abundance should likely replace non-

standardized indices in fitting stock assessment models.  The factors important to the 

standardization process also seem to be consistent among systems, and so should be 

considered when standardizing CPE data for most fisheries.  Likewise, updating stock 

assessments for most fisheries to include standardized indices of abundance and 

associated measures of uncertainty would likely produce more accurate estimates of 

abundance and other population parameters, and so reduce assessment error, which in 
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Chapter 2 was shown to affect relative control performance.  In addition to assessment 

error, Chapter 2 highlighted several other characteristics and uncertainties of harvest 

policy evaluations that have affected control rule performance, and so should be 

considered when developing harvest policy analyses for any fishery.  The results of 

Chapter 2, however, also revealed that little research has historically considered these 

characteristics.  Chapter 3 added to the body of research that has considered factors 

important to control rule performance.  The CCC control rule, which was first published 

in an analysis of Pacific halibut Hippoglossus stenolepis, had never been evaluated while 

considering assessment error (Clark and Hare, 2004).  Similarly, few published analyses 

have considered control rules with limits on the interannual change in target catch.  Lake 

trout Salvelinus namaycush in 1836 Treaty-ceded waters are managed with such a 

restraint, but given the generally poor performance of these control rules another option 

may be warranted.  Chapter 3 also evaluated the sensitivity of relative control rule 

performance to one form of time-varying growth that had never been considered before, 

and time-varying population parameters have been shown to affect control rule 

performance (Chapter 2).  The results in regards to the rank order and sensitivity of the 

control rules to this source of uncertainty are likely generally applicable to any fishery 

experiencing similar conditions. 
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Abstract 

Fishery catch per effort (CPE) is often used to assess relative fish abundance, and 

in many Great Lakes and other freshwater applications this is based on either an average 

or the ratio of sum of aggregate catch to sum of aggregate effort.  In particular, 

assessments used to estimate the abundance of lake whitefish and recommend harvest 

quotas in the 1836 Treaty-Ceded waters of Lakes Huron, Michigan, and Superior assume 

that commercial CPE from gill-net and trap-net fisheries is proportional to abundance, 

but CPE may change due to factors other than abundance, leading to violations of this 

assumption.  To account for sources of variation in CPE not attributable to abundance, 

general linear mixed models (GLMMs) were developed for each management unit, and 

least squares means (LSMs) for each year were used as the index of abundance.  The 

effect of the standardization by using the GLMM method was evaluated by examining 

the temporal trends in the proportional difference between the LSMs and CPE (i.e., 

aggregate catch divided by aggregate effort for each year).  Of the random effects 

included in the final GLMM for the gill-net fishery, license holder accounted for the most 

variation.  The fixed effect of boat size category on CPE depended on lake, where on 

average in Lake Superior there was little difference, but in Lakes Michigan and Huron 

large boats had lower CPE than medium and small boats.  CPE was on average higher 

from October to December than in other months.  The proportional difference between 

the LSMs and CPE trended through time in some management units, suggesting that 

adjusting fishery CPE for effects such as boat size, season, and license holder is 

important.  Factors influential to lake whitefish commercial fishery CPE are similar to 

factors that have been shown to be important in marine commercial fisheries.
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Introduction 

Lake whitefish, Coregonus clupeaformis, has supported a historically important 

fishery for Native American bands and a highly valued commercial fishery in the upper 

Great Lakes (Lakes Huron, Michigan, and Superior).  In the late 1800s and early 1900s, 

lake whitefish were often the most highly valued commercial species and usually 

comprised the greatest proportion of total yield from each of the upper Great Lakes 

(Koelz 1926; Brown et al. 1999).  Lake whitefish stocks collapsed in each of these lakes 

in the 1930s and 40s due to overexploitation, sea lamprey, Petromyzon marinus, 

predation, and pollution (Smiley 1882; Koelz 1926; Jensen 1976; Brown et al. 1999; 

Ebener and Reid 2005).  From the 1960s through the 1980s, lake whitefish stocks 

rebounded in each of the lakes largely due to improved management of commercial 

harvest, sea lamprey control, pollution remediation, and the introduction of salmonines 

that reduced the abundance of the invasive alewife, Alosa pseudoharengus, and rainbow 

smelt, Osmerus mordax (Ebener 1997; Mohr and Ebener 2005a).  In the 1990s, lake 

whitefish once again became the main commercial species, particularly in Lake Huron 

where the species comprised over 80% of the total commercial yield (Mohr and Ebener 

2005b). 

In 1979, the rights of Native American bands to fish in the Michigan waters of the 

upper Great Lakes, as reserved in a treaty signed in 1836, were reaffirmed by U.S. federal 

courts.  Since the reaffirmation of treaty fishing rights, periodic stock assessments have 

been conducted for stocks within spatially defined management units, with the fishery 

data and harvest from within each management unit treated as applying to a 

reproductively isolated stock (Figure 1; Ebener et al. 2005).  Stock assessments are 



conducted and harvest recommendations based on the assessments are made annually for 

each individual management unit.  Within each management unit commercial fishery 

catch and effort data are reported on a 10-minute by 10-minute statistical grid basis, 

which allows for some spatial resolution within management units. 

Since 2000, guidelines for the management of lake whitefish have been set 

according to a Consent Decree.  The 2000 Consent Decree created a Technical Fisheries 

Committee (TFC) and its Modeling Subcommittee (MSC) to conduct stock assessments 

and specify total allowable catches (TACs) and harvest regulating guidelines (HRGs, see 

below).  TACs are limits to catch, and are used in management units where some yield is 

allocated to the state licensed fishery and some to the tribal fishery.  HRGs are targets for 

yield used to guide regulations for lake whitefish in units where all yield is allocated to 

the tribal fishery.  

The MSC fits statistical catch-at-age (CAA) models to commercial fishery data to 

estimate population numbers, mortality rates, fishery harvest, and other population 

parameters of interest.  The estimates of the population parameters are then used to 

project each stock’s abundance into the future, and then a TAC or HRG is calculated by 

applying a reference mortality rate to the estimate of the next year’s abundance.   

The CAA models use fishery effort data and an assumed relationship between 

fishing mortality and fishery effort.  Age (a) and year (y) specific fishing mortality rates 

(F) are estimated as the product of age specific selectivity (S) and year specific “fishing 

intensity” ( f) for each of two fishery gears, gill-nets and trap-nets: 

yiaiyai fSF ,,,, = ;  (1) 

where i denotes gear type and, 
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yiyiyiyi qEf ,,,, ε= ;  (2) 

where E is fishery effort specific to each gear type, q is catchability, and ε is 

multiplicative observation error.  The details of the CAA models have been described in 

Ebener et al. (2005).  Equation 2 is equivalent to assuming that the commercial fishery 

catch per effort (CPE), estimated as the ratio of sum of aggregate catch to sum of 

aggregate effort in each year, is on average proportional to average abundance over the 

fishing year, and that deviations from this average relationship are independent variations 

from year to year. 

Violations of the assumption that CPE is proportional to average abundance can 

occur due to changes in fishing power of gear, or if the spatial and temporal distribution 

of fishery effort is non-random (Quinn and Deriso 1999).  Violations of this assumption 

are called hyperdepletion when CPE declines faster than abundance at high stock sizes, 

and hyperstability when CPE does not decline as drastically as abundance at high stock 

sizes (Quinn and Deriso 1999).  For example, an increase in the number of fishing 

operations could cause some fishermen to operate in lower quality habitat.  Thus, CPE 

could decline even if fish abundance did not, resulting in hyperdepletion.  Hyperstability 

is the more common occurrence and leads to overestimation of biomass and 

underestimation of fishing mortality, which has too often gone unrecognized and led to 

fishery collapses (Rose and Kulka 1999; Harley et al. 2001). 

To account for some of the variation in CPE not attributable to changes in 

abundance, and improve assessments and associated fishery management, CPE can be 

“standardized” by fitting statistical models to the catch and effort data, and then using 

“year-effect” estimates as the index of abundance (Maunder and Punt 2004; Venables and 
16 
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Dichmont 2004).  Commonly, some form of general or generalized linear model is used 

to standardize the CPE data (Maunder and Punt 2004).  Year is usually included as one of 

the explanatory variables because detecting trends in abundance over time is usually the 

objective (Maunder and Punt 2004).  Other explanatory variables often include a spatial 

element or some measure of individual vessel fishing power (e.g., boat size) (Battaile and 

Quinn 2004; Bishop et al. 2004). 

Our objectives were (1) to standardize lake whitefish CPE data in the upper Great 

Lakes to attain an index of abundance that more accurately reflected changes in lake 

whitefish biomass than CPE; (2) gain an improved understanding of factors that influence 

commercial fishery CPE for lake whitefish; and (3) compare the factors that are 

important for this fishery with those found to influence CPE in other fisheries of the 

world.  Currently for lake trout, Salvelinus namaycush, in these waters, indices of 

abundance are based on the least squares means (LSMs) for each year from a general 

linear mixed model (GLMM; Deroba and Bence in press).  Consequently, we explored 

the use of a similar GLMM for lake whitefish, and compared the temporal trends in the 

LSMs for each year to that of the CPE.  Our concern here is that the LSMs account for 

sources of variation in CPE not considered when CPE is estimated as a ratio of sum of 

aggregate catch to sum aggregate effort in each year, and might reveal substantially 

different interannual trends in apparent relative abundance. 

Methods 

Study Area 

Our study area was the waters relevant to the 1836 Treaty, which encompassed 

the majority of Michigan waters of Lakes Superior, Huron, and Michigan (Figure 1).  
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These waters were stratified into 18 management units with individual surface areas 

ranging from 69,000 to 733,000 ha, and a total surface area of 5.8 million ha (Figure 1; 

Ebener et al. 2005).  Analyses were done separately for each management unit because 

these are treated as reproductively isolated stocks and define the resolution of spatial 

stratification used to manage lake whitefish (see introduction; Ebener et al. 2005).  

Data and Analyses 

Data were collected from commercial fishing operations as part of a requirement 

for all licensed vessels to submit monthly reports that describe for each day of the month 

the weight of fish landed, the amount of gear lifted, the 10-minute by 10-minute 

statistical grid where the catch and effort occurred, and other auxiliary information 

(Ebener et al. 2005).  Monofilament large-mesh gill-nets with > 114-mm stretched mesh 

and 6-14 m tall trap-nets accounted for nearly 100% of the lake whitefish commercial 

harvest, and analyses were only conducted on these two gear types.  The range of years 

included in this study differed by management unit and gear type, and some years are 

missing because no catch or effort was reported (Table 1).  Analyses were only 

conducted on 12 of the 18 management units for the gill-net fishery, and 10 of the 18 

management units for the trap-net fishery because few or no observations were recorded 

within most years for some management units and gears. 

CPE was estimated separately for gill-nets and trap-nets as the ratio of sum of 

aggregate catch to sum of aggregate effort in each year, as is currently used in the CAA 

models.  Catch was measured as the round mass of whitefish for both gears, while effort 

was measured in 1000s of feet of net for gill-nets, and number of lifts for trap-nets. 



GLMMs were fit separately for gill-nets and trap-nets, with loge (CPE+1) as the 

dependent variable.  We applied a loge transformation because examination of the 

distribution of the data showed that this was necessary to meet the assumption of 

normality for general linear models (McCulloch and Searle 2001; Gelman and Hill 2007).  

We added 1.0 to all CPE observations prior to transformation to address the (infrequent, 

~0.001% for both gear types) occurrence of zero CPE observations.  This added constant 

represents a low CPE for gill nets and the lowest possible CPE for trap nets, and more 

than 99% of CPE values exceeded 1.0 (the constant) for both gear types.   

Our initial full model for gill-nets included fixed effects of year, month, and boat 

size, and random effects of license holder, grid, and all possible two and three way 

interactions.  In preliminary analyses, interactions of a higher order than three ways were 

not estimable for any management units, and so were excluded from further 

consideration.  Because not enough individual license holders fished with multiple boat 

sizes, license holder and boat size were confounded when two and three way interactions 

with license holder and two and three way interactions with boat size were included in 

the same model.  Furthermore, in preliminary analyses interactions with license holder 

were only estimable for two management units, while interactions with boat size were 

estimable in all management units.  Consequently, all interactions with license holder 

were also excluded from further consideration. Thus, the new “full” model included fixed 

effects of year (αy), month (βm), boat size (γb), and random effects of license holder (cl), 

grid (kg), and all two and three way interactions except those with license holder: 

;

)1(log

iymbglymbjgybhgmydmbgubgt
mgsmbrygqybpymogklcbmyCPEe

ε

γβαμ

++++++

++++++++++=+
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where μ is the overall mean, oym is the interaction of year and month, pyb is the 

interaction of year and boat size, qyg is the interaction of year and grid, rmb is the 

interaction of month and boat size, smg is the interaction of month and grid, tbg is the 

interaction of boatsize and grid, umbg is the interaction of month and boat size and grid, 

dgmy is the interaction of grid and month and year, hgyb is the interaction of grid and year 

and boat size, jymb is the interaction of year and month and boat size, and εiymbgl is 

residual error for each observation, i.  This model assumes that the random effects and 

residual error are all independent and identically distributed as normal with a mean of 

zero.  Boat size was a categorical effect and sizes were defined as: small (< 20 ft), 

medium (20-30 ft), and large (> 30 ft).   

The full model for trap-nets included fixed effects of year and month, and random 

effects of license holder, grid, and all two and three way interactions: 

;

)1(log

iymglmgleyglagmydymlz
ygqglxmgsmlwylvymogklcmyCPEe

ε

βαμ

+++++

++++++++++=+
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where vyl is the interaction of year and license holder, wml is the interaction of month 

and license holder, xgl is the interaction of grid and license holder, zyml is the interaction 

of year and month and license holder, aygl is the interaction of year and grid and license 

holder, emgl is the interaction of month and grid and license holder, and all other terms 

are defined as for gill-nets.  In four of the 10 management units analyzed for the trap-net 

fishery, all of the observations came from one boat size category, and so this effect was 

not evaluated. 
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Final models for both gear types were determined by evaluating which effects 

could be removed using corrected Akaike’s information criterion (AICc) (Burnham and 

Anderson 2002).  Our model selection approach was to first consider which random 

effects would be removed from the final model while keeping all fixed effects in the 

model (Ngo and Brand 1997).  Random effects were selected prior to fixed effects so that 

the final models had the simplest error structure possible (i.e., a random effect would be 

eliminated rather than a fixed effect that explained similar sources of variation).  Our 

approach to selecting random effects was to drop each random effect one at a time, while 

keeping all other effects in the model.  Once a random effect was removed, ∆AICc was 

then calculated by subtracting AICc for the reduced model from AICc for the full model.  

If ∆AICc was greater than 2.0 (Burnam and Anderson 2002), the factor not present in the 

reduced model was eliminated from the final model, otherwise the factor was retained.  

We followed this approach because with 22 management unit and gear combinations and 

12 potential random effects to consider for each, fitting and comparing all possible 

models was not practical.  A random effect was also dropped from the final model if the 

variance estimate for that factor was zero.  Restricted maximum likelihood (REML) was 

used for model fitting when comparing models with different random effects, given its 

superior performance in estimating random effects (McCulloch and Searle 2001).   

Once the best set of random effects was selected, the best set of fixed effects was 

selected by comparing AICc values for all possible combinations of fixed effects.  

Models were fit using maximum likelihood (ML) instead of REML because comparisons 

with AICc based on REML are not valid when comparing models with different fixed 

effects (SAS 2003).  During this process the previously determined best random effects 
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portion of the model was used.  Year (αy) was not evaluated during model selection 

because the objective is to estimate a yearly index of abundance, and so year must be 

retained in the final model.  The ∆AICc values are not reported in the results because this 

would require reporting a value for each factor that was included in the full models for 

each management unit and gear type (i.e., 298 values).  Rather, we report the ∆AICc 

values between a means model (i.e., a model with only a year effect) and the final model 

(∆AICc = AICc means model – AICc final model) to quantify the likely improvement 

that the final models offer over the current indices of abundance that do not account for 

factors other than year. 

Generally, the same effects were included in the final model for each management 

unit, but the models for some management units could be improved by the elimination of 

an effect that improved model fit for the majority of the management units, or inclusion 

of an effect that did not improve model fit for the majority of the management units.  For 

the simplicity of reporting results in these analyses, we eliminated an effect in all 

management units if it only improved model fit in a minority of management units.  

LSMs for each year were calculated by summing the overall mean (μ), the coefficient 

estimate for each year (αy), and the average of the coefficient estimates over all levels of 

fixed effects other than year in the final models (SAS 2003).  The LSMs for each year 

from the final model, as determined by the majority, were nearly identical to the LSMs 

from other models that improved model fit for a minority of management units.  

Consequently, we believe that the conclusions of these analyses are robust to this 

approach.  However, if the estimated uncertainty (e.g., standard errors) associated with 



LSMs (or alternatively year effects or other functions of model parameters) is important, 

as in fitting stock assessment models to indices of abundance where the standard errors 

are used to weight the indices of abundance relative to other data (e.g., Maunder 2001; 

Maunder and Starr 2003), a different model than that reported as the final model here 

may be warranted for some management units. 

Differences in the back-transformed LSMs for each year and CPE+1 were 

qualitatively examined by plotting the proportional difference (PD) between the two 

measures across years for each management unit included in this analysis.  PD was 

calculated as: 

)exp(
)(

LSM
CPEPD 1+

= . 

The PD is a measure of how much larger or smaller CPE is than the LSMs.  For example, 

if PD=2 then the CPE is two times larger than the index of abundance based on the mixed 

model.  Since both the LSMs and CPE are relative indices, changes in PD over time are 

of interest and not whether average PD differs from 1.0.  Consequently, if PD varied 

without trend we concluded that the two approaches generally suggested similar trends in 

abundance through time, although differences may have existed for a given year.  

Conversely, if PD trended through time we concluded that the index of abundance 

provided by the two approaches suggested different temporal trends. 

The relative effect of factors included in the final model on CPE was determined 

by averaging coefficient estimates across management units and comparing the average 

values.  For random effects, the variance component estimates for each effect were used 

in estimating the average; while for fixed effects, the coefficient estimates for each level 
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of a factor were used.  For boat size, the averages were estimated separately for each lake 

because different boat sizes may perform differently in each lake. 

Results 

Gill-net Fishery 

The final model for the gill-net fishery included fixed effects of year, month, and 

boat size, and random effects of license holder and the interaction of year and month: 

iymbglymolcbmyCPEe εγβαμ ++++++=+ )1(log . 

The final model improved model fit over a means model in all but one management unit, 

with an average ∆AICc value of 362.5 and values ranging from -10 to 2514 (Table 2).  

The final model may not have improved fit over a means model in WFM-06 because this 

management unit had the smallest sample size (N=308; mean N=1452), which may not 

provide enough data to adequately capture the variability in CPE caused by the various 

factors.  Of the random effects, the license holder effect accounted for the most variation 

in CPE (Table 3).  The effect of boat size depended on lake (Table 4).  In Lake Superior, 

CPE did not vary much among boat size classes. On Lake Huron, small and medium 

boats had similar CPE, which was less than that for large boats.  On Lake Michigan, CPE 

ordered as medium > small > large boats.  CPE was generally low during January 

through September, highest in October and November, and intermediate between these 

levels in December (Figure 2). 

The index of abundance provided by the GLMMs suggested different temporal 

patterns than CPE (i.e., PD trended through time) over some or all of the time series in 

some management units for the gill-net fishery (Figure 3).  In Lake Huron, the PD for 

management units WFH-01 and WFH-04 generally varied without trend, while in WFH-
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02 PD declined during 1982-1983, but varied without trend for the remainder of the time 

series.  In Lake Michigan, PD in WFM-02 increased during 1987-1988 and then 

decreased.  In WFM-03, PD increased in variability over the time series and increased 

during 1999-2001.  PD in WFM-04 generally declined through time.  In WFM-05, PD 

generally varied without trend, but declined during 1997-1999 and then increased.  In 

WFM-06, PD declined during 1993-1997.  In Lake Superior, the PD in WFS-05, WFS-

06, WFS-07, and WFS-08 generally varied without trend, except during 1999-2001 in 

WFS-05 when PD declined. 

Trap-net Fishery 

The final model for the trap-net fishery included fixed effects of year and month, 

and random effects of the interactions of month and year, year and license, and month 

and year and license: 

iymlmylylmymye pvkCPE εβαμ ++++++=+ )1(log . 

The final model improved model fit over a means model in all management units by an 

average ∆AICc value of 170.1, with values ranging from 2.2 to 478.2 (Table 2).  Of the 

random effects, the interaction of year and license holder accounted for the most variation 

in loge(CPE+1), even more than residual error (Table 3).  CPE was generally low during 

January through September, with the exception of May, highest in October and 

November, and intermediate between these levels in December (Figure 2). 

The index of abundance provided by the GLMMs showed different temporal 

trends than CPE (i.e., PD trended through time) over all or some of the time series in 

some management units for the trap-net fishery (Figure 4).  In Lake Huron, the PD in 

WFH-01 and WFH-02 generally varied without trend, while the PD in WFH-04 varied 
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without trend until 1998 when PD increased to 2000 and then decreased.  In Lake 

Michigan, the PD in WFM-01, WFM-02, and WFM-03 generally varied without trend, 

except during 2000-2001 in WFM-01 when PD increased.  In WFM-04 and WFM-05, 

PD varied cyclically with a period of approximately two years in WFM-04 and six years 

in WFM-05.  In Lake Superior, the PD in WFS-07 generally varied without trend, while 

the PD in WFS-08 increased during 1984-1986, but varied without trend during the few 

other years of data. 

Discussion 

CPE is often assumed to be proportional to abundance, but CPE can change due 

to factors other than abundance that cause violations of this assumption (Quinn and 

Deriso 1999; Battaile and Quinn 2004).  Violations of the assumption of proportionality 

can lead to inaccurate estimates of abundance from stock assessments, and in particular 

hyperstability can increase the risk for fishery collapse (Rose and Kulka 1999; Harley et 

al. 2001).  Indices of abundance based on commercial fishery catch and effort data are at 

an especially high risk of violating the assumption of proportionality due to things such 

as systematic changes in characteristics of the fishing fleet (e.g., technological 

advancements, entrance and exit of individual vessels), non-random search effort, and the 

spatial distribution of the fish stock (Rose and Kulka 1999; Harley et al. 2001; Maynou et 

al. 2003; Battaile and Quinn 2004; Bishop et al. 2004; Campbell 2004).  For these 

reasons, fishery CPE data from many major marine fisheries are now often standardized 

using various statistical models (e.g., general linear mixed models, generalized linear 

models) that account for some of the variation in CPE not attributable to abundance, so 

that the “year-effect” becomes a more accurate index of abundance (Maunder and Punt 
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2004; Venables and Dichmont 2004).  Factors commonly included in models used to 

standardize CPE data include factors for time (usually year), location (e.g., grid in this 

study), individual vessels, characteristics of vessels that affect catchability (e.g., vessel 

size, horsepower, GPS), among other factors (Maunder and Punt 2004). 

The temporal trends exhibited by standardized CPE data (e.g., LSMs) have 

differed from that of non-standardized CPE data (e.g., ratio of aggregate catch to 

aggregate effort in each year) in other studies (Maynou et al. 2003; Battaile and Quinn 

2004), as was true for some management units in our evaluation of Great Lakes whitefish 

fisheries.  Thus, we believe that model-based indices of abundance should replace non-

standardized CPE in some lake whitefish stock assessment models, especially those 

management units where PD was shown to trend through time.  Converting to the use of 

model-based indices of abundance in the stock assessment models for these management 

units would likely produce more accurate estimates (e.g., abundance estimates) than the 

current approach of treating raw effort as an index of fishing mortality (equivalent to 

using CPE as an abundance index).  This outcome would also likely hold true for other 

freshwater systems, where model based methods for standardizing CPE data have not 

been used as frequently as in marine systems. 

The reason for the changes in PD in this study can be partially explained by when 

most fishing occurred and who fished in each year.  For example, in 1988 in the WFM-02 

gill-net fishery, fewer observations were made in the spring (i.e., when CPE is lower 

relative to other times of year) and more observations were taken from license holders 

with relatively high CPE than in other years, which may explain the spike in PD.  

Similarly, in the WFM-04 trap-net fishery, peaks in PD occurred in years when more 
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observations came from license holders who did well in that year relative to other license 

holders.  Consequently, indices of abundance based on CPE in these and other areas 

would most likely be driven by differences in the number of observations taken among 

seasons or from difference license holders, and not due to changes in abundance as is 

being assumed in stock assessments. 

In addition to providing a more accurate index of abundance, the use of mixed 

effects models also allows the uncertainty around the indices of abundance to be more 

accurately quantified for each year, and this can be especially important if these estimates 

of uncertainty are used to weight the importance of the yearly CPE indices in stock 

assessment models (Helser et al. 2004, Maunder and Starr 2003).  Maunder and Starr 

(2003) describe methods for how yearly indices of abundance can be weighted by their 

coefficient of variation in fitting stock assessment models, and also found that stock 

assessment estimates (e.g., abundance estimates) can be less accurate when each yearly 

index of abundance is weighted equally, instead of using a year specific weight.  

Furthermore, Helser et al. (2004) found that ignoring the variability due to random 

effects, including vessel and the interaction of vessel and year, similar to the effects of 

license and the interaction of license and year in this study, may lead to an 

underestimation of uncertainty in indices of abundance.  Thus, if the CPE data used in 

fitting lake whitefish stock assessment models were replaced with model-based 

standardized CPE indices and an associated estimate of uncertainty for each year (e.g., 

the standard errors around the LSMs), uncertainty in the indices of abundance would be 

more accurately quantified and CAA stock assessment estimates would also likely be 

more accurate.  This benefit would accrue even in areas where CPE and model-based 
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indices showed similar temporal patterns (i.e., PD did not show any trends or systematic 

temporal patterns). 

We do not believe that calculating a fishery CPE index, by combining CPE each 

year over strata defined based on statistical modeling, provides a viable alternative to the 

use of indices directly derived from model-based methods.   This conclusion applies 

especially in the presence of the types of random effects we saw for Great Lakes lake 

whitefish data and that appear to be common to fishery CPE data from marine systems.  

A large advantage of a model-based approach is that the complex correlated error 

structure resulting from such random effects can be parsimoniously accounted for.  The 

studies cited above suggest that a stratification approach would either underestimate 

uncertainty in the indices of abundance and lead to inaccurate stock assessment results by 

ignoring variability attributable to random effects, or would require so many strata with 

so few observations per stratum that the resulting indices would be poorly estimated.  For 

example, our model for the gill-net fishery would suggest strata need to account for 

seasonality, boat size, and individual license, but available data only consist of monthly 

summaries by license.  Even if data were combined over similar months, few 

observations would be available per stratum.  Perhaps in some situations (e.g., if random 

effects were less important), data from each year could be post-stratified into relatively 

few strata.  In such a situation, calculating indices based on combining raw results over 

strata might be a viable approach, with the advantage of not requiring refitting of 

statistical models each time a new year of data is collected.  

An alternative approach to using model-based output as an index of abundance in 

stock assessments is to integrate the standardization process into the estimation procedure 
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of the stock assessment models (Maunder 2001; Maunder and Langley 2004).  Such an 

approach still models CPE data in the same way as in our analysis here, but integrates the 

CPE model as a sub-model of the overall assessment.  Maunder (2001) found that 

integrating the CPE standardization into the estimation procedure of the stock assessment 

model provided a more accurate representation of the uncertainty in stock assessment 

parameter estimates.  The reason for this result, however, was unclear, and so more 

research is needed in this area, especially given the programming and data management 

challenges associated with integrating complex GLMM and related models for fishery 

CPE into assessment models.   

Standardization techniques used for fishery CPE data cannot ensure that all 

sources of variation in CPE not attributable to changes in abundance have been 

considered.  For example, changes that are confounded with year and universally affect 

the fishing fleet, or density dependent changes in catchability, cannot be accounted for 

using model based standardization methods.  Factors left untreated by standardization 

methods should be addressed in the stock assessments where the CPE indices of 

abundance are used, for example by allowing for time-varying catchability (Wilberg and 

Bence 2006). 

The factors in the final models for both the gill-net and trap-net fishery were 

similar to models developed for other fisheries (Maynou et al. 2003; Battaile and Quinn 

2004; Bishop et al. 2004; Helser et al. 2004).  This commonality suggests that similar 

factors are likely to be important and necessary for consideration when standardizing 

CPE data for most fisheries.  Year is usually included as one of the explanatory variables 

because detecting trends through time is often the objective for developing indices of 
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abundance, as in this study (Maunder and Punt 2004).  Temporal factors on a finer scale 

than year have also been included in statistical models used for CPE standardization in 

order to account for systematic temporal patterns in fish abundance or catchability 

(Battaile and Quinn 2004).  Battaile and Quinn (2004) used a fixed effects analysis of 

variance to standardize CPE data for the eastern Bering Sea walleye pollock, Theragra 

chalcogramma, trawl fishery, and found a significant effect of time of day (i.e., 

categorical variable for daylight versus nighttime hours), with higher catch rates during 

the daylight hours.  They suggested that catch rates were higher during daylight hours 

because walleye pollock school during those times, but spread out to feed during 

nighttime, which reduces catchability.  In this study, month was included in the final 

model for the gill-net and trap-net fisheries, with higher catch rates from October to 

December.  The higher catch rates in those months were likely caused by an increase in 

the catchability of lake whitefish facilitated by spawning aggregations, which usually 

occurs during those times in most areas of the Great Lakes (Becker 1983).  The results of 

these studies suggest that temporal factors that account for systematic changes in fish 

aggregating behaviors should be considered in models used to standardize CPE data 

whenever possible 

Various measures of vessel “power” have also been included in models used for 

standardizing CPE data.  Vessel “power” is any measure of the boat or crew that likely 

affects catchability, and so affects the indices of abundance that result from CPE data 

taken from those vessels.   In the eastern Bering Sea walleye pollock trawl fishery, longer 

vessels tended to have higher catch rates than shorter vessels as indicated by the 

coefficient estimates for each vessel participating in the fishery (Battaile and Quinn 



32 

2004).  For the trawl fishery directed at Norway lobster, Nephrops vorvegicus, and deep-

water red shrimp, Aristeus antennatus, in the northwestern Mediterranean Sea, 

generalized linear models used for CPE standardization included measures of the gross 

tonnage of vessels, engine horsepower, and total length (Maynou et al. 2003).  Generally, 

longer more powerful vessels had higher catch rates.  In the absence of direct measures of 

vessel power, some surrogate could also be used.  For example, Punt et al. (1996) 

included the number of crew on the vessel as a surrogate for vessel length in generalized 

linear models used to standardize albacore, Thunnus alalunga, longline CPE data.  For 

the lake whitefish fishery in this study, a categorical effect of vessel length was used for 

the gill-net fishery as a measure of vessel power, but the affects on CPE were inconsistent 

across lakes.  This inconsistency makes broad conclusions about the relative success of 

various vessel sizes difficult, but the explanation may be in the characteristics of the lakes 

themselves.  The depth gradient of Lake Superior is relatively steep and permits access to 

fishing grounds by all boat sizes, and so all boat sizes performed similarly.  Conversely, 

Lake Michigan offers more shallow fishing grounds that are more accessible to small and 

medium sized boats, and this may have resulted in higher catch rates than longer boats in 

that lake.  The reason for the relative performance of each boat size in Lake Huron, 

however, is not clear. 

A factor for individual vessel, such as license holder in this study, is also 

commonly included in models for CPE standardization (Maynou et al. 2003; Battaile and 

Quinn 2004; Bishop et al. 2004; Cooper et al. 2004; Helser et al. 2004).  Similar to results 

here, an individual vessel factor explained the most variability in CPE in the eastern 

Bering Sea walleye pollock trawl fishery (Battaile and Quinn).  Generalized linear 
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models that included vessel also explained the most variation in CPE for the deep-water 

red shrimp trawl fishery in the Mediterranean (Maynou et al. 2003).  Cooper et al. (2004) 

and Helser et al. (2004) also found that individual vessel and interactions with vessel 

should be included in the final models used to standardize U.S. west coast groundfish 

bottom trawl surveys.  The results of Cooper et al. (2004) and Helser et al. (2004) suggest 

that even with survey data, standardizing CPE may be necessary, and the availability of 

model-based indices should not replace the use of consistent survey sampling. 

The consistent inclusion of an individual vessel effect indicates that individual 

vessel may serve as a “catch all” for characteristics of boats not included in models 

(Battaile and Quinn 2004).  For example, Maynou et al. (2003) suggested that the 

inclusion of individual vessel likely accounts for the expertise of individual fishers or 

unmeasured technical characteristics, such as investment in technology.  The large 

amount of variation explained by the random effect of license holder and interactions 

with license holder in this study for both fishery gears also suggests that this factor is 

accounting for the effects of some unmeasured characteristics, such as those suggested by 

Maynou et al. (2003). 

Making inference about the causal or biological mechanisms for some of the two- 

and three-way interactions included in the final models in this study is not 

straightforward.  However, as Battaile and Quinn (2004) note, identifying causal 

mechanisms is not required when standardizing CPE data, because the purpose is to 

account for effects coincident with the variables included in the model.  So, the specific 

higher order interactions may not be indicative of anything biologically meaningful, only 
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that CPE varies coincident with combinations of those factors, either due to those factors 

themselves or other variables that co-vary with them. 

The random effect of grid was not included in the final models for either the gill-

net or trap-net fisheries, which is surprising considering that typically there is spatial 

variation in fish density or fishing success.  Campbell (2004) found that non-randomly 

sampled locations led to biased indices of abundance, unless the total habitat area of the 

stock was spatially stratified and each CPE observation was weighted by the relative 

amount of sampling effort in the strata from where the observation was taken.  This result 

suggests that not accounting for spatial variation in sampling effort can lead to biased 

indices of abundance.  The effect of grid in this study may have not been included in final 

models because the analyses were already run on spatially stratified stocks delineated by 

management unit.  However, the results of Campbell (2004) and the spatial variability 

that likely exists in fish density and fishing success for most fisheries suggests that spatial 

effects should always be considered when standardizing CPE data. 
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Figure 1.— 1836 Treaty-ceded waters and lake whitefish management units in Lakes 

Superior, Huron, and Michigan (Ebener et al. 2005). 
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Figure 2.—Average coefficient estimates (

40 

±  SE representing uncertainty resulting from 
variability among management units) for the effect of month from a general linear mixed 
effects model standardizing catch per effort (catch = aggregate round mass of lake 
whitefish) for the lake whitefish gill-net fishery (top panel; effort = aggregate length of 
net in 1000s of feet) and trap-net fisheries (bottom panel; effort = number of lifts) in the 
1836 treaty-ceded waters of Lakes Superior, Huron, and Michigan.  Coefficient estimates 
were averaged across various years (generally 1981-2001) and lake whitefish 
management units included in this analysis. 
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Figure 3.—Proportional difference between the index of abundance from a general linear mixed model (i.e., least squares means for each year) 

and catch per effort (ratio of round mass of lake whitefish to aggregate feet of length of net for each year) from a gill-net lake whitefish fishery 

for various years (generally 1981-2001) and lake whitefish management units in the 1836 treaty-ceded waters of Lakes Superior, Huron, and 

Michigan included in this analysis. 
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Figure 4.—Proportional difference between the index of abundance from a general linear mixed model (i.e., least squares means for each year) 

and catch per effort (ratio of round mass of lake whitefish to aggregate number of lifts for each year) from a trap-net lake whitefish fishery for 

various years (generally 1981-2001) and lake whitefish management units in the 1836 treaty-ceded waters of Lakes Superior, Huron, and 

Michigan included in this analysis. 
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Figure 4 (cont’d) 
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*note different scale 

Figure 4 (cont’d) 
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Table 1.—Years and lake whitefish management units included in this analysis 

for the gill-net and trap-net fisheries of the 1836 treaty-ceded waters of Lakes Superior, 

Huron, and Michigan. 

 
 

 Gear Type 
 Gill-net  Trap-net 
Management Unit Years Included  Years Included 
WFH-01 1981-2001  1981-1982; 1986-2001 
WFH-02 1982-2001  1983; 1986-1987; 1989-2001 
WFH-04 1981-2001  1981-1982; 1984-2001 
WFM-01 -  1981-1985; 1995-1998; 2000-2001 
WFM-02 1986-2001  1986-2001 
WFM-03 1986-2001  1986-2001 
WFM-04 1981-2001  1989-2001 
WFM-05 1981-2005  1981-2001 
WFM-06 1985-1989; 1993-2001  - 
WFS-05 1986-2001  - 
WFS-06 1985-2001  - 
WFS-07 1981-2001  1981; 1985-2001 
WFS-08 1981-2002  1981-1982; 1984-1986; 1996-2001 
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Table 2.—Differences between AICc values between final models and a means 

model (i.e., model with only a year effect) for the lake whitefish gill-net and trap-net 

fisheries in the 1836 treaty-ceded waters in the management units of Lakes Superior, 

Huron, and Michigan included in these analysis.  Differences are reported as ∆ AICc = 

AICc from means model – AICc from final model. 

 
 

  Gear Type 
 Gill-net  Trap net 
Management 
Unit ∆ AICc  ∆ AICc 
WFH-01 536.1  281.3 
WFH-02 173.9  324.8 
WFH-04 508.1  121.9 
WFM-01 -  95.1 
WFM-02 93.5  28.4 
WFM-03 677.7  478.2 
WFM-04 556.4  212.4 
WFM-05 320  2.2 
WFM-06 -10.2  - 
WFS-05 61.1  - 
WFS-06 118.2  - 
WFS-07 993.5  111.8 
WFS-08 322.1  44.4 

 



 

 

Table 3.—Average variance component estimates for residual error ( ), 

license holder ( ), and month and year ( ) for the lake whitefish gill-net fishery, 

and random effect estimates of residual error ( ), year and license holder ( ), 

month and year ( ), and month and year and license holder ( ) for the lake 

whitefish trap-net fishery of the 1836 treaty-ceded waters of Lakes Superior, Huron, and 

Michigan.  Variance component estimates were averaged across lake whitefish 

management units included in these analyses. 

2
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Gear Type 
Gill-net   Trap-net 

Variance 
Component 
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0.29 
2
myσ  0.05  
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- -  
2
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0.09 
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Table 4.—Average estimates of the coefficients for different size classes of boat 

for the gill-net fishery for lake whitefish on the 1836 treaty-ceded waters of Lakes 

Superior, Huron, and Michigan.  Boats were classified as small (< 20 ft), medium (20-30 

ft), and large (> 30 ft).  Coefficients were averaged across lake whitefish management 

units included in these analyses for each lake. 

 

Boat 
size 

Lake 
Superior 

Lake 
Huron 

Lake 
Michigan 

Large 0.03 0.11 -0.28 
Medium 0.05 -0.03 0.09 
Small 0.00 0.00 0.00 
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Abstract 

Harvest policies use control rules and associated policy parameters to dictate how 

fishing mortality or catch and yield levels are determined, and are necessary for rational 

management.  Common control rules include constant catch, constant fishing mortality 

rate, constant escapement, or a few variations of these.  The “best” among these control 

rules for meeting common fishery objectives (e.g., maximizing yield) is a source of 

controversy in the literature, and results are seemingly contradictory.  To compare the 

ability of control rules to meet widely used fishery objectives and identify potential 

causes for these apparently contradictory results, we did a detailed review of relevant 

literature.  The relative performance of control rules at meeting common fishery 

objectives is affected by whether uncertainty in estimated stock sizes is included in 

analyses, and whether the maximum recruitment level (e.g., the asymptote of a Beverton-

Holt stock-recruit function) is varied in an autocorrelated fashion over time.  Relative 

performance of control rules also depends on fishery objectives and the amount of 

compensation in the stock-recruit relationship.  The influence of assessment error on the 

relative performance of control rules depends upon whether policy parameters are fixed 

using those that perform best without errors or not.  Ideally, selection of a control rule 

and policy parameters is done within the framework of a stochastic simulation that 

considers key uncertainties.  If this is not feasible, an alternative option is to “borrow” 

control rules from a similar fishery and set policy parameters based on biological 

reference points developed for a species with similar taxonomy and life history traits.  

More research is needed to compare control rules when accounting for uncertainty in key 
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population parameters, when stock-recruitment or other population dynamic parameters 

vary over time, and for fisheries with non-yield-based or competing objectives. 

1.  Introduction 

Rational management of fish stocks requires determination of harvest or yield 

levels that are consistent with management objectives.  Historically, the “rules” for 

setting harvest levels have been vague or non-existent (NRC, 1994).  In many cases, this 

resulted in forsaking long-term objectives for short-term gains.  Consequently, examples 

of fish stock declines and collapses are widespread (Myers and Worm, 2005).  To prevent 

future stock collapses, and allow rebuilding of stocks that are already depleted, more 

explicit guidelines are required on how harvest levels should be set.  Such guidelines are 

referred to as harvest policies.  When these guidelines specify the amount of catch, effort, 

or fishing mortality by a specific, and usually simple, function of the current estimate of 

the system state (e.g., the amount of spawning biomass) they are called control rules. 

Fishery objectives partially determine the relative performance of different 

control rules and are represented quantitatively in simulations and analyses through the 

use of objective functions. Selection of objectives or objective functions can affect which 

control rule is preferred, and thus it is critical to ensure resource user preferences and 

broader societal goals for sustainability of the resource are incorporated into the chosen 

objectives.  The use of an objective that conflicts with the interests of the fishery could 

cause mistrust from the fishing industry, or even fishery collapse.  For example, in a 

recreational fishery, where high catch rates and the size of harvested fish are likely to be 

important, using a maximum yield objective function would be inappropriate.  Although 
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this is true, most harvest policy work emphasizes yield-based objectives, and hence by 

necessity, much of this review evaluates these. 

Several methods are used to evaluate control rules for meeting given fishery 

objectives.  A variety of analytical methods can be used to show that a given control rule 

performs better than all other candidates (i.e., is optimal) at achieving a given objective 

(e.g., Gatto and Rinaldi, 1976).  While these methods can provide quite general results, 

they are feasible only for simple models of fishery systems that often are deterministic or 

ignore key uncertainties.  Stochastic dynamic programming is an efficient method for 

selecting an optimal strategy at each time step, so that the result over the entire time-

horizon best meets a specified objective (e.g., Walters and Parma, 1996).  While the 

method can be analytical or numerical, most fishery applications are numerical.  This 

method is useful when one is interested in considering more flexible policies than a 

simple control rule that remains constant over time.  The computational cost of searching 

over a wide range of strategies has also generally limited this approach to relatively 

simple models.  Much of the recent harvest policy literature considers models too 

complex for the above methods, and often the focus is on tradeoffs among different 

measures of performance, rather than finding the policy that is optimal for a single 

objective.  Consequently, much harvest policy work uses Monte Carlo simulations to 

evaluate the performance of a specified control rule (function) and policy parameters for 

the control rule (e.g., Eggers, 1993).  Typically, multiplicative annual process error is 

included in the stock-recruit relationship, which may or may not include autocorrelation.  

Alternatively, or additionally, annual process error can be added to specific model 

parameters.  Other random error terms are often included to model assessment or 
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implementation error. When these simulations attempt to model uncertainty associated 

with the stock assessment process and implementation of the control rule, this is called a 

Management Strategy Evaluation (MSE; Polacheck et al., 1999).  Typically, a range of 

different policy parameters are considered.  In some cases a wide enough range of policy 

parameters is considered that this essentially constitutes a grid search, and optimal results 

for a given control rule and objective can be identified.  In rare cases, usually for very 

simple stochastic models, an automated numerical search is done for parameters that 

maximize an objective function.  The results obtained by these “brute force” simulation 

approaches are limited to the specific policy parameters (and other assumptions) chosen 

for inclusion in simulations, and thus cannot prove that a particular control rule is optimal 

for a given objective over a broad range of conditions.  However, we believe induction 

based on these studies, combined with consideration of results known from analytical 

studies, can be very useful. 

In many fisheries, managers must decide on a level of yield each fishing season, 

ideally by using a harvest policy that is chosen because it meets fishery objectives (i.e., 

produces a large value for the objective function).  Theoretically, a harvest policy could 

be to set yield each year so that the objective function is maximized given the 

information available at that time (Ricker, 1958; Larkin and Ricker, 1964; Tautz et al., 

1969).  Such a policy would generally mean that yield is determined in a complex way by 

current stock assessment results and other information (e.g., using stochastic dynamic 

programming; Frederick and Peterman, 1995).  In practice, determination of such optimal 

policies can be a daunting or an infeasible computational task.  Furthermore, such an 

approach can lack appeal to managers and stakeholders because the intuitive basis of the 
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policy and why the current year’s allowable catch has changed from the previous year 

may not be apparent.  Perhaps as a consequence, nearly all harvest policies are based on 

relatively simple control rules that can be viewed as relating fishing mortality to stock 

abundance (usually biomass; Figure 1).  However, which rules are best at meeting certain 

fishery objectives is a source of controversy in the literature.  Furthermore, the relative 

performance of control rules depends upon the specific characteristics of the fishery and 

underlying fish population dynamics that are incorporated into an evaluation.  

Consequently, selecting an appropriate control rule can be an arduous task. 

The objectives of this review are to (1) compare and contrast the performance of 

various control rules for meeting common fishery objectives, and (2) identify potential 

reasons for what seem to be contradictory results.  First, we discuss a range of control 

rules and objectives that are used in harvest policy studies.  Second, we consider the 

performance of different control rules when perfect knowledge is assumed about the 

fishery, after which we examine the effect of imperfect information on stock size, which 

is a feature of harvest policy analyses that has a particularly strong affect on control rule 

performance. Other features of harvest policy analyses also affect policy performance, 

such as the level of compensation in the stock-recruit relationship and whether certain 

stock-recruit parameters are autocorrelated through time, and these are addressed within 

the framework of the perfect and imperfect information sections.  Third, we consider 

approaches to choosing catch levels, fishing mortality rates, or thresholds necessary for 

implementation of control rules.  Finally, we offer conclusions and suggestions for 

interpreting harvest policy analyses and identify future research needs. 
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2.  Common control rules   

We describe common control rules as background for our review of their relative 

performance.  Most rules can be categorized into three main types (Figure 1) or a few 

modifications of these (Figure 2), and explicitly or implicitly specify a relationship 

between fishing mortality and stock abundance.  We choose to specify control rules in 

terms of fishing mortality because how this per capita mortality rate varies with 

abundance summarizes the compensatory or depensatory effect of the rule.  A constant 

catch control rule removes the same number or biomass of fish each year, and is 

depensatory in that it leads to high fishing mortality at low stock sizes (Figure 1; Quinn 

and Deriso, 1999).  A constant fishing mortality rate (also called a constant harvest rate) 

uses the same fishing mortality regardless of stock abundance (Figure 1), and hence 

harvest is proportional to biomass (Quinn and Deriso, 1999).  When fishing mortality is 

assumed to be directly proportional to fishing effort, constant fishing mortality rate rules 

are also referred to as constant effort.  A constant or fixed escapement control rule takes 

all biomass over some specified target level.  Control rules such as this are also referred 

to as “bang-bang” policies in the resource economics literature, because when modeled in 

continuous-time, harvest is intense above the threshold and zero otherwise (Figure 1; 

Nostbakken, 2006).  This type of control rule is often used when fishing anadromous fish, 

where a specified number of fish are allowed to pass a weir or other observation location 

and the remainder of the run is removed.  In open-ocean or lake fishing, such a control 

rule is usually interpreted as allowing harvest of all fish over a threshold abundance or 

biomass, so that fishing mortality is zero up to that threshold and then increases thereafter 

(Figure 1).   
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Each of these basic control rules has a number of variants, many of which have 

been suggested to retain what are viewed as positive features of a rule while addressing 

some of its weaknesses.  Here we review some of these important variants (Figure 2).  

The conditional constant catch (CCC) control rule, a variant of constant catch, removes 

the same number or biomass of fish each year unless removing that amount would exceed 

some pre-determined maximum fishing mortality rate.  If the constant catch amount 

would cause fishing mortality to exceed this rate, then the rule reverts to a constant 

fishing mortality rate at the pre-determined maximum (Figure 2B ; Clark and Hare, 

2004).  This control rule attempts to avoid the high fishing mortality rates that occur at 

low stock sizes under a constant catch rule but retains the benefit of stable catches at high 

stock sizes.  Murawski and Idoine (1989) and Hjerne and Hansson (2001) suggest similar 

control rules where the amount of harvest is reduced to a new low level (potentially zero) 

when biomass falls below a threshold (Figure 2C).   

Threshold control rules are suggested as modifications to constant fishing rate 

rules and specify a biomass below which no fishing is permitted (the threshold), but a 

constant fishing mortality rate is used otherwise (Figure 2A; Quinn and Deriso, 1999).  

Variations of this basic form have also been suggested, such as decreasing fishing 

mortality gradually below the threshold and increasing fishing mortality gradually above 

the threshold, to produce compensatory and potentially stabilizing fishing mortality 

(Figure 2E; Quinn et al., 1990; Eggers, 1993; Sigler and Fujioka, 1993; Quinn and 

Deriso, 1999; Ishimura et al., 2005).  Control rules that scale fishing mortality or catch 

downward when the population is below a threshold are known as biomass-based or 

adjustable rate rules, and fishing mortality or catch is usually adjusted in proportion to 
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population size (Figure 2E; Quinn and Deriso, 1999).  Whether fishing mortality or catch 

is adjusted with changes in biomass affects the relationship between fishing mortality and 

biomass (Figures 2E and 2F) and thus has potentially different performance 

characteristics.  The “40-10” rule, which is used to manage U.S. west coast groundfish, is 

an example of the latter type of biomass-based rule.  Catch is reduced linearly as 

spawning biomass declines below an upper threshold (40% of the unfished level) so that 

no harvest is allowed when spawning biomass is below a lower threshold (10% of the 

unfished level) (Hilborn et al., 2002; Punt, 2003; Punt, this issue).  The result is that for a 

40-10-like rule fishing mortality decreases nonlinearly (Figure 2F).  Engen et al. (1997) 

suggest a variation of a constant escapement rule called “proportional threshold 

harvesting”, which has been used to manage U.S. west coast pelagic species since the 

early 1980s (Pacific Fishery Management Council, 1998; Barange et al., in press).  With 

this control rule, only a fraction of the surplus above the threshold is harvested.  The 

resulting nonlinear relationship between fishing mortality rate and biomass can be viewed 

as a biomass-based control rule, and appears similar to a 40-10-like rule (Figure 2D).  

Proportional threshold harvesting is a special case of a 40-10-like rule with the upper 

threshold set infinitely high (e.g., a “∞-10” rule).  So, for both control rules catch 

increases linearly with biomass above a lower threshold, but for a 40-10-like rule the 

slope of the relationship changes above an upper threshold. 

3.  Common fishery objectives 

Fishery objectives are represented in harvest policy analyses using objective 

functions, and these are used to compare the relative performance of control rules.  A 

frequently-used objective function is cumulative harvest over some fixed time horizon, or 



the sum of annual values of a utility function over a time horizon, where the utility 

function relates annual harvest to some economic, biological, or social construct (Quinn 

and Deriso, 1999).  Maximizing cumulative harvest is considered a risk neutral approach, 

because performance is measured only by the total over the time horizon, with the 

frequency of low and high annual values playing no role  (Reed, 1979; Quinn and Deriso, 

1999).  More risk-averse objective functions penalize for extreme harvests in an effort to 

avoid boom-or-bust fisheries (Walters and Pearse, 1996; Lande et al., 1997; Quinn and 

Deriso, 1999).  One risk-averse objective function is to maximize the long-term logarithm 

of harvest, and this tends to avoid extreme harvests by placing an infinite penalty on zero 

harvests (Ruppert et al., 1985). This objective function, however, is criticized as being 

risk-averse only in terms of economic risk to the industry, and not biological risk to the 

resource (Lande et al., 1997).  Another risk-averse objective function is to maximize a 

linear combination of average yield (Y ) and the negative of the standard deviation (SD) 

of yield over a given planning horizon (e.g., max[(1- λ)Y  - λSD]; Quinn et al. 1990; 

Collie and Spencer 1993).  This approach is relatively flexible in that the relative 

influence of average yield and the standard deviation of yield can be controlled using the 

weighting term, λ.  An alternative, but less commonly used type of risk averse objective 

accounts for how frequently or over what duration biomass or harvests have been at or 

below a threshold (Enberg, 2004; Irwin et al., this issue) 

Other objective functions have been formulated to maintain biomass or harvest at 

predetermined target levels (Hightower and Grossman, 1987).  This stability can be 

accomplished by minimizing the sum of squared deviations between biomass or harvest 

and the predetermined target levels.  However, Hightower and Grossman (1987) criticize 
62 
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objective functions that only consider maintaining harvest near a target because two 

values of fishing mortality could result in the same equilibrium harvest.  When rebuilding 

a stock from a depleted state, the optimal fishing mortality is the higher of the two 

equilibrium points, which also results in maintaining lower equilibrium abundance.  

Another criticism of only considering harvest is that, for an age-structured population, the 

same harvest is obtained for multiple age-structures.  Consequently, when stock sizes 

decline, maintaining harvest near the target requires increasing fishing mortality, which 

can be destabilizing in terms of abundance and yield, creating a negative feedback 

(Beddington and May, 1977; Lowe and Thompson, 1993).  To remedy these problems, 

Hightower and Grossman (1987) suggest using an objective function that simultaneously 

minimizes the deviations of both harvest and biomass from target levels.  Similarly, the 

maximum harvest objective can also be combined with a constraint that requires the 

biomass at the end of the planning horizon to be near a target level (Hightower and 

Grossman, 1987).  More generally, objective functions can be defined as even more 

complex functions of multiple performance measures (e.g., Katsukawa, 2004). 

Bioeconomic objective functions that aim to maximize profits have also been 

developed (Clark, 1973).  In a simple bioeconomic model, revenue R is assumed to be a 

linear function of harvest and is found as the product of price (amount paid per unit fish) 

P and harvest H: 

R=PH; 

 (Clark, 1973; Reed, 1979; Quinn and Deriso, 1999).  Costs C are incorporated into the 

model as the product of the cost per unit of fishing effort L and total effort E: 

C=LE. 
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Net profit Q is the difference of the revenues and costs: 

Q=R-C. 

Costs can also be modeled as a function of stock size (Reed, 1979).  Costs are most often 

modeled as a decreasing function of abundance, which requires the assumption that catch 

per effort (CPE) increases with abundance (Clark, 1973; Reed, 1979).  Whether the 

decrease in cost as abundance increases is linear will depend upon whether catchability 

also varies with abundance (Reed, 1979).  Bioeconomic objective functions can also 

incorporate discount rates, where the value of capital invested in the current time 

diminishes in the future due to inflation (Clark, 1973; Reed, 1979; Quinn and Deriso, 

1999; Quinn and Collie, 2005).  Objective functions incorporating discount rates are 

referred to as maximizing the expected present value (Reed, 1979).  “High” discount 

rates have been blamed for the demise of some fish stocks, where the future value of 

capital approaches zero, so that economically, the optimal course of action is to fish the 

stock quickly to collapse (Clark, 1973).  The use of negative discount rates is suggested 

by some conservation groups as a way to conserve stocks because capital actually 

increases in value in the future (Quinn and Deriso, 1999).  Bioeconomic objective 

functions that maximize profits also tend to favor larger stock sizes than maximum yield 

objective functions (Clark, 1973; Deriso, 1987).  Consequently, increasing effort beyond 

the point that attains maximum profits in order to achieve maximum yield is not only 

inefficient but can also incur other risks associated with smaller population sizes. 

4.  Relative performance with “perfect” information 

4.1.  Comparing control rules 
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Analyses of harvest policies often assume that decisions are made with “perfect” 

information (i.e., no uncertainty or error), in terms of knowing the underlying dynamic 

system model and its parameters, in knowing the current state of the system (e.g., 

biomass), and in being able to implement regulations to achieve a desired result.   

Assuming perfect information allows for greater ease of computation, and likely reflects 

the common practice of setting harvest quotas based on a point estimate of abundance 

(Frederick and Peterman, 1995).  Although many would agree that this is an unrealistic 

assumption for most stocks (e.g., Engen et al., 1997), the results of studies based on 

perfect information are still used as a guide, because they are viewed as likely to reflect 

qualitative differences and outcomes that can be expected from the application of various 

control rules under situations of “imperfect” information. 

Assuming perfect information, constant escapement rules generally perform best 

for maximizing cumulative yield, mean annual yield, or profits, usually followed in 

performance by threshold or biomass based rules, constant fishing mortality rate rules, 

and lastly constant catch rules, although this general conclusion may also depend on 

assuming that maximum recruitment levels (i.e., the asymptote of a Beverton-Holt stock-

recruit function) are temporally independent (Table 1; Table 2).  For semelparous stocks 

(e.g., pacific salmon Oncorhynchus tshawytscha), Ricker (1958) shows that constant 

escapement control rules produce 24-57% higher long-term average harvest than constant 

fishing mortality rate rules, depending on the shape of the stock-recruitment curve, when 

both the escapement level and fishing mortality rate are set to attain the maximum 

average yield.  This general result is also supported by additional research on iteroparous 

species and for a broad range of conditions (e.g., various stock-recruit relationships) 
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(Table 2).  With surplus production models, a type III functional response, and 

autocorrelated consumption rate, threshold rules can produce greater than 100% higher 

average yield, higher sum of discounted yields, and higher sum of discounted rents than 

constant fishing rate control rules, depending on the level of autocorrelation in 

consumption rates (Collie and Spencer, 1993; Spencer, 1997).  Constant fishing mortality 

rate control rules, however, can outperform constant catch rules in terms of yield by 29% 

or more (Jacobson and Taylor, 1985).  Furthermore, even with catch set at maximum 

sustainable yield (MSY) or the level that maximizes net revenue, several other studies 

show that constant fishing mortality rate and biomass based control rules provide higher 

long-term yield and profits (Table 2).  Similarly, constant harvest rate rules can produce 

the same or modestly higher average yield than the various CCC control rules (Hjerne 

and Hansson, 2001; Clark and Hare, 2004). 

In contrast to some of these studies, Walters and Parma (1996) show, using 

stochastic optimal control methods, that constant escapement control rules are inferior to 

constant fishing mortality rate control rules in terms of maximizing yield when the 

asymptote parameter (maximum level of recruitment) of a Beverton-Holt stock-recruit 

model is autocorrelated.  This discrepancy likely occurs because optimal constant 

escapement control rules are highly sensitive to the maximum level of recruitment (Lande 

et al., 1997).  When maximum recruitment is autocorrelated, controls on spawning 

biomass exert imperfect control on expected recruitment.  Walters and Parma (1996) also 

report that with autocorrelated maximum recruitment, constant fishing mortality rate 

control rules attain at least 85% of the theoretical maximum long-term yield (not 

constrained by a constant control rule) for most populations.  This result also holds true 
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when other stock recruitment parameters (i.e., slope near the origin) are simultaneously 

autocorrelated with the asymptote parameter, but does not hold true when other stock-

recruitment parameters are autocorrelated by themselves.  Few other studies evaluate the 

effect of autocorrelated recruitment on the relative performance of harvest policies (Table 

2), and none systematically evaluate the influence of additional alternatives for the form 

of such autocorrelation.  

Escapement and threshold control rules were developed to prevent over-

exploitation and maintain spawning biomass, and so such rules often maintain higher 

biomass, lower variation in biomass, and result in less chance of over-exploitation than 

other control rules (Table 1; Getz and Haight, 1989).  Escapement and threshold control 

rules maintain more consistent levels of biomass than other control rules, because other 

rules allow some harvest regardless of the level of stock biomass, which can be 

destabilizing in terms of abundance and yield (Beddington and May, 1977; Lowe and 

Thompson, 1993).  The destabilizing nature of continued fishing as abundance declines is 

also made worse with depensation at low abundance (Collie and Spencer, 1993; Eggers, 

1993; Walters and Parma, 1996), and this is one reason why some authors argue against 

control rules like constant fishing mortality rates (Lande et al., 1997).  Several studies 

show that constant catch control rules consistently result in the maintenance of less 

biomass and more instances of stock collapse than other rules that provide the same or 

higher average harvest, likely because a constant catch control rule leads to high levels of 

fishing mortality at low abundance (Figure 1; Table 2).  Potter et al. (2003) conclude that 

if maximizing revenues or yield are not high priorities, as in a recreational fishery, a 

constant catch control rule may be useful to meet other fishery objectives (e.g., high 



68 

recreational catch rates), but the catch level should be set low to prevent stock collapse.  

Alternatively, the CCC control rule of Clark and Hare (2004) can maintain higher 

average spawning stock biomass than a constant harvest rate control rule, but this 

depends on the constant catch level and ceiling harvest rate.  Thus, the CCC control rule 

may be effective at preventing the high fishing mortality rates at low stock sizes that 

occur with a strict constant catch control rule. 

As a consequence of fishery closures, threshold and biomass based control rules 

are also usually the optimal rule for quick rebuilding of depleted stocks (Table 1; Quinn 

et al., 1990).  Median rebuilding times to equilibrium biomass under a threshold control 

rule are shorter than a constant fishing mortality rate control rule (Quinn et al., 1990).  

Hightower and Grossman (1987) also show that the optimal rebuilding strategy is to 

cease fishing until the threshold biomass level is reached, and use constant fishing 

mortality above the threshold. 

Relatively high yields and stable biomass almost always appear to come at the 

cost of higher variability in yield (Ricker, 1958; Gatto and Rinaldi, 1976; Reed, 1979; 

Lande et al., 1995; Lande et al., 1997).  Constant escapement control rules usually result 

in the highest variability in yield, followed by threshold and biomass based control rules, 

constant fishing mortality rates, and then constant catch (Table 1; Table 2, but see 

Enberg, 2004).  The high variability of yield in constant escapement and threshold 

control rules is caused by fishery closures in years when biomass is not above the 

predetermined level (Lande et al., 1997; Lillegard et al., 2005).  Constant fishing 

mortality rate control rules do not require fishery closures, and so usually have less 

variability in yield than constant escapement and threshold control rules, but also lead to 
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greater variability in population abundance.  Constant fishing mortality rate control rules 

also perform best at maximizing logarithm of yield, an objective function that places in 

infinite penalty on zero harvest (Walters and Parma, 1996; Walters and Pearse, 1996; 

Lande et al., 1997).  Intuitively, a constant catch control rule will have zero variability in 

catch, except in cases when abundance drops below the predetermined level of catch and 

requires closing the fishery, or management cannot react quickly enough to close the 

fishery after the catch limit has been attained (Koonce and Shuter, 1987; DiNardo and 

Wetherall, 1999).  However, the stability in yield of the constant catch control rule comes 

at the cost of foregoing high yields at times when abundance is high, and the highest 

variability in population abundance and hence risk of fishery collapse (Beddington and 

May, 1977; Jacobson and Taylor, 1985; Quiggin, 1992; Potter et al., 2003).  If consistent 

yields and a stable market have a “much higher priority” than maximizing revenue, yield, 

or minimizing risk of fishery collapse, then a constant catch control rule will be a 

competitive option (Quiggin, 1992; Steinshamn, 1993; Potter et al., 2003).   

The differences among control rules in catch/yield variability can be substantial.  

In a simulation based on the northwestern Hawaiian Islands lobster fishery, mean yearly 

percentage change in catch was less for a constant catch control rule (yearly variation in 

catch for the constant catch rule was caused by fishery closures) than a constant fishing 

mortality rate control rule (about 43% and 156%, respectively) across a range of catch 

and fishing mortality rate levels (DiNardo and Wetherall, 1999).  The various CCC 

control rules maintain some of the benefits of a constant catch control rule; they can 

produce less yearly variability in catch than a constant harvest rate strategy, with the 

relative difference in variability depending on the values used for the CCC control rule 
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parameters (i.e., constant catch level and maximum harvest rate) (Hjerne and Hansson, 

2001; Clark and Hare, 2004).  Constant fishing mortality rate control rules can also 

produce standard deviations in annual yield half that of threshold control rules (Collie 

and Spencer, 1993), and Walters and Parma (1996) show that the advantage of constant 

fishing mortality over constant escapement in terms of yield constancy is enhanced when 

maximum recruitment is autocorrelated.  The biomass-based “40-10” control rule also 

maintains much lower standard deviation of average annual catch than an optimal 

constant escapement control rule (Ishimura et al., 2005). 

4.2.  Effect of the stock-recruit relationship 

The relative performance of harvest policies, and the results of some studies 

discussed above, can depend on the form of stock-recruit relationship used, and 

particularly the extent of compensation in the relationship, particularly for threshold 

control rules.  Consequently, caution should be used when interpreting analyses that 

compare various harvest policies because the results may depend on the amount of 

compensation assumed to exist in the stock-recruit relationship.  When recruitment is 

highly compensatory (i.e., recruitment is weakly dependent on stock size), the potential 

benefits of a threshold control rule (i.e., maximum yield or revenue) fail to materialize 

because maintaining a given level of spawning stock no longer produces benefits in terms 

of recruitment, but yield is generally still more variable than other control rules due to 

fishery closures.  Hightower and Lenarz (1989) assume recruitment decreases by 10% 

when the spawning stock is reduced by 50% from the pristine level, making recruitment 

highly compensatory, and show that a constant escapement control rule produces only 

2% greater mean harvest than a constant effort control rule, but CV of harvest is 49% 
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higher.  For South African anchovy Engraulis capensis, Butterworth and Bergh (1993) 

assume recruitment varies around a constant level independent of stock size and show 

that a constant fishing mortality rate control rule produces the same yield as a constant 

escapement control rule, but with less yearly variability in yield and less risk of the stock 

falling below 20% of unfished biomass.  Other studies that assume highly compensatory 

stock-recruit relationships, where recruitment is independent of stock size over a broad 

range, also report similar results for “40-10”, constant catch, and constant fishing 

mortality rate control rules relative to threshold control rules (Steinshamn, 1998; 

Ishimura et al., 2005).  If these analyses had included a weaker compensatory response in 

the stock-recruit relationship, the results likely would have been different, and the 

benefits of threshold control rules (maximum yield or revenue) may have been preserved. 

5.  Relative performance with “imperfect” information 

In reality, management must be conducted with “imperfect” information (i.e., 

uncertainty), and intuitively, this uncertainty should dictate more conservative or robust 

harvest policies (Parma, 1993; Frederick and Peterman, 1995; Punt et al., 2002b; Quinn 

and Collie, 2005).  Most work on the effect of such uncertainty on harvest policy 

performance is focused on the influence of errors in stock biomass estimates.  Estimates 

of biomass that are too high will often result in catch levels that are too high, placing the 

stock at risk of overexploitation, or alternatively, increased catch may be sacrificed or the 

fishery may be closed unnecessarily when population estimates are too low (Parma, 

1993; Engen et al., 1997; DiNardo and Wetherall, 1999; Milner-Gulland et al., 2001).  

Uncertainty in estimates of biomass can affect various performance measures used in 

comparing control rules used in harvest policy analyses, including yield, variability in 
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yield, logarithm of yield, and probability of stock collapse.  Generally, uncertainty in 

estimates of biomass causes decreased yield (or logarithm of yield), increased variability 

of yield, and increased probability of stock collapse for most control rules (Eggers, 1993; 

Walters and Parma, 1996; Walters and Pearse, 1996; Lande et al., 1997; Engen et al., 

1997; Hilborn et al., 2002; Punt, 2003; Vasconcellos, 2003).  Consequently, the 

sensitivity of different control rules to the presence of “imperfect” information can affect 

their relative performance (Table 1).   

5.1.  Policy parameters unadjusted for uncertainty. 

Most harvest policy analyses that compare control rules and account for 

uncertainty in stock size estimates do so by first obtaining harvest policy parameters that 

perform well without this uncertainty.  They then compare the performance of control 

rules for these pre-specified policy parameters.  This method essentially mimics a 

situation where managers are assumed to have chosen the policy parameters for a rule 

based on an analysis that did not account for stock assessment errors.  Here we review 

studies of this type.  In the next section we consider studies where policy parameters were 

“adjusted” for uncertainty. 

With unadjusted policy parameters, the superior relative performance of a 

constant-escapement control rule for some performance variables is sensitive to errors in 

estimates of biomass (Table 1).  Engen et al. (1997) show that proportional threshold 

harvesting results in larger expected cumulative yield than a constant escapement control 

rule when uncertainty in biomass estimates are high, and nearly as large cumulative yield 

and less variation in yield when uncertainty in biomass estimates are at “lower” levels, a 

result also supported by more recent research (Milner-Gulland et al., 2001; Lillegard et 
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al., 2005).  Proportional threshold harvesting also reduces the frequency of fishery 

closures, and consequently yield variability (Engen et al., 1997; Lillegard et al., 2005).  In 

contrast, uncertainty in stock size estimates appears to favor constant escapement over 

constant fishing mortality rate control rules, at least for the majority of studies where 

recruitment is varied in a temporally uncorrelated fashion about a stationary stock 

recruitment function; constant escapement control rules (MSY level of escapement) 

generally produce higher average catch, average run size (i.e., number of spawners), 

average logarithm of catch, and lower CV of catch than constant fishing mortality rate 

control rules (i.e., MSY rate), and the disparity increases with increasing error (i.e., the 

constant rate rule is more sensitive) (Eggers, 1993; Sladek Nowlis and Bollermann, 

2002).  These results contrast with the results for “perfect information,” where constant 

fishing mortality rate control rules are optimal for maximizing logarithm of catch and 

escapement rules typically have higher variability in catch due to fishery closures.  The 

higher variation in catch for constant fishing mortality rate control rules in the presence 

of stock assessment errors may occur because higher than planned levels of fishing due to 

errors are not be compensated for by subsequent reductions in fishing mortality.  In the 

short-term, this could produce lower variation than a constant escapement control rule, 

but in the long-term an increased variation in stock size can lead to increased variation in 

yield (Eggers, 1993). 

A major caveat to the results presented in the previous paragraph is that a constant 

fishing mortality rate control rule can be favored over a constant escapement control rule 

in terms of yield, regardless of the level of uncertainty in biomass estimates for at least 

one type of autocorrelated recruitment.  Walters and Parma (1996) show that a constant 
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fishing mortality rate control rule performs better in terms of yield when the asymptote 

parameter of a Beverton-Holt stock-recruit model is autocorrelated, even with uncertainty 

in biomass estimates.  This result also holds true when other stock recruitment parameters 

(i.e., slope near the origin) are simultaneously autocorrelated with the asymptote 

parameter, but does not hold true when other stock-recruitment parameters are 

autocorrelated by themselves.   

In contrast with the studies described above, Butterworth and Bergh (1993) and 

Polacheck et al. (1999) show that the relative performance of constant catch, constant 

fishing mortality rate, and constant escapement control rules generally remain similar to 

situations of perfect information when uncertainty is added through the use of 

management strategy evaluations.  These studies suggest that under some circumstances 

the relative performance of these control rules may be robust to the inclusion of 

uncertainty. 

5.2.  Uncertainty adjusted policy parameters 

An alternative to using policy parameters that work best for a control rule without 

errors in stock size, is to select them so as to maximize the expected value of an objective 

function averaged over these (or other) errors (e.g., over simulations).  The relative 

performance of various harvest policies can then be compared based on which policy 

produces a larger expected value of the objective function.  Such studies mimic a 

situation where it is assumed that managers are taking into account uncertainty (e.g., in 

stock assessment) when they decide on policy parameters.   

When this approach has been compared with the case of perfect information, 

more conservative fishing within a policy is again favored, and the relative performance 
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of different types of control rules is changed.  For example, Frederick and Peterman 

(1995) show that a constant fishing mortality rate control rule outperforms a constant 

escapement control rule in terms of maximizing expected present value (measured in 

dollars) and preventing harvest from falling below 10% of the deterministic equilibrium 

level when uncertainty in the shape of the stock-recruit function (i.e., uncertainty in the 

parameters of a Shepherd function) and error in biomass estimates were accounted for.  

Frederick and Peterman (1995) also show that constant fishing mortality is favored in the 

case of depensatory recruitment, which might be expected to be more favorable to 

constant escapement control rules (Ricker, 1958; Larkin and Ricker, 1964; Tautz et al., 

1969; Collie and Spencer, 1993; Spencer, 1997).  Katsukawa (2004) considers a wide 

range of policy parameters for a biomass based control rule (Figure 2), which includes 

constant fishing mortality rate and threshold control rules as limiting cases.  The study 

shows that substantial errors in stock assessments favors control rules more like constant 

fishing mortality rate, whereas perfect information favors control rules that resemble 

threshold rules.  That is, such control rules tend to produce as much yield while 

maintaining similar levels of biomass.  Similarly, Sethi et al. (2005) uses stochastic 

optimal control methods to show that assessment error favors control rules that more 

closely resemble a biomass-based policy than a constant escapement control rule, when 

the objective is to maximize discounted yield.  Similar results have previously been 

reported by Clark and Kirkwood (1986).  Vasconcellos (2003) also report higher and less 

variable yields for constant fishing mortality rate rules than for constant escapement 

rules, although to some extent this could be partly due to probabilistically incorporating 

an autocorrelated asymptote to recruitment as in Walters and Parma (1996).  Sethi et al. 
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(2005) show that implementation error alone does not influence the form of the control 

rule, but it does appear to have an interactive effect with assessment error.  These limited 

studies that consider uncertainty adjusted results contrast in an important way with the 

unadjusted results of the previous section; suggesting that accounting for uncertainty 

when estimating policy parameters is warranted.   

6.  Selecting catch, fishing mortality, and threshold levels 

6.1.  Available options – simulations or biological reference points 

Once a general family of control rule is chosen, managers must then decide on 

policy parameters; the level of catch, fishing mortality, or threshold to apply.  Ideally, this 

decision is made through a management strategy evaluation that uses stochastic 

simulation to incorporate uncertainty in stock assessments (e.g., parameter values and 

biomass estimates), population dynamics (e.g., stock-recruit function), and 

implementation (Annala, 1993; Francis, 1993; Frederick and Peterman, 1995, Polacheck 

et al., 1999).  This approach evaluates the robustness of control rules and policy 

parameters to uncertainty, and prevents the need for selecting an arbitrary level or basing 

the harvest policy on some biological reference point (BRP) that may be too conservative 

or too aggressive depending on the stock.  Furthermore, optimum levels of catch, fishing 

mortality, or thresholds often become more conservative as uncertainty in assessments 

increase, suggesting that estimates from deterministic simulations may be risk-prone 

(Lowe and Thompson, 1993; Gibson and Myers, 2004; Lillegard et al., 2005).   

Although constructing a stochastic simulation is ideal, this is not always feasible 

due to data requirements and time and effort demands (Annala, 1993; Caddy and Mahon, 

1995).  Consequently, levels are often selected based on BRPs or historical experience 
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(Caddy and Mahon, 1995).  The use of BRPs requires defining the various reference 

points as targets or limits, but what qualifies as a target or limit can be confusing.  Here 

we propose similar definitions for targets and limits as those of Caddy and Mahon (1995) 

and Caddy and McGarvey (1996).  A target is a desirable state of the fishery (e.g., fishing 

mortality) or resource (e.g., biomass) at which management action should aim, so that on 

average the target is attained.  A limit is a “dangerous” state of the fishery or resource 

that should be avoided or exceeded with only a “low” level of probability or frequency.  

In order to be effective, a limit must also be accompanied by some pre-defined 

management actions that are to be taken based on specific evidence that the limit is likely 

to have been exceeded, which would allow the fishery to rebound.  Interpreting a limit as 

requiring that there is some pre-determined “low” probability that the state of the fishery 

or resource will exceed the limit can be problematic.  Estimating such probabilities would 

usually require a stochastic simulation model that considers key uncertainties, and often 

reference points are being used because such a model is not available.  Managers can still 

make informed decisions, however, based on the historical performance of various BRPs, 

and whether those BRPs seem better suited as a target or limit, given characteristics of 

the fishery.  Below we provide an overview of some of the reference point literature.  For 

a more detailed description and evaluation of each BRP consult the references in Table 3. 

6.2.  Constant catch levels 

MSY has historically been used as a target for constant catch control rules, but the 

pitfalls of MSY as a target are well known (Clark, 1973; Larkin, 1977; Sissenwine, 1978; 

Hilborn and Walters, 1992; Caddy and Mahon, 1995 Quinn and Deriso, 1999; Quinn and 

Collie, 2005).  MSY now most often serves as a limit catch level or a starting point from 
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which constant catch levels are scaled downward to more conservative targets (Hilborn 

and Walters, 1992; Annala, 1993; Overholtz, 1999; Mace, 2001).  Maximum constant 

yield (MCY) is one example of a catch level conceptually similar to MSY, but considers 

random fluctuations in production, as opposed to assuming deterministic dynamics 

following a Schaefer surplus production model (Sissenwine, 1978; Murawski and Idoine, 

1989).  A critical feature of MCY is that as variation (and possibly autocorrelation) in 

production increases, given stock size, MCY decreases below MSY (Sissenwine, 1978; 

Getz et al., 1987).  Sissenwine (1978), however, warns against using estimates of MCY 

as target levels because the fishing mortality rate associated with that level of catch can 

be high, and cause declines in spawning stock biomass and subsequent recruitment.  In 

New Zealand during the 1990s, developed fisheries for which a population model was 

available to estimate MSY were managed with a constant catch level of 2/3 MSY 

(Annala, 1993).  This level was selected based on stochastic simulation results that found 

that MCY can be as low as 60% of the deterministic MSY for some stocks (Annala, 

1993).  Constant catch levels in New Zealand have also been selected using other proxies 

for MSY, with the exact method of estimation depending on data availability and 

exploitation history of the fishery (Annala, 1993). 

6.3.  Constant fishing mortality rate F levels 

Various BRP F values, for use in control rules that apply a constant F over all or 

some range of biomass levels, have been suggested as either targets or limits.  Fmsy was 

often used as a target, but has been criticized as being economically inefficient and 

difficult to estimate reliably, and so should likely be treated as a limit or benchmark from 

which more conservative fishing strategies are developed (Larkin, 1977; Koonce and 
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Shuter, 1987; Sissenwine and Shepherd, 1987; Hilborn and Walters, 1992; Overholtz, 

1999; Quinn and Deriso, 1999; Mace, 2001; Brodziak and Legault, 2005).  Setting F 

equal to M was also suggested as a means to attain MSY, but this rarely holds true 

(Alverson and Pereyra, 1969; Francis, 1974; Deriso, 1982; Quinn and Deriso, 1999).  

Furthermore, the relationship between yield and fishing mortality rate is generally flat 

over a broad range of fishing mortality values, and so setting target fishing mortality rates 

below Fmsy will often lose little in yield while maintaining a disproportionately higher 

amount of biomass (Deriso, 1987; Hilborn and Walters, 1992; Ralston et al., 2000; 

Dichmont et al., 2006b).  Yield per recruit (YPR) analyses are used to formulate two 

common BRPs, Fmax and F0.1 (Deriso, 1987).  Although sometimes used as targets, these 

reference points cause stock declines over a broad range of conditions and should likely 

be used as limits (Sissenwine and Shepherd, 1987; Clark, 1991; Jakobsen, 1992; 

Goodyear, 1993; Leaman, 1993; Campana et al., 2002; Rahikainen and Stephenson, 

2004; Quinn and Collie, 2005).  Fx% BRPs are based on spawning stock biomass or egg 

production per recruit (SSBR) analyses.  These BRPs have the advantage that stocks with 

similar levels of compensation in the stock-recruit relationship can be cautiously 

managed with the same Fx% rate (Dorn, 2002).  Combined with meta-analyses of stock-

recruit data (e.g., Myers et al., 1999; Dorn, 2002), appropriate Fx% rates can be estimated 

where stock specific estimates of productivity are lacking.  However, levels of Fx% 

(usually in the range of 20%-40%) have historically been chosen based on yield 

objectives and were treated as targets (Clark, 1991; Ralston et al., 2000; Brodziak, 2002; 
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Clark, 2002; Quinn and Collie, 2005).  Because these levels of fishing were set without 

incorporating recruitment and biomass as part of the objective, it is not surprising that the 

selected Fx% levels have proved inconsistent with an objective of maintaining stock 

biomass above a specified threshold (Ralston et al., 2000).  Several other BRPs have been 

developed using SSBR analyses and a plot of stock-recruit data.  Fro (for recruitment 

overfishing) is intended for use as a limit rate that explicitly avoids recruitment 

overfishing (Sissenwine and Shepherd, 1987).  Frep (for replacement), and similarly 

Fmed, are suggested as targets to maintain current levels of biomass, but will only do so 

in the absence of density dependence in the stock-recruit relationship (Sissenwine and 

Shepherd, 1987; Mace and Sissenwine, 1993; Maguire and Mace, 1993; Quinn and 

Deriso, 1999).  Flow and Fhigh are set relative to Frep and would likely lead to rebuilding 

or stock declines, respectively (Jakobsen, 1993).  Fst (for steady) is a BRP based on a 

Leslie matrix model that is conceptually similar to Frep.  (Quinn and Szarzi, 1993; Hayes, 

2000).   

6.4.  Threshold levels 

Threshold levels, for use in threshold and biomass-based control rules, have been 

selected in a variety of ways.  Perhaps the simplest method is to use a time series of 

abundance data.  Sigler and Fujioka (1993) define sablefish stocks to be overfished 

whenever biomass falls below the historically lowest observed level.  For overexploited 

stocks, Overholtz et al. (1993) suggest using some percent level of biomass higher than 

current biomass.  When a stock specific threshold cannot be determined, thresholds 
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developed for other species with similar taxonomy and life history parameters can also be 

applied (Mace and Sissenwine, 1993).  Because these methods are somewhat arbitrary, 

the management action that should be taken when biomass falls below these levels is 

unclear.   

Other less arbitrary biomass thresholds have also been developed.  For 

populations exhibiting compensation, Quinn and Deriso (1999) show how a parameter 

can be added to a Graham-Schaefer surplus production model to estimate the point where 

latent productivity becomes zero or negative, providing a threshold level of biomass, 

which is often expressed as a percentage of unfished biomass.  Zheng et al. (1993b) 

develop a similar methodology generalized to a depensatory surplus production model.  

When a stock-recruit relationship is taken into account, a more elaborate population 

model can be developed to estimate biomass at MSY for use as a target (or some other 

MSY proxy) and some level below MSY for use as a threshold (Quinn and Deriso, 1999).  

In the case of a depensatory stock-recruit relationship, the inflection point has been 

suggested as a threshold level of biomass, and assuming that growth and mortality are 

density-independent, the inflection point usually occurs below 20% of pristine biomass, 

suggesting that 20% is generally a threshold below which fishing should stop 

(Thompson, 1993).  This conclusion is consistent with other studies that found that 

spawning biomass should be maintained between 20% and 50% of unfished spawning 

biomass as a way to ensure replacement and attain a large proportion of MSY (Quinn et 

al., 1990; Clark, 1991; Fujioka et al., 1997; Booth, 2004).  Conversely, Myers et al. 

(1994) conclude that using 20% of unfished spawning biomass as a threshold may be 

risky for stocks with “severe” depensation, and recommend using the biomass level that 
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produces 50% of the maximum recruitment as a robust threshold.  Zheng et al. (1993b) 

suggest two methods of estimating thresholds based on life-history parameters called 

Fowler’s method and May’s method.   

Many of the studies discussed above seek to determine a threshold independently 

from a target value of fishing mortality.  In some cases the fishing mortality rate is set at 

levels that were determined as best for a constant fishing mortality rate control rule.  An 

alternative is to simultaneously search for the threshold level and level of fishing 

mortality combination that maximize a given objective function in the framework of a 

stochastic simulation.  Zheng et al. (1993a) and Quinn et al. (1990) use this approach 

with an objective function that considers both maximizing annual yield and minimizing 

yearly variations in yield.  In accord with simulation results, we expect that the optimal 

fishing mortality rate at high biomasses would generally be higher for a biomass based 

control rule than for a constant fishing rate control rule and thus there should be benefits 

to searching for the best combination.  However, results are probably too limited to allow 

for rules of thumb on how much higher the fishing rate should be for a biomass-based 

control rule in the absence of an explicit analysis.    

7.  Summary and conclusions 

Harvest policies are a necessary feature of transparent fisheries management 

because they ensure that the rules for how harvest will vary are evident to all 

stakeholders.  However, the application of an inappropriate harvest policy will result in a 

failure to meet management objectives or potentially cause stock collapse.  Rational 

management requires that objectives be explicitly stated and that a harvest policy is 

selected so as to best achieve those objectives.  The results of this review provide some 
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guidance on what control rules might be worth considering for given objectives, and what 

factors might influence their relative performance, and so should be included in analyses 

of harvest policies. 

Most research to date focuses on evaluating harvest policies under the assumption 

of “perfect information” (i.e., no uncertainty or error; Table 2).  These analyses often 

identify optimal control rules for meeting certain fishery objectives under given 

conditions, and highlight factors that might affect relative policy performance.  Of 

particular importance seems to be the shape of the stock-recruit relationship (i.e., level of 

compensation), autocorrelation in recruitment, and whether depensatory mechanisms 

exist (Ricker, 1958; Larkin and Ricker, 1964; Tautz et al., 1969; Hightower and Lenarz, 

1989; Collie and Spencer, 1993; Walters and Parma, 1996; Lande et al., 1997; Spencer, 

1997; Steinshamn, 1998; Ishimura et al., 2005).  Some research also suggests that 

variability in other population parameters, such as time-varying catchability, may also 

have an effect on relative policy performance (Punt, 1997; Punt et al., 2002b; Dichmont 

et al., 2006a; Dichmont et al., 2006c).  We believe more needs to be learned about how 

temporal variation in parameters, such as those governing the stock-recruitment 

relationship, influences the performance of harvest policies. 

Much less research focuses on comparing harvest policies while considering key 

uncertainties (e.g., in the recruitment function, error in biomass, error in catch statistics).  

One result of adding uncertainty is that policy parameters (e.g., a constant fishing 

mortality rate) are generally shifted in a more conservative direction from those based on 

treating point estimates of parameters governing population dynamics and fishery 

behavior as known.  Thus, research that assumes perfect information should be 
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interpreted cautiously, since uncertainty is a ubiquitous feature (Punt et al., 2002).  

Furthermore, the relative performance of control rules depends on whether the policy 

parameters have been adjusted for uncertainty.  In general, we believe managers should 

adjust parameters for uncertainty as is advocated in the Decision Analysis literature 

(Peterman and Anderson 1999).  This conclusion suggests that much more research on 

the relative performance of control rules using uncertainty adjusted parameters is needed.      

Greater uncertainty clearly reduces sustainable yields and other benefits of 

fishing.  The policy studies reviewed here that incorporate uncertainty in stock status or 

underlying dynamics treat this as a constant fixture of the system.  Additional studies are 

needed that take an adaptive management view, and consider the interaction between 

harvest policies and understanding of the fishery system (Walters, 1986).   

Many resource economists conclude that constant escapement control rules 

provide maximum profits, but they also generally do not consider the possibility of 

autocorrelated recruitment, uncertainty, and they often assume that profits are linearly 

related to harvest (Gatto and Rinaldi, 1976; Reed, 1979; Lande et al., 1995; Nostbakken, 

2006).  The linear relationship may not adequately consider the social and political 

repercussions of a frequently closed fishery.  We believe this is why constant escapement 

control rules are not applied more often.  For example, in the South African anchovy 

fishery, a constant escapement control rule was abandoned for a constant fishing 

mortality rate control rule within two years of being implemented because it became 

obvious that fishery closures would be frequent (Cochrane et al., 1998).   

Most research focuses on single management objectives (e.g., maximizing yield) 

and the policies that are optimal for meeting single objectives.  However, management 
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often involves competing objectives, and selecting a harvest policy that is optimal for one 

objective involves a trade-off with some other objective (Quinn et al., 1990).  For 

example, constant escapement control rules that maximize long-term yield also often 

maximize variability in yield (Walters and Parma, 1996).  McGlade (1989) proposes an 

intensive approach to deal with competing objectives called integrated fisheries 

management, which explicitly models ecological, socioeconomic, legal, and institutional 

aspects of a fishery into a single model.  Management strategy evaluations can also 

address uncertainties that occur throughout the management process, including the 

ecological and socioeconomic aspects (Smith et al., 1999; Punt et al., 2002c; Dichmont et 

al., 2006a,b,c).  These approaches might produce optimal policies that differ from 

traditional single objective approaches (McGlade, 1989).  For example, consideration of 

how closing a fishery affects the short-term economics and social atmosphere of fishing 

communities would likely result in a different optimal policy than attempting to 

maximize long-term profits alone.  Generally, little is known about optimal policies for 

meeting multiple competing objectives, and optimal policies in these situations might be 

different than has been found for single objective approaches (Fieberg, 2004).   

To deal with the trade-offs of competing objectives, some control rules attempt to 

attain “the best of both worlds.”  CCC control rules attempt to combine attractive aspects 

of constant catch and constant fishing mortality rate control rules, so as to attain stable 

catch with less risk than strict constant catch (Murawski and Idoine, 1989; Hjerne and 

Hansson, 2001; Clark and Hare, 2004).  Biomass based control rules are an alternative 

that avoids frequent fishery closures and responds to declining biomass by reducing 

fishing mortality, and so retains attractive features of constant fishing mortality (i.e., few 
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fishery closures) and constant escapement control rules (i.e., reduced harvest at low stock 

size).  To date, little research has focused on these control rules, particularly in the 

presence of uncertainty.  Furthermore, optimal methods for designing biomass based 

control rules (i.e., exactly how F should decline with biomass) have not been developed 

and much work is needed on this and related topics. 

Harvest policies are generally developed for single species fisheries, but increased 

awareness of problems caused with by-catch, increased centralization of fishery control, 

and increased knowledge of ecosystems may lead to attempts to apply harvest policies to 

entire food-webs or ecosystems (Walters et al., 2005; Quinn and Collie, 2005; Matsuda 

and Abrams, 2006).  Walters et al. (2005) evaluates the ecosystem impacts of applying 

constant catch control rules to multiple species simultaneously, with the catch level set at 

MSY and estimated from single species assessments.  They show that the ecosystem 

changes caused by such a strategy results in MSY being unattainable for several species 

and top predator populations most often declining.  Similarly, Dichmont et al. (2006b) 

uses a management strategy evaluation for Australia’s northern prawn Penaeus spp. 

fishery and shows that when species are caught simultaneously, multiple species cannot 

be sustainably harvested at individual Fmsy rates.  Matsuda and Abrams (2006) develop 

models to find the level of fishing effort that maximizes yield or profits from a food-web 

using simple linear rates of production and density dependence in growth for systems 

with as many as six species and five trophic levels.  In many instances, maximizing yield 

or profits from the system involves eradicating top-predators in order to increase the 

production of lower trophic levels, particularly if the species in lower trophic levels are 

more valued.  They conclude that further development of policies for entire food-webs 
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may require preventative measures to ensure top predators are not eradicated for the sake 

of increased profits from lower trophic levels. 

Fishing exerts selective pressures on fish stocks that can lead to the evolution of 

life-history traits that affect productivity (e.g., growth, age at maturity), and this may also 

affect relative policy performance (Heino, 1998; Conover and Munch, 2002; Swain et al., 

2007).  Little is known, however, about how sensitive policy performance is to 

evolutionary change, or whether such changes might also interact with other 

characteristics known to effect policy performance (e.g., uncertainty in estimates of 

biomass).  This topic should remain an area of active research, and simulation studies that 

account for evolutionary change induced through harvest would provide valuable insight 

(e.g., Heino, 1998). 

When an appropriate simulation study cannot be conducted to determine policy 

parameters (e.g., target constant fishing mortality rate) that best achieve stated objectives, 

BRPs likely provide the next best method for selecting fishing mortality rates and 

thresholds.  The effectiveness of any BRP will depend on the objectives of the fishery 

and whether assumptions used in the development of a given BRP have been met.  

Generally, the shape of the stock-recruit relationship, and whether density-dependence or 

depensatory mechanisms are active will be of particular importance.  Furthermore, if left 

with no better alternative, BRPs can be cautiously applied to species with similar 

taxonomy and life history characteristics (Mace and Sissenwine, 1993). 
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Table 1.  The rank order performance of control rules for meeting each of several different fishery objectives.  Results given in 
columns of the table correspond to cases assuming no error in estimates of stock size, with the inclusion of error in estimates of stock 
size, with and without policy parameters adjusted for uncertainty, and with and without autocorrelation in the maximum level of 
recruitment (see text).  When errors in stock size estimates were incorporated, studies that compared performance for control rules 
using the policy parameters that were optimal without these errors are “unadjusted”; studies that sought policy parameters that were 
optimal over the uncertainty are “uncertainty adjusted.”  When uncertainty in stock assessments was incorporated, rank order reflects 
finding for the highest levels of assessment error that were evaluated.  When for a given table column there are no studies that 
evaluated relative performance of a control rule, these policies are missing (-). 

  No Error in Stock Size Estimates  Error in Stock Size Estimates 

 
Uncorrelated Max 

Recruitment   

Correlated 
Max 

Recruitment 
Uncorrelated Max  

 Recruitment  
Correlated Max  

Recruitment 
Unadjusted 

Policy 
Uncertainty  Unadjusted 

Policy Adjusted Policy 
Parameters 

 Uncertainty 
Adjusted         Parameters  Parameters 

Rank Objective Function: Maximize Yield or Profits 

Better 
Constant 
Escapement  Constant-F  

Proportional 
Threshold Constant-F  Constant-F - 

 Threshold/Biomass 
Based  

Constant 
Escapement  

Constant 
Escapement 

Threshold/Biomass 
Based  

Constant 
Escapement - 

 Constant-F  -  Constant-F 
Constant 
Escapement  - - 

Worse Constant Catch  -  - -  - - 
  Objective Function: Minimize Risk of Over-exploitation or Maintain Biomass Above a Threshold 

Better 
Constant 
Escapement  -  

Constant 
Escapement Constant-F  Constant-F - 

 Threshold/Biomass 
Based  -  Constant-F 

Threshold/Biomass 
Based  

Constant 
Escapement - 

 CCC  -  - 
Constant 
Escapement  - - 

 Constant-F  -  - -  - - 
Worse Constant Catch  -  - -  - - 
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Table 1 (cont’d) 
 

  No Error in Stock Size Estimates   Error in Stock Size Estimates 

 

 
Uncorrelated Max 

Recruitment   

Correlated 
Max 

Recruitment 
Uncorrelated Max  

 Recruitment   
Correlated Max  

Recruitment 
Unadjusted 

Policy 
Uncertainty  Unadjusted 

Policy Adjusted Policy 
Parameters 

 Uncertainty 
Adjusted  Parameters Parameters         

 Objective Function: Minimize Stock Rebuilding Time 
Threshold/Biomass 
Based  -  - -  - - Better 
Constant-F  -  - -  - - Worse 

 Objective Function: Minimize Variability in Yield or Profits 

Better Constant Catch  -  
Proportional 
Threshold -  Constant-F - 

 
Constant-F  -  

Constant 
Escapement -  

Constant 
Escapement - 

 
Threshold/Biomass 
Based  -  Constant-F -  - - 

Worse 
Constant 
Escapement   -   - -   - - 

10
1 

 



 

Table 2.  Papers that compared harvest policies for meeting common fishery objectives assuming no error in estimates of stock size, 
with the inclusion of error in estimates of stock size, and with or without autocorrelation in the maximum level of recruitment (i.e., 
asymptote of a Beverton-Holt stock-recruit function).  Specific control rules and characteristics included in each paper are indicated 
with a X. 
 
   

Maximum Recruitment 
Level  

Stock Size 
Estimates  Control Rules 

Studies  Uncorrelated Correlated  No Error Error  CC CF CE Threshold BB CCC 
40-
10 

                  
Objective Function: Maximize Yield or Profits 

Ricker 1958  X   X    X X     
Larkin and Ricker 1964   X    X      X X         
Tautz et al. 1969  X   X    X X     
Gatto and Rinaldi 1976   X    X      X X         
Reed 1979  X   X     X     
Jacobson and Taylor 1985   X    X    X X           
Koonce and Shuter 1987  X   X   X X   X   
Hall et al. 1988   X    X      X X         
Getz and Haight 1989  X   X    X X     
Butterworth and Bergh 1993  X    X  X X X     
Collie and Spencer 1993   X    X      X X X       
Eggers 1993  X   X X   X X     
Steinshamn 1993   X    X    X X           
Lande et al. 1995  X   X   X X X     
Walters and Parma 1996     X  X X    X X         
Engen et al. 1997  X    X    X  X   
Lande et al. 1997   X    X X    X X   X     
Spencer 1997  X   X    X  X    
DiNardo and Wetherall 1999   X    X    X X           
Polacheck et al. 1999  X    X  X X      
Hjerne and Hansson 2001  X   X    X    X  
Sladek and Bollermann 2002   X      X    X X X       
Vasconcellos 2003   X   X   X X     
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Table (cont’d)               
 
   

Maximum Recruitment 
Level  

Stock Size 
Estimates  Control Rules 

Studies  Uncorrelated Correlated  No Error Error  CC CF CE Threshold BB CCC 
40-
10 

                  
Objective Function: Minimize Risk of Over-exploitation or Maintain Biomass Above a Threshold 

Clark and Hare 2004   X    X      X       X   
Katsukawa 2004  X   X X   X  X X   
Lillegard et al. 2005  X    X   X X X X   
Beddington and May 1977   X   X   X X      
Jacobson and Taylor 1985   X    X    X X           
Koonce and Shuter 1987  X   X   X X   X   
Getz and Haight 1989   X    X      X X         
Quiggin 1992  X   X   X X      
Butterworth and Bergh 1993  X    X  X X X     
Eggers 1993   X    X X    X X         
Sigler and Fujioka 1993  X   X    X  X X   
Steinshamn 1993   X    X    X X           
Zheng et al. 1993a  X   X    X  X    
Lande et al. 1995   X    X    X X X         
Lande et al. 1997  X   X X   X X  X   
DiNardo and Wetherall 1999   X    X    X X           
Polacheck et al. 1999  X    X  X X      
Sladek and Bollermann 2002  X    X   X X X    
Vasconcellos 2003     X    X    X X         
Clark and Hare 2004  X   X    X    X  
Katsukawa 2004  X   X X   X  X X   

Objective Function: Minimize Stock Rebuilding Time 
Hightower and Grossman 1987   X   X   X   X    
Quinn et al. 1990   X    X      X   X       
Polacheck et al. 1999  X    X  X X      
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Table 2. (cont’d)       

 
   

Maximum Recruitment 
Level  

Stock Size 
Estimates  Control Rules 

Studies  Uncorrelated Correlated  No Error Error  CC CF CE Threshold BB CCC 
40-
10 

                  
Objective Function: Minimize Variability in Yield or Profits 

Ricker 1958  X   X    X X     
Larkin and Ricker 1964   X    X      X X         
Tautz et al. 1969  X   X    X X     
Gatto and Rinaldi 1976   X    X      X X         
Reed 1979  X   X     X     
Jacobson and Taylor 1985   X    X    X X           
Koonce and Shuter 1987  X   X   X X   X   

Objective Function: Minimize Variability in Yield or Profits (continued) 
Getz and Haight 1989   X    X      X X         
Butterworth and Bergh 1993  X    X  X X X     
Collie and Spencer 1993  X   X    X X X    
Eggers 1993   X    X X    X X         
Lande et al. 1995  X   X   X X X     
Walters and Parma 1996     X  X X    X X         
Engen et al. 1997  X    X    X  X   
Lande et al. 1997   X    X X    X X   X     
DiNardo and Wetherall 1999  X   X   X X      
Hjerne and Hansson 2001   X    X      X       X   
Sladek and Bollermann 2002  X    X   X X X    
Vasconcellos 2003     X    X    X X         
Clark and Hare 2004  X   X    X    X  
Enberg 2005   X  X    X  X X   
Ishimura et al. 2005   X    X        X       X 
Lillegard et al. 2005   X      X    X X X X     
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Table 3.  Studies that evaluated various biological reference points (BRP) 

 
BRP   References 

Catch Levels 
MSY Clark 1973; Beddington and May 1977; Larkin 1977; Sissenwine 1978; Sissenwine and Shepherd  

1987; Hilborn and Walters 1992; Caddy and Mahon 1995 
MAY Sissenwine 1978; Getz et al. 1987; Murawski and Idoine 1989; Annala 1993 
MSY proxies Beddington and Cooke 1983; Annala 1993 

Fishing Mortality Levels 
Larkin 1977; Koonce and Shuter 1987; Hilborn and Walters 1992; Overholtz 1999; Mace 2001;  Fmsy

  Collie and Gislason 2001; Gibson and Myers 2004; Brodziak and Legault 2005 
F = M Alverson and Pereyra 1969; Francis 1974; Deriso 1982 
Fmax and F Ricker 1975; Sissenwine and Shepherd 1987; Deriso 1982; Deriso 1987; Clark 1991; Jakobsen 1992;  0.1
  Goodyear 1993; Leaman 1993; Helser and Brodziak 1998; Collie and Gislason 2001; Campana 2002; 

Rahikainen and Stephenson 2004 
Fx% Sissenwine and Shepherd 1987; Gabriel et al. 1989; Clark 1991; Goodyear 1993;  
  Jakobsen 1993; Mace and Sissenwine 1993; Fujioka et al. 1997; Siddeek and Al-Hosni 1998; Clark 

1993; Clark 1999; Collie and Gislason 2001; Clark 2002; Williams 2002; Booth 2004; Rahikainen and 
Stephenson 2004 

Fro Sissenwine and Shepherd 1987 
Frep, Fmed, Fhigh, Flow Sissenwine and Shepherd 1987; Jakobsen 1993; Mace and Sissenwine 1993;  
  Maguire and Mace 1993; Collie and Gislason 2001; 
Fst Quinn and Szarzi 1993; Hayes 2000 

Threshold levels 
biomass thresholds Quinn et al. 1990; Clark 1991; Mace and Sissenwine 1993; Overholtz et al. 1993; 
    Sigler and Fujioka 1993; Thompson 1993; Zheng et al. 1993a; Zheng et al. 1993b; Myers et al. 1994; 

Fujioka et al. 1997; Quinn and Deriso 1999; Collie and Gislason 2001; Booth 2004 
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Figure 2.—Variants of basic control rules and how fishing mortality generally changes with biomass or abundance for each type. 
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CHAPTER 3 

EVALUATING HARVEST CONTROL RULES FOR LAKE WHITEFISH IN THE 

GREAT LAKES: ACCOUNTING FOR VARIABLE LIFE-HISTORY TRAITS 

 

Abstract 

Lake whitefish support a commercial fishery in the Great Lakes and experience 

spatial and temporal variation in life history traits, such as size-at-age.  Currently, the 

fishery is managed by attempting to maintain a constant mortality rate.  I used an age-

structured simulation model that incorporated stochasticity in life history traits, 

uncertainty in future lake whitefish growth, and other sources of uncertainty to compare 

the current strategy with a range of alternative control rules, including conditional 

constant catch (CCC), constant fishing rate (CF), biomass-based (BB), and CF and BB 

rules with a 15% limit on the interannual change in the target catch.  With appropriate 

policy parameters, the CF and BB rules can simultaneously attain higher average yield 

and spawning stock biomass than all other control rules.  The CCC rule and limiting the 

CF or BB rules to a 15% change in target catch had the lowest yearly variability in yield.  

For control rules using policy parameters that produced the same yield, low biomass 

levels were attained most frequently for the CF and BB rules with a 15% limit on target 

catch and least often for the BB rule.  The low yearly variability in yield provided by 

limiting target catch changes to 15% comes at the cost of frequently reducing biomass to 

low levels, so that in many situations other control rules would be preferred.  The 

sensitivity of results to uncertainty about future lake whitefish growth was control rule 

specific and depended on whether stock growth was fast or slow. 
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1.  Introduction 

1.1.  Harvest Control Rules 

Harvest control rules are guidelines that specify an amount of catch, fishing effort, 

or fishing mortality as a specific, and usually simple, function of an estimate of the 

current system state (e.g, spawning biomass; Deroba and Bence, 2008). Ideally, a harvest 

control rule is selected based on a management strategy evaluation or simulation analysis 

that compares control rules for their ability to meet competing fishery objectives (e.g., 

maximizing yield versus minimizing annual variation in yield), and considers key 

uncertainties (e.g., shape of the stock-recruit curve) and sources of error in the 

management process (e.g., assessment error; Smith et al., 1999; Punt et al., 2002; Kell et 

al., 2006; Deroba and Bence 2008).  Often times, however, control rules and the 

parameters for a control rule are defined in an ad hoc manner, and so may not be optimal 

for meeting given fishery objectives (Deroba and Bence, 2008).  Furthermore, many 

analyses have ignored sources of uncertainty and error that affect relative control rule 

performance, and so few control rules have been thoroughly examined for their relative 

ability to meet competing fishery objectives (Deroba and Bence, 2008).  Few analyses 

have also considered the effect of spatial or temporal variation in population parameters, 

such as growth, maturity, or stock-recruitment relationships, and such factors can affect 

control rule performance (Deroba and Bence, 2008). 

1.2.  Lake Whitefish Fishery History and Management 

Lake whitefish, Coregonus clupeaformis, have supported a historically important 

subsistence fishery for Native American bands and a highly valued commercial fishery in 

the upper Great Lakes (Lakes Huron, Michigan, and Superior).  Lake whitefish stocks 
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collapsed in each of these lakes in the 1930s and 1940s partially due to overexploitation 

(Smiley, 1882; Koelz, 1926; Jensen, 1976; Brown et al., 1999; Ebener and Reid, 2005), 

but have since rebounded to once again become the main commercial species (Mohr and 

Ebener, 2005).  For example, lake whitefish provide about 80% of the total commercial 

yield from Lake Huron in each year (Mohr and Ebener, 2005). 

In 1979, the rights of Native American bands to fish in the Michigan waters of the 

upper Great Lakes, as reserved in a treaty signed in 1836, were reaffirmed by U.S. federal 

courts.  Since the reaffirmation of treaty fishing rights, periodic stock assessments have 

been conducted for stocks within spatially defined management units, with the fishery 

data and harvest from within each management unit treated as applying to a 

reproductively isolated stock (Figure 1; Ebener et al., 2005). 

Lake whitefish stocks are also characterized by spatial and temporal variation in 

various population parameters.  For example, lake whitefish growth in some areas of the 

Great Lakes has declined in recent years, but similar declines have not occurred 

everywhere despite similar ecosystem changes (e.g., Hoyle et al., 1999; Pothoven et al., 

2001; Cook et al., 2005; Mohr and Nalepa, 2005; Lumb et al., 2007).  Growth rates, 

maturity ogives, natural mortality, and stock-recruit relationships also likely differ 

spatially among some of the management units due to factors such as different historical 

exploitation patterns or long-term differences in environmental conditions experienced by 

distinct stocks occurring across a latitudinal gradient (e.g., Wang et al., 2008). 

Since 2000, guidelines for the management of lake whitefish have been set 

according to a Consent Decree.  The 2000 Consent Decree created a Technical Fisheries 

Committee and its Modeling Subcommittee (MSC) to conduct stock assessments and 
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recommend annual quotas for each individual management unit.  Recommended yields 

are treated as limits in units where yield is allocated between the state and tribal fishery, 

and targets in units where all yield is allocated to the tribal fishery. The MSC fits 

statistical catch-at-age (CAA) models to commercial fishery data to estimate population 

numbers, mortality rates, fishery harvest, and other population parameters of interest.  

The estimates of the population parameters are then used to project each stock’s 

abundance into the future, and the target or limit quotas are determined so that the total 

annual mortality rate equals 65% for ages experiencing the highest levels of fishing 

mortality.  The CAA models assume a constant natural mortality rate across ages and 

time, and so this is equivalent to a constant fishing mortality rate (constant-F) control 

rule. 

The constant-F control rule and the parameters for the control rule (i.e., 65% total 

annual mortality rate) are somewhat ad hoc and may not be optimal for meeting fishery 

objectives.  The value of 65% was based on the work of Healey (1975) who found that a 

substantial proportion of lake whitefish stocks with total annual mortality rates in excess 

of 70% were depleted or precarious, whereas stocks with rates below 65% appeared to 

have generally fared well.  Jacobson and Taylor (1985) compared the relative 

performance of constant-F and constant catch control rules in terms of annual yield and 

variability in yield for lake whitefish in northern Lake Michigan.  Their analyses, 

however, only evaluated two control rules, did not consider the spatial or temporal 

variation in lake whitefish population parameters (e.g., growth), and did not include 

assessment error, which can affect the relative performance of control rules (Deroba and 

Bence, 2008). 
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My objective was to evaluate alternative control rules in their ability to meet 

fishery objectives (e.g., maximizing yield, minimizing annual variation in yield).  To 

address my objective, I developed a simulation model that compared several control rules 

at meeting fishery objectives and considered key uncertainties (e.g., shape of the stock-

recruitment curve) and sources of error (e.g., assessment error). 

2.  Methods 

2.1. Stocks in 1836 Treaty waters 

The simulation model developed and used in this study was based upon data and 

assessments of lake whitefish stocks from 1836 Treaty waters (Figure 1).  The 1836 

Treaty waters encompass much of the Michigan waters of Lakes Superior, Huron, and 

Michigan (Figure 1).  These waters are stratified into 18 management units with 

individual surface areas ranging from 69,000 to 733,000 ha, and a total surface area of 

5.8 million ha (Figure 1; Ebener et al., 2005). 

2.2.  Overview of simulations 

I developed a stochastic simulation model to project the abundance of 

hypothetical lake whitefish stocks, based on characteristics of stocks in 1836 Treaty 

waters.  The model included age-3 through an age-12 “plus” group, which was an 

aggregate group including age-12 and older.  Selected performance metrics (section 2.9) 

were used to compare the performance of various control rules (section 2.8).  The 

simulation model also included assessment and implementation error, and the sensitivity 

of the results was evaluated to different values for each source of error (section 2.7).  For 

each value of the range of policy parameters searched for each control rule, 1000 
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simulations were run.  Each simulation was a 250 year projection, but results were 

presented based on a summary of the last 100 years. 

Growth and maturity sub-models (sections 2.3 and 2.5) were estimated from 

biological data based on samples from commercial trap-net catches.  Separate sets of 

growth parameters were estimated and simulations were run for two categories of stocks, 

fast and slow growth (i.e., stocks with relatively longer or shorter mean lengths at age, 

respectively).  In some areas of 1836 Treaty waters, and more broadly in some areas of 

the Great Lakes, lake whitefish size-at-age has varied over time, particularly in recent 

years (e.g., Hoyle et al., 1999; Pothoven et al., 2001; Mohr and Nalepa, 2005).  One 

possibility is that recent trends are part of longer-term fluctuations, so that similar long-

term variation will continue to occur as part of a correlated but stationary process.  

Alternatively, there may have been a permanent change to the environment and recent 

growth patterns are now a permanent property of these stocks.  I developed two variants 

of a growth model reflecting these alternatives (autocorrelated versus recent growth 

patterns) and separate sets of simulations were done for each of these for both the fast and 

slow growth stocks. 

Substantial uncertainty exists regarding the recruitment process for most species 

(Myers et al., 1997; Myers et al., 1999).  To acknowledge this, stock-recruitment 

parameters used in each simulation were drawn randomly from a set of possible values, 

which were based on fitting the recruitment sub-model (section 2.4) to stock and 

recruitment time series developed for each management unit from the assessments for 

that unit.   



2.3.  Growth sub-models 

As indicated in section 2.2, models were parameterized and simulations were run 

for four growth scenarios: 1) autocorrelated, fast growth, 2) autocorrelated, slow growth, 

3) similar to more recent years, fast growth, 4) similar to more recent years, slow growth.  

Management units were categorized as fast or slow growing, and the models described in 

sections 2.3.1 and 2.3.2 were parameterized separately based on data for stocks of each 

category.  Because growth is likely linked to maturity (e.g., Beauchamp et al., 2004), the 

maturity sub-model was also fit separately for fast and slow growth categories (section 

2.5).  Management units were classified as fast or slow based on pairwise comparisons of 

mean length at age between management units, and expert opinion (see Appendix A). 

2.3.1.  Growth autocorrelated 

My approach to allowing longer-term fluctuations in size-at-age was to model 

length at age-3 in each year y by: 

Lyy
y eeLL εφ

3,3 = ;     (1) 

where 3L  was the mean length of an age-3 fish, yφ  and Lyε  were, respectively, the 

autocorrelated and uncorrelated contributions to temporal process error:  

( )2;0~ LLy N σε ;     (2) 

yyy γφρφ φ += −1 ; ( )2;0~ φσγ Ny ;     (3) 

 φρ  was the level of autocorrelation, and  and 2
φσ

2
Lσ were the variances associated 

with the process errors.  The parameters of this portion of the growth sub-model were 
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estimated based upon analysis of time-series of mean length-at-age data (see Appendix 

A). 

For ages greater than age-3, length in each age a and year y was simulated using 

an incremental form of the von Bertalanffy model similar to that of Irwin et al. (2008): 

yayaya LLL ,1,1, Δ+= −− ;     (4) 

where 

yaLyyaya LL ,,1,1, Δ−− +++=Δ εωθλ ;      (5) 

and λ   and θ  were interecept and slope parameters, respectively.  The growth increment 

was influenced by yω , a year-specific process error common to all ages, and yaL ,,Δε   

a process error specific to each year and age combination, where: 

( )2;0~ ωσω Ny ; ( )2
,, ;0~ LyaL N ΔΔ σε .     (6) 

The parameters of this portion of the growth sub-model were again estimated from 

observed mean length at age data by relating increments in mean length for a cohort to 

current mean length (see Appendix A). 

Weight at each age and year was modeled as a power function of length and mean 

length at age-3 in years y+1 and y+2, 2,1,3 ++ yyL : 

ϕχτ 2,1,3,, ++= yyyaya LLW ;     (7) 

where τ is the condition factor parameter, and χ  and ϕ  are curvature parameters (Quinn 

and Deriso, 1999).  I included average length at age-3 to allow weight at length to 

respond to growth conditions.  Length at age-3 represents a measure related to relatively 
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recent growth conditions (over the previous two to three years).  Consequently mean 

length at age-3 averaged over years y+1 and y+2 represents a measure of growth 

conditions during a window roughly centered on year y.   This modeling choice was 

motivated in part by moderately large changes in the weight versus length relationship so 

that weight at length tended to be positively correlated with length at age-3 in recent 

years.  The parameters of this portion of the growth sub-model were estimated using 

multiple linear regression relating log transformed mean weight at age to log transformed 

mean length at age and log transformed mean length at age-3 (see Appendix A). 

2.3.2.  Growth remained similar to recent levels 

For the case of growth remaining similar to more recent levels, the growth sub-

models of section 2.3.1 were modified as follows.  First, length at age-3 was simulated as 

above (equation 1), except that φρ was zero so that yφ  (equation 3) were uncorrelated.  

Second, weight was determined solely as a power function of length (i.e., the power term 

involving 2,1,3 ++ yyL  was dropped from equation 7): 

χτ yaya LW ,, = . 

  The parameters for the growth sub-model for the recent growth scenarios were 

also estimated similarly to the case of autocorrelated growth, but only data from the three 

most recent years available from each management unit were used, with the exact range 

of years depending on the management unit (see Appendix A). 

2.4.  Stock-recruitment sub-models 
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Recruitment was defined as the number of age-3 lake whitefish.  Recruitment 

followed Ricker stock-recruit dynamics for the sth simulation: 



RyySSBs
ysy eeSSBR εβα −

=,3 ,     (8) 

where R was recruitment, SSB was spawning stock biomass, α was the number of recruits 

per SSB at low SSB, β was the instantaneous decline in recruitment per SSB as SSB 

increased, Ryε  was autocorrelated temporal process error: 

yRyRsRy ςερε += −1 ;  ( )2;0~ Rsy N σς ,     (9) 

and Rsρ  and 2
Rsσ  were the level of autocorrelation and variance.  Stock-recruitment 

parameters (α, β, Rρ , 2
Rσ ) were randomly selected with equal probability from a set of 

possible values and retained for each simulation (hence they are subscripted by 

simulation).  These possible parameters of the stock-recruitment sub-model corresponded 

to estimates for each assessed lake whitefish stock in 1836 Treaty waters, obtained by 

applying a general linear mixed model to assessment estimates of recruitment and stock 

size using methods similar to those of Myers et al. (1999; see Appendix A). 

Spawning stock biomass was measured in number of eggs: 

∑ +=
= ×= 12

3 ,,
a
a yaaLyay EggsFemWmNSSB ;     (10) 

where  was proportion mature (see section 2.5), Fem was the proportion of females, 

and Eggs was the number of eggs per kilogram of fish.  Fem was estimated separately for 

fast and slow growth simulations as the mean proportion of females used in fitting CAA 

models in fast and slow growth management units, respectively, and Eggs equaled 

aLm
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19,937/kg for all simulations, which was also the value used in all CAA models (Ebener 

et al., 2005). 

2.5.  Maturity sub-models 

A separate maturity function was estimated for fast and slow growth simulations, 

and probability of maturity  was modeled as a logistic function of mean length-at-

age, weighted by the probability of being a length L given a mean length-at-age  and 

variance : 

aLm
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2
aLσ
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e
m 2,

1
1 σηκ

;     (11) 

where κ  was the curvature parameter and η  was the length at which the inflection point 

occurs.  The probability of maturity was weighted by ( )2,
aLaLLp σ  to account for the 

variation around a mean length at age, and the subsequent variation around the 

probability of maturity at a mean length at age.  That is, fish of a given age class may be 

more less likely to be mature depending on whether they were longer or shorter than the 

mean length at age, and the weighting accounts for this variation.  The parameters of the 

logistic portion of the maturity sub-model were estimated using logistic regression using 

data from only females (see Appendix A).  The assumed length distributions,  

( )2,
aLaLLp σ ,  were based on a single estimated coefficient of variation (0.036) for 

length at age, which together with mean length,  , was the basis for the    used 

in equation 11 (see Appendix A). 

aL 2
aLσ
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2.6.  Population abundance sub-model 

A vector of initial abundances at age (i.e., in year zero) was randomly selected 

with equal probability from a set of vectors and retained for each simulation.  This 

method was necessary to scale the initial abundances at age to the set of stock-recruit 

parameters chosen for each simulation.  The suite of possible vectors corresponded to the 

equilibrium abundances at age for each assessed lake whitefish stock in 1836 Treaty 

waters under a fishing mortality rate that would reduce spawning stock biomass per 

recruit to 20% of the unfished level (see Appendix A).  The vector of initial abundances 

at age for each simulation was from the same stock as was used for selecting the vector of 

stock-recruitment parameters.  Abundance N in each age and year was then predicted: 

yaZ
yaya eNN ,

1,1,
−

−−= ;     (12) 

where Z was the total instantaneous mortality rate and equaled the sum of natural 

mortality M and fishing mortality.  Fishing mortality F was the product of fully-selected 

fishing mortality and selectivity: 

yaLya FSF =, ;     (13) 

where  was selectivity at mean length-at-age.  Selectivity was modeled as a gamma 

function of mean length-at-age (Quinn and Deriso, 1999), and approximated a trap-net 

selectivity curve, which is a dominant gear used for lake whitefish in these waters.  In the 

simulations, natural mortality was constant across ages and years, but differed between 

simulations for fast and slow growth stocks, being set equal to the mean natural mortality 

rate assumed in CAA assessment models for each stock in each growth category (Ebener 

et al., 2005). 

aLS
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2.7.  Assessment and implementation error 

The simulation model included assessment and implementation error, following 

an approach similar to that of Punt et al. (2008).  Assessment error was modeled as a 

year-specific lognormal random deviation common to all ages with first-order 

autocorrelation: 

⎟
⎠
⎞⎜

⎝
⎛−

=
22

,,ˆ nny
yaya eNN

σε
;     (14) 

where N̂  was assessed abundance,  was autocorrelated error: nyε

ynnynny δρερε 211 −+−= ;  ( )2;0~ ny N σδ ;      (15) 

and  was the level of autocorrelation. nρ

Assessment error affected the target catch set by managers because target catches 

 were set by applying a fully selected desired fishing mortality rate  to assessed 

abundance rather than actual abundance: 

yĈ yF̂
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where  was the product of fully selected desired fishing mortality and , and 

 was the sum of  and M. 

yaF ,ˆ
aLS

yaZ ,ˆ yaF ,ˆ

The fully selected fishing mortality rates yF~  that would result in the target catch 

being removed when applied to actual abundance were found numerically using Newton-
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Raphson iterations.  A maximum of 3.0 was set on  because  were sometimes 

unachievable. 

yF~ yĈ

Implementation error was included as a year specific lognormal random 

deviation: 

⎟
⎠
⎞⎜

⎝
⎛−

=
22

,
~ FFy

yaLya eFSF
σε

;  ( )2;0~ FFy N σε ;     (17) 

where  was the actual fishing mortality rate exerted on the actual abundance 

. 

yaF ,

yaN ,

The sensitivity of results was tested using a range of parameter values for 

assessment and implementation error (Table 1).  The effect of different levels of 

assessment and implementation error was compared to a baseline scenario, which was 

defined as the middle value for each parameter (Table 1; = 0.05, = 0.7, 2
nσ nρ

2
Fσ = 

0.01).  Rather than an experimental design that crossed all assessment and 

implementation error parameters, each parameter was evaluated at a high and low level 

while holding all other parameters at the baseline level (i.e., seven combinations).  The 

range of parameter values evaluated for assessment and implementation error are similar 

to those of studies much like this one, including analyses of lake trout Salvelinus 

namaycush in Lake Superior and yellow perch Perca falvescens in Lake Michigan (Irwin 

et al., 2008; Nieland et al., 2008; Punt et al., 2008). 

2.8.  Control rules 

The control rules evaluated were: conditional constant catch (CCC), biomass 

based (BB), constant-F, and BB and constant-F with a 15% limit on the interannual 
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change in the target catch,  (BB-lim, constant-Flim, respectively; Clark and Hare, 

2004; Deroba and Bence, 2008).  The CCC control rule used a constant target catch 

unless removing that target catch exceeded some predetermined maximum fully-selected 

fishing mortality rate, and so the CCC control rule was defined by two policy parameters; 

a constant catch level and maximum fishing mortality rate (Clark and Hare, 2004).  The 

constant catch levels were set as a fraction of maximum sustainable yield (MSY; see 

Appendix A).  MSY was randomly selected from a suite of values and retained for each 

simulation.  The suite of possible values corresponded to values for each assessed lake 

whitefish stock in 1836 Treaty waters, and the value of MSY for each simulation was for 

the same stock as was used for selecting the vector of stock-recruitment parameters.  The 

fully-selected fishing mortality rate that would result from removing the target constant 

catch amount from the assessed abundance (

yĈ

N̂ ), for comparison to the predetermined 

maximum fishing mortality rate, was calculated numerically using Newton-Raphson 

iterations.  The BB control rule was similar to that of Katsukawa (2004) and was defined 

by three policy parameters; a lower SSB threshold LTSSB  below which  was set to 

a low level, an upper SSB threshold  above which  was set to a maximum 

rate , and .  As assessed spawning stock biomass  decreased from 

 ,  decreased linearly with  until equaled 0.05: 

yF̂

HTSSB yF̂

satF satF yBSS ˆ

HTSSB yF̂ yBSS ˆ yF̂

If  then  = 0.05 LTy SSBBSS <ˆ yF̂
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If  then HTyLT SSBBSSSSB ≤< ˆ 0.05) ,
ˆ

max(ˆ
LTSSBHTSSB

LTSSByBSS
satFyF

−

−
=  

If  then  = .     (18) yHT BSSSSB ˆ≤ yF̂ satF

 (Figure 2).  All other control rules were also restrained to have a target fishing mortality 

rate of at least 0.05 because I assumed some amount of fishing would always take place.  

Preliminary analyses showed that results were not sensitive to this assumption.  LTSSB  

and  were set as a fraction of unfished SSB, SSBHTSSB F=0 (see Appendix A).  SSBF=0  

was randomly selected from a suite of values and retained for each simulation, which was 

necessary to scale the policy parameters that depended on a measure of SSB to the set of 

stock-recruit parameters chosen for each simulation.  The suite of possible values 

corresponded to values for each assessed lake whitefish stock in 1836 Treaty waters, and 

the value of SSBF=0 for each simulation was for the same stock as was used for selecting 

the vector of stock-recruitment parameters.   was estimated in the same way as 

 (equation 10) except with  replaced with  (equation 14).  The 

constant-F control rule was a special case of the BB control rule with 

yBSS ˆ

ySSB yaN , yaN ,ˆ

LTSSB  and 

 both set to zero, and was defined by one policy parameter; a level of fishing 

mortality.  The BB-lim and constant-Flim control rules worked in the same way as the 

BB and constant-F rules except with the specified restriction on the target catch.  For 

each control rule, a range of values was evaluated for each policy parameter.  The 

constant catch parameter of the CCC rule was varied from 0.1MSY to 1.4MSY in 

increments of 0.1, while the maximum fishing mortality rate parameter was varied from 

HTSSB
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0.2 to 3.0 in increments of 0.2.  For the BB control rule, with and without the restraint on 

interannual catch, LTSSB  and  were varied from 0.0SSBHTSSB F=0 to 1.0SSBF=0 in 

increments of 0.1, while  was varied from 0.05 to 3.0 in increments of 0.05.  The 

constant-F strategy, with and without the restraint on interannual catch, was evaluated 

over the same range of values as . 

satF

satF

2.9.  Performance metrics 

Plots of SSB versus yield Y, interannual variability in yield Yvar versus the 

proportion of years that SSB fell below 20% of SSBF=0, Y versus Yvar, and Y versus the 

proportion of years that SSB fell below 20% of SSBF=0 were used to examine the trade-

offs among potential competing fishery objectives and compare the performance of 

control rules.  In sections below, I refer to the proportion of years that SSB fell below 

20% of SSBF=0  as “risk” because levels of SSB near this value have been used as a 

biological reference point below which recruitment overfishing was likely to occur and so 

should be avoided (Quinn et al., 1990; Clark, 1991; Thompson, 1993; Fujioka et al., 

1997; Booth, 2004).  Mean Y and SSB over the last 100 years, the proportion of the last 

100 years with SSB less than 20% of SSBF=0, and Yvar over the last 100 years were 

recorded for each simulation.  The interannual variability in yield, defined as in Punt et 

al. (2008) was calculated over the last 100 years for each simulation: 

∑

∑

>

> −−
=
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150 1var
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Y
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Y ;     (19) 

where 
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The trade-off plots described above were then constructed for each of three percentiles 

calculated among simulations: the median, the percentile value less than 75% of the 

values among simulations (i.e., 25th percentile for SSB and Y, 75th percentile for risk and 

Yvar), and the percentile value less than 90% of the values among simulations (i.e., 10th 

percentile for SSB and Y, 90th percentile for risk and Yvar). 

The rank order performance of the control rules was evaluated for each growth 

scenario and trade-off plot by examining the combination of policy parameters that 

resulted in the best performance for each control rule.  This method equates to 

determining the optimal control rule as if future growth (i.e., autocorrelated versus recent 

growth patterns) was a known certainty. 

To evaluate the sensitivity of control rule performance to uncertainties about 

future growth, an optimal set of policy parameters (see below) was chosen for each 

control rule, trade-off plot, and growth scenario.  The optimal set of policy parameters for 

each future growth scenario was then applied to the alternative future growth scenario 

(i.e., autocorrelated versus recent growth patterns), but for the same type of stock growth 

(i.e., fast or slow growing).  The difference in performance between the optimal set of 

policy parameters and the set of policy parameters being applied under the wrong future 

growth scenario was used as the measure of sensitivity.  This method equates to 

evaluating how well a control rule would perform if policy parameters were chosen 

assuming one type of future growth was true, when in fact the alternative growth future 
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was true.  The optimal set of policy parameters for each trade-off plot was defined as the 

set that: maximized yield and maintained SSB above 50% of SSBF=0, minimized 

variability in yield and produced risk less than 0.40, maximized yield and produced 

variability in yield less than 0.4, and maximized yield and produced risk less than 0.40.  

This method of selecting optimal policy parameters was only used to illustrate the 

sensitivity of control rule performance to uncertain future growth, and because this does 

not necessarily reflect desired tradeoffs, should not be used for management without 

careful consideration of fishery objectives. 

3. Results 

3.1.  Overview of results 

Varying the level of implementation error had little effect on the relative or 

absolute performance of the control rules, and consequently, all the results below are for 

the baseline level.  Varying the parameters related to assessment error affected the 

relative performance of some control rules, but only for trade-off plots that included 

variability in yield (Section 3.4).  For the other performance metrics, the relative and 

absolute performance of the control rules varied little among the different levels of 

assessment error parameters (see Appendix B), and this was consistent among growth 

scenarios.  Thus, the choice of optimal parameters would also generally be robust to the 

level of assessment error.  As a consequence, results for the sensitivity of the control 

rules to varying assessment error parameters (Section 3.4) include example graphs based 

on simulations of fast growth similar to more recent levels, and the results in all other 

sections are for baseline levels of assessment error.  Results for the different percentiles 

showed similar trade-offs among performance metrics and relative differences among 
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control rules; so only results for the median are considered further. The rank order 

performance of the control rules for each trade-off plot was also the same for all levels of 

each source of uncertainty (see Appendix B), and these rank orders are presented in 

Section 3.2 with example graphs based on simulations of fast growth similar to more 

recent levels. 

3.2.  Rank-order performance of control rules 

For the plot of SSB versus Y, the BB control rule performed best, providing more 

Y at a given level of SSB and higher SSB at a given level of Y than other control rules 

(Figure 3).  The BB control rule was followed in performance by constant-F, CCC, and 

the BB-lim and constant-Flim control rules (Figure 3). 

For the plot of Yvar versus risk, the CCC, BB-lim, and constant-Flim control rules 

provided less Yvar at a given level of risk than other control rules (Figure 3).  These same 

control rules, however, were also more risky at a given level of Yvar than other control 

rules (Figure 3). 

For the plot of Y versus Yvar, the CCC, BB-lim, and constant-Flim control rules 

provided less or similar Yvar at a given level of Y than other control rules (Figure 4). The 

BB control rule, however, attained more Y at a given level of Yvar, and was followed in 

performance by the constant-F, CCC, and the BB-lim and constant-Flim control rules 

(Figure 4). 

For the plot of Y versus risk, the BB control rule performed best, providing more 

Y at a given level of risk and less risk at a given level of Y (Figure 4).  The BB control 

rule was followed in performance by constant-F, CCC, and the BB-lim and constant-Flim 

control rules (Figure 4). 
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3.3.  Sensitivity to  future growth uncertainty 

3.3.1.  Fast growth stocks 

For SSB versus Y, yield was generally insensitive to future growth, and the BB 

and constant-F control rules were less sensitive than other control rules.  All of the 

percent changes in yield from the optimum were less than 6%, as were the changes in 

SSB for the BB and constant-F control rules (Table 2).  For the CCC, BB-lim, and 

constant-Flim control rules, the percent changes in SSB were at least 10%, and SSB 

decreased from the optimum and below 50% of SSBF=0 (i.e., the level used to define 

optimal) when policy parameters were chosen as though growth would be similar to 

recent levels and autocorrelated growth was the true future, but increased from the 

optimum for the opposite situation (Table 2).  So, control rules and policy parameters 

chosen by incorrectly assuming future growth will be autocorrelated cost little in yield 

and produced more SSB than the optimum, relative to incorrectly assuming future growth 

will be similar to recent levels, which produced less SSB than the optimum. 

For Yvar versus risk, results were insensitive to the future growth scenario.  For 

all control rules, the percent change from the optimal levels was 0.00 (Table 2). 

For Y versus Yvar, results were generally insensitive to the future growth scenario.  

All of the percent changes in yield were less than 5%, and the changes in variability in 

yield were all less than 8% (Table 2).  Variability in yield increased from the optimum 

and, for the BB rule, above 0.40, when policy parameters were chosen as though growth 

would be similar to recent levels and autocorrelated growth was the true future, but 

decreased from the optimum for the opposite situation (Table 2).  So, control rules and 

policy parameters chosen by incorrectly assuming future growth will be autocorrelated 
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cost little in yield and produced less variability in yield than the optimum, relative to 

incorrectly assuming future growth will be similar to recent levels, which produced more 

variability in yield than the optimum. 

For Y versus risk, yield was generally insensitive to the future growth scenario, 

but risk was more sensitive.  All of the percent changes in yield were less than 5%, but 

the changes in risk were more variable (Table 2).  Risk increased from the optimum and, 

for the BB-lim and constant-Flim rules, to 0.40, when policy parameters were chosen as 

though growth would be similar to recent levels and autocorrelated growth was the true 

future, but decreased from the optimum for the opposite situation (Table 2).  So, control 

rules and policy parameters chosen by incorrectly assuming future growth will be 

autocorrelated cost little in yield and produced less risk than the optimum, relative to 

incorrectly assuming future growth will be similar to recent levels, which produced more 

risk than the optimum. 

3.3.2.  Slow growth stocks 

For SSB versus Y, the CCC, BB, and constant-F control rules were less sensitive 

to the future growth scenario than the BB-lim and constant-Flim rules.  All of the percent 

changes in SSB and yield were less than 5% for the CCC, BB, and constant-F control 

rules (Table 2).  For the BB-lim and constant-Flim rules, however, yield decreased and 

SSB increased from the optimum when policy parameters were chosen as though growth 

would be similar to recent levels and autocorrelated growth was the true future (Table 2).  

Results for these control rules were less consistent when policy parameters were chosen 

as though growth would be autocorrelated, but growth similar to recent levels was the 

true future.  For the BB-lim rule, both yield and SSB decreased from the optimum, and 



130 

SSB was less than 50% of SSBF=0 (Table 2).  For the constant-Flim rule, yield increased 

but SSB decreased below 50% of SSBF=0 (Table 2).  So, the costs and benefits of choosing 

policy parameters based on assuming an incorrect future for lake whitefish growth 

depended on the control rule. 

For Yvar versus risk, results were insensitive to the future growth scenario, except 

for the CCC control rule.  For the CCC control rule, variability in yield and risk increased 

from the optimum when policy parameters were chosen as though growth would be 

similar to recent levels and autocorrelated growth was the true future (Table 2).  When 

policy parameters were chosen as though growth would be autocorrelated and growth 

similar to recent levels was the true future, the percent changes were less than 3%, and 

variability in yield increased while risk decreased from the optimum levels (Table 2).  So 

for the CCC control rule, policy parameters chosen by incorrectly assuming future 

growth will be autocorrelated cost little in variability in yield and produced slightly less 

risk than the optimum, relative to incorrectly assuming future growth will be similar to 

recent levels, which produced more variability in yield and risk than the optimum. 

For Y versus Yvar, sensitivity to the future growth scenario depended on the 

control rule, but the BB control rule was the most sensitive.  For the BB and constant-F 

control rules, yield and variability in yield increased from the optimum (above 0.40 for 

variability in yield) when policy parameters were chosen as though growth would be 

similar to recent levels and autocorrelated growth was the true future, but decreased from 

the optimum for the opposite situation (Table 2).  For the other control rules, yield and 

variability in yield decreased from the optimum when policy parameters were chosen as 

though growth would be similar to recent levels and autocorrelated growth was the true 



future (Table 2).  When policy parameters were chosen as though growth would be 

autocorrelated and growth similar to recent levels was the true future, yield decreased and 

variability in yield increased from the optimum (Table 2).  So, the costs and benefits of 

choosing policy parameters based on assuming an incorrect future for lake whitefish 

growth will depend on the control rule. 

For yield versus risk, results were generally more sensitive to the future growth 

scenario than other trade-off plots.  For all control rules, yield and risk decreased from 

the optimum when policy parameters were chosen as though growth would be similar to 

recent levels and autocorrelated growth was the true future, but in the opposite situation, 

yield decreased or was the same and risk increased from the optimum, and above 0.40 for 

the BB-lim rule (Table 2).  So, control rules and policy parameters chosen by incorrectly 

assuming future growth will be similar to recent levels produced costs in yield at the 

benefit of less risk than the optimum, relative to incorrectly assuming future growth will 

be autocorrelated, which produced costs in yield and risk from the optimum. 

3.4.  Sensitivity to assessment error parameters 

Varying assessment error parameters affected the performance of the control rules 

for trade-off plots that included Yvar.  For the plot of Yvar versus risk, control rules that 

performed well at each performance metric increased in superiority over other control 

rules as  was decreased (Figure 5) or  was increased (Figure 6).  Specifically, the 

CCC, BB-lim, and constant-Flim control rules increased in superiority in terms of Yvar at 

a given level of risk, and the BB and constant-F rules increased in superiority in terms of 

attaining less risk at a given level of Yvar.  For the plot of Y versus Yvar, the CCC, BB-

lim, and constant-Flim control rules increased in superiority in terms of Yvar at a given 

nρ
2
nσ
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level of Y as  was decreased (Figure 7) or  was increased (Figure 8), but an 

increase in the superiority of the BB and constant-F control rules in terms of Y at a given 

level of Yvar did not materialize. 

nρ
2
nσ

4.  Discussion 

In this study, the BB control rule provided more yield and less risk than other 

control rules with all else being equal, and was followed in rank-order by constant-F, 

CCC, and the BB-lim and constant-Flim control rules, which is consistent with similar 

research (Irwin et al., 2008; Punt et al., 2008).  Irwin et al. (2008) used a similar BB 

control rule for a recreational yellow perch Perca flavescens fishery in southern Lake 

Michigan and found that the BB control rules produced higher yields and less risk than a 

constant-F control rule at given levels of SSB.  Punt et al. (2008) used a BB control rule 

that reduced catch (instead of F) linearly with SSB for groundfish off the U.S. west coast 

and found that the BB control rules produced higher yield and less risk than a constant-F 

control rule at low levels of productivity, but performance was nearly equal for high 

productivity. 

The CCC, BB-lim, and constant-Flim control rules provided less interannual 

variation in yield than other control rules, but at the cost of yield and risk.  Clark and 

Hare (2004) found that the CCC control rule could produce similar yields and SSB than a 

constant-F control rule, but with less variability in yield for Pacific halibut Hippoglossus 

stenolepis.  Their simulations, however, did not include parameter uncertainty in the 

stock-recruit relationship or assessment error.  The results of this study suggest that 

including these sources of uncertainty affects the relative performance of the CCC control 

rule, as has been shown for other control rules (Deroba and Bence, 2008).  For roundfish 
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stocks managed by the International Council for the Exploration of the Sea, limits on the 

interannual change in target catch that prevented quotas from being decreased often 

resulted in less yield and greater frequency of low SSB than a constant-F control rule 

(Kell et al., 2006), which is consistent with the findings of this study where the BB-lim 

and constant-Flim control rules performed worst in terms of yield and risk of low 

spawning stock with all else being equal (e.g., constrained to provide some specified 

level of spawning stock or yield).  The relative performance of limiting the interannual 

change in target catch, however, can depend on how tight the restraint is on the 

interannual change, productivity, variability in recruitment or growth, and current status 

of the stock (Punt et al., 2002; Kell et al., 2006). 

The rank order performance of the control rules, while treating future growth as 

known, was robust to the type of autocorrelated growth evaluated in this study, and the 

growth scenarios in general, but time varying population dynamics have been shown to 

affect relative performance (Walters and Parma, 1996; Deroba and Bence, 2008).  

Walters and Parma (1996) showed that a constant fishing mortality rate control rule 

performed better in terms of yield when the asymptote parameter of a Beverton–Holt 

stock–recruit model was autocorrelated, and this was counter to when this parameter of 

the stock-recruit model was constant.  Whether catchability is treated as time-varying in 

stock assessments also has an effect on control rule performance (e.g., Dichmont et al., 

2006).  Few studies have evaluated the effect of time-varying parameters, but more 

research is warranted in this area (Deroba and Bence, 2008). 

The robustness of control rule performance to uncertainty about future lake 

whitefish growth, and the most robust future lake whitefish growth to assume for 
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selecting policy parameters, depended on whether stock growth was fast or slow.  For fast 

growth stocks, selecting control rules and policy parameters by incorrectly assuming that 

future growth will be autocorrelated resulted in little cost from the optimum levels 

relative to the alternative of incorrectly assuming future growth will be similar to recent 

levels.  For slow growth stocks, however, the robustness of which future lake whitefish 

growth to assume for selecting policy parameters depended on the control rule and trade-

off plot.  The decision to select control rules and policy parameters based on some 

assumption about future lake whitefish growth will ultimately depend on how competing 

fishery objectives are weighted relative to each other.  Generally, however, control rules 

and policy parameters for fast growth stocks should likely be selected assuming future 

growth will be autocorrelated, but a universal recommendation for slow growth stocks is 

less clear (i.e., depends on the control rule and fishery objectives). 

The results were generally robust to the level of assessment error.  As reported 

here, Punt et al. (2008) found that assessment error affected results for Yvar, but other 

performance metrics similar to those included in this study were robust to this source of 

uncertainty.  Irwin et al. (2008) did not include a measure of yield variability, but also 

found that other performance metrics similar to those included in this study were 

insensitive to varying assessment error.  Conversely, Katsukawa (2004) reported that the 

superiority of BB control rules over constant-F control rules in terms of yield, diminished 

with increasing assessment error variance.  This contradiction may have occurred because 

Katsukawa (2004) did not include other sources of uncertainty (e.g., shape of the stock-

recruitment curve) that may outweigh the effect of assessment error on the relative 

performance of control rules.  Alternatively, Katsukawa (2004) summarized tradeoffs in 
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terms of yield versus the minimum biomass over a time-horizon, and stocks managed in 

the face of greater assessment uncertainty might suffer more extremes in stock size. 

In this study, limiting the interannual change in target catch by 15% was inferior 

or at best similar to other control rules for all performance metrics, and in some cases was 

more sensitive to uncertainty in future lake whitefish growth.  So, using alternative 

control rules would likely cost little relative to limiting the interannual change in target 

catch by 15%, and would produce benefits in most situations.  This result may not be 

general, however, as benefits associated with limiting the interannual variability in target 

catch depend on fishery objectives, the degree to which the interannual change is 

restrained, stock status, and other population parameters such as growth variability (Kell 

et al., 2006).   

Depending on the relative weight of fishery objectives, a control rule and policy 

parameters other than the one currently in use (i.e., constant-F based on a total annual 

mortality rate of 65%) may want to be considered for lake whitefish populations in Lakes 

Huron, Michigan, and Superior.  For example, a BB control rule with appropriately 

selected policy parameters could likely produce nearly the same or more yield, spawning 

stock biomass, and less risk with little cost in variability in yield relative to the currently 

used policy.  Similarly, the CCC control rule can likely provide less variability in yield, 

but at the cost of yield.  So, if maintaining low variability in yield is more desirable than 

maximizing yield, a CCC control rule may want to be considered. 

Not all dynamics or uncertainties about lake whitefish were included in this study, 

and unanticipated changes in the future may require periodic reviews of this evaluation 

(Butterworth, 2008).  For example, this study did not include density dependent growth, 
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which has been shown to occur for lake whitefish (Henderson et al., 1983; Kratzer et al., 

2005).  Density dependence was not included because the recent declines in lake 

whitefish growth that have occurred in some areas generally happened over a time period 

when abundance has declined or remained relatively stable, and so could not have been 

caused by density dependence (e.g., Lumb et al., 2007).  Density dependence is, however, 

a likely compensatory response in lake whitefish and so should be considered if 

conditions arose to make such dependence important.  To address such changes that may 

be outside the realm of uncertainties included in a management strategy evaluation, 

Butterworth (2008) recommended scheduling periodic reviews to consider whether 

evaluations should be updated.  If radical unanticipated changes occur, Butterworth 

(2008) recommended making an ad hoc adjustment to the pre-agreed control rule until 

the management strategy evaluation can be updated and tested for robustness to the 

recent changes.  Alternatively, stakeholders could agree on a pre-determined default 

management plan that would be applied temporarily until the management strategy 

evaluation is reviewed (Butterworth, 2008).  Such scheduled maintenance of this 

evaluation would also be prudent given the uncertainties and variability in lake whitefish 

population dynamics. 
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Figure 1.— 1836 Treaty-ceded waters and lake whitefish management units in Lakes 

Superior, Huron, and Michigan (Ebener et al. 2005). 
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Figure 2.—Example of the biomass based control rule used in this analysis (solid line).  

Dashed lines are provided as a reference for defining the policy parameters. 
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Figure 3.—Median spawning stock biomass versus median yield (left column) and median interannual variability in yield versus 

median proportion of years with spawning stock biomass less than 20% of the unfished level (right column) for baseline levels of 

assessment and implementation error parameters and fast growth similar to recent levels (see text for details), for the conditional 

constant catch control rule (top row), constant-F (black dots, middle row), constant-F with a 15% limit on the interannual change in 

target catch (grey dots, middle row), biomass based (black dots, bottom row), and biomass based with a 15% limit on the interannual 

change in target catch (grey dots, bottom row).  Each dot corresponds to the medians from 1000 simulations for one combination of 

policy parameters for the given control rule. 
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Figure 4.— As in figure 3, except for median yield versus median interannual variability in yield (left column) and median yield 

versus median proportion of years with spawning stock biomass less than 20% of the unfished level (right column). 
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Figure 5.—Median interannual variability in yield versus median proportion of years with spawning stock biomass less than 20% of 

the unfished level for baseline assessment and implementation error variance, the extent of autocorrelation in assessment error set 

equal to 0.0 or 0.9, and fast growth similar to recent levels (see text for details).  Control rules are displayed as in Figure 3. 
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Figure 6.—As in Figure 5, except with the extent of autocorrelation in assessment error set equal to the baseline level (0.7), and for 

assessment error variance equal to 0.01 or 0.20. 
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Figure 7.—As in Figure 5, except with median yield versus median interannual variability in yield. 
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Figure 8.—As in Figure 5, except with the extent of autocorrelation in assessment error equal to the baseline level (0.7), for 

assessment error variance equal to 0.01 or 0.20, and for median yield versus median interannual variability in yield. 
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Table 1.—The different assessment and implementation error parameter values 

evaluated. 

Parameter Value 
Assessment error variance,  2

nσ 0.01, 0.05, 0.20 
Assessment error autocorrelation,  nρ

2
0.0, 0.7 0.9 

Implementation error variance, Fσ  0.0, 0.01, 0.0625 

 

 



Table 2.—The performance of optimal policy parameters (see text) chosen assuming the incorrect future about lake whitefish growth 
(autocorrelated versus recent) for each of four trade-offs in performance metrics and for fast and slow growing stocks in 1836 Treaty-
ceded waters.  The pairs of values under each growth scenario sub-heading are the performance of the policy parameters chosen 
assuming the wrong future lake whitefish growth, and are in the same respective order as the performance metrics defined by the 
trade-off plot for each row.  The values in parentheses are the percent change from the optimal set of policy parameters chosen 
assuming the correct future lake whitefish growth.  Spawning stock biomass values are reported as a fraction of the unfished level. 
Trade-off Plot

Yield vs. SSB 269437 (-2) 0.47 (-19) 353900 (-3) 0.59 (+18) 233050 (0) 0.54 (0) 151488 (0) 0.52 (0 )
Yvar vs . Risk 0.17 (0) 0.00 (0) 0.19 (0) 0.00 (0) 0.16 (+2 ) 0.06 (+500) 0.15 (+1) 0.00 (-100)
Yield vs. Yvar 269437 (-2) 0.29 (+7) 353900 (-3) 0.27 (-4 ) 233050 (-3) 0.33 (-5) 148246 (-2) 0.32 (+7)
Yield vs. R isk 269437 (-2) 0.05 (+400) 353900 (-3) 0.00 (-2 ) 233050 (-3) 0.13 (-46) 148246 (-2) 0.18 (+157)

Yield vs. SSB 372818 (-5) 0.52 (+4) 473026 (+2) 0.48 (-4 ) 403322 (+1) 0.48 (-4) 242113 (-2) 0.52 (+4)
Yvar vs . Risk 0.29 (0) 0.00 (0) 0.24 (0) 0.00 (0) 0.26 (0) 0.00 (0) 0.25 (0) 0.00 (0 )
Yield vs. Yvar 408409 (+1) 0.41 (+3) 491691 (-3) 0.38 (-3 ) 365127 (+22) 0.51(+28) 202301 (-14) 0.33 (-18)
Yield vs. R isk 449435 (0) 0.13 (+8) 560639 (0) 0.08 (-11) 418417 (-1) 0.18 (-18) 255924 (-1) 0.20 (+43)

Yield vs. SSB 331577 (0) 0.50 (0) 398959 (0) 0.51 (0) 272807 (0) 0.50 (0) 182210 (0) 0.51 (0 )
Yvar vs . Risk 0.29 (0) 0.00 (0) 0.24 (0) 0.00 (0) 0.26 (0) 0.00 (0) 0.25 (0) 0.00 (0 )
Yield vs. Yvar 326028 (-4) 0.38 (+6) 426116 (-3) 0.35 (-6 ) 278940 (+5) 0.42 (+5) 179020 (-2) 0.33 (-6)
Yield vs. R isk 326028 (-4) 0.10 (+67) 426116 (-3) 0.03 (-40) 278940 (-4) 0.14 (-63) 153258 (-16) 0.37 (+362)

Yield vs. SSB 201536 (+4) 0.45 (-10) 251255 (-4) 0.57 (+14) 166747 (-7) 0.51 (+2) 117944 (-3) 0.46 (-8)
Yvar vs . Risk 0.20 (0) 0.00 (0) 0.20 (0) 0.00 (0) 0.19 (0) 0.00 (0) 0.19 (0) 0.00 (0 )
Yield vs. Yvar 209020 (-1) 0.31 (+4) 273325 (-1) 0.32 (-4 ) 191478 (-6) 0.33 (-9) 122379 (-5) 0.31 (+13)
Yield vs. R isk 209020 (-1) 0.40 (+21) 273325 (-1) 0.27 (-16) 191478 (-6) 0.33 (-15) 125430 (-2) 0.42 (+35)

Yield vs. SSB 198279 (+5) 0.43 (-14) 250044 (-3) 0.59 (+16) 162228 (-7) 0.56 (+10) 117154 (+4) 0.45 (-10)
Yvar vs . Risk 0.20 (0) 0.00 (0) 0.20 (0) 0.00 (0) 0.19 (0) 0.00 (0) 0.19 (0) 0.00 (0 )
Yield vs. Yvar 208611 (-1) 0.31 (+4) 273465 (-1) 0.32 (-3 ) 194041 (-5) 0.32 (-14) 121763 (-4) 0.31 (+15)
Yield vs. R isk 208611 (-1) 0.40 (+18) 273465 (-1) 0.28 (-12) 194041 (-4) 0.35 (-10) 126186 (0) 0.39 (+22)

Fast Slow
Actual Future  Growth Scenario

Biomass Based

Recent Autocorrelated RecentAutocorrelated

Constant-F

Biomass Based with a 15% Lim it

Constant-F with a 15% Limit

Conditional Constant Catch
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APPENDIX A 

Appendix A describes the details of how parameters for each sub-model of the 

simulation were estimated. 

A.1.  Classifying management units as fast or slow 

Two complimentary methods were used to categorize management units as fast or 

slow growing.  Mean length at age of fish was estimated among months for each year and 

management unit combination ( )uyaL ,, .  Multiple linear regressions were then fit by age 

with uyL ,  as the dependent variable and year ( )yξ  and management unit ( )uψ  as 

categorical explanatory variables: 

uyuyuyL ,, εψξϖ +++= ; 

where ϖ  was the overall intercept and uy,ε  was residual error.  Pairwise comparisons 

of the least squares means for each management unit were conducted.  Generally, WFS07 

and WFM05 had significantly larger mean lengths at age than other management units 

(P< 0.05) and so were categorized as fast growth, while all other management units were 

classified as slow (Table A1).  To buttress these categorizations, a lake whitefish 

biologist familiar with the data was asked to rank the management units as fast or slow, 

and his categorizations confirmed these analyses (Mark Ebener, personal 

communication).  Not unexpectedly, the growth models parameterized (see the main text 

and below) using the data from the management units in the slow growth category led to 

lower expected mean lengths at age than for the fast growth category (Table A2).   
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A.2.  Growth sub-models 

Data on growth and maturity were available from nine management units for a 

varying range of years (Table A1).  The parameters for the growth sub-model with 

autocorrelated length at age-3 were estimated using a general linear mixed model using 

data from ages 4-8 with ( )uyaL ,,log  as the dependent variable, a fixed effect of age 

( )aν , and a random effect for the interaction of year class and management unit ( )urb ,  

that had an AR(1) error structure: 

( ) uyaurauya bL ,,,,,log εν +++∂= ; 

where ∂  was the overall intercept, r denotes year class, u denotes management unit, and 

uya ,,ε  was the residual error ( )2;0~ LN σ , and: 

rurur bb γρφ += − ,1, ; 

where ( )2;0~ φσγ Nr  and other symbols were defined as in the main text.  Mean 

length at age-3 3L  was estimated as the exponent of three times ∂  (i.e., log length at age-

0).  During preliminary analyses, simulated  were sometimes unrealistically high or 

low.  So,  was capped at 10% smaller and 10% larger than the smallest and largest 

observed age-3 fish in the data, respectively (Table A3).  For fast growth simulations, the 

caps were never hit.  For slow growth simulations the upper cap was hit in about 3% of 

years and the lower cap in about 9% of years.   

yL ,3

yL ,3

The parameters of the growth sub-model for ages greater than three were 

estimated using a general linear mixed model with the increment in mean length for a 
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cohort ( )yaL ,Δ   as the dependent variable, a fixed effect of , and a random 

effect for the interaction of year and management unit

1,1 −− yaL

( )uyc , : 

yaLuyyaya cLL ,,,1,1, Δ−− +++=Δ εθλ ; 

where ( )2
, ;0~ ωσNc uy  , yaL ,,Δε  was residual error ( )2;0~ LN Δσ , and other 

symbols were defined as in the main text. 

The parameters of the weight portion of the growth sub-model with autocorrelated 

length at age-3 were estimated using a multiple linear regression with log transformed 

mean weight at age ( )( )yaW ,log as the dependent variable and ( )yaL ,log  and 

( )2,1,3log ++ yyL  as fixed effects: 

( ) ( ) ( ) yaWyyyaya LLW ,,2,1,3,, loglog)log(log εϕχτ +++= ++ ; 

where yaW ,,ε was residual error ( )2;0~ WN σ  and other symbols were defined as in 

the main text. 

A.3.  Stock-recruitment sub-model 

The parameters of the stock-recruitment sub-model were estimated using a 

general linear mixed model, similar to that described in Myers et al. (1999).  The model 

was parameterized using estimates of stock and recruitment from medium and high 

quality CAA models, ranked by the 1836 Treaty waters modeling sub-committee as of 

2007, in each management unit.  Each CAA model was changed from penalizing 

recruitment estimates that deviated from the expectations of a Ricker stock-recruitment 

curve as described in Ebener et al. (2005), to estimating a series of deviations around a 
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population scaling factor parameter with the deviations being required to sum to zero.  

That is, the CAA models were changed so that recruitment estimates were not penalized 

for deviating from some pre-specified stock-recruit relationship.  The recruitment 

estimates in each year for each management unit ( )uyR ,  were then standardized as in 

Myers et al. (1999): 

)1(~
,0,,

uM
uFuyuy eSSBRRR −

= −= ; 

where  was the spawning stock biomass per recruit at the unfished level for 

each management unit, and  was the natural mortality rate in each management unit 

estimated using Pauly’s equation (Ebener et al., 2005).  Parameters of the stock-

recruitment model were then estimated for a variation of the log transformed Ricker 

model (Myers et al., 1999): 

uFSSBR ,0=

uM

uyRuyuu
uy

SSBg
SSB
R

,,,
,

~
~

log εβα +++=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
; 

where α~  was the overall intercept,  was the random effect of management unit, ug

uyR ,,ε  was temporally autocorrelated residual error, and : 

yuyRRuuyR ςερε += − ,1,,, ; ( )2;0~ Ruy N σς ; 

where remaining symbols were defined as in the main text.  To estimate each uα , the 

units were converted back from the standardized units of recruitment: 

)1(,0

~

uM
uF

ug

u
eSSBR

e
−

=

+

−
=

α
α . 
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uFSSBR ,0=  was calculated for each management unit using parameters used in 

each unit’s CAA model.  Weight at age and the proportion of females mature at age were 

estimated for each unit as the average over years.  M and the proportion of females in the 

population were set to the same constant value as was used in the CAA model for each 

unit, and the number of eggs per kilogram of fish was set to 19,937/kg, which was the 

value used in all CAA models (Ebener et al., 2005). 

A.4.  Maturity sub-model 

The parameters of the maturity sub-model were estimated using logistic 

regression on data from females: 

( )
( ) L
mp

mp κϑ +=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−1

log ; 

where  was the probability of maturity and ( )mp ϑ  was the intercept.  Length at the 

inflection point (η ) was estimated as the quotient of ϑ  and -κ  (ϑ /-κ ).   

The ( )2,
aLaLLp σ  was calculated by assuming that the variability around  

followed a normal distribution with variance .  The variance terms, , were 

calculated by multiplying  by the mean coefficient of variation (CV; 0.036) of the 

mean lengths at age estimated among months for each year and management unit 

combination.  A single CV was used because the CVs for the mean lengths at age for 

each year and management unit combination showed no trend with mean length. 

aL

2
aLσ 2

aLσ

aL
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A.5.  Maximum sustainable yield and unfished SSB 

Maximum sustainable yield, used to define the parameters of the CCC control 

rule, was calculated for each management unit by finding the fully selected fishing 

mortality rate that maximized the product of yield per recruit and the equilibrium 

recruitment for each management unit.  Yield per recruit was calculated separately for 

fast and slow growth stocks using the expected mean lengths, weights, selectivity, and 

proportion mature for each age predicted by the growth and maturity sub-models 

described here and in the main text, and the values of natural mortality and proportion of 

females in the population used in the simulations for each type of stock growth (i.e., fast 

and slow; see main text).  Equilibrium recruitment was calculated for each management 

unit using the relationship between the spawning stock biomass per recruit curve, 

calculated using the life history parameters predicted by growth and maturity sub-models 

for each type of stock growth (i.e., fast and slow), and the stock-recruit relationship for 

each management unit (Quinn and Deriso; 1999, pg. 475).  This relationship was also 

used to find the equilibrium SSBF=0 used to define the LTSSB  and  policy 

parameters. 

HTSSB
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Management Unit Years of Growth and Maturity Data Growth Category
WFH01 1984-2007 slow
WFH02 1987; 1991-2007 slow
WFH04 1980; 1986; 1988-2006 slow
WFH05 1986; 1988-1990; 2000-2007 slow
WFM01 1992; 1995-1996; 2000-2007 slow
WFM02 1987; 1990-2003 slow
WFM05 1981-1984; 1986-1991; 1993-1995; 1997; 2002 fast
WF 984; 1986-1988; 1991-2007 fast
WF 4-1986; 1996-2007 slow

 

Table A1—Growth category and the range of years for which a random sample of 
commercial trap-net data were available from lake whitefish management units in the 
1836 Treaty-ceded waters of Michigan used in parameterizing growth and maturity sub-
models. 
 

S07 1980; 1982-1
S08 1966; 1982; 198  
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Growth 3 4 5 6 7 8 9 10 11 12
Fast-autocorrelated length at age-3 428 467 503 536 565 592 617 639 659 678
Slow-autocorrelated length at age-3 417 447 474 498 519 537 554 569 582 594
Fast-similar to more recent levels 437 474 511 546 580 613 646 677 708 738
Slow-similar to more recent levels 362 397 427 453 476 496 514 529 543 554

AGE

 

Table A2—Expected mean length (mm) at age of lake whitefish for four growth models (see text for details). 

 

 

 



Table A3—Upper and lower caps placed on simulated length (mm) at age-3 lake 
whitefish for fast and slow growth category simulations. 
 

Cap Fast Slow
Upper 539 601
Lower 228 210

Growth Category
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APPENDIX B 

This appendix presents additional trade-off plots beyond those presented in the 

main text.  Displaying all the results for four performance metrics, five control rule 

variants, three levels of productivity, seven levels for the parameters of assessment and 

implementation error, and four growth scenarios would require 1,512 panels.  Displaying 

all these results in this appendix was not feasible.   

The subset of trade-off plots shown here support statements in the main text.  

Figures B1-B4 illustrate that varying the parameters related to assessment error had little 

effect on the relative or absolute performance of control rules for trade-off plots not 

involving variability in yield.  Figures B5-B8 illustrate that the rank order performance of 

the control rules is robust to the growth scenarios. 

 



 

 

 

 

 

Figure B1.—Median spawning stock biomass versus yield for baseline assessment and implementation error variance, the extent of 

autocorrelation in assessment error set equal to 0.0 or 0.9, and fast growth similar to recent levels (see text for details), for the 

conditional constant catch control rule (top row), constant-F (black dots, middle row), constant-F with a 15% limit on the interannual 

change in target catch (grey dots, middle row), biomass based (black dots, bottom row), and biomass based with a 15% limit on the 

interannual change in target catch (grey dots, bottom row). 
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Figure B1. 
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Figure B2.— As in Figure 1B, except with the extent of autocorrelation in assessment error set equal to the baseline level (0.7), and 

for assessment error variance equal to 0.01 or 0.20. 
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Figure B2. 
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Figure B3.—As in Figure 1B, except for median yield versus the proportion of years with spawning stock biomass less than 20% of 

the unfished level. 
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Figure B4.— Median yield versus the proportion of years with spawning stock biomass less than 20% of the unfished level with the 

extent of autocorrelation in assessment error set equal to the baseline level (0.7), for assessment error variance equal to 0.01 or 0.20, 

and fast growth similar to recent levels (see text for details).  Control rules are displayed as in Figure 1B. 
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Figure B5.—Median yield versus spawning stock biomass for baseline levels of assessment and implementation error parameters and 

for autocorrelated fast growth, autocorrelated slow growth, and slow growth similar to more recent levels.  Control rules are displayed 

as in Figure 1B. 
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Figure B6.—As in Figure B5, except for variability in yield versus risk. 
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Figure B7.—As in Figure B5, except for yield versus variability in yield. 
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Figure B8.—As in Figure B5, except for yield versus the proportion of years with spawning stock biomass less than 20% of the 

unfished level. 
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Figure B8. 

 

0.0

0.2

0.4

0.6

0.8

1.0

0 200000 400000 600000

0.0

0.2

0.4

0.6

0.8

1.0

0 200000 400000 600000

0.0

0.2

0.4

0.6

0.8

1.0

0 200000 400000 600000

Yield (kg)

0.0

0.2

0.4

0.6

0.8

1.0

0 200000 400000 600000

0.0

0.2

0.4

0.6

0.8

1.0

0 200000 400000 600000

0.0

0.2

0.4

0.6

0.8

1.0

0 200000 400000 600000

Yield (kg)

0.0

0.2

0.4

0.6

0.8

1.0

0 200000 400000 600000Pr
op

or
tio

n 
of

 y
ea

rs
 w

ith
SS

B
 <

 2
0%

 u
nf

is
he

d 
SS

B
Fast Autocorrelated Slow Autocorrelated Slow Similar to Recent 

0.0

0.2

0.4

0.6

0.8

1.0

0 200000 400000 600000Pr
op

or
tio

n 
of

 y
ea

rs
 w

ith
SS

B
 <

 2
0%

 u
nf

is
he

d 
SS

B

18
2 

0.0

0.2

0.4

0.6

0.8

1.0

0 200000 400000 600000

Yield (kg)

Pr
op

or
tio

n 
of

 y
ea

rs
 w

ith
SS

B
 <

 2
0%

 u
nf

is
he

d 
SS

B



183 

COMPREHENSIVE LIST OF REFERENCES 
 

Alverson, D.L., and W.T. Pereyra.  1969.  Demersal fish exploration in the northeastern 
Pacific Ocean – an evaluation of exploratory fishing methods and analytical 
approaches to stock size and yield forecasts.  Journal of the Fisheries Research 
Board of Canada 26: 1985-2001. 

 
Annala, J.H.  1993.  Fishery assessment approaches in New Zealand’s ITQ system.  

Proceedings of the International Symposium on Management Strategies for 
Exploited Fish Populations, University of Alaska Sea Grant College Program 
Report Number 93-02: 791-805. 

 
Barange, M., M. Bernal, M.C. Cercole, L.A. Cubillos, C.L. Cunningham, G.M. Daskalov, 

J.A.A. De Oliveira, M. Dickey-Collas, K. Hill, L.D. Jacobson, F.W. Köster, J. 
Masse, H. Nishida, M. Ñiquen, Y. Oozeki, I. Palomera, S.A. Saccardo, A. 
Santojanni, R. Serra, S. Somarakis, Y. Stratoudakis, C.D. van der Lingen, A. 
Uriarte, and A. Yatsu.  In press.  Current trends in the assessment and 
management of small pelagic fish stocks. Chapter 10 in D. Checkley, D.M. Jr, C. 
Roy, Y. Oozeki and J. Alheit, editors.  Climate Change and Small Pelagic Fish. 
Cambridge University Press. 

 
Battaile, B.C. and T.J. Quinn II.  2004.  Catch per unit effort standardization of the 

eastern Bering Sea walleye Pollock fleet.  Fisheries Research 70 (2004): 161-177. 
 
Beauchamp, K.C., N.C. Collins, and B.A. Henderson.  2004.  Covariation of growth and 

maturation of lake whitefish.  Journal of Great Lakes Research 30(3): 451-460. 
 
Becker, G.C.  1983.  Fishes of Wisconsin.  The University of Wisconsin Press.  Madison, 

Wisconsin. 
 
Beddington, J. R., and J. G. Cooke.  1983.  The potential yield of fish stocks.  FAO 

Fisheries Technical Paper 242. 
 
Beddington, J.R., and R.M. May.  1977.  Harvesting natural populations in a randomly 

fluctuating environment.  Science 197: 463-465. 
 
Bishop, J., W.N. Venables, and Y-G. Wang.  2004.  Analyzing commercial catch and 

effort data from a Penaeid trawl fishery: A comparison of linear models, mixed 
models, and generalized estimating equations approaches.  Fisheries Research 
70(2004): 179-193. 

 
Booth, A.J.  2004.  Determination of cichlid specific biological reference points.  

Fisheries Research 67: 307-316. 
 



184 

Brodziak, J.  2002.  In search of optimal harvest rates for West Coast groundfish.  North 
American Journal of Fisheries Management 22: 258-271. 

 
Brodziak, J., and C.M. Legault.  2005.  Model averaging to estimate rebuilding targets for 

overfished stocks.  Canadian Journal of Fisheries and Aquatic Sciences 62: 544-
562. 

 
Brown, R.W., M. Ebener, and T. Gorenflo.  1999.  Great Lakes commercial fisheries: 

historical overview and prognosis for the future.  Pages 307-354 in W. W. Taylor 
and C. P. Ferreri, editors. Great Lakes fishery policy and management: a 
binational perspective. Michigan State University Press, East Lansing. 

 
Burnham, K.P., and D.R. Anderson.  2004.  Model Selection and Multimodel Inference: 

A Practical Information-Theoretic Approach, Second Edition.  Springer-Verlag 
New York, Inc.  New York. 

 
Butterworth, D.S.  2008.  Some lessons from implementing management procedures.  

Pages 381-397 in K. Tsukamoto, T. Kawamura, T. Takeuchi, T.D. Beard, Jr., and 
M.J. Kaiser, editors.  Fisheries for global welfare and environment, 5th world 
fisheries congress 2008.  TERRAPUB, Tokyo. 

 
Butterworth, D.S., and M.O. Bergh.  1993.  The development of a management procedure 

for the South African anchovy resource.  Pages 83-99 in S.J. Smith, J.J. Hunt, and 
D. Rivard, editors.  Risk Evaluation and Biological Reference Points for Fisheries 
Management.  Canadian Special Publication of Fisheries and Aquatic Sciences 
120. 

 
Caddy, J.F., and R. Mahon.  1995.  Reference points for fisheries management.  FAO 

Fisheries Technical Paper Number 347. 
 
Caddy, J. F., and R. McGarvey.  1996.  Targets or limits for management of fisheries? 

North American Journal of Fisheries Management 16: 479-487. 
 
Campana, S.E., W. Joyce, L. Marks, L.J. Natanson, N.E. Kohler, C.F. Jensen, J.J. Mello, 

and H.L. Pratt, Jr.  2002.  Population dynamics of the porbeagle in the northwest 
Atlantic ocean.  North American Journal of Fisheries Management 22: 106-121. 

 
Campbell, R.A.  2004.  CPUE standardisation and the construction of indices of stock 

abundance in a spatially varying fishery using general linear models.  Fisheries 
Research 70(2004): 209-227. 

 
Clark, C. W.  1973.  The economics of overexploitation. Science 181: 630-634. 
 

http://www.msu.edu/unit/msupress/


185 

Clark, C.W., and G.P. Kirkwood.  1986.  On uncertain renewable resource stocks: 
optimal harvest policies and the value of stock surveys.  Journal of Environmental 
Economics and Management 13: 235-244. 

 
Clark, W.G.  1991.  Groundfish exploitation rates based on life history parameters.  

Canadian Journal of Fisheries and Aquatic Sciences 48: 734-750. 
 
Clark, W.G.  1993.  The effect of recruitment variability on the choice of a target level of 

spawning biomass per recruit.  Proceedings of the International Symposium on 
Management Strategies for Exploited Fish Populations, University of Alaska Sea 
Grant College Program Report Number 93-02: 233-246. 

 
Clark, W.G.  1999.  Effects of an erroneous natural mortality rate on a simple age-

structured stock assessment.  Canadian Journal of Fisheries and Aquatic Sciences 
56: 1721-1731. 

 
Clark, W.G.  2002.  F35% revisited ten years later.  North American Journal of Fisheries 

Management 22: 251-257. 
 
Clark, W.G., and S.R. Hare.  2004.  A conditional constant catch policy for managing the 

Pacific halibut fishery.  North American Journal of Fisheries Management 24: 
106-113. 

 
Cochrane, K.L., D.S. Butterworth, J.A.A. De Oliveira, and B.A. Roel.  1998.  

Management procedures in a fishery based on highly variable stocks and with 
conflicting objectives: experiences in the South African pelagic fishery.  Reviews 
in Fish Biology and Fisheries 8: 177-214. 

 
Collie, J.S., and H. Gislason.  2001.  Biological reference points for fish stocks in a 

multispecies context.  Canadian Journal of Fisheries and Aquatic Sciences 58: 
2167-2176. 

 
Collie, J.S., and P.D. Spencer.  1993.  Management strategies for fish populations subject 

to long-term environmental variability and depensatory predation.  Proceedings of 
the International Symposium on Management Strategies for Exploited Fish 
Populations, University of Alaska Sea Grant College Program Report Number 93-
02: 629-650. 

Conover, D.O., and S.B. Munch.  2002.  Sustaining fisheries yields over evolutionary 
time scales.  Science 297(5): 94-96. 

 
Cook, H.A., T.B. Johnson, B. Locke, and B.J. Morrison.  2005.  Status of lake whitefish 

in Lake Erie.  In Proceedings of a workshop on the dynamics of lake whitefish 
and the amphipod Diporeia spp. in the Great Lakes.  Edited by L.C. Mohr and 
T.F. Nalepa.  Great Lakes Fishery Commission Technical Report 66. pp. 87-104. 

 



186 

Cooper, A.B., A.A. Rosenberg, G. Stefansson, and M. Mangel.  2004.  Examining the 
importance of consistency in multi-vessel trawl survey design based on the U.S. 
west coast groundfish bottom trawl survey.  Fisheries Research 70(2004): 239-
250. 

 
Deriso, R.B.  1982.  Relationship of fishing mortality to natural mortality and growth at 

the level of maximum sustainable yield.  Canadian Journal of Fisheries and 
Aquatic Sciences 39: 1054-1058. 

 
Deriso, R.B.  1987.  Optimal F0.1 criteria and their relationship to maximum sustainable 

yield.  Canadian Journal of Fisheries and Aquatic Sciences 44(Supplement 2): 
339-348. 

 
Deroba, J.J., and J.R. Bence.  In press.  Assessing model-based indices of lake trout 

abundance in 1836 Treaty waters of Lakes Huron, Michigan, and Superior.  
Michigan Department of Natural Resources: Fisheries Research Report, Ann 
Arbor, MI. 

 
Deroba, J.J., and J.R. Bence.  2008.  A review of harvest policies: understanding relative 

performance of control rules.  Fisheries Research 94: 210-223. 
 
Dichmont C.M., A. Deng, A.E. Punt, W. Venables, and M. Haddon.  2006a.  

Management strategies of short-lived species: The case of Australia’s Northern 
Prawn Fishery 1. Accounting for multiple species, spatial structure and 
implementation uncertainty when evaluation risk.  Fisheries Research 82: 204-
220. 

 
Dichmont C.M., A. Deng, A.E. Punt, W. Venables, and M. Haddon.  2006b.  

Management strategies of short-lived species: The case of Australia’s Northern 
Prawn Fishery 2. Choosing appropriate management strategies using input 
controls.  Fisheries Research 82: 221-234. 

 
Dichmont C.M., A. Deng, A.E. Punt, W. Venables, and M. Haddon.  2006c.  

Management strategies of short-lived species: The case of Australia’s Northern 
Prawn Fishery 3. Factors affecting management and estimation performance.  
Fisheries Research 82: 235-245. 

 
DiNardo, G.T., and J.A. Wetherall.  1999.  Accounting for uncertainty in the 

development of harvest strategies for the Northwestern Hawaiian Islands lobster 
trap fishery.  ICES Journal of Marine Science 56: 943-951. 

 
Dorn, M.W.  2002.  Advice on west coast rockfish harvest rates form Bayesian meta-

analysis of stock-recruit relationships.  North American Journal of Fisheries 
Management 22: 280-300. 

 



187 

Ebener, M.P.  1997.  Recovery of lake whitefish populations in the Great Lakes: a story 
of successful management and just plain luck.  Fisheries 22: 18-20. 

 
Ebener, M.P., and D.M. Reid.  2005.  Historical context.  In The state of Lake Huron 

1999.  Edited by M.P. Ebener.  Great Lakes Fishery Commission Special 
Publication 05-02, pages 9-18. 

 
Ebener, M.P., J.R. Bence, K. Newman, and P. Schneeberger.  2005.  Application of 

statistical catch-at-age models to assess lake whitefish stocks in the 1836 treaty-
ceded waters of the upper Great Lakes.  In Proceedings of a workshop on the 
dynamics of lake whitefish and the amphipod Diporeia spp. in the Great Lakes.  
Edited by L.C. Mohr and T.F. Nalepa.  Great Lakes Fishery Commission 
Technical Report 66. pp. 271-309. 

 
Eggers, D.M.  1993.  Robust harvest policies for Pacific salmon fisheries.  Proceedings of 

the International Symposium on Management Strategies for Exploited Fish 
Populations, University of Alaska Sea Grant College Program Report Number 93-
02: 85-106. 

 
Enberg, K.  2005.  Benefits of threshold strategies and age-selective harvesting in a 

fluctuating fish stock of Norwegian spring spawning herring.  Marine Ecology 
Progress Series 298: 277-286. 

 
Engen, S., R. Lande, and B-E. Saether.  1997.  Harvesting strategies for fluctuating 

populations based on uncertain population estimates.  Journal of Theoretical 
Biology 186: 201-212. 

 
Fieberg, J.  2004.  Role of parameter uncertainty in assessing harvest strategies.  North 

American Journal of Fisheries Management 24: 459-474. 
 
Francis, R.C.  1974.  Relationship of fishing mortality to natural mortality at the level of 

maximum sustainable yield under the logistic stock production model.  Journal of 
the Fisheries Research Board of Canada 31: 1539-1542. 

 
Francis, R.C.  1993.  Monte Carlo evaluation of risks for biological reference points used 

in New Zealand fishery assessments.  Pages 221-230 in S.J. Smith, J.J. Hunt, and 
D. Rivard, editors.  Risk Evaluation and Biological Reference Points for Fisheries 
Management.  Canadian Special Publication of Fisheries and Aquatic Sciences 
120. 

 
Frederick, S.W., and R.M. Peterman.  1995.  Choosing fisheries harvest policies: when 

does uncertainty matter?  Canadian Journal of Fisheries and Aquatic Sciences 52: 
291-306. 

 



188 

Fujioka, J.T., J. Heifetz, and M.F. Sigler.  1997.  Choosing a harvest strategy for sablefish 
based on uncertain life-history parameters.  Pages 247-251 in NOAA Technical 
Report NMFS 130 Biology and Management of Sablefish; Papers from the 
International Symposium on the Biology and Management of Sablefish, Seattle. 

 
Gabriel, W.L., M.P. Sissenwine, and W.J. Overholtz.  1989.  Analysis of spawning stock 

biomass per recruit: an example for Georges Bank haddock.  North American 
Journal of Fisheries Management 9: 383-391. 

 
Gatto, M., and S. Rinaldi.  1976.  Mean value and variability of fish catches in fluctuating 

environments.  Journal of the Fisheries Research Board of Canada 33: 189-193. 
 
Gelman, A., and J. Hill.  2007.  Data Analysis Using Regression and Multilevel 

Hierarchical Models.  Cambridge University Press.  New York, New York. 
 
Getz, W. M., R. C. Francis, and G. L. Swartzman. ,1987.  On managing variable marine 

fisheries. Canadian Journal of Fisheries and Marine Sciences 44: 1370-1375. 
 
Getz, W.M., and R.G. Haight.  1989.  Population Harvesting: Demographic Models of 

Fish, Forest, and Animal Resources.  Princeton University Press, Princeton, New 
Jersey. 

 
Gibson, A.J.F., and R.A. Myers.  2004.  Estimating reference fishing mortality rates from 

noisy spawner-recruit data.  Canadian Journal of Fisheries and Aquatic Sciences 
61: 1771-1783. 

 
Goodyear, C.P.  1993.  Spawning stock biomass per recruit in fisheries management: 

foundation and current use.  Pages 67-81 in S.J. Smith, J.J. Hunt, and D. Rivard, 
editors.  Risk Evaluation and Biological Reference Points for Fisheries 
Management.  Canadian Special Publication of Fisheries and Aquatic Sciences 
120. 

 
Hall, D. L., R. Hilborn, M. Stocker, and C. J. Walters.  1988.  Alternative harvest 

strategies for Pacific herring. Canadian Journal of Fisheries and Aquatic Sciences 
45: 888-897. 

 
Harley, S.J., R.A. Myers, and A. Dunn.  2001.  Is catch-per-unit-effort proportional to 

abundance?  Canadian Journal of Fisheries and Aquatic Sciences 58: 1760-1772. 
 
Hayes, D.B.  2000.  A biological reference point based on the Leslie matrix.  Fisheries 

Bulletin 98: 75-85. 
 
Healey, M.C. 1975. Dynamics of exploited whitefish populations and their management 

with special reference to the Northwest Territories. Journal of the Fisheries 
Research Board of Canada. 32:  427-448. 



189 

 
Heino, M.  1998.  Management of evolving fish stocks.  Canadian Journal of Fisheries 

and Aquatic Sciences 55: 1971-1982. 
 
Helser, T.E., and J.K.T. Brodziak.  1998.  Impacts of density-dependent growth and 

maturation on assessment advice to rebuild depleted U.S. silver hake stocks.  
Canadian Journal of Fisheries and Aquatic Sciences 55: 882-892. 

 
Helser, T.E., A.E. Punt, and R.D. Methot.  2004.  A generalized linear mixed model 

analysis of a multi-vessel fishery resource survey.  Fisheries Research 70(2004): 
251-264. 

 
Henderson, B.A., J.J. Collins, and J.A. Reckahn.  1983.  Dynamics of an exploited 

population of lake whitefish in Lake Huron.  Canadian Journal of Fisheries and 
Aquatic Sciences 40: 1556-1567. 

 
Hightower, J. E., and G. D. Grossman.  1987.  Optimal policies for rehabilitation of 

overexploited fish stocks using a deterministic model. Canadian Journal of 
Fisheries and Aquatic Sciences 44: 803-810. 

 
Hightower, J.E., and W.H. Lenarz.  1989.  Optimal harvesting policies for the widow 

rockfish fishery.  American Fisheries Society Symposium 6: 83-91. 
 
Hilborn, R., and C.J. Walters.  1992.  Quantitative Fisheries Stock Assessment: Choice, 

Dynamics, and Uncertainty.  Chapman and Hall, New York. 
 
Hilborn, R., A. Parma, and M. Maunder.  2002.  Exploitation rate reference points for 

west coast rockfish: are they robust and are there better alternatives?  North 
American Journal of Fisheries Management 22: 365-375. 

 
Hjerne, O., and S. Hansson.  2001.  Constant catch or constant harvest rate?  The Baltic 

Sea cod fishery as a modelling example. Fisheries Research 53: 57-70. 
 
Hoyle, J.A., T. Schaner, J.M. Casselman, and R. Dermott.  1999.  Changes in lake 

whitefish stocks in eastern Lake Ontario following Dreissena mussel invasion.  
Great Lakes Research Review 4: 5-10. 

 
Irwin, B.J., M.J. Wilberg, J.R. Bence, and M.L. Jones.  2008. Evaluating Alternative 

Harvest Policies for Yellow Perch in Lake Michigan.  Fisheries Research 94:267-
281. 

 
Ishimura, G., A.E. Punt, and D.D. Huppert.  2005.  Management of fluctuating fish 

stocks: the case of Pacific whiting.  Fisheries Research 73: 201-216. 
 



190 

Jacobson, P.C., and W.W. Taylor.  1985.  Simulation of harvest strategies for a 
fluctuating population of lake whitefish.  North American Journal of Fisheries 
Management 5: 537-546. 

 
Jakobsen, T.  1992.  Biological reference points for northeast Arctic cod and haddock.  

ICES Journal of Marine Science 49: 155-166. 
 
Jakobsen, T.  1993.  The behavior of Flow, Fmed, and Fhigh in response to variation in 

parameters used for their estimation.  Pages 119-125 in S.J. Smith, J.J. Hunt, and 
D. Rivard, editors.  Risk Evaluation and Biological Reference Points for Fisheries 
Management.  Canadian Special Publication of Fisheries and Aquatic Sciences 
120. 

 
Jensen, A.L.  1976.  Assessment of the United States lake whitefish fisheries of Lake 

Superior, Lake Michigan, and Lake Huron.  Journal of the Fisheries Research 
Board of Canada 33: 747-759. 

 
Katsukawa, T.  2004.  Numerical investigation of the optimal control rule for decision-

making in fisheries management.  Fisheries Science 70: 123-131. 
 
Kell, L.T., G.M. Pilling, G.P. Kirkwood, M.A. Pastoors, B. Mesnil, K. Korsbrekke, P. 

Abaunza, R. Aps, A. Biseau, P. Kunzlik, C.L. Needle, B.A. Roel, and C. Ulrich.  
2006.  An evaluation of multi-annual management strategies for ICES roundfish 
stocks.  ICES Journal of Marine Science 63: 12-24. 

 
Koelz, W.  1926.  Fishing industry of the Great Lakes.  Pages 554-617, In Report of the 

U.S. Commissioner of Fisheries for 1925. 
 
Koonce, J.F., and B.J. Shuter.  1987.  Influence of various sources of error and 

community interactions on quota management of fish stocks.  Canadian Journal of 
Fisheries and Aquatic Sciences 44(Supplement 2): 61-67. 

 
Kratzer, J.F., W.W. Taylor, C.P. Ferreri, and M.P. Ebener.  2005.  Factors affecting 

growth of lake whitefish in the upper Laurentian Great Lakes.  Advances in 
Limnology 60: 459-470. 

 
Lande, R., B-E. Saether, and S. Engen.  1997.  Threshold harvesting for sustainability of 

fluctuating resources.  Ecology 78(5): 1341-1350. 
 
Lande, R., S. Engen, and B-E. Saether.  1995.  Optimal harvesting of fluctuating 

populations with a risk of extinction.  The American Naturalist 145: 728-745. 
 
Larkin, P. A.  1977.  An epitaph for the concept of maximum sustainable yield.  

Transactions of the American Fisheries Society 106: 1-11. 
 



191 

Larkin, P.A., and W.E. Ricker.  1964.  Further information on sustained yields from 
fluctuating environments.  Journal of the Fisheries Research Board of Canada 
21(1): 1-7. 

 
Leaman, B.M.  1993.  Reference points for fisheries management: the western Canadian 

experience.  Pages 15-30 in S.J. Smith, J.J. Hunt, and D. Rivard, editors.  Risk 
Evaluation and Biological Reference Points for Fisheries Management.  Canadian 
Special Publication of Fisheries and Aquatic Sciences 120. 

 
Lillegard, M., S. Engen, B-E Saether, and R. Toresen.  2005.  Harvesting strategies for 

Norwegian spring-spawning herring.  Oikos 110: 567-577. 
 
Lowe, S.A. and G.G. Thompson.  1993.  Accounting for uncertainty in the development 

of exploitation strategies for the atka mackerel resource of the Aleutian Islands.  
Proceedings of the International Symposium on Management Strategies for 
Exploited Fish Populations, University of Alaska Sea Grant College Program 
Report Number 93-02: 203-231. 

 
Lumb, C.E., T.B. Johnson, H.A. Cook, and J.A. Hoyle.  2007.  Comparison of lake 

whitefish growth, condition, and energy density between Lakes Erie and Ontario.  
Journal of Great Lakes Research 33: 314-325. 

 
Mace, P.M.  2001.  A new role for MSY in single-species and ecosystem approaches to 

fisheries stock assessment and management.  Fish and Fisheries 2: 2-32. 
 
Mace, P.M., and M.P. Sissenwine.  1993.  How much spawning per recruit is enough?  

Pages 101-118 in S.J. Smith, J.J. Hunt, and D. Rivard, editors.  Risk Evaluation 
and Biological Reference Points for Fisheries Management.  Canadian Special 
Publication of Fisheries and Aquatic Sciences 120. 

 
Maguire, J.J., and P.M. Mace.  1993.  Biological reference points for Canadian Atlantic 

gadoid stocks.  Pages 321-331 in S.J. Smith, J.J. Hunt, and D. Rivard, editors.  
Risk Evaluation and Biological Reference Points for Fisheries Management.  
Canadian Special Publication of Fisheries and Aquatic Sciences 120. 

 
Matsuda, H., and P.A. Abrams.  2006.  Maximal yields from multispecies fisheries 

systems: rules for systems with multiple trophic levels.  Ecological Applications 
16: 225-237. 

 
Maunder, M.N.  2001.  A general framework for integrating the standardization of catch 

per unit of effort into stock assessment models.  Canadian Journal of Fisheries and 
Aquatic Sciences 58: 795-803. 

 



192 

Maunder, M.N. and A.D. Langley.  2004.  Integrating the standardization of catch-per-
unit-of-effort into stock assessment models: testing a population dynamics model 
and using multiple data types.  Fisheries Research 70: 389-395. 

 
Maunder, M.N. and A.E. Punt.  2004.  Standardizing catch and effort data: a review of 

recent approaches.  Fisheries Research 70(2004): 141-159. 
 
Maunder, M.N. and P.J. Starr.  2003.  Fitting fisheries models to standardized CPUE 

abundance indices.  Fisheries Research 63(2003): 43-50. 
 
Maynou, F., M. Demestre, and P. Sanchez.  2003.  Analysis of catch per unit effort by 

multivariate analysis and generalised linear models for deep-water crustacean 
fisheries off Barcelona.  Fisheries Research 65(2003): 257-269. 

 
McCulloch, C.E. and S.R. Searle.  2001.  Generalized, Linear, and Mixed Models.  New 

York: John Wiley and Sons, Inc. 
 
McGlade, J.M.  1989.  Integrated fisheries management models: understanding the limits 

to marine resource exploitation.  American Fisheries Society Symposium 6: 139-
165. 

 
Milner-Gulland, E.J., K. Shea, H. Possingham, T. Coulson, and C. Wilcox.  2001.  

Competing harvesting strategies in a simulated population under uncertainty.  
Animal Conservation 4: 157-167. 

 
Mohr, L.C., and M.P. Ebener.  2005a.  The coregonine community.  In The state of Lake 

Huron 1999.  Edited by M.P. Ebener.  Great Lakes Fishery Commission Special 
Publication 05-02, pages 69-76. 

 
Mohr, L.C., and M.P. Ebener.  2005b.  Description of the fisheries.  In The state of Lake 

Huron 1999.  Edited by M.P. Ebener.  Great Lakes Fishery Commission Special 
Publication 05-02, pages 19-26. 

 
Mohr, L.C., and Nalepa, T.F. (Editors). 2005.  Proceedings of a workshop on the 

dynamics of lake whitefish (Coregonus clupeaformis) and the amphipod Diporeia 
spp. in the Great Lakes. Great Lakes Fishery Commission Technical Repport 66. 

 
Murawski, S.A., and J.S. Idoine.  1989.  Yield sustainability under constant-catch policy 

and stochastic recruitment.  Transactions of the American Fisheries Society 118: 
349-367. 

 
Myers, R.A., K.G. Bowen, and N.J. Barrowman.  1999.  Maximum reproductive rate of 

fish at low population sizes.  Canadian Journal of Fisheries and Aquatic Sciences 
56: 2404-2419. 

 



193 

Myers, R.A., A.A. Rosenberg, P.M. Mace, N. Barrowman, and V.R. Restrepo.  1994.  In 
search of thresholds for recruitment overfishing.  ICES Journal of Marine Science 
51: 191-205. 

 
Myers, R.A., and B. Worm.  2005.  Extinction, survival or recovery of large predatory 

fishes.  Philosophical Transactions of the Royal Society B 360(2005): 13-20. 
 
Myers, R.A., G. Mertz, and J. Bridson.  1997.  Spatial scales of interannual recruitment 

variations of marine, anadromous, and freshwater fish.  Can J Fish Aquat Sci 54: 
1400-1407. 

 
Nieland, J.L., M.J. Hansen, M.J. Seider, and J.J. Deroba.  2008.  Modeling the 

sustainability of lake trout fisheries in eastern Wisconsin waters of Lake Superior.  
Fisheries Research 94: 304-314. 

 
Ngo, L., and R. Brand.  1997.  Model selection in linear mixed effects models using SAS 

proc mixed.  SAS Institute Inc., Proceedings of the 22nd Annual SAS Users Group 
International Conference: 1335-1340. 

 
Nostbakken, L.  2006.  Regime Switching in a fishery with stochastic stock and price.  

Journal of Environmental Economics and Management 51: 231-241. 
 
NRC (National Research Council).  1994.  Improving the Management of U.S. Marine 

Fisheries.  National Academy Press, Washington, D.C. 
 
Overholtz, W.J.  1999.  Precision and uses of biological reference points calculated from 

stock recruitment data.  North American Journal of Fisheries Management 19: 
643-657. 

 
Overholtz, W.J., S.F. Edwards, and J.K.T. Brodziak.  1993.  Strategies for rebuilding and 

harvesting New England groundfish resources.  Proceedings of the International 
Symposium on Management Strategies for Exploited Fish Populations, University 
of Alaska Sea Grant College Program Report Number 93-02: 507-527. 

 
Pacific Fishery Management Council.  1998.  Options and analyses for the coastal pelagic 

species fishery management plan: appendix B to amendment 8.  134 pages. 
http://www.pcouncil.org/cps/cpsfmp/a8apdxb.pdf 

 
Parma, A.  1993.  Retrospective catch-at-age analysis of Pacific halibut: implications on 

assessment of harvesting policies.  Proceedings of the International Symposium 
on Management Strategies for Exploited Fish Populations, University of Alaska 
Sea Grant College Program Report Number 93-02: 247-265. 

 



194 

Peterman, R.M., and Anderson, J.L. 1999. Decision analysis: a method for taking 
uncertainties into account in risk-based decision making. Human and Ecological 
Risk Assessment 5: 231-244. 

 
Polacheck, T., N.L. Klaer, C. Millar, and A.L. Preece.  1999.  An initial evaluation of 

management strategies for the southern bluefin tuna fishery.  ICES Journal of 
Marine Science 56: 811-826. 

 
Pothoven, S.A., T.F. Nalepa, P.J. Schneeberger, and S.B. Brandt.  2001.  Changes in diet 

and body condition of lake whitefish in southern Lake Michigan associated with 
changes in benthos.  North American Journal of Fisheries Management: 21: 876-
883. 

 
Potter, E.C.E., J.C. MacLean, R.J. Wyatt, and R.N.B. Campbell.  2003.  Managing the 

exploitation of migratory salmonids.  Fisheries Research 62: 127-142. 
 
Punt, A.E.  1997.  The performance of VPA based management.  Fisheries Research 29: 

217-243. 
 
Punt, A.E.  2003.  Evaluating the efficacy of managing west coast groundfish resources 

through simulations.  Fisheries Bulletin 101: 860-873. 
 
Punt, A.E.,  M.W. Dorn, and M.A. Haltuch.  2008.  Evaluation of threshold management 

strategies for groundfish off the U.S. West Coast.  Fisheries Research 94:251-266. 
 
Punt, A.E., A.D.M. Smith, and G. Cui.  2002a.  Evaluation of management tools for 

Australia’s South East Fishery 2. How well can management quantities be 
estimated?  Marine and Freshwater Research 53: 631-644. 

 
Punt, A.E., A.D.M. Smith, and G. Cui.  2002b.  Evaluation of management tools for 

Australia’s South East Fishery 3. Towards selecting appropriate harvest strategies.  
Marine and Freshwater Research 53: 645-660. 

 
Punt, A.E., A.D.M. Smith, and G. Cui.  2002c.  Evaluation of management tools for 

Australia’s South East Fishery 1. Modelling the South East Fishery taking account 
of technical interactions.  Marine and Freshwater Research 53: 615-629. 

 
Punt, A.E., A.J. Penney, and R.W. Leslie.  1996.  Abundance indices and stock 

assessment of south Atlantic albacore.  Collective Volume of Scientific Papers of 
the International Commission for the Conservation of Atlantic Tunas 43: 225-245. 

 
Quiggin, J.  1992.  How to set catch quotas: a note on the superiority of constant effort 

rules.  Journal of Environmental Economics and Management 22: 199-203. 
 



195 

Quinn, T.J., II, and J.S. Collie.  2005.  Sustainability in single-species population models.  
Philosophical Transactions of the Royal Society B 360: 147-162. 

 
Quinn, T.J., II, R. Fagen, and J. Zheng.  1990.  Threshold management policies for 

exploited populations.  Canadian Journal of Fisheries and Aquatic Sciences 47: 
2016-2029. 

 
Quinn, T. J. II, and N. J. Szarzi.  1993.  Determination of sustained yield in Alaska's 

recreational fisheries.  Proceedings of the International Symposium on 
Management Strategies for Exploited Fish Populations, University of Alaska Sea 
Grant College Program Report Number 93-02: 61-84. 

 
Quinn, T.J., II, and R.B. Deriso.  1999.  Quantitative Fish Dynamics.  Oxford University 

Press Inc.  New York, New York. 
 
Rahikainen, M., and R.L. Stephenson.  2004.  Consequences of growth variation in 

northern Baltic herring for assessment and management.  ICES Journal of Marine 
Science 61: 338-350. 

 
Ralston, S., J.R. Bence, W.G. Clark, R.J. Conser, T. Jagielo, and T.J. Quinn II.  2000.  

West Coast groundfish harvest rate policy workshop.  Panel Report, Seattle, 
Washington. 

 
Reed, W.J.  1979.  Optimal escapement levels in stochastic and deterministic harvesting 

models.  Journal of Environmental Economics and Management 6: 350-363. 
 
Ricker, W.E.  1958.  Maximum sustained yields from fluctuating environments and 

mixed stocks.  Journal of the Fisheries Research Board of Canada 15(5): 991-
1006. 

 
Ricker, W.E.  1975.  Computation and interpretation of biological statistics of fish 

populations.  Bulletin of the Fisheries Research Board of Canada 191. 
 
Rose, G.A. and D.W. Kulka.  1999.  Hyperaggregation of fish and fisheries: how catch-

per-unit-effort increased as the northern cod declined.  Canadian Journal of 
Fisheries and Aquatic Sciences 56(supplement 1): 118-127. 

 
Ruppert, D., R. L. Reish, R. B. Deriso, and R. J. Carroll. 1985.  A stochastic population 

model for managing the Atlantic menhaden fishery and assessing managerial 
risks. Canadian Journal of Fisheries and Aquatic Sciences 42: 1371-1379. 

 
SAS.  2003.  SAS version 9.1 help and documentation.  Cary, North Carolina: SAS 

Institute, Inc. 
 



196 

Sethi, G., C. Costello, A. Fisher, M. Hanemann, and L. Karp.  2005.  Fishery 
management under multiple uncertainty.  Journal of Environmental Economics 
and Management 50: 300-318. 

 
Siddeek, M.S.M., and A.H.S. Al-Hosni.  1998.  Biological reference points for managing 

kingfish in Oman waters.  Naga: the ICLARM Quarterly 32-36. 
 
Sigler, M.F., and J.T. Fujioka.  1993.  A comparison of policies for harvesting sablefish 

in the Gulf of Alaska.  Proceedings of the International Symposium on 
Management Strategies for Exploited Fish Populations, University of Alaska Sea 
Grant College Program Report Number 93-02: 7-19. 

 
Sissenwine, M.P.  1978.  Is MSY an adequate foundation for optimum yield?  Fisheries 

3: 22-24, 37-42. 
 
Sissenwine, M.P., and J.G. Shepherd.  1987.  An alternative perspective on recruitment 

overfishing and biological reference points.  Canadian Journal of Fisheries and 
Aquatic Sciences 44: 913-918. 

 
Sladek Nowlis, J., and B. Bollermann.  2002.  Methods for increasing the likelihood of 

restoring and maintaining productive fisheries.  Bulletin of Marine Science 70: 
715-731. 

 
Smiley, C.W.  1882.  Changes in the fisheries of the Great Lakes during the decade, 

1870-1880.  Transactions of the American Fish-Cultural Association 11: 28-37. 
 
Smith, A.D.M., K.J. Sainsbury, and R.A. Stevens.  1999.  Implementing effective 

fisheries management systems – management strategy evaluation and the 
Australian partnership approach.  ICES Journal of Marine Science 56: 967-979. 

 
Spencer, P. D.  1997.  Optimal harvesting of fish populations with nonlinear rates of 

predation and autocorrelated environmental variability. Canadian Journal of 
Fisheries and Aquatic Science 54: 59-74. 

 
Steinshamn, S.I.  1993.  Management strategies: fixed or variable catch quotas.  Pages 

373-385 in S.J. Smith, J.J. Hunt, and D. Rivard, editors.  Risk Evaluation and 
Biological Reference Points for Fisheries Management.  Canadian Special 
Publication of Fisheries and Aquatic Sciences 120. 

 
Steinshamn, S.I.  1998.  Implications of harvesting strategies on population and 

profitability in fisheries.  Marine Resource Economics 13: 23-36. 
 
Swain. D.P., A.F. Sinclair, and J.M. Hanson.  Evolutionary response to size-selective 

mortality in an exploited fish population.  Proceedings of the Royal Society B 
274: 1015-1022. 



197 

 
Tautz, A., P.A. Larkin, and W.E. Ricker.  1969.  Some effects of simulated long-term 

environmental fluctuations on maximum sustained yield.  Journal of the Fisheries 
Research Board of Canada 26: 2715-2726. 

 
Thompson, G.G.  1993.  A proposal for a threshold stock size and maximum fishing 

mortality rate.  Pages 303-320 in S.J. Smith, J.J. Hunt, and D. Rivard, editors.  
Risk Evaluation and Biological Reference Points for Fisheries Management.  
Canadian Special Publication of Fisheries and Aquatic Sciences 120. 

 
Vasconcellos, M.  2003.  An analysis of harvest strategies and information needs in the 

purse seine fishery for the Brazilian sardine.  Fisheries Research 59: 363-378. 
 
Venables, W.N., and C.M. Dichmont.  2004.  GLMs, GAMs, and GLMMs: an overview 

of theory for applications in fisheries research.  Fisheries Research 70(2004): 319-
337. 

 
Walters, C.J.  1986.  Adaptive management of renewable resources.  MacMillan, New 

York, New York, USA. 
 
Walters, C.J., and A.M. Parma.  1996.  Fixed exploitation rate strategies for coping with 

effects of climate change.  Canadian Journal of Fisheries and Aquatic Sciences 
53: 148-158. 

 
Walters, C.J., and P.H. Pearse.  1996.  Stock information requirements for quota 

management systems in commercial fisheries.  Reviews in Fish Biology and 
Fisheries 6: 21-42. 

 
Walters, C.J., V. Christensen, S.J. Martell, and J.F. Kitchell.  2005.  Possible ecosystem 

impacts of applying MSY policies from single-species assessment.  ICES Journal 
of Marine Science 62: 558-568. 

 
Wang, H-Y, T.O. Höök, M.P. Ebener, L.C. Mohr, and P.J. Schneeberger.  2008.  Spatial 

and temporal variation of maturation schedules of lake whitefish in the Great 
Lakes.  Canadian Journal of Fisheries and Aquatic Sciences 65: 2157-2169. 

 
Wilberg, M.J., and J.R. Bence.  2006.  Performance of time-varying catchability 

estimators in statistical catch-at-age analysis.  Canadian Journal of Fisheries and 
Aquatic Sciences  63: 2275-2285. 

 
Wilberg, M.J., B.J. Irwin, M.L. Jones, and J.R. Bence.  2008.  Effects of source-sink 

dynamics on harvest policy performance for Yellow Perch in southern Lake 
Michigan.  Fisheries Research 94: 282-289. 

 



198 

Williams, E.H.  2002.  The effects of unaccounted discards and misspecified natural 
mortality on harvest policies based on estimates of spawners per recruit.  North 
American Journal of Fisheries Management 22: 311-325. 

 
Zheng, J., F.C. Funk, G.H. Kruse, and R. Fagen.  1993a.  Evaluation of threshold 

management strategies for Pacific herring in Alaska.  Proceedings of the 
International Symposium on Management Strategies for Exploited Fish 
Populations, University of Alaska Sea Grant College Program Report Number 93-
02: 141-165. 

 
Zheng, J., T.J. Quinn II, G.H. Kruse.  1993b.  Comparison and evaluation of threshold 

estimation methods for exploited fish populations.  Proceedings of the 
International Symposium on Management Strategies for Exploited Fish 
Populations, University of Alaska Sea Grant College Program Report Number 93-
02: 267-289. 




