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ABSTRACT 

 
 

ADVANCES IN THE ASSESSMENT OF THE SAGINAW BAY STOCK OF WALLEYES, 

LAKE HURON AND  EVALUATION OF MANAGEMENT OPTIONS 

 

By 

 

David G. Fielder 

 

 

 

Fundamental to the careful management of fish stocks is information on mortality rates 

and other dynamic functions that characterize that stock. Prior to this work, such efforts for 

walleyes from the Saginaw Bay stock were conducted with a Brownie style analysis of jaw tag 

reports. Unlikely assumptions and limited participation by all fisheries in their report of tags, 

necessitated the elevation of stock assessment methods to state of the art methods. I developed a 

statistical catch-at-age model to accomplish this and evaluated four versions including three 

different treatments of natural mortality (M): a constant value, age-based M values, and time-

varying M values. Deviance information criterion model selection procedures indicated that an 

age-based M model version was the optimal fit of the data. I also evaluated an integrated version 

that incorporated tag returns as auxiliary information for the recreational component. In this case, 

model selection was based on conformity between observed and predicted data and model 

convergence. The integrated version was ruled out due to poor agreement of the observed and 

predicted values, and predictions of abundance that were not reflected by the fisheries. It was 

concluded that the component of the population used for tagging may exhibit dynamics that 

differ from the rest of the stock. Total annual mortality of walleyes was greatest for older ages in 

all fisheries and ranged from 32% for age-2 fish to 39% for fish ages-10 and older. The 

recreational fishery accounted for the majority of fishing mortality but the commercial trapnet 



fishery in the main basin of Lake Huron and by-kill from other trapnets in the bay accounted for 

proportionally greater fishing mortality of younger ages of fish. Abundance peaked in 2007 at 4 

million walleyes age 2 and older but estimates indicated a previous period of high abundance in 

the late 1980s, forcing the reconsideration of the past stock as depressed and dependent on 

stocking. Statistical catch-at-age methods characterize the dynamics of a stock from the past up 

to the present but do not project forward what the fish stock is likely to do in the future under 

various management scenarios. After consulting with fishery managers, I developed a stochastic 

simulation model and used it to evaluate management options for the recreational fishery in the 

form of a decision analysis and a value-of-information analysis for improved estimates of by-kill 

magnitude. This analysis was in light of two critical uncertain states of nature concerning the true 

magnitude (catchability) of the by-kill and the future of alewives in Lake Huron, the latter being 

a strong determinant of walleye recruitment. Management option evaluation indicated a greater 

harvestable surplus that could be allocated. Sustainable harvest was calculated as average harvest 

treating harvest in years when sustainability criteria were not met as zero.  Sustainable harvest 

would be maximized if recreational fishing mortality were increased 50% from recent levels. 

Realizing this potential, however, would require more intensive management to ensure that 

desired levels of F occurred.  Choices by managers as to how to allocate surplus harvest  are a 

matter of policy, but concerns over maintaining predation pressure on alewives so as to suppress 

any resurgence may be reasons to manage conservatively by electing to instead maintain a higher 

predator abundance. The value of information analysis suggests that  further research investment 

in the uncertainty over by-kill catchability might be justified on the basis of producing net-

benefits from the recreational fishery.  
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CHAPTER 1  

 

DISSERTATION INTRODUCTION 
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Of the Laurentian Great Lakes, Lake Huron is the second largest and regarded as 

oligotrophic (Beeton et al. 1999). There are eutrophic regions of the lake, chief among them 

being Saginaw Bay at 2,947 km
2
,
 
lying entirely in the Michigan waters of the lake (Figure 1.1). 

Saginaw Bay historically was the site of the second largest walleye (Sander vitreus) fishery and 

population in the Great Lakes, behind only that of Lake Erie (Baldwin and Saafeld 1962; 

Schneider and Leach 1979).  

The history of the Saginaw Bay walleye population and its fisheries have been 

characterized by three periods (Fielder and Thomas 2006). During the first period (late 1800s 

~1970) there was unregulated commercial exploitation, habitat degradation, declining water 

quality, and effects of invasive species. The commercial walleye fishery collapsed in the mid-

1940s due to recruitment failures attributed to these reasons (Schneider and Leach 1979; Keller 

et al. 1987). The second period (1971 – 2002) began with the passage of water quality legislation 

and the formal closure of commercial fishing for walleye in the bay. The Michigan Department 

of Natural Resources (DNR) implemented a walleye fingerling stocking program in the early 

1980s and a sport fishery soon emerged (Mrozinski et al. 1991; Fielder 2002, Fielder et al. 2014). 

The population and fishery, however was still largely dependent on stocking and short of 

recovery targets (Fielder and Baker 2004).  

The most recent period in Saginaw Bay’s walleye history (2003 to present) has been the 

remarkable recovery of natural reproduction and the achievement of recovery goals (Fielder and 

Baker 2004; Fielder and Thomas 2014). This was brought about due to improved reproductive 

success which in turn was attributed to the decline of alewives (Alosa pseudoharengus) in Lake 

Huron (Fielder et al. 2007). Alewives are predators and competitors on newly hatched Percid fry 

(Kohler and Ney 1980; Brandt et al. 1987; Brooking et al. 1998) and use Saginaw Bay as 



3 
 

spawning and nursery grounds (Organ et al. 1979). Walleye recovery targets were formally met 

in 2009.  

Food web changes and trophic interactions are believed to have precipitated the near 

extirpation of alewives and decline in rainbow smelt (Osmerus mordax) in Lake Huron in the 

early 2000s (Riley et al. 2008; Riley and Roseman 2013). This is hypothesized to have been due 

to a combination of sequestering of productivity into the nearshore zone of the lake (Hecky et al. 

2004; Cha et al. 2011), a decline in offshore productivity affecting phytoplankton and 

zooplankton as well as macroinvertebrates (Nalepa et al. 2007, 2009; Barbiero et al. 2009, 2011), 

and heavy predation from the lake’s predators (Bence 2008, He et al. in press). The decline of 

alewives led to a severe contraction of the popular Chinook salmon (Oncorhynchus tshawytscha) 

fishery which drove a corresponding decline in recreational fishing effort in the Michigan waters 

of the lake (Michigan DNR, unpublished data). Walleye have emerged as an integral component 

in the remaining recreational fishery in Lake Huron (Fielder et al. 2014).  

Saginaw Bay walleye have long been hypothesized to contribute to the main basin 

walleye population by some degree of migration (Hile 1954). A study of Saginaw Bay mortality 

and exploitation via jaw tagging further confirmed that at least some walleyes migrate 

throughout the Michigan waters of the lake (Fielder 2014). Genetic studies indicated that the 

Tittabawassee River (a tributary to the Saginaw River; Figure 1.1) spawning genotype was a 

substantial component of the commercial walleye fishery operating in Ontario’s southern main 

basin waters (McParland et al. 1996). More recently, a telemetry study of Saginaw Bay walleye 

movement has confirmed that not only are walleyes making such a migration, but as many as 

half the adult fish emigrate as early as June after spawning in the bay’s tributaries (T. Hayden, 

U.S. Geological Survey, Great Lakes Science Center, personal communication).  
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Large-scale emigration of walleye from Saginaw Bay to the main basin of the lake 

underscores the relevance of this species in understanding the whole lake fish community, 

including efforts to manage for a balance between predators and prey (He et al. in press). Such 

movement also contributes to spatial complexity of walleye exploitation across fishery types and 

jurisdictions. These revelations in combination with the recovery of the stock herald an elevated 

need for improved understanding of stock dynamics, exploitation, and sustainability. This 

information is needed to inform management for the future as a now recovered walleye stock 

will play an increasing important role in Lake Huron. 

At the outset of this research, there were several unknowns and misconceptions. The 

awareness around the full extent of the movement made by Saginaw Bay walleyes was only 

revealed concurrently with this analysis. One of the benefits of stock assessment modeling is that 

it forces one to think explicitly about what processes shape the stock including the sources of 

mortality (Hilborn and Mangel 1997). Previously little regard was given to how Saginaw Bay 

walleyes might be exploited outside of the bay or how other fisheries may act in concert to 

constitute a collective source of mortality. These included recreational harvest outside of the bay, 

commercial harvest by Ontario fisheries and tribal commercial harvest (permitted as a by-catch) 

in the 1836 Treaty Waters of northern Lake Huron (Figure 1.1). An additional source of 

mortality not previously considered was that of by-kill (mortality of by-catch) by state of 

Michigan licensed commercial fisheries still operating in inner Saginaw Bay (permitted for other 

species aside from walleye). That assessment, performed by MacMillan and Roth (2012), added 

to the scope of Saginaw Bay walleye exploitation.  

The stock assessment work undertaken in this research was not the first for Saginaw Bay 

walleyes. The Michigan DNR had sought to characterize the dynamics of mortality and 
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exploitation for more than three decades using a Brownie-style analysis of tag recoveries (Fielder 

2014). That work provided estimates of exploitation rate, total mortality rate, fishing mortality 

rate, and natural mortality rate. These metrics served as the basis for evaluating the status and 

sustainability of the walleye fishery for the Michigan DNR. That study, however, was almost 

exclusively limited to the recreational fishery as the other fisheries typically would not report the 

jaw tags. Consequently, the rates estimated were specific to only one component of several 

shaping that stock. This limitation was not fully apparent until those findings could be contrasted 

with the statistical catch-at-age (SCA) stock assessment performed in Chapter 2.  

The motivation for developing a SCA model for Saginaw Bay walleye was driven by 

another study entitled “Quantifying new top-down influences on the rapidly changing food web 

in the main basin of Lake Huron.” This work sought to evaluate certain predator/prey questions 

for the lake via a bioenergetics approach, which necessitated estimates of predator populations 

by age (He et al. in press). The Brownie-style analysis employed by the Michigan DNR could 

generate estimates of abundance but was not age structured. Aside from accommodating the 

bioenergetics model, I wished to elevate the stock assessment for Saginaw Bay walleyes to state 

of the art methods, so as to provide a stronger basis for management. SCA methods more 

thoroughly accommodate multiple fisheries than the earlier Brownie-style tag recovery analysis. 

SCA analysis posed its own unique challenges, however, in that estimates of natural mortality 

are not typically generated as a product of the analysis (Quinn and Deriso 1999) in contrast to 

tagging studies. A goal of my SCA analysis was to evaluate alternative estimates and sources of 

natural mortality information.  

A further element of SCA modeling is the ability to integrate a greater variety of 

information (Punt et al. 2001) to improve model fit, resulting in more realistic parameter 
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estimates. The ability to potentially combine the walleye tag returns as auxiliary information to 

help inform the SCA model fitting process could result in a hybrid model. The intent of this 

analysis was not just improved estimates but a strategy to guide stock assessment and inform 

management in the future.  

An additional challenging aspect of this work was a need to account for the role of 

walleyes that immigrate to Lake Huron from Lake Erie on the Saginaw Bay population 

assessment. Because I derive the model based on the concepts of maximum penalized likelihood 

estimation by parameter fitting to match observed and predicted values such as harvest, I also 

had to account for harvest of Lake Erie stock fish in Lake Huron, so to be able to predict the 

harvest correctly without overestimating harvest from the Saginaw Bay stock.. This meant 

developing a means to predict the number of Lake Erie immigrants, so their contribution to the 

Lake Huron harvest could be accounted for. Lake Erie immigrants were initially believed to 

account for overall greater walleye abundances in the 1980s (i.e. more Lake Erie walleyes in 

Lake Huron than Saginaw Bay walleyes). This analysis provides the ability to evaluate that 

hypothesis.  

In spite of the insights gained from the SCA analysis reported in Chapter 2, key 

uncertainties persist. The original estimate of by-kill reported by MacMillan and Roth (2012) 

was based on an observed period of May – August and a much larger extrapolated year-round 

value was also reported. Abundance estimates from the SCA model proved sensitive to which 

estimate was used. This uncertainty in the stock assessment model could translate into important 

uncertainty about the performance of future management strategies. Another key uncertainty 

governing the future of the stock is how alewives will trend. Because the food web changes in 

Lake Huron since the early 2000s were so unprecedented, it is uncertain whether alewives will 
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remain scarce or will recover to previous levels of abundance. Alewife population recovery in 

Saginaw Bay may be tied to maintenance of predation pressure by walleyes. The future of 

alewives will likely be a critical determinant of future walleye recruitment and the whether the 

stock will sustain its recovery (Fielder et al. 2007).  

The SCA model seeks to describe the status of the stock “today” based on how it 

performed in the past. Projecting the status of the stock out into the future is an entirely different 

matter but one closely tied to the stock assessment work. Ultimately fishery managers want to be 

able to design management strategies to sustain and optimally utilize the resource in the future. 

Because there are a number of uncertainties, I could not predict a single outcome for any given 

management strategy.  Instead I sought to embrace uncertainty through use of decision analysis 

(Peterman and Anderson 1999) and a value of information analysis (Clemen and Reilly 2001). In 

Chapter 3 I describe the development of a stochastic simulation model based on the parameters 

developed in the SCA model. This is the basis to then conduct a decision analysis on 

management options for the future of the recreational fishery; asking the question; given the 

probability of the various combinations of potential states of nature represented by the 

uncertainties, which management option maximizes our goal while minimizing any exceedance 

of our limits of sustainability? A form of this decision analysis is an examination of the value of 

information. This analysis asks the question; is further investment in research justified to reduced 

or eliminate an uncertainty? That is the question asked about if improved understanding of the 

by-kill magnitude was warranted. These are the sort of practical management questions that can 

be tackled by the process of decision analysis accomplished through simulation modeling.  

Management of the Saginaw Bay stock of walleye is transitioning from a recovery effort 

to one of maintenance and possibly allocation. The cessation of stocking in 2006 means that the 
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principal future role of fishery managers will be to choose harvest policies and regulations as the 

primary means to meet future management objectives, balancing between meeting the harvest 

goals of the fisheries yet ensuring sustainability. The question of sustainability is elusive, 

however. Thresholds can be defined and strategies evaluated within the simulation model, 

however, the exact role of walleye as a predator on alewives in the lake is a harder question to 

isolate. Harvest reduces the walleye stock predictably but what is the threshold needed to ensure 

sufficient predation pressure on alewives to minimize the risk of a recovery? These questions are 

also explored but prove difficult since the full answer lies in the combined suite of predators in 

the lake, something beyond the scope of this work.  

As is often the case with these types of analyses, as our understanding grows and 

questions are answered, new questions emerge exposing additional uncertainties. This becomes 

the context for further research and adaptive management options. The context for this research 

needs to be contemplated based partly on what the understanding of the stock was at the outset of 

the work. This work advances our understanding by more explicitly characterizing the status of 

the Saginaw Bay walleye stock and providing tools for crafting future management direction. 

Considerable discoveries have been made, and misconceptions revealed if not answered. Equally 

important is the recognition of new critical uncertainties that will confront future management 

and research. The ultimate utility of this work will depend on fishery managers and their 

willingness to advance management of this resource based on these findings.  
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Figure 1.1  Saginaw Bay and Lake Huron.  
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Abstract 

 

Estimates of mortality rates and abundance for the Saginaw Bay stock of walleye Sander 

vitreus has traditionally been performed with an analysis of tag returns using a Brownie style 

analysis. An estimation approach that more fully accounted for sources of exploitation in 

addition to the recreational fishery in Saginaw Bay and inclusive of the rest of Lake Huron was 

needed. I developed a statistical catch-at-age model to accomplish this and evaluated four 

versions including three different treatments of natural mortality (M): a constant value, age-based 

M values, and time-varying M values. Deviance information criterion model selection procedures 

indicated that an age-based M model version was optimal. I also evaluated an integrated version 

that incorporated tag returns as auxiliary information for the recreational component. In this case, 

model selection was based on conformity between observed and predicted data and model 

convergence. The integrated version was ruled out due to poor agreement of the observed and 

predicted values, and predictions of abundance that were not reflected by the fisheries. It was 

concluded that the component of the population used for tagging may exhibit dynamics that 

differ from the rest of the stock. Total annual mortality of walleyes was greatest for older ages in 

all fisheries and ranged from 32% for age-2 fish to 39% for fish ages-10 and older. The 

recreational fishery accounted for the majority of fishing mortality but the commercial trapnet 

fishery in the main basin of Lake Huron and by-kill from other trapnets in the bay accounted for 

proportionally greater fishing mortality of younger ages of fish. Abundance peaked in 2007 at 4 

million walleyes age 2 and older but estimates indicated a previous period of high abundance in 

the late 1980s, forcing the reconsideration of the past stock as depressed and dependent on 

stocking.   
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Introduction 

 

Statistical catch-at-age (SCA) methods are widely regarded as the state of the art 

approach to stock assessment (NRC 1998; Quinn and Deriso 1999; Maunder 2003; Hilborn 

2012) and are a form of “integrated analysis” (Quinn and Deriso 1999; Punt et al. 2001). 

Statistical catch-at-age models are age-structured and describe changes in abundance of 

individual cohorts over time (Megrey 1989). Such models include a population submodel from 

which estimates of abundance and mortality rates are derived. In addition, observation 

submodels describe the fisheries and fishery-independent assessment (Fournier and Archibald 

1982; Methot 1990, 2000).  The modern day approach to model fitting is a likelihood based 

approach (Methot 1990, 2000), sometimes in a Bayesian context (Maunder 2003), from which 

the model parameters are adjusted so that a match to observed data (and prior information) is 

achieved as measured by an objective function. Statistical catch-at-age methods in combination 

with the likelihood approach to model fitting are hailed for their flexibility in utilizing a variety 

of data to characterize complex dynamics of fish stocks and their fisheries (Magnusson and 

Hilborn 2007; Butterworth and Rademeyer 2008; Methot 2009; Hilborn 2012). 

Walleye Sander vitreus from Saginaw Bay in Lake Huron is a stock with complex 

dynamics that requires a flexible approach to assessment. Walleyes are an important native 

predator in Lake Huron (Roth et al. 2013) and the Saginaw Bay stock is the largest source of 

recruits (Schneider and Leach 1979). Saginaw Bay is a relatively shallow, coolwater embayment 

of about 2,947 km
2
, that lies entirely in the Michigan waters of Lake Huron (Figure 2.1). The 

Saginaw Bay walleye fishery dates to the late 1800s and historically was the second largest in the 

Great Lakes, behind that of Lake Erie (Baldwin and Saalfeld 1962; Schneider 1977). Fielder and 
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Thomas (2006) characterized the history of walleye in Saginaw Bay as having three phases. The 

first period, characterized by unbridled commercial exploitation, severe habitat degradation, and 

effects of invasive species, ended with collapse of the fishery in the mid-1940s (Schneider 1977; 

Schneider and Leach 1977, 1979). After the passage of water quality legislation in the 1970s, 

closure of the commercial fishery, and the initiation of a fingerling stocking program, a 

recreational fishery emerged (Fielder et al. 2014) but it was believed to have remained dependent 

on stocking (Fielder 2002; Fielder and Thomas 2006).  Most recently a period of recovery has 

occurred and is attributed to the disappearance of the invasive alewife Alosa pseudoharengus  

and substantial decline in rainbow smelt Osmerus mordax (Riley and Roseman 2013), which 

were predators on newly hatched percids (Fielder et al. 2007).  

Since the early 1970s, the Michigan Department of Natural Resources (DNR) has 

recognized the importance of stock assessment information for Saginaw Bay walleye. 

Investments in assessment included analysis of trends in abundance, recruitment, and growth 

rates since 1971 (Fielder and Thomas 2014), creel surveys to document extraction since 1986 

(Fielder et al. 2014) and an analysis of mortality and exploitation rates based on a tagging 

program conducted since 1981 (Fielder 2014).  

The spatial extent of the Saginaw Bay stock of walleye, however, reaches beyond the 

confines of the bay (Hile 1954).  Return of jaw tags has been limited to the recreational fishery 

(Fielder 2014) but has indicated considerable out-migration from Saginaw Bay proper to much 

of the rest of Lake Huron. Genetic studies have also documented that Tittabawassee River 

genotypes of walleye (a spawning tributary within Saginaw Bay) have been found to comprise as 

much as 9% of the harvest of walleyes in commercial fisheries operating in the southern Ontario 

waters of the lake even before the recovery (McParland et al. 1996). More recently, an acoustic 
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telemetry study has indicated that as many as half of the adult walleyes are  emigrating from 

Saginaw Bay during the open water months (T. Hayden, U.S. Geological Survey, personal 

communication). Other fisheries thought to be likely exploiting Saginaw Bay walleyes outside 

the bay includes the recreational fishery in the nearshore waters of Lake Huron and a tribal 

gillnet fishery in the area of northern Lake Huron defined by the 1836 Treaty (Figure 2.1) where 

walleyes are retained as by-catch. By-kill of walleyes also occurs in the state-licensed 

commercial fishery that operates in the bay and constitutes another source of mortality 

(MacMillan and Roth 2012).  

Compounding the challenges of stock assessment for Saginaw Bay walleye is the effect 

of immigration of walleyes from Lake Erie. Some walleyes from the central and western basins 

of Lake Erie are documented to inhabit portions of Lake Huron seasonally (Wolfert 1963; 

Ferguson and Derksen 1971; Thomas and Haas 2005; Wang et al. 2007). A mixed-stock analysis 

of walleye from commercial fisheries on the Ontario portion of southern Lake Huron indicated 

that walleyes from western Lake Erie contributed as much as 67-72% of the total commercial 

catch in 1994 and 1995 (McParland et al. 1996).  Tag returns from Lake Huron of walleyes 

tagged in  Lake Erie average about 1% but have been as great as 2.6% in some years (Lake Erie 

Walleye Task Group, Great Lakes Fishery Commission, unpublished data). These are 

proportions of the entire exploitable walleye population in central and western Lake Erie, which 

regularly number in the tens of millions. This outside source of walleyes must also be accounted 

for in a comprehensive stock assessment for Saginaw Bay walleye.  

The objective of this study was to use SCA methods to more fully characterize population 

dynamics of the Saginaw Bay stock of walleye. I sought to develop a model that accounted for 

four fisheries (Michigan recreational fishery, Ontario trapnet fishery, Ontario and tribal gillnet 
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fisheries, and the effects of commercial by-kill within the bay) and adjusted for immigration of 

Lake Erie walleyes and their contribution to each of the fisheries. I also evaluated whether 

existing tag return data could be incorporated as auxiliary information to yield a superior 

integrated model.  

Methods 

 

The analytical approach to this analysis was to (1) develop an SCA model for the 

Saginaw Bay stock of walleye in Lake Huron, including adjustments for migrants from Lake 

Erie, (2) evaluate three options of natural mortality and settle on a final “baseline” model 

version, and lastly (3) develop an integrated model version incorporating tag returns as auxiliary 

information and determine the optimal model (baseline versus the integrated version).  

Statistical catch-at-age model. -- The SCA analysis was conducted on annual time steps 

from 1986 through 2011. The modeling began with 1986 because recreational harvest estimates 

were not consistently available before that year. Ages of walleye modeled were 2 through 13, 

and age 13 fish included an aggregate of all walleyes age 13 and over. These ages were selected 

because younger walleyes (< age 2) are not typically recruited to most of the fisheries. I chose 

age 13 to aggregate because the Saginaw Bay stock of walleye has exhibited considerable 

longevity at certain points in its history. There was no attempt to quantify aging error from any 

of the fisheries or survey.   

Population submodel.-- Predicted walleye numbers (N) at age a+1 at the start of year y+1 

were derived by the population equation: 
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where Z is the total instantaneous mortality rate for the corresponding age and year; Z is the sum 

of instantaneous natural mortality, M,  and the total instantaneous fishing mortality, F, for age a 

and year y.  

Natural mortality options.-- Instantaneous natural mortality is not typically estimable 

from within a SCA model and instead is supplied (Quinn and Deriso 1999). Three alternative 

assumptions regarding natural mortality were used in alternative assessment models compared in 

this analysis, and in each case treating values for M as known. First, I used time-varying (annual) 

estimates (My) derived from the analysis of the tagging operation conducted annually by the 

Michigan DNR (Fielder 2014). Second, I used age-based estimates of Ma borrowed from the 

walleye tagging assessment in the neighboring western basin Lake Erie (Vandergoot and 

Brendon 2014). Those values were 0.335 for ages 2-4 and 0.152 for ages 5+. Lastly I used a 

value for M=0.23 that was constant over years and ages derived from the Pauly (1980) equation, 

taking into account  Von Bertlanaffy growth parameters and temperature data. Growth 

parameters of 


L and K were obtained from survey data for Saginaw Bay walleye (Fielder et al. 

2000; Fielder and Thomas 2006, 2014) based on  all available data from the initiation of the 

survey in 1989 through 2011, and temperature was derived from mean annual air temperature 

data obtained from Midland-Bay City-Saginaw (MBS) airport.     

Fishing mortality.—All model variations evaluated included the same treatment of 

fishing mortality. For the recreational, commercial trapnet, and commercial gillnet fisheries, 

instantaneous fishing mortality was treated as separable by age and year such that  

yyaya qEsF ,                                [2] 
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where sa is the age-specific selectivity of the fishery, q is the catchability of the fishery, Ey is the 

year specific fishing effort, and y represents the catchability deviations (process error). These 

elements, aside from the effort, are estimated as parameters (or calculated from estimated 

parameters) in the model. Selectivity for each fishery was freely estimated out to age 10, and fish 

older than age 10 were assumed to have the same selectivity as age-10 fish. Depending on the 

fishery, the catchability deviations were either based on a white-noise (trapnet and gillnet 

commercial fisheries) or a random walk (recreational fishery) model.  In the case of white noise, 

y are assumed to come from a lognormal distribution.  For the random walk, y are modeled as 

19861
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and y (random walk deviations) are lognormal.  In the case of white noise, the catchability 

deviations allow for variation around a mean catchability but the model fit is penalized when y

deviates from that mean. In this case the y are estimated parameters.  In the case of the random 

walk, the random walk deviations, y , are what is penalized in the model fit for changes in 

catchability from one year to the next, and these rather than the y are the estimated parameters .   

I used a random walk to model y for the recreational fishery because of the colonization of 

Saginaw Bay by dreissenid mussels in 1992 – 1993 midway through the time series (Nalepa et 

al. 1995). Dreissenid mussels were documented to increase water clarity and are theorized to 

have affected catchability in some fisheries including that in Saginaw Bay (Fielder et al. 2000). 

The use of random walks is an omnibus approach to estimating time-varying parameters when 

they may not come from a distribution with a consistent mean (Wilberg and Bence 2006; 

Wilberg et al. 2010). I presumed that catchability would be more stable for the commercial 
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trapnet and gillnet fisheries, which are prosecuted outside Saginaw Bay, and hence used the 

white noise model in those cases.  

Instantaneous fishing mortality stemming from the commercial by-catch (constituting by-

kill) in Saginaw Bay could not be derived as it was for the other fisheries because only one 

estimate of by-kill was available (for 2010). However, this source of extraction is believed to be 

large (MacMillan and Roth 2012) and could not be ignored. To calculate F for this source of 

extraction, the Newton-Raphson method (Quinn and Deriso 1999; Haddon 2001) was employed 

to find a catchability value so that the 2010 by-kill was matched.  Year-specific F values were 

then determined as the product of catchability and annual commercial effort in the bay (Michigan 

DNR, unpublished data), which is functionally equivalent to equation 2 with an assumption of 

constant selectivity (1.0) across ages.  The resulting annual values for F derived for the 

commercial by-kill in Saginaw Bay were then included in population calculations (as a 

component of the total instantaneous F value). While the inclusion of by-kill influences fit to the 

data, it was not directly part of the objective function given that there was only one by-kill 

observation that was exactly matched. MacMillan and Roth (2012) offered two estimates of by-

kill for Saginaw Bay commercial fisheries: a lesser value of 23,500 walleyes represented their 

observed period of May-August and an extrapolated larger value of 102,000 walleyes was given 

for the entire year. The larger expanded value represented a set of assumptions that were 

regarded as tenuous so I used the lower value from the observed period in my model fitting.  

Using my final model (after model selection), I evaluated sensitivity to the by-kill by refitting the 

model with the larger expanded value.  I did not directly incorporate other sources of discard 

mortality.  However, as part of my sensitivity analysis I did evaluate how estimates were 

influenced when a higher than reported recreational harvest occurred. 
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Observation submodels.-- Predicted catch from each of the four fishery components was 

treated the same across the model variations and was derived from the Baranov Catch equation 

(Quinn and Deriso 1999):  
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where the predicted catch at age ‘a’ in year ‘y’ is the product of the ratio of fishing mortality to 

total mortality and the numbers dying each year.  

The predicted survey catch-per-unit-of-effort (CPUE) ( I


) was derived as: 
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where qy
surv

 is survey catchability and sa
surv

 is age specific survey selectivity. The term yaZ
e

,12

5.8


sets the corresponding population size for that age and year to the time of year the survey is 

conducted. As with the fisheries, the survey selectivity was fixed for ages 11-13 to that estimated 

for age 10. The qy
surv

  was modeled as a random walk, similarly to the catchability deviations for 

the recreational fishery (equation 3), for the same reasons (as this survey is conducted in 

Saginaw Bay) but starting in 1989 rather than 1986 when this survey was initiated.  The 

treatment of survey CPUE was the same across the model variations. 

Other parameters include initial abundance at age of walleyes (N2 to N13) in 1986 (first 

year of modeling) and initial numbers at age 2 for each year of the model (recruitment) (Table 

2.1). Because of the use of random walk and white noise penalties in the objective function, 

however, fewer than the total 181 parameters represented in Table 2.1 were freely estimated. 
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Auxiliary information.-- Each year during the time series, about 3,000 walleyes were jaw-

tagged and released during the annual spawning run (late March or early April) at Dow Dam on 

the Tittabawassee River (Figure 2.1). Tag returns came from the recreational fishery, and tags 

were rarely or never reported from the other fisheries even when encountered. I developed a 

version of SCA that included the fit to the recreational tag return data as a component in the 

objective function, and I evaluated this integrated model version. The number reported by 

anglers in any given year ‘j’ after initial release year ‘r’ is a function of annual survivals iS , for i 

in years r to j-1, and the recovery rate in the recreational fishery jf .  Thus, the probability of a 

tag return being observed in year j in the recreational fishery given the fish was tagged in year r 

is 
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where  is a tag retention rate described by Fielder (2014) and originally obtained from 

Vandergoot et al. (2012). In conventional Brownie et al. (1985) tag-return analysis, the values of 

iS and jf  are parameters estimated solely based on the tagging data, but in my integrated model 

their values are obtained as functions of parameters that are already estimated as part of the 

population model. I assumed that equation 6 applied only to walleyes ages 4 and above, given 

that fish younger than that age are not typically tagged as part of that survey (Fielder 2014). 

During model fitting, estimates of iS  were calculated as the ratio of modeled numbers of age-5+ 

fish alive in year i+1 to the number of age-4+ fish alive in year i. The jf  values were calculated 

as the exploitation rate for year j (estimate of harvest of fish age 4 and older based on equation 4 

divided by estimate of N for fish age 4 and older at start of year j).  Equation 6 is not age 
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structured. While methods exist for age structuring Brownie style analyses, that has not been the 

approach by Michigan DNR, as often the number of aged specimens was insufficient to organize 

an age-based tag-return analysis. 

Model fitting.-- I used highest posterior density (HPD) estimation to obtain point 

estimates of parameters and quantities estimated from parameters.  This Bayesian approach and 

its application in fisheries have evolved from a maximum likelihood approach (Fournier and 

Archibald 1982; Methot 1990; Aldrich 1997) to account for process errors (Schnute 1994; Linton 

and Bence 2008).  Using this approach, parameters are estimated based on the minimization of 

an objective function, which is the sum of the negative log likelihood for the data and the 

negative log prior densities for the parameters. The separate negative log-likelihood components 

for each type of data predicted by each of the submodels were summed, yielding the joint 

negative log likelihood term. In addition, for parameters allowing for catchability variations, 

there was a negative log prior term associated with each fishery or the survey based on the 

assumed prior distribution for either the y (white noise) or y (random walk) deviation for that 

fishery or survey.  These prior terms were summed to obtain the joint negative log prior density.  

I assumed bounded uniform priors for other parameters, and thus prior densities were constant 

within the bounds so were not included in the objective function. The objective function was  

minimized  using AD Model Builder version 10.0  (AD Model Builder Project 2011; Fournier et 

al. 2012).  The prior components can be viewed as penalties for deviations from the values 

deemed most likely a priori, and HPD estimation is also referred to as penalized likelihood 

estimation.  
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For each of the observed fishery catches (recreational, Ontario trapnet, lake-wide gillnet), 

each of the four sets of fishery or survey catchability deviations  ( y for white noise or y

random walks), and for the survey CPUE, a lognormal distribution was assumed   
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where IC is  an ignorable constant that was not included in my calculations. Each data source is 

designated by i, sample size is denoted by n, and i


 is the standard deviation that applies to each 

quantity yiX , .  In the case of fishery catch and survey CPUE, yiX ,
ˆ represents a model prediction 

of observed catch or CPUE and yiX , represents the observed number of fish caught.  In the cases 

of the components for white noise catchability, yiX ,  represents the catchability deviations ( y ), 

and for the random walk components, yiX , represents random-walk deviations ( y ). In both of 

these cases  yiX ,
ˆ has an assumed value of 1.  Thus there are 8 lognormal components (Li): three 

for the different fitted fishery catches (all fisheries except the by-kill from state-licensed 

trapnets), one for the CPUE from the survey, two for random-walk deviations (for the survey and 

recreational fishery), and two for white-noise catchability deviations (Ontario trapnet fishery and 

lake-wide gillnet fishery).  

The values of i


play a role in all eight lognormal components.  Unfortunately, we know 

from the theory of penalized likelihood that not all of these i


can be estimated during model 

fitting (Linton and Bence 2008).  My approach was to estimate the i


associated with the 
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observed data (fishery catch or CPUE), so four of these were estimated.  The i


for the white 

noise or random-walk deviations were then calculated based on an assumed ratio of their 

variance ( 2

i


) relative to the variance for catch or CPUE from the same fishery or survey.   

We set the ratios for both the survey and recreational fishery catchability random walk 

variance to 0.85, hypothesizing that the interannual changes in catchability, as a proportion of the 

current value, would be of lesser magnitude than the observation error associated with catch (as a 

proportion of the true or expected value), but nearly as large. I set the ratios for the commercial 

fishery effort deviation variances to 1.0 for the lake-wide gillnet fishery and to 0.25 for the 

Ontario trapnet fishery. For the gillnet fishery I had no specific reason to expect actual changes 

in catchability, but I assumed that estimation error variance for effort would be at least as large 

as for the actual landings, as effort reporting is not a focus. For the Ontario trapnet fishery I 

hypothesized that variance in effort estimates would be substantially less than those of harvest, 

as they are not subject to all of the errors that beset harvest (e.g., weighing, converting from 

weight to numbers), and the Ontario effort reporting system is well developed. I acknowledge 

that these ratios, while based on my best judgment are somewhat arbitrary. Consequently I 

explore the influence of the ratios in the sensitivity analysis.   

The age-composition data (proportions at age) from each fishery and the survey were 

based on age samples assumed to arise from a multinomial distribution, leading to the likelihood 

equation 
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where yiN ,  is the sample size for the number of specimens aged but was capped at an effective 

sample size of 200. This cap limited the influence of the component in the objective function and 

prevented this likelihood component from being over weighted for a specific year and data 

source (Fournier and Archibald 1982).  The cap of 200 is consistent with the examination of 

residuals, which suggested markedly better fits were not obtained for year and data sources when 

age-composition sample size exceeded the cap.  The observed proportion of age ‘a’ in year ‘y’ 

for each source of age composition data was denoted as ayip ,,  and the corresponding predicted 

value as ayip ,,


 is the predicted proportion.  

The likelihood component for the auxiliary information (tag return comparison) was 

based on the multinomial distribution as 
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where jrp , is the probability of the tag recovery from the r
th

 tagging year in the j
th

 recovery year, 

rUR is the number of tags not recovered from the original lot tagged in year r, and jrR , is the 

number of tags recovered from tagging year r in recovery year ‘j’; jrR ,  was the adjusted value of 

the actual number of tags reported expanded by the year–specific correction factor for 

nonreporting (Fielder 2014).   

Two model versions were developed. The baseline version omitted the tag return 

component from the objective function, and the integrated version included the tag return 

evaluation in the objective function. The baseline version was the SCA model chosen from the 
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three candidate models (based on the natural mortality options) as a result of the model selection 

criteria. Because the predicted tag returns were generated with existing parameters, the total 

parameter set (181) is the same for the baseline and integrated model versions. Comparison of 

the two versions is addressed in following sections on sensitivity analysis and model selection.  

Fisheries and fishery-independent data.-- Estimates of recreational harvest and effort 

were available for most of the Michigan waters of Lake Huron since 1986. In this context, 

harvest refers to actual number retained and does not account for any discarded that die due to 

hooking mortality. While I do not adjust for such mortality, I do evaluate the consequences of 

underreported recreational harvest in the sensitivity analyses.  Because the Saginaw Bay stock of 

walleye is the subject population, decisions had to be made as to what estimates of harvest to 

include. Although there is undoubtedly some local natural reproduction outside the bay, the 

decision was made to assume that it was negligible and the majority of Michigan’s main-basin 

walleye harvest could be credited to the Saginaw Bay stock because of the seasonal movement 

from the bay.  

While walleyes are sought by recreational anglers in Ontario, recreational harvest is not 

regularly estimated there. Based on the bathymetry of Lake Huron, it was rationalized that 

Saginaw Bay walleye would not likely reach Ontario waters past the abyssal area of Lake Huron 

north of the Sixth Fathom Scarp, effectively limiting them to the Ontario waters in the 

southernmost portion of the main basin from Pt. Clark, to Sarnia, Ontario. For the purpose of this 

SCA analysis, the recreational fishery there was regarded as negligible, but as indicated above 

the influence of higher-than-reported recreational harvest is evaluated as an assumption in the 

sensitivity analysis.  
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Recreational walleye fishery harvest estimates were obtained from the Michigan DNR’s 

statewide annual creel survey study and direct reporting for charter boat operations. The creel 

survey follows the methods of Schneider (2000). Michigan DNR creel survey estimates were 

obtained from Fielder et al. (2014) and as unpublished data. Ages of walleyes were obtained 

from annual biological samples of the recreational fishery throughout the survey season. Ages 

were estimated from hard structures: scales for early years and spines since 2009. Numbers of 

fish aged each year averaged 521. Proportions at age for the recreational fishery were derived 

from those annual biological samples.  

Commercial harvest numbers are calculated based on yield-reporting programs and the 

average weight of harvested fish each year for each fishery, based on biological sampling.  

Walleye is a highly valued species and I assumed that commercial discard was negligible.  The 

provincially licensed commercial trapnet fishery occurs in the Ontario southern basin waters of 

Lake Huron from Pt. Clark to Sarnia.  Most of the effort is reported to occur in the most south-

westerly area around Sarnia.  While all reported harvest was included as the observed harvest for 

this fishery, I only used effort targeted on walleyes (number of trapnet lifts). Ages of walleyes 

were obtained from samples of the trapnet harvest and estimated from hard structures (scales or 

spines), and numbers averaged 527 per year. Proportions at age for the trapnet fishery were 

derived from the sample.  

The commercial gillnet fishery exists in two regions of Lake Huron thought to include 

Saginaw Bay stock of walleye. There is a Provincially licensed gillnet fishery targeting walleye 

and other species in the southern main basin of the Ontario waters of  the lake from Pt. Clark to 

Sarnia concurrent with the trapnet fishery. The second portion of the gillnet fishery is a tribal 

fishery authorized under the 1836 Treaty and 2000 Consent Decree (USA v. State of Michigan 
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2000). That fishery exists from the Straits of Mackinaw east to De Tour Passage (Figure 2.1) 

excluding the embayments of the Les Cheneaux Islands. That fishery is similar to the Ontario 

gillnet fishery and nets comprise mesh sizes from 114 to 140 mm stretch measure. Tribal harvest 

is permitted as a retention of the by-caught walleyes. Annual effort was recorded as the 

cumulative km of nets fished. These data were obtained from the Chippewa-Ottawa Resource 

Authority and Ontario Ministry of Natural Resources. Age distributions were also similar 

allowing them to be combined with sample sizes of around 100 per year. All SCA model 

variations combined the two gillnet fisheries as a single fishery in the estimation.  

The fishery independent survey is a gillnet-based assessment operation, using variable-

mesh gear, conducted annually each September by the Michigan DNR since 1989 (Fielder et al. 

2000; Fielder and Thomas 2006, 2014). Walleyes as young as age 1 were vulnerable to this gear 

in all years (Fielder and Thomas 2006). Age distributions were obtained from ages of hard 

structures (scales in early years, spines since about 1997) numbering about 500 each year. All the 

walleyes in the catch were aged.  

Immigrants from Lake Erie.-- Each fishery and survey component had the potential for 

augmentation by migratory Lake Erie walleyes and needed some level of adjustment. In each 

case, the predicted fishery catch or survey CPUE compared with the observed value in the 

objective function was the sum of Saginaw Bay stock of walleye and Lake Erie walleye. 

Immigrant walleyes from Lake Erie were given by 
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where E

yn  is the number of walleyes at age a in year y in Lake Huron that results from Lake Erie 

migrants, E

yN is the total walleye population in the central and western basins of Lake Erie in a 

given year,
ay

P
,

 is the year-specific age distribution of the Lake Erie walleye population, 
y

T is the 

year-specific proportion of walleyes migrating to Lake Huron as based on the jaw tag returns. 

Those values are reported by the Lake Erie Walleye Task Group (LEWTG) of the Great Lakes 

Fishery Commission (Thomas et al. 2011). The proportion of Lake Erie walleyes migrating to 

Lake Huron based on jaw tags reported from Lake Erie fish (
y

T ) was further adjusted based on a 

running 3-year average (the average of the previous two years and the reported value for the 

current year became the new value for the “current” year). A year-specific correction factor for 

nonreporting of tags from the recreational fishery in Lake Huron was incorporated as y  

(Fielder 2014). The contribution (expressed as a proportion) of each age that is thought to make 

the migration from Lake Erie is denoted as 
a

C . This value is 1.0 for ages 5 and older but is 

reduced to 0.5 for age 4 and 0.0 for ages 2-3. The reduction for younger fish is based on 

information reported by Wolfert (1963), Ferguson and Derksen (1971), and Wang et al. (2007), 

who observed that younger Lake Erie walleyes were less prone to large migrations.  

The estimates generated by the Lake Erie SCA model are specific to the western- and 

central-basin stocks in that lake (Thomas et al. 2011). The same model also estimates proportions 

at age, however those are aggregated at age 7+. To adjust the Lake Erie estimated age; 

distribution out to age 13 to conform to that used in this (Saginaw Bay) model, the aggregated 

age-7+ fraction was distributed across ages out to age 13 based on assuming a 50% survival rate 

of walleyes for each subsequent age beginning with age 6.  
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Unlike the estimation process for the catch of the Saginaw Bay stock of walleye, fishing 

mortality F was not estimated directly for Lake Erie walleye but rather as a fraction of the F for 

Saginaw Bay fish for each of the fisheries. The Lake Erie F within Lake Huron was set at half 

(0.5) of the corresponding fishery F for each of the fisheries operating in Lake Huron including 

the by-kill in the Saginaw Bay commercial fishery. This was based on the belief that once in 

Lake Huron, Lake Erie walleyes would be subject to the same fishing mortality rate as the 

Saginaw Bay stock but for approximately half the year. The one exception is for the gillnet 

fishery, which was spatially split between southern Lake Huron and northern Lake Huron. 

Rationalizing that Lake Erie walleyes will not substantially migrate as far north as northern Lake 

Huron, only half of the gillnet fishery was set to exploit fish from Lake Erie, and thus the 

multiplier for the gillnet F was 0.25. Values for natural mortality of Lake Erie immigrants were 

similarly adjusted by these fractions. The catch attributable to Lake Erie fish was derived from 

the Baranov Catch Equation (equation 4) applying the fishing mortality rates described above, 

and E

yn .  

The survey CPUE was adjusted for Lake Erie contributions by using equation 5 (for the 

predicted survey CPUE) but applying the formulation to numbers and total mortality rate specific 

to Lake Erie fish. This approach used the same estimated survey selectivity and catchability as 

estimated by the model for Saginaw Bay fish. As with the fisheries, the predicted values used in 

the calculation of the likelihood component was the sum of the two predicted CPUE values.  

 Spawning stock biomass.-- The mean weight at age and by sex was available for the time 

series from the walleyes caught in the Michigan DNR survey (Fielder and Thomas 2014). 

Similarly the survey provided a matrix of maturity (expressed as proportions) of females by year 
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and age. Spawning stock biomass at age and year was derived as half the total biomass (to reflect  

females only)  and the product of the maturity matrix. 

Model selection.-- Deviance information criterion (DIC) was used to select among the 

models of the three candidate treatments of natural mortality M. Deviance information criterion 

is a Bayesian approach to selecting among  models, analogous to Akaike's Information Criterion 

used when fitting models by maximum likelihood  (Spiegelhalter et al. 2002).  Because DIC is 

limited to models involving the same data, this technique could not be used to select between 

models including or excluding the tag return data. The  "best" model is the one with the lowest 

DIC value.  Wilberg and Bence (2008) found DIC to work well as a model selection technique 

for SCA analysis. 

Deviance information criterion model selection is based on Markov Chain Monte Carlo 

(MCMC) analysis which is implemented in AD Model Builder based on the Metropolis-Hastings 

algorithm and begins by first obtaining the parameter values based on the HPD and the 

associated asymptotic variance-covariance matrix (Wilberg and Bence 2008; AD Model Builder 

Project 2011). When calculating DIC, I used half of the variance of the individual deviance 

values method for estimating the effective number of parameters (Spiegelhalter et al. 1998; 

Gelman et al. 2004) and HPD point estimates.  

In my MCMC chain I implemented 1,000,000 steps and saved every 200
th

 step to thin the 

chain and save on computing time, which resulted in 5,000 values. The first 1,000 were 

discarded as a burn-in period and DIC analysis was based on the remaining 4,000 values. To 

determine whether the length of the burn-in period was long enough to ensure convergence, I 

visually inspected trace plots the MCMC chains (of the objective function) and evaluated the 

burn-in point with stabilization in the plot (Gelman et al. 2004). 
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The model that I selected using DIC was then deemed the “baseline” model and 

contrasted with the model integrated with tag returns as auxiliary information. The question was 

whether the added influence of tag returns in the evaluation of the model objective function 

would result in an overall improved estimation. Selection between these two candidate models 

(with and without tag returns) was based on model fit between observed and predicted values, 

and particularly evaluation of whether there were systematic patterns to residuals.  

Uncertainty and sensitivity analysis.-- Sensitivity analysis was only applied to the 

baseline model selected by DIC. Analysis of the sensitivity of the model to the various likelihood 

components was based on performance metrics of management interest. Performance metrics 

included spawning stock biomass of females (SSB) and total annual mortality (A). Further 

performance metrics included the exploitation rates of each of the four fisheries modeled but 

limited to age-4 and older walleyes to limit comparison to age-groups fully selected in each 

fishery type. Lastly the annual population sizes were compared as a measure of sensitivity to 

each model component. All metrics were evaluated on time series means as percent of the 

optimal model. Minimum estimates of 95% confidence intervals were based on +1.96 of the 

asymptotic posterior standard deviation. 

Analysis of sensitivity was conducted by applying a weighting factor lambda ( ) of 

either 0.5 or 2.0 to each of the likelihood and prior components. This served to either 

deemphasize or over emphasize the effect of that component in order to examine the effect on 

the aforementioned performance metrics. Lambda was left at 1.0 for all other likelihood 

components so as to evaluate each component’s sensitivity singularly. In some cases, the model 

would not converge.  
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Starting values for parameters were varied typically as half and twice the selected values 

to test for robustness of model convergence. Failure to converge or large departures of model 

predictions from observed values would increase concerns  that the final "converged" estimates 

obtained from the starting values might not be at the global minimum for the objective function. 

Starting values were adjusted until values that met this criterion were identified.  

The SCA model was structured by having to make certain assumptions about walleye 

stock structure and fishery dynamics. These assumptions constitute a source of uncertainty. To 

evaluate the significance of these assumptions, performance metrics were also examined by 

increasing and decreasing assumed values. These assumptions included the following: (1) The 

duration of Lake Erie walleyes inhabiting Lake Huron. This was set in the model by assigning 

mortality rates that were one-half of those of the Saginaw Bay fish, but was trialed here at +/-

20% implying 7.2-month and 4.8-month durations as opposed to a six-month duration.  (2) The 

proportion of fish of each age of Lake Erie walleyes migrating to Lake Huron. Fish of ages 2, 3, 

and 4 were trialed at 50, 100, and 100%,  respectively, in their propensity to migrate to Lake 

Huron instead of none for ages 2 and 3 and 50% for age 4. (3) The assumption of Ontario’s 

recreational fishery harvest being nil is improbable as is the assumption of no catch-and-release 

mortality, so elevating the recreational catch by an additional 10% of the present observed values 

was evaluated for effect on the performance metrics. (4) The larger expanded value of by-kill 

reported by MacMillan and Roth (2012) was evaluated. (5) I evaluated the sensitivity to variance 

ratios by choosing alternative values. Recognizing that a variance ratio of 1.0 implied the same 

variance for the effort deviations or catchability random walk as the catch or CPUE, I chose 

alternative values to test for sensitivity by selecting values of similar proportions above or below 

1.0. (6) I evaluated the sensitivity of model predictions to the assumption of time-varying 
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catchability for the recreational fishery. Preliminary analysis suggested that catchability did vary 

but not in anticipated patterns. To explore the influence of allowing expected catchability to drift 

over time for the recreational fishery, I refit the model with a white-noise treatment of the 

variability of recreational catchability, which assumes catchability varies about a constant mean. 

(7) Lastly, I evaluated the treatment of the age-based M as fully known. This was done two 

ways: first I treated Mage as a prior of its own and incorporated in the objective function based on 

a lognormal distribution using equation 7. For that purpose  was approximated at one-quarter of 

the maximum range of the confidence intervals for the age-based M values from Vandergoot and 

Brenden (2014). Secondly I evaluated model sensitivity to alternative set values of Mage using the 

upper and lower 95% confidence intervals. 

Standardized residual values between observed and predicted for the baseline model were 

examined. Residuals were based on the proportions at age for the survey CPUE and each fishery 

catch with the residuals computed as the observed minus predicted and standardized as the 

quotient of the difference and the predicted standard deviation. A uniform scatter for each about 

zero was interpreted to mean that no systematic pattern existed.  

 

Results 

 

 

 

Model selection-- Application of the DIC model selection procedures indicated that the 

age-varying natural mortality best reflected the observed data. In spite of this candidate model 

having the greatest effective number of parameters, analysis indicated it had the lowest overall 

DIC value (Table 2.2). Consequently, it was the age-varying natural mortality model version that 

then constituted the baseline model version for integration with tag returns as an alternative 

model version for further evaluation. The integrated model resulted in a fit of predicted and 
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observed values that compared favorably with the baseline model except that the predicted 

recreational catch was over estimated relative to the observed (Figure 2.2A). The mean (over 

years) recreational catch predicted by the integrated model was more than twice the mean catch 

predicted by the baseline model. In contrast the baseline model predictions of recreational catch 

were within 1% of the observed values.   

The integrated version of the model generated predicted tag returns by utilizing the 

annual recreational exploitation and survival rates to generate the tag return probabilities. 

Exploitation rates differed between the Brownie model and the baseline model since 2004 

(Figure 2.2B). The elevated exploitation rate depicted by the observed tag returns probably 

resulted in an inflation of the recreational catch causing the departure from the observed. The 

result was an elevated (72% greater) population estimate. The integrated version also estimated 

that the population had declined in the last two years of the time series (2010 and 2011) to record 

lows, which were not consistent with the observed fishery trends.  From this, and the systematic 

overestimation of observed recreational harvest by the integrated model, I concluded that the 

inclusion of the tag return auxiliary information did not result in a superior model and I retained 

the baseline version as my selected model.  

Baseline model-- The baseline model achieved an overall good fit of the observed data 

sets (fishery extractions and fishery-independent survey; Figure 2.3). An examination of 

standardized residual proportions at age for the survey and each fishery generally revealed no 

consistent pattern. There was a slight preponderance of positive residuals over negative values, 

especially for older ages across fisheries. This may have been a result of aging error or over 

estimation of certain terminal age-groups.  
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Abundance of the walleye stock was estimated by the baseline SCA model to have 

declined steadily since 1988 and then increased beginning in 2005. The stock peaked at about 4 

million walleyes (age 2 and older) in 2007 before declining again and leveling off at about 2.4 

million by the end of the time series (Figure 2.4). Uncertainty in the abundance was greatest in 

recent years likely reflecting the model's estimation uncertainty over year-classes not yet 

depleted, a characteristic common to SCA fits (Figure 2.4).  

Selectivities steadily increased for older ages of walleyes through age 10 in the lake-wide 

gillnet and recreational fisheries (at which point selectivities were assumed to remain at the age-

10 value and were not estimated; Figure 2.5). In contrast, the highest selectivity for the trapnet 

fishery was ages 3 and 4. Minimum mesh sizes in the gillnet fishery and minimum length limits 

in the recreational fishery may have contributed to the low selectivity of age-2 and age-3 in those 

fisheries.  

Estimated catchability of the recreational fishery and survey varied considerably over the 

series (Figure 2.6). The survey catchability reflected a greater catchability before dreissenid 

mussel colonization (about 1993), as I hypothesized would occur due to changes in water clarity. 

However, catchability of walleyes in the recreational fishery reflected a pattern that was more 

characteristic of recent population trends or perhaps the disappearance of alewives.   

Total annual mortality ranged from a low of 32% in 1991 to a high of 53% in 1986 

(Figure 2.7). Uncertainty about total mortality was greatest for 1986 and was likely associated 

with the need to estimate an initial population consisting of some cohorts that were reflected in 

only a few years of data. Uncertainty in estimates of total mortality increased slightly beginning 

in 2001. Total annual mortality rates generally followed a pattern that suggested, to some degree, 

mortality was an inverse function of abundance of fish (Figures 2.4, 2.7). 
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Estimated age-specific total annual mortality of walleyes showed a consistent qualitative 

pattern over time, in which a peak occurred at age 4 and  a decline to a substantially lower value 

for age 5, followed by a gradual increase to the levels experienced by age-10 and older fish 

(Figure 2.8). The total annual mortality reached for fish of ages 10 and older, however, decreased 

over the time series. The age specific patterns reflect selectivity and natural mortality rates, and 

the sharp decrease from age 4 to age 5 corresponds to the lower M for age-5 and older walleyes 

and a decrease in selectivity for the trapnet fishery.  

Recreational fishing mortality (Fmrc) of walleyes was greatest in proportion of all sources 

of combined fishing mortality for all ages and was nearly 80% of the total by age 7 and older 

(Figure 2.9). Fishing mortality increased with walleye age for the recreational and gillnet 

fisheries, likely reflecting increasing selectivity as a function of length limits and mesh sizes. 

This was in contrast with the Ontario trapnet fishery, where fishing mortality was highest on the 

younger age groups and then declined with age. Recreational fishing mortality increased over the 

time series, especially after 2000, where age 5 was used as an indicator  (Figure 2.10). Fishing 

mortality declined or was steady for the other fisheries over the same time series.  

Estimated recruitment of walleyes at age 2 clearly indicates the resurgence in 

reproductive success beginning with the 2003 year class (Figure 2.11). Total biomass and 

spawning-stock biomass of the Saginaw Bay stock followed a similar trajectory (Figure 2.12). 

Biomass metrics were much higher earlier in the time series, peaking in 1989, and then exhibited 

a decline until the recent resurgence beginning in 2006. Uncertainty for the estimates was 

generally less for this time series relative to other estimated metrics but also increased for the 

three most recent years. 
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The baseline SCA model exhibited high sensitivity to weighting for the CPUE of the 

survey and gillnet harvest, but not the recreational fishery harvest (Table 2.3). The baseline 

model was somewhat sensitive to weighting of the age structure of the trapnet and gillnet 

fisheries. Aside from those cases, there was generally little departure on a percentage basis from 

the baseline version for most metrics as component weightings were changed. Collectively, 

altering weighting factors resulted in the model failing to converge just three times.  

Although by-kill estimation was not directly part of the objective function, the value used 

to derive the catchability for application to commercial effort of past years did result in 

estimation differences from the baseline model (Table 2.4). The higher extrapolated (year-round) 

estimate of by-kill in 2010 (102,000 walleyes) increased the population estimate by 36% and 

SSB by 26% (Table 2.4). Total annual mortality was not affected on average, but corresponding 

exploitation rates in the fisheries were reduced by about 20% each except for the by-kill 

exploitation rate, which increased 202%. Increasing recreational fishery harvest from the 

baseline model by 10% resulted in a 5-6% increase in population and SSB estimates and a 

similar magnitude decline in exploitation rates except for the recreational fishery (Table 2.4).  

The influence of the duration of Lake Erie walleye habitation in Lake Huron had only 

minor effects on model estimates when increased from 6 months to 7.2 months (Table 2.4). A 

lack of convergence prevented evaluation of a shorter duration. Similarly, the full inclusion of 

age-3 and one-half of the age-2 walleyes in the immigration had only a minor effect on the 

estimates of the baseline model (Table 2.4).  

The baseline (age-based M) model proved reasonably robust to the assumptions of 

variance ratios as shifting the weight of the variance had only minor effects on the metrics of 
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management interest (Table 2.4). This suggests that, while somewhat arbitrary, the choice of 

variance ratios did not have a profound effect on the overall estimation.  

Model estimates were sensitive to the assumption of time-varying catchability in the 

recreational fishery (Table 2.4). Application of an alternative white noise treatment of q resulted 

in a 22% increase in total population size on average with most of the departure occurring in the 

last seven years of the time series. In order to fit the model with a white noise treatment of q 

deviations, the recreational fishery variance ratio had to be increased to 1.10.  

Treating the age based M value as a prior in the estimation process had little effect on 

model performance in which there was a <1% departure from the baseline for all metrics and an 

increase in the standard deviation by  just 0.1% over the baseline. It did increase uncertainty 

slightly for some other metrics and added to the parameter load. Trialing age based M at the 

upper and lower 95% confidence limits did result in a modest effect on model metrics (Table 

2.4): generally a 10-20% effect with greater population estimate resulting from the upper limit 

value, and a lower population from the lower limit value. 

 

Discussion 

 

The SCA model presented in this study allows the explicit incorporation of multiple 

fisheries in the stock assessment and overcomes a weakness of the tag-recapture assessment 

methods that have been used in the past. By incorporating all the fisheries exploiting this stock, 

more plausible estimates of overall mortality, and consequently fishing mortality were obtained. 

Although the recreational fishery accounted for the majority of the total fishing mortality (Figure 

2.9), the omission of the other fisheries clearly underestimated overall fishing mortality, 

especially for younger ages of walleyes. This was most apparent in the annual estimates of 
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natural mortality derived from the Brownie data (as the difference between Z and F). This 

method  of M estimation passes any bias in F to M and in the instance of the Brownie model 

resulted in an over estimation of M. That greater value almost certainly reflected the fishing 

mortality of the trapnet, lake-wide gillnet, and commercial by-kill fisheries. The difficulty in 

obtaining tag returns from commercial fisheries is widespread and methodologies for addressing 

this have had only limited success especially in improved estimates of M (Eveson et al. 2007). 

The elevated M values of the time-varying M model version resulted in the over estimation of the 

population. That version of the SCA model likely estimated the greater abundance so as to fulfill 

the observed fisheries and the supplied high annual M values. While an annual estimate of M 

might be desirable for use in a SCA model, in this case model selection procedures favored the 

age-based natural mortality expression.  

Natural mortality rates are generally difficult to assess in a fish population and are often 

assigned an assumed set value for population modeling (Quinn and Deriso 1999; Nate et al. 

2011). I treated M as known and assumed age-specific natural mortality borrowed from Lake 

Erie because this proved to fit the data better than other expressions of M (constant and time-

varying), but I was unable to fully evaluate the accuracy of these values. The DIC selection of 

the age-varying natural mortality model version may be a reflection that natural mortality of the 

Saginaw Bay stock does vary by age. It doesn’t necessarily mean that those are the most correct 

values. Misspecification of M can have considerable influence over model estimates (Clark 

1999; Deroba and Schueller 2013). Deroba and Schueller (2013) evaluated reliance of a constant 

M value on stock assessments through simulations and found it to bias estimates of SSB and F 

by as much as +/-100% of the estimate for both long- and short-lived species. The degree of bias 

of a misspecified natural mortality may depend on how M was treated in the model and what the 
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true values were. Deroba and Schueller (2013) reported that parameter bias was generally less 

when time-varying M values are misapplied than when misspecified as age varying or as a 

constant, and as such, bias affected estimates of SSB and recruitment.  

The difficultly remains in obtaining reliable estimates of time- or age-varying M. Quinn 

and Deriso (1999) favored using tag-based studies to derive M, but in this instance, it failed to 

result in an accurate estimate of M because of the lack of representation of the competing 

fisheries. More stock assessment efforts are turning to estimating M within a SCA analysis, 

although typically this requires an informative prior value (Wang and Liu 2006; Lee et al. 2011; 

Maunder and Wong 2011; Vincent 2013). I evaluated this in the sensitivity analysis and found 

that when the specified values for M were treated as medians of a prior lognormal distribution, 

this did not materially affect the model point estimates. There was some increase in uncertainty 

but this was  modest. In this instance, I concluded that this does not strengthen the model. I 

believe that there is more uncertainty associated with transferring estimates of M from Lake Erie 

to Lake Huron than was captured as estimation error for the Lake Erie estimates.  I tested the 

impact of specifying M at the upper and lower bounds of the Lake Erie estimates and  this did 

have a moderate effect on the abundance and exploitation estimates, suggesting that this is a 

consequential model term, especially if it were to turn out that natural mortality of walleyes in 

Lake Huron was substantially different than in Lake Erie. Future improvements to the model 

may be better realized by development of stock-specific, age-based M values for Saginaw Bay 

walleyes based on a tagging study following the methods of Vandergoot and Brenden (2014). 

 The time series mean estimate of total annual mortality for Saginaw Bay walleye was 

37%, which was the same as that from the Brownie model (Fielder 2014) for the same years 

suggesting that both models are in agreement for total mortality. Brownie model-based estimates 
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of total annual mortality ranged more over time than those generated by SCA, but on average 

both estimates agree suggesting Brownie estimation (from tagging analysis) could accurately 

estimate total mortality, but it overestimated M because of the lack of representation from 

fisheries other than the recreational.  

The  trapnet by-kill decrease over time resulted from the large decreases in inner Saginaw 

Bay trapnet fishing effort (Fielder et al. 2014) and the assumption that this source of mortality 

was directly proportional to the inner Saginaw Bay trapnet fishing effort. Only the recreational 

fishing mortality increased substantially in recent years, a response to the stock recovery and 

increases in vulnerability as confirmed by trends in catchability (Figure 2.6). Generally 

recreational fishing effort has declined or been stable in recent years (Fielder et al. 2014) so the 

increasing recreational F must be a function of the time-varying catchability. 

The initial peak abundance of Saginaw Bay walleyes in 1988 is evident in the population 

estimate (Figure 2.4) as well as the biomass trends (Figure 2.12). Previously, when indices of 

abundance were noted to be high for those early years it was dismissed as an artifact of Lake Erie 

immigration and or increased catchability due to changes in water clarity stemming from 

dreissenid mussel colonization in 1993 (Fielder et al. 2000; Fielder and Thomas 2006). My 

version of the SCA model generated these estimates of abundance and biomass specific to the 

Saginaw Bay stock, effectively factoring out any effect of Lake Erie fish. Similarly, the 

utilization of a random-walk procedure for application of changing catchability was intended to 

allow for any change in catchability stemming from dreissenid colonization and appears to have 

achieved that for the survey CPUE (Figure 2.6). In spite of these efforts, the model is still 

projecting high abundance at a time when generally the walleye population was still regarded as 

unrecovered. Alternatively, if my assumption of time-varying catchability in the recreational 
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fishery is mistaken and the white-noise depiction is more accurate, then the abundance in recent 

years is greater, suggesting that abundance in the early years was not similar to the more recent 

recovery.  

Operating on the premise that recreational fishery catchability was in fact time varying, 

then this analysis forces one to consider that abundance of the Saginaw Bay walleye stock most 

likely was genuinely substantial in those early years of the time series. While it was believed that 

the fishery was dependent on stocking until 2003 (Fielder 2002; Fielder and Thomas 2014), the 

use of oxytetracycline marking to identify hatchery fish in stocking evaluations was not available 

until 1997 (Fielder 2002). Consequently it is difficult to rule out a surge in reproductive success 

early in the time series. While the abundance estimate in 1988 rivaled the peak of the more 

recent recovery (2007), earlier biomass was much greater in both total and spawning stock than 

during the more recent resurgence (Figure 2.12). This suggests that the high abundance in 1988 

was not merely due to large numbers of young fish but was comprised of mature fish and older 

or fast growing fish. Recruitment estimated by the SCA model at age 2 indicated year-class 

strength in 1984-1986 that was on the same magnitude of some recent years (Figure 2.11). The 

downward decline of abundance in the interceding years is consistent with the lower recruitment 

of the same years.  Overall, the phenomenon illustrates that gains in abundance can be lost if 

recruitment fails to remain strong, at least periodically. The more recent decline in recruitment 

does not bode well for the on-going recovery of the Saginaw Bay walleye stock. Fielder et al. 

(2007) forecasted that recruitment should remain strong as long as alewives remain scarce, but 

Fielder and Thomas (2014) suggested that recent lower recruitment may be reflecting density 

dependence in the stock/recruitment relationship.  
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Failure of the attempt to strengthen the baseline SCA model by integrating auxiliary 

information in the form of tag returns raises the question as to why these data did not have the 

intended benefit. I followed the recommendations of Maunder (1998) and Maunder and Punt 

(2013) for the optimal methods of incorporating tag return as estimating the probabilities within 

an SCA model for the corresponding likelihood component, but this still resulted in a poor fit.  

Customarily if the addition of information reduces the fit of the model, it suggests conflicting or 

contradictory dynamics (Richards 1991; Schnute and Hilborn 1993; Haddon 2001). 

Homogeneity of capture probability is a fundamental assumption in tag return analysis (Brownie 

et al. 1985) and the tag-based method equivalent to the assumption of single-stock estimation 

within SCA. This raises the question of how representative the Tittabawassee River spawning 

run of walleyes (used as the tagging source) is of the rest of the bay’s population. There are other 

reproductive sources of walleye within the bay (Fielder 2002). The operational premise in the 

management of the bay’s walleye fishery to date is: (1) That the combined reproductive sources 

operate with a single dynamic (i.e. as a single population). (2) That the Tittabawassee River is 

the single largest source and would be most reflective of the bay’s walleye population. Recent 

attempts to better understand the mix of reproductive sources within Saginaw Bay, based on 

otolith microchemistry methods, have suggested that the Tittabawassee River may, in fact, not be 

the single greatest reproductive source (B. Murry, Central Michigan University, personal 

communication).  

New information on movement dynamics of Tittabawassee River walleye from a 

telemetry study has suggested that fish are exposing themselves to certain fisheries and not 

others, by virtue of movement choices each year (T. Hayden, USGS, personal communication). 

Variable spatial structure of fish stocks complicates stock assessment and can be difficult to 
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account for (Goethel et al. 2011). Accounting for movement of fish, usually from source 

locations to harvest or ‘sink’ localities in stock assessment typically involves the incorporation of 

a movement matrix (Quinn et al. 1990; Quinn and Deriso 1999; Bence et al. 2011) and is 

regarded to be among some of the challenges of the future of stock assessment modeling in 

fisheries (Quinn 2003). Such movement can have implications for management of the stocks 

(Wilberg et al. 2008), and is a challenge to the assessment of other species in the Great Lakes as 

well (Nalepa et al. 2005), and for walleye in other locations (Thomas et al. 2011). Some 

investigators have resorted to entirely different modeling approaches to  compensate for the 

mixing of stocks (Michielsens et al. 2006; Molton et al. 2012). In this instance I concluded that 

attempting to use auxiliary information from one specific breeding source in the SCA objective 

function exposed the differences in dynamics and confounded the model’s estimation. Fielder 

(2014) has recognized this limitation and has recommended a diversification of source spawning 

runs for the future continuation of that tagging study. Better stock definition for walleye is 

needed in Lake Huron, with the definition not only determined by genetic or microchemistry 

type analyses but by differences in population metrics such as mortality, exploitation patterns, 

and movement.  

Structure of the Saginaw Bay baseline SCA model exhibited sensitivity to only certain 

components of the joint likelihood function (among data sources). The failure to result in an 

iterative convergence in just three sensitivity trials suggests that the model structure is 

reasonably robust. The baseline SCA model is complex, however, given the four fisheries. It is 

difficult to say how the 181 parameters are interrelated during the model fitting process. Detailed 

analysis of parameter correlation may disentangle those relationships, but it is apparent from the 

sensitivity analysis that the model is generally consistent with its convergence. Future work on 
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this model might explore whether similar estimates and confidence could be obtained with a 

simpler model or achieve greater resiliency. Key assumptions in this baseline model appear to 

include the by-kill values used with the larger extrapolated year-round values that resulted in a 

larger Saginaw Bay walleye population estimate. From this, it might be concluded that the 

estimates of the baseline are conservative in that relaxed assumptions would tend to lead to a 

larger estimated population.  

The development of an SCA model to describe the Saginaw Bay stock of walleye in Lake 

Huron is a significant advancement in the assessment of this population. Not only has it offered 

age-based estimates of mortality rates and abundance, but it has also helped shed light on 

deficiencies of the Brownie model and biases that affect those estimates. The integrated version 

did not result in an improved model in this instance, but if the improvements in the Brownie 

model suggested by Fielder (2014) are achieved, future integration may still be possible. 

Statistical catch-at-age models are often used as the basis for forecasting models that allow 

evaluation of alternative fishery management strategies. Estimates like those generated from this 

SCA analysis would be essential in developing such a model.  Management choices for walleye 

in most of the Michigan waters of Lake Huron has been, to date, primarily as a fixed rule (e.g., 

length limit, bag limit, and season closure in the spawning rivers) for the recreational fishery, and 

a yield allowance for by-catch in the tribal gillnet fishery in the northern portion of the lake. A 

simulation model based on the availability of estimated dynamics including recruitment, 

abundance and mortality rates would assist managers to design harvest regulations that are more 

state-based, and even address allocation if different jurisdictions ever feel that  is necessary. 

Ultimately, the utility of this assessment model and its estimates will depend on fishery 
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manager’s willingness to advance management to keep pace with the information stemming from 

the assessment of this stock. 
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Table 2.1. Estimated parameters of the catch-at-age model of the Saginaw Bay stock of walleye 

in Lake Huron. 

Parameter Description 

Sa Age-specific selectivity for each of the 

fisheries 

sa
surv

 Age specific selectivity for the survey 

q 
Catchability coefficient for each of the 

fisheries (or starting value for recreational 

fishery random walk) 

q
surv

 Random walk time varying catchability for 

the survey 

  

Catchability deviations (white noise 

process error term) for the trapnet and 

gillnet fisheries or random walk deviations 

for recreational fishery and survey 

Na,1986 
Initial numbers for the beginning year of 

1986 

N2,y Initial numbers of age-2 walleye for each 

modeled year (recruitment) 

 
Observation standard deviations for each 

fishery & survey except the state-licensed 

by-kill. 

 

 

 

Table 2.2. Deviance information criterion (DIC) model selection of three candidate statistical 

catch-at-age models for the Saginaw Bay stock of walleye in Lake Huron based on different 

treatment of natural mortality (M): constant, age varying, and time varying. Included is the 

effective number of parameters (pD). 

 

Model DIC value Delta from min ‘Best’ model pD 

Constant M 60208.4 66.2 No 160 

Age-varying M 60142.2 0.0 Yes 180 

Time-varying M 60340.8 198.7 no 149 
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Table 2.3. Sensitivity of penalized likelihood component analysis of the Saginaw Bay stock of 

walleye in Lake Huron statistical-catch-at-age model as percent change from the aged-based 

natural mortality model (baseline) version. Sensitivity was tested by applying a weighting factor 

lambda ( ) of either 0.5 or 2.0 to each of the 12 likelihood components in the baseline version 

of the model and assessing percent change from the time series mean for four metrics of 

management interest: population size (N), total annual mortality (A), spawning-stock biomass of 

females (SSB), and the exploitation rate ( ) of the four fisheries. Weighting factors that resulted 

in a lack of convergence are denoted by DNC (did not converge). 

Weighting 

factor N A SSB 

Recreational 
  

Trapnet 
  Gillnet   By-kill   

Recreational harvest       

1 =0.5 0.02 0.42 -0.50 2.66 0.63 0.23 1.99 

1 =2.0 0.51 -0.32 0.75 -1.77 -0.94 -0.73 -1.34 

Recreational random walk       

2 =0.5 0.12 0.28 0.22 0.29 -0.16 -0.22 1.84 

2 =2.0 0.68 -1.01 0.24 -1.75 -0.64 -0.61 -5.78 

Recreational age structure       

3 =0.5 -0.28 -0.06 -0.85 1.55 2.63 1.43 -3.73 

3 =2.0 -0.89 1.93 0.34 2.22 -1.00 1.36 14.23 

Survey catch-per-unit-of-effort      

4 =0.5 289.27 39.29 251.98 -57.56 240.57 128.19 43.02 

4 =2.0 0.09 -0.04 0.09 -0.16 -0.13 -0.14 -0.19 

Survey random walk       

5 =0.5 -0.18 0.17 -0.09 0.36 0.15 0.18 1.09 

5 =2.0 DNC DNC DNC DNC DNC DNC DNC 

Survey age structure       

6 =0.5 1.47 -1.01 2.26 -4.74 -3.55 -6.73 0.35 

6 =2.0 4.53 6.47 -0.72 26.18 4.79 6.77 17.84 

Trapnet harvest       

7 =0.5 -0.23 0.33 -0.01 0.23 -0.05 0.54 1.39 

7 =2.0 11.80 5.63 8.54 -9.97 -5.68 95.48 11.29 

Trapnet effort       

8 =0.5 DNC DNC DNC DNC DNC DNC DNC 

8 =2.0 0.53 -0.32 0.25 -0.13 -0.46 -0.94 -1.17 

Trapnet age structure       

9 =0.5 0.94 -1.15 -0.53 0.48 -0.13 3.89 -6.87 

9 =2.0 625.12 11.49 567.72 -85.23 -85.23 693.50 -73.49 

Gillnet harvest       

10 =0.5 417.59 44.18 361.30 -68.16 234.87 216.26 -57.33 

10 =2.0 DNC DNC DNC DNC DNC DNC DNC 

Gillnet effort       

11 =0.5 -0.81 1.03 -0.12 0.81 0.50 3.27 5.69 

11 =2.0 1.50 -1.42 0.40 -1.38 -0.99 -2.99 -7.58 

Gillnet age structure       

12 =0.5 -0.02 -0.01 -0.19 0.01 -0.11 0.05 -2.46 

12 =2.0 411.51 628.02 375.61 -12.94 283.44 -50.40 411.51 
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Table 2.4. Sensitivity of assumptions analysis of the Saginaw Bay stock of walleye in Lake 

Huron statistical-catch-at-age model from the age-based natural mortality model (baseline) 

version for key assumptions: (1) An expanded (extrapolated) estimate of the magnitude of 

commercial by-kill in the bay from MacMillan and Roth (2012). (2) An expanded recreational 

observed catch to simulate an Ontario component. (3) Two alternative durations of residency 

time for the habitation of Lake Erie (LE) walleyes in Lake Huron. (4) The ages at which Lake 

Erie walleye are hypothesized to immigrate was adjusted to fully include age-3 and one-half of 

age-2 fish. (5) Alternative variance ratios used in the likelihood functions for relating white-noise 

or random-walk deviations of catchability to catch. (6) Treatment of recreational catchability as a 

white-noise process instead of random walk. (7) Treatment of age-based natural mortality M as a 

prior in the model estimation and then alternative values based on 95% confidence intervals. 

Sensitivity was assessed as percent change from the time series mean for four metrics of 

management interest: population size (N), total annual mortality (A), spawning stock biomass of 

females (SSB), and the exploitation rate ( ) of the four fisheries. A lack of model convergence 

is denoted by DNC (did not converge). 

Model 

version N A SSB 

Recreational 
  

Trapnet 
  Gillnet   

By-kill 
  

By-kill magnitude       

Extrapolated 

value 
36.18 -0.03 26.34 -19.36 -20.14 -19.68 201.83 

        

Expanded  recreational fishery      

10% 

increase 
5.75 -0.05 5.15 3.63 -5.63 -5.86 -4.27 

        

Duration of LE habitation      

0.60 year -0.75 -0.19 -0.80 -0.34 0.01 0.02 0.11 

0.40 year DNC DNC DNC DNC DNC DNC DNC 

        

LE immigration      

Includes 

ages 2 and 3 
-2.89 -1.68 6.10 -1.90 -4.50 1.26 -3.15 

        

Variance ratios      

Recreational        

1.15 -0.08 -0.02 -0.18 0.31 0.19 0.15 -0.24 

Trapnet        

1.25 0.16 0.15 0.19 0.10 -1.23 0.03 0.72 

Gillnet        

1.25 0.04 -0.06 0.00 -0.01 0.00 -0.69 -0.36 

0.75 -0.06 0.08 -0.02 0.03 0.02 0.84 0.56 

Survey        

1.15 0.04 -0.05 0.01 -0.09 -0.02 -0.02 -0.28 

        

Catchability deviations      

Recreational 

white noise 
22.22 -10.07 12.21 -19.34 -15.91 -17.95 -47.00 
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Table 2.4 (cont’d)      

      

      

      

Age-based M values      

Mage as a 

prior 
0.45 -0.03 0.01 -0.16 -0.40 -0.04 0.05 

        

Mage 95% 

upper limit 
21.93 3.22 12.83 -8.76 -9.81 -9.19 -15.74 

Mage 95% 

lower limit 
-15.51 -3.17 -9.94 7.93 8.77 8.01 15.99 
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Figure 2.1. Saginaw Bay and Lake Huron showing geographic features of importance to the 

model components. The vicinity indicated by hash marks represents the 1836 Treaty area of 

Lake Huron. 
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Figure 2.2. (A) Comparison of observed and predicted recreational walleye catch based on the 

integrated model version. (B) Recreational exploitation rates between that estimated by the age 

based natural mortality (baseline) version of the Saginaw Bay statistical-catch-at-age model 

version and that from the Brownie model (from Fielder 2014). Error bars are +1.96 standard 

errors. 
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Figure 2.3. Observed and predicted values 1986 – 2011, from the M-age based (baseline) version 

of the Lake Huron walleye statistical-catch-at-age model for the (A) fishery-independent survey, 

(B) recreational fishery catch, (C) trapnet fishery catch, (D) lake-wide (combined Ontario and 

tribal) gillnet fishery catch, and (E) the commercial by-kill. 
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Figure 2.4. Numbers of the Saginaw Bay stock of walleye in Lake Huron 1986 – 2011 age 2 and 

older and the +1.96 standard errors (dashed lines) confidence interval, as predicted by the age-

based natural mortality (baseline) version of the statistical-catch-at-age model. 
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Figure 2.5. Selectivity of the three estimated fisheries scaled to 1.0 based on maximum value by 

age for the age-based natural mortality (baseline) version of the Saginaw Bay stock, statistical-

catch-at-age model for Lake Huron, 1986-2011 data.  



62 
 

 
Figure 2.6. Time-varying catchability (q) and the +1.96 standard errors (dashed lines) confidence 

interval of the (A) recreational fishery and (B) survey of the Saginaw Bay stock of walleye in 

Lake Huron from the age-based natural mortality (baseline) version of statistical-catch-at-age 

model 1986-2011.  
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Figure 2.7. Total annual mortality rate (limited to age-4 and older fish), A for the Saginaw Bay 

stock of walleye in Lake Huron 1986-2010 and +1.96 standard errors (dashed lines) confidence 

interval, as predicted by the age-based natural mortality (baseline) version of the statistical-

catch-at-age model. 
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Figure 2.8. Total annual mortality (A) of the Saginaw Bay stock of walleye by age (years) for 

three time periods as estimated by the age based natural mortality statistical-catch-at-age model 

(baseline) version. 
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Figure 2.9. Proportion of fishing mortality (F) by age for 2011 from the age-based natural 

mortality (baseline) version of the Saginaw Bay stock of walleye statistical-catch-at-age model 

for walleye from the Michigan recreational fishery (Fmrc), Ontario trapnet fishery (Fotn), the 

lake-wide (combined Ontario and tribal) gillnet fishery (Fgln) and the by-kill stemming from the 

state licensed trapnet fishery in Saginaw Bay (Fbkl). 
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Figure 2.10. Fishing mortality (F) of age-5 walleye over time from the four fisheries represented 

by the age-based natural mortality (baseline) version of the Saginaw Bay stock of walleye 

statistical-catch-at-age model. Michigan recreational fishery (Fmrc), Ontario trapnet fishery 

(Fotn), the lake-wide (combined Ontario and tribal) gillnet fishery (Fgln) and the by-kill 

stemming from the state licensed trapnet fishery in Saginaw Bay (Fbkl). 
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Figure 2.11. Recruitment of walleye to the Saginaw Bay stock as estimated by the age-based 

natural mortality statistical-catch-at-age model (baseline) version based on age-2 numbers 

attributed to their originating year class.  
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Figure 2.12. Total biomass (all ages and both sexes) and spawning-stock biomass (SSB) of 

mature female walleye (in kilograms) for the Saginaw Bay stock of walleye in Lake Huron, 

1986-2011 and +1.96 standard errors (dashed lines) confidence interval, as predicted by the age 

based natural mortality version of the statistical-catch-at-age model. 
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Abstract 

 

Saginaw Bay walleyes contribute to fisheries throughout Lake Huron, including a 

recreational fishery and by-kill stemming from the state-licensed commercial fishery in the bay. 

Two critical uncertain states of nature exist concerning the true magnitude (catchability) of the 

by-kill and the future of alewives in Lake Huron, the latter being a strong determinant of walleye 

recruitment. After consulting with fishery managers, a stochastic simulation model was 

developed and used to evaluate management options for the recreational fishery in the form of a 

decision analysis and the value of information for improved estimates of by-kill magnitude. 

Management option evaluation indicated a greater harvestable surplus that could be allocated. 

Sustainable harvest was average harvest treating harvest in years when sustainability criteria 

were not met as zero.  Sustainable harvest would be maximized if recreational fishing mortality 

were increased 50% from recent levels. Realizing this potential, however, would require more 

intensive management to ensure that desired levels of F occurred.  Choices by managers as to 

how to allocate surplus harvest  are a matter of policy, but concerns over maintaining predation 

pressure on alewives so as to suppress any resurgence may be reasons to manage conservatively 

by electing to instead maintain a higher predator abundance. The value of information analysis 

revealed that further research investment in the uncertainty over by-kill catchability could 

provide net benefits from the recreational fishery.  
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Introduction 

 

The Saginaw Bay (Figure 3.1) stock of walleye is the single largest source of walleye in 

Lake Huron (Schneider and Leach 1977; 1979) and historically sustained the largest walleye 

fishery in the Great Lakes outside of Lake Erie (Baldwin and Saalfeld 1962). The stock declined 

and its fisheries collapsed in the mid-20th century due to a series of year class failures, which 

were attributed to habitat destruction, poor water quality, and effects of invasive species 

(Schneider 1977; Schneider and Leach 1977; 1979). After improving conditions and initiation of 

a fingerling stocking program in the early 1980s (Fielder 2002), a recreational fishery emerged 

(Fielder et al. 2014). Full recovery and the discontinuation of stocking came in 2006 (Fielder and 

Thomas 2006; 2014); the recovery was attributed to the decline of alewives in Lake Huron which 

were predators and competitors on newly hatched walleye fry (Fielder at al. 2007; Riley et al. 

2008; Dunlop et al. 2010). 

Early walleye fisheries in Saginaw Bay were almost exclusively commercial (Baldwin 

and Saalfeld 1962; Schneider 1977). The recreational fishery that emerged in the 1980s was all 

that remained in the bay after formal closure of commercial walleye fisheries in the early 1970s 

(Schneider 1977; Fielder et al. 2014). Commercial fishing continued in Saginaw Bay for other 

species. Modern day management efforts such as habitat improvement and stocking focused on 

promoting the recovery of the walleye population (Fielder and Baker 2004). Aside from those 

efforts, management of the stock was based principally on statewide harvest regulations on the 

recreational fishery including a five fish per day bag limit, a 381 mm minimum length limit, and 

a spring spawning closure in tributaries to the open water.  
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Today, several fisheries, both in and outside Saginaw Bay are believed to exploit this 

stock of walleye including commercial trapnet and gillnet extractions in Ontario’s southern Lake 

Huron waters, a tribal gillnet fishery in northern Lake Huron permitted as a by-catch under the 

1836 Treaty 2000 consent decree, recreational fisheries both in and outside the bay, and lastly a 

by-kill (by-catch mortality) of walleyes in Saginaw Bay from the remaining commercial fishery. 

The exploitation outside the bay stems from migration of some walleyes, initially confirmed by a 

tagging program that began in 1981(Fielder 2014). Those angler-reported tag returns amounted 

to 9% being reported from outside the bay over the years. More recently, a telemetry study of 

walleye movement indicated that about half of the adults make a seasonal emigration from the 

bay to points throughout Lake Huron (T. Hayden USGS, Personal communication). Fielder and 

Bence (2014) assessed the Saginaw Bay stock of walleyes  through the use of statistical-catch-at-

age (SCA) analysis. That analysis concluded that the dynamics of the stock were affected by 

each of these fisheries.  

The commercial by-kill of walleyes in Saginaw Bay was quantified by MacMillan and 

Roth (2012) who generated two estimates; a lesser value of 21,500 for their observation period of 

May through August 2010, and a larger estimate of 102,000 extrapolated to the entire year. 

Analysis by Fielder and Bence (2014) found the estimates generated by their SCA model to be 

sensitive to the choice of the by-kill estimate (observed seasonal or extrapolated year-round) 

used to parameterize the model. Additional research has been proposed to refine the estimates of 

commercial walleye by-kill in Saginaw Bay (B. Roth Michigan State University, personal 

communication).  

With the transition from an emphasis on stock recovery to the next stage of management, 

fishery managers today on Lake Huron are seeking to define new management goals and 
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objectives for the Saginaw Bay walleye population and fisheries. The walleye fishery in Lake 

Erie is managed through a combined assessment and allocation process under the guidance of the 

Great Lakes Fishery Commission. Goals there have been to fairly allocate resources, and fully 

utilize the resource but within the boundaries of sustainability (GLFC 2005). Part of the 

motivation to update management practices on Saginaw Bay is to reflect new information about 

the extent and complexity of exploitation of the stock. In spite of this new information, 

considerable uncertainty remains making management decision making and research planning 

difficult.  

Several sources of uncertainty about the dynamics of this stock persist. In this analysis 

we concern ourselves principally with two; what is the true amount of walleye by-kill occurring 

in Saginaw Bay’s state-licensed commercial fishery and what will alewives do in the future? If 

alewives remain scarce, walleye are expected to continue to sustain strong year classes but 

should alewives recover, walleye year classes are expected to become weak and reduced again 

(Fielder et al. 2007; 2010). There is a lack of consensus on the future of alewives in the lake 

(Riley et al. 2008). Accounting for uncertainty in fishery management does not necessarily result 

unless specifically sought. Williams (1997) describes natural resource management in the face of 

uncertainty and argues that too often, decision makers ignore uncertainty. Wise fishery 

management will seek to consider uncertainty for making decisions (Walters 1986; Lane and 

Stephenson 1998; Jones and Bence 2009) and, where appropriate, seek opportunities to reduce 

critical uncertainties.  

Not all uncertainties, however, are of sufficient magnitude or significance to warrant 

investment in their elimination (Hansen and Jones 2008). Analysis of the value of information is 

one form of decision analysis. The expected value of perfect information (EVPI) is an estimate 
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of the expected increases in benefits or decrease in expected losses, if we could eliminate a 

source of uncertainty (Peterman and Peters 1998). The concept of EVPI is closely tied to those of 

adaptive management where one seeks to reduce uncertainty so as to further management of a 

resource (Walters 1986). Simply put, analysis of EVPI can be thought to answer the question 

"does the elimination of uncertainty justify the cost of doing an experiment or paying for new 

information?" (Clemen and Reilly 2001).  

My objective with this analysis was to offer insights to managers on the development of 

new management goals and objectives for this stock, specifically with regards to the extent to 

which the recreational fishery may exploit walleyes within limits of sustainability.  Secondly, I 

address whether management would benefit from refined estimates of state-licensed commercial 

by-kill in Saginaw Bay by conducting a value of information analysis, thereby determining the 

utility of reducing one element of uncertainty about Saginaw Bay walleye management. To 

accomplish the examination of management options, and to enable the EVPI analysis, I develop 

a stochastic (system) model and use it to simulate the dynamics of the stock, its exploitation and 

test the population and fishery response across the range of uncertainties and management 

scenarios. My intent is to better frame the range of management options available and the 

tradeoffs that will face future management.  

Methods 

 

Management input.--I framed the decision analysis by first meeting with State of 

Michigan fishery managers from the Department of Natural Resources (DNR) whose jurisdiction 

included the recreational fisheries within Michigan waters of Lake Huron and the by-kill within 

the state-licensed commercial fishery. Fielder and Bence (2014) found these sources to 
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collectively constitute the majority of total fishing mortality exerted on the stock. Interaction 

with fishery managers was based on one meeting devoted to discussing management objectives 

and the current state of knowledge, and uncertainty, concerning Saginaw Bay walleye stocks and 

fisheries, and also periodic participation in the Michigan DNR’s Lake Huron Basin Team 

meetings, which included ongoing discussions of walleye management and information needs. 

Between February 2013 and February 2014, researchers and managers met three times to explore 

these issues.  

Among the topics discussed was the existing state of management. Participants were in 

agreement that emphasis over the previous three decades was on stock recovery and that 

management has relied on statewide recreational harvest regulations. Considerable investment 

had been made in research and assessment, and while substantial knowledge had been amassed, 

many uncertainties remained, especially in light of the growing awareness of the complexity of 

the lake wide nature of the stock, its movement, and exploitation. Additional discussions were 

focused on identifying uncertainties that managers felt were necessary to reduce, to make 

management decisions. Performance measures and critical thresholds were discussed that helped 

frame a basis for simulation modeling. As development of the simulation model progressed, 

discussions included feedback on the model structure and performance as a basis to reflect the 

primary considerations of walleye management.  

Aside from the state-wide recreational fishery regulations, the only state-based 

management rule that existed was a pledge that managers would annually revisit the decision to 

suspend walleye stocking and may reinstate it if alewives ever became abundant again. Alewife 

abundance was annually estimated by the U.S. Geological Survey’s (USGS) Great Lakes Science 

Center (GLSC)’s bottom trawling and hydroacoustic survey. Analyses have suggested that a 
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threshold of alewife density existed at 20 age-1 and older alewife/ha such that densities less than 

that allowed for recruitment of walleye (Fielder et al. 2007; Fielder and Thomas 2014). 

Managers maintained that walleye fingerling stocking likely would be resumed if and when 

alewife density ever increased above this threshold in the future. This suggested one obvious 

management option to include in the simulation model. 

Objectives and performance measures.-- Managers were in agreement that stock 

sustainability was a primary objective, as was the desire to manage for the greatest  recreational 

harvest (in numbers) possible. Knowing that walleye management in Lake Erie has led to a 

liberalization of recreational harvest regulations over state-wide rules in many years, managers 

wanted to determine the greatest recreational harvest that could be sustained with an expectation 

that harvest regulations could then be crafted to achieve or allow for that.  

On the other hand, managers were also concerned that a liberal harvest policies or 

allocation of walleye may lead to a reduced stock. To capture the idea of sustainability being a 

function of spawning stock, we identified the ratio of mature female spawning stock biomass 

(SSB) of walleyes relative to the unfished SSB (β0) as a metric representing a threshold of 

management concern. Specifically the proportion of years across multiple simulations for any 

given management scenario that dropped below 20% β0 was designated as a performance 

measure to address sustainability with respect to the risk of recruitment overfishing. The 20% β0 

threshold was chosen because it was consistent with the inflection point in the stock-recruitment 

relationship such that stock sizes less than that risked recruitment-overfishing. 

Criteria for detection of walleye recovery from the degraded state was defined by Fielder 

and Baker (2004) and offered some additional basis for defining performance measures for 

future management. The principal benchmark for defining recovery was a mean total length (TL) 
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of age-3 walleye (sexes combined) at or below 110% the state average rate at the time of survey 

capture which was 425mm (for a September collection). The benchmark was based on the belief 

that mean TL at age could serve as a surrogate for growth rate, which is affected by density.  

When size at age is above this threshold (i.e., relative high growth rates), the system should be 

able to support higher densities of walleye. Walleye mean TL at age 3 slowed, falling below this 

threshold for the third consecutive year in 2009 (Fielder and Thomas 2014) and was the primary 

basis for declaring the stock recovered.  

With the above objectives and considerations in mind, specific performance measures 

were identified.  Mean TL at age-3, SSB ratio (the proportion of years SSB fell below 20% of 

β0), and recreational harvest were therefor selected as the performance measures (Table 3.1). The 

decision analysis and value of information analysis required the combination of these measures 

into one overall objective function.  For this purpose we used the average recreational harvest 

(over years for a simulation). Harvest in years when one or both thresholds of sustainability (TL 

of walleye >425mm, SSB below 20% β0) were violated was set to zero in the calculation of the 

average. From here on I refer to this function as “sustainable harvest”.  

Critical uncertainties.-- Managers emphasized that they remain uncertain about future 

trends of alewives in Lake Huron (Table 3.1). Although alewives have not recovered after 10 

years post collapse, it remained unclear whether their continuing scarcity was due to lower 

productivity (bottom up) or suppression via predation (top down). Recognizing that alewives 

were a strong determinant of walleye recruitment (Fielder et al. 2007), their future was included 

as a critical uncertainty. After reflection, the managers and researchers concluded that a 

reasonable characterization of expert opinion would be that on-going suppression of alewives 

was three times more likely than their resurgence. I examined the sensitivity of my conclusions 
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to this choice of probabilities by repeating the analysis at a lesser 10% likelihood of alewife 

recovery.  

The second critical uncertainty was whether the true value of commercial by-kill was best 

reflected by the lower value estimated for the period when by-kill was directly observed by 

MacMillan and Roth (2012) or the larger value that reflects an extrapolation to the remainder of 

the year (Table 3.1). Most managers were skeptical that the true value was as great as the 

extrapolated value because the measurements were limited primarily to one fisher and because of 

the potential for seasonal differences outside the warmer months. However, they also conceded 

that the true value had to be greater than that which was reported for the observation period 

alone. Not having any clear basis for assigning probabilities beyond that rationale, it was agreed 

to treat the two as equally likely. The assumed magnitude of by-kill directly affected the estimate 

of by-kill catchability from Fielder and Bence (2014). In turn, the differing estimates of by-kill 

catchability affected most other population metrics and parameters estimated by the SCA model. 

Thus, when evaluating the effect of the two alternative by-kill hypotheses, the simulation model 

had to be reparameterized with values from the SCA model fit to the appropriate by-kill value. 

We developed a decision tree to graphically depict the potential decision framework 

(Figure 3.2). Other uncertainties also existed such as the future of recruitment, fishing effort, 

natural mortality, and catchability in the other fisheries aside from the by-kill. These 

uncertainties, however, were either accounted for by incorporating stochasticity about their 

relationships in the simulation model (e.g. stock/recruitment function and fishery catchability) or 

were treated as constants (effort and natural mortality). 

Candidate recreational harvest policies and decision analysis.-- Recognizing that the 

management agency principally had the most influence over the recreational fishery, analysis 
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was limited to those extractions. In the simulations I evaluated a range of recreational fishing 

mortality rates.  In particular, I varied recreational fishing mortality from 10% to 400% of recent 

levels here after referred to as fishing intensity and applied as scalars (multipliers) to the current 

fishing mortality rate (Table 3.1) and represented by the notation Fvalue such that F1.5 means 

1.5 times the current fishing mortality. Managers were not ready to identify any new state-based 

management options for the recreational fishery but did want to answer the objective of learning 

the range of population response to varying amounts of recreational harvest with an emphasis on 

the upper limit to exploitation that would still keep the frequency of SSB falling below 20% of β0 

rare, and a mean TL of age-3 walleyes < 425 mm.  

The sustainable harvest for each level of fishing intensity was analyzed as a decision 

analysis according to Figure 3.2.  Decision analysis principally followed the methods of 

Peterman and Anderson (1999). This decision analysis was premised on the uncertain states of 

nature regarding by-kill catchability and future alewife trends and their probabilities described in 

Table 3.1. The combined probability of occurrence of these alternative states of nature was the 

product of their individual probabilities (Table 3.1).  Thus to calculate the average sustainable 

harvest for a given level of fishing intensity, a weighted average was calculated based on the 

simulation results for each of the four uncertain states of nature and using the probabilities of 

those states as weights. 

Value of by-kill information.-- The calculation of EVPI followed the methods of Clemen 

and Reilly (2001) and also used sustainable harvest as the objective function. The management 

options evaluated were the same as previously described for the recreational fishing mortality 

intensities (Table 3.1). The expected value after knowing the true model (elimination of 

uncertainty) was the average of the maximum performance (maximum recreational harvest) 
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obtained under conditions of either high or low by-kill. Maximizing separately for each by-kill 

condition was premised on the idea that recreational F could be optimized for the given by-kill 

level if this were known. The EVPI was the difference between that value, and maximum value 

of the “best” management option when the same recreational F had to be applied regardless of 

by-kill because the level of by-kill was unknown. In this case, that was the greatest sustainable 

recreational harvest across management options (the ranges of fishing intensities simulated) 

within the four uncertain states of nature.  

The expected value of imperfect information (EVII) is an extension that attempts to 

further account for the uncertainty in the ability of experiments to successfully reduce or 

eliminate the uncertainty about the states of nature. We regarded the probability of a new study 

of walleye by-kill to successfully achieve its objectives as 95% likely based on the standard 

usage of a significance level of 0.05 for a type-I error in any statistical tests stemming from 

further by-kill research.  

This approach to value of information is premised on the two estimates of by-kill. In 

reality the true value may be an intermediate level and as such the dichotomous choice is really a 

simplification. Thus my two estimates of EVPI and EVII may be optimistic, recognizing that an 

intermediate value would likely yield intermediate outcomes. 

Simulation model and time frame.-- For each of the four uncertain states of nature, 250 

simulations were conducted for each fishing intensity scenario (including the by-kill scenarios 

needed for the value of information analysis).  Thus there were 1,000 simulations for each 

fishing scenario. Each simulation was done over a 50 year time-horizon, reflecting a desire that 

outcomes not be dominated by initial conditions. I chose to base decision analysis as well as 

scenario performance on the entire 50 year time span recognizing that the result would then be a 
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reflection of both transient dynamics as the system moved toward a stationary set of results and 

long term performance. When calculating the average sustainable harvest, the results for each 

uncertain state of nature were weighted by the assumed probability for that state.  All model 

coding was performed in AD Model Builder (Fournier et al. 2012; ADMB 2013).  

The principal state variable modeled was number of walleyes by year at age represented 

by the exponential population equation (equation 2.1 in Table 3.2). The model was formulated 

and parameterized based on the fitted SCA model from Fielder and Bence (2014) and 

represented ages 2 – 13+. The gillnet fisheries were estimated as a single fishery in that original 

analysis, and continue to share the same catchability and selectivity here in the simulation model 

but their effort is broken out. Scenarios held effort constant at the average value observed in the 

various fisheries since walleye recovery was achieved (based on values from 2004 – 2011).  

Stochasticity was incorporated in each of the fisheries as an error term about catchability 

‘q’ either as a white noise process error variation or random walk deviations (for the recreational 

fishery) for log-scale q. To ensure, however, that recreational catchability did not trend to 

extremes from the random walk process over long scenario durations, I limited the product of the 

recreational q and from equation T2.3 to no more than twice or no less than ½ the starting q 

value. I did not have an estimate of the variance for the by-kill catchability, so I applied the 

estimated variance from the Ontario trapnet fishery to this quantity, because these two fisheries 

use similar gear types.  

Recruitment was incorporated two ways, from natural reproduction and from stocking.  

The stock-recruitment (S/R) relationship was based on a Ricker model (Ricker 1975) and 

followed the methods of Fielder et al. (2007), which previously analyzed the S/R relationship of 

Saginaw Bay walleyes. That work concluded that the abundance of alewives was the single best 

y
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determinant of walleye recruitment for this stock as alewives have been demonstrated to be a 

formidable predator and competitor on newly hatched percid larvae.  

I wanted a S/R function that reflected the sensitivity to alewife abundance as 

demonstrated by Fielder et al. (2007), but one that also was responsive to changes in stock 

density in simulations. Therefore, I developed a new S/R function for wild recruits that used both 

stock (represented as number of eggs produced in 100,000 increments) and density of alewives 

in Lake Huron following a multivariate Ricker S/R function as described by Chen and Irvine 

(2001) and Haddon (2001).  

To accommodate scenarios where stocking would resume because alewives again became 

abundant, a separate recruitment function for stocked fish was needed. The stocked fish 

recruitment model predicted age-2 stocked recruits from spring fingerling stocking numbers two 

years earlier, following a Ricker model.  The model was estimated using data from 1997 – 2005 

although 2003 was omitted as an outlier. That year was a transitional year in recovery with 

unusual dynamics (Fielder and Thomas 2006). The model also included a coefficient for the 

effect of the abundance of wild recruits (equation T2.6) due to observations of a negative 

relationship between survival of stocked fish and wild fish recruitment from the same year (R
2 

=0.48), consistent with the general concept of stocking success being inversely related to natural 

reproduction (Laarman 1978; Li et al. 1996). 

Total recruitment in any given year in the simulation model was then the sum of wild 

recruitment and hatchery recruitment , if any. Total recruitment was then incorporated in 

the population equation (equation T2.1) as the starting numbers of walleyes (age-2) for each 

cohort. The simulated recruitment for both wild and hatchery recruitment included a stochastic 

component based on the observed process error in the S/R models.  

W
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Because alewife density was an important determinant of wild recruitment, and because 

some management rules about walleye stocking were defined on alewife abundance, alewife 

trends had to be part of the simulation model. I developed a separate alewife population surplus 

production sub-model (Hilborn and Walters 1992) based on a logistic function requiring two 

parameters; the finite rate of increase or R (based on the intrinsic rate of increase) and the 

carrying capacity k (Table 3.2, equation T2.7).  

To accommodate alewife trends as a critical uncertainty, I incorporated two alternatives 

futures for alewives in Lake Huron: (1) alewives return to high levels of the 1970s and 1980s 

over a 25 year period, providing that predation is not inhibitory; and (2) alewives remain scarce 

at the levels observed between 2004 – 2011. Both alternatives used the aforementioned logistic 

function, both with different finite rates of increase (R); for alternative 2, R was simply set to 

zero. I estimated k from the USGS GLSC alewife bottom trawl data, using the highest value 

observed over the time series (600/ha). I then estimated a value of R (for alternative 1) that 

would result in the alewife population increasing to k over 25 years.  

Walleyes regularly prey on alewives when present (Fielder and Thomas 2006; Schaeffer 

1994) so alewife numbers were further adjusted based on walleye consumption. Walleye 

consumption was modeled based on a Type II functional response of prey to predation (equation 

T2.8, Holling 1959). Parameters include the number of days per year that alewives are exposed 

to walleye predation (270), the area of available alewife habitat in Lake Huron (1,522,618 ha), 

which is necessary to convert alewife abundance to density, the handling time (one alewife per 

day), and the attack rate. I estimated the attack rate parameter by comparing stomach contents 

(consumption) to estimated alewife density, and assuming the other functional response 

parameters were known. Total walleye consumption of alewives was subtracted from the 
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population predicted from the logistic population equation (T2.7) for the same year and the 

resulting number of alewives was used for alewife abundance in the walleye S/R function for 

wild recruits (equation T2.5). Although alewives are treated as an uncertainty in this analysis, the 

feedback of walleye consumption also afforded some degree of performance measure in that 

walleye abundance, as a function of management, had some degree of influence over alewife 

trends. 

A pivotal value in the calculation of alewife abundance was the area of alewife habitat in 

Lake Huron used to return numbers of alewives consumed to a density basis. My value of habitat 

area was derived by first limiting alewife habitat to the main basin of the lake and then 

subtracting the near shore area based on the belief that warmer near shores waters would not 

constitute age-1 and older alewife habitat and also subtracted the mid lake area (about 1.4 million 

ha) based on the description of Eshenroder and Burnham-Curtis (1999) that the mid-lake main 

basin is likely largely devoid of pelagic fishes. This process left us with the conservative estimate 

of 1,522,618 ha of adult alewife habitat in the main basin of Lake Huron. I note that these 

calculations treat the trawl swept area values for alewife as reflective of actual alewife densities 

(see He et al. in press, for further discussion of this assumption). 

To predict fall mean walleye TL at age-3 in the simulations, I quantified the relationship 

between walleye abundance (all ages combined) and observed September mean TL for age-3 

following the methods of Shuter and Koonce (1977). I regressed the log of the difference 

between the mean TL at age 3 and the largest observed length for that age, against the log of the 

3-year running average of estimated population abundance (age-2+) for the first three years of 

the cohort. Length data were taken from the annual Saginaw Bay Fish Community Survey 

(Fielder and Thomas 2014) for 2003-2011 and the population values were from the SCA model 
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projection (ages combined) from Fielder and Bence (2014) for the same years. Data were also 

available for years 1989-2002, but were not included in the analysis because they did not 

represent the growth dynamics of the recovered walleye population. The resulting relationship 

exhibited an R
2
 of 0.70 and was significant at (F test) P=0.005. The predicted mean TL at age-3 

was the observed maximum less the predicted value according to equation T2.10. 

 

Results  

Recreational fishery performance.-- The greatest sustainable harvest was achieved at 

recreational F1.5 (approximately 50% increase in the recreational fishing mortality) (Table 3.3). 

Although sustainability was taken into account, this level of fishery expansion (F1.5), still 

exceeded the sustainability thresholds in some years. The proportion of years (with alewives 

remaining scarce), for example, that SSB fell below 20% β0 was 8% for F1.5, while only 1% at 

F1.0 (Figure 3.3E). Similarly, the proportion of years that the mean TL of age-3 walleyes 

exceeded the 425mm threshold rose from 21% (F1.0) to 26% (F1.5) (Figure 3.3D). Proportional 

increases were even greater for scenarios that accounted for the recovery of alewives (Figure 

3.3). By defining a composite performance metric, the decision analysis accounted for these 

trade-offs to yield an overall preferred option in light of the uncertainty and stochasticity, 

suggesting that these slight increases in risk were an acceptable trade off up to F1.5.   

When alewives remained scarce, the mean SSB and mean TL of age-3 walleyes 

(averaged within years across the 250 simulations) fell within their thresholds of sustainability 

up to a fishing intensity as great as F3.0 for SSB and F 2.0 for mean TL of age-3 walleyes 

(Figures 3.4A and B). These means, however, conceal the range of performance, and exceedance 

of the sustainability criteria in some years even at lower fishing intensities and thus the lesser 
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value of just F1.5 indicated by the decision analysis as the preferred option. The performance of 

the recreational fishery, however, varied considerably with the uncertainty of future alewife 

trends (Figures 3.3 and 3.4). In every instance, the hypothetical recovery and presence of 

alewives reduced the sustainable intensity of the recreational fishery. To maintain the mean SSB 

above 20% β0, fishing intensity would have to be reduced to at least F0.5 (Figure 3.4C) and no 

degree of reduction in fishing intensity would prevent the mean TL age-3 from exceeding the 

target (Figure 3.4D). In spite of this, repeating the decision analysis at a lower probability of 

alewife recovery (10% likelihood instead of 25% likelihood) did not substantively change the 

outcome.  

Predictably, the walleye population size decreased with increasing fishing intensity 

across both possible alewife futures (Figure 3.3C). Average recreational harvest itself continued 

to increase up to F3.0 but gains in harvest beyond F1.5 were marginal, with F1.5 as 86% of the 

maximum. The corresponding upper limit of total annual mortality (A) for an F1.5 was 0.41 

(Figure 3.3F). By contrast, in the presence of alewives, average SSB fell below 20% β0 for F1.0 

(Figure 3.4C) corresponding to a total annual mortality of about 0.35 (Figure 3.3F). Of the two 

performance measures of sustainability, the ratio of SSB to unfished SSB appears to be 

somewhat more forgiving to the effect of harvest than the mean TL at age-3 threshold. The 

growth rate-based criterion reaches its threshold slightly before the SSB-based criteria does. For 

example, average SSB was at 20% β0 at F3.0 (Figure 3.4A), but mean TL at age-3 exceeded its 

threshold value at this F (Figure 3.4B). Generally the two metrics agree, however. The 

sustainable maximum fishing intensity of F1.5 from the decision analysis approximately 

corresponds to an instantaneous recreational fishing mortality F of about 0.13 of the fully 

selected ages. 
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Value of by-kill information.-- The analysis of perfect information indicated a positive 

gain to the fishery in terms of sustainable harvest from knowing the true by-kill magnitude 

(Table 4). Because the units for these values was the sustainable recreational harvest, derived by 

assigning zero to years when the sustainability criteria was exceeded, the magnitude of the value 

of the perfect information is not a representation of the actual gains in the numbers of walleyes 

that would be harvested as a result from eliminating this uncertainty. As a proportion of the total 

expected value of the best decision, however, we see that the EVPI amounts to about 5.5% as 

much. One might conclude then that the value of information is equivalent to about 5.5% of 

value of the recreational fishery.  Analysis of imperfect information is intended to provide a 

similar valuation but incorporating a degree of uncertainty over the study’s ability to fully deliver 

on the necessary findings. There is no particular reason to hypothesize that an expanded study of 

by-kill in Lake Huron would not fulfill its objectives but hypothesizing a potential 5% error rate 

in any statistical analysis, the EVII reduces the benefit to 0.3% of the recreational fishery value 

(Table 4). Testing sensitivity of the value of information to a lesser probability of alewife 

recovery (10% likelihood verses 25% likelihood of recovery) did reduce the EVPI from 5.5% of 

the fishery value to 4.2%. 

Discussion 

Nearly all metrics and performance measures, (validated by the outcome of the decision 

analysis), indicated that the Saginaw Bay walleye population is capable of sustaining greater 

recreational harvest. The choice of whether to adopt management options that allow for 

increased harvest within limits of sustainability is partly a consideration of how conservative 

managers want to be. Walleye recovery on Lake Erie led to a management practice of annually 

determining the harvestable surplus and making allocation choices amongst the various fisheries 
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and jurisdictions (GLFC 2005). In many years, this constituted more liberal recreational harvest 

regulations than the customary statewide regulations enforced by Michigan DNR. The 

importance of the Lake Erie approach is that the regulations were regularly revisited and adjusted 

based on updated management information and model projections. A decision to manage for a 

Saginaw Bay walleye fishery closer to the limits of sustainability would necessitate regular stock 

assessments and the willingness to modify harvest regulations as needed to stay within the limits 

of sustainability.  

Michigan DNR law enforcement officers report that harvest beyond the daily bag limit of 

five walleyes per angler is a common violation. “Over bagging” or double bagging (making two 

fishing trips in one day) is an enforcement problem when angler catch rates are high as in 

Saginaw Bay at certain times of the year. This suggests that increased recreational allocation in 

the form of an increased daily bag limit may result in greater utilization of the walleye 

population and help alleviate the temptation to violate daily bag limits. This has been Michigan 

DNR’s management tool of choice for increased harvest of walleyes in Lake Erie’s recreational 

fishery. In 2013, 32% of open water (April – October) angler parties of four or less anglers on 

Saginaw Bay reached their collective party limit (Michigan DNR unpublished data).  

While not detailed in this analysis, it was clear from the simulations that population 

effects from one fishery in turn affected the other walleye fisheries around the lake. The impacts 

of increased allocation to recreational fisheries in Michigan on the other walleye fisheries was 

not part of the decision analysis. Certainly, however, any increased mortality of walleyes (via 

increased recreational exploitation) will reduce the overall population and cause some degree of 

contraction in the other fisheries unless their fishing effort increased. Similarly, increased harvest 

from those fisheries would also have impacts on the Michigan fisheries. This underscores the 
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need to begin to coordinate management of all the fisheries that exploit the Saginaw Bay stock of 

walleyes in Lake Huron, if necessary by working under the aegis of the Great Lakes Fishery 

Commission as is done in Lake Erie (GLFC 2005).  

Increased exploitation of walleye as a management option has consequences beyond 

sustainability questions that need to be considered. The management implications of the on-

going uncertainty regarding alewife futures means that managers may be wise to go slow in their 

allocation of additional surplus walleye as their role as a predator is still not fully understood. 

Similarly, if increased harvest is opted for by fishery managers, how to allocate that across 

fisheries is largely a matter of policy. In spite of the recovery of the walleye population, 

recreational fishing effort in Saginaw Bay has been steadily declining (Fielder et al. 2014). 

Fielder et al. (2014) offers two hypotheses for this, first that fishing effort in the bay is driven 

more by availability of yellow perch (Perca flavescens) than by walleye, and yellow perch are in 

severe decline. Secondly, as walleye angler catch rates increase, trip length declines as anglers 

reach either their daily bag limits or a satisfactory catch sooner.  

The true magnitude of the commercial by-kill was one critical uncertainty identified at 

the outset of this analysis. Fielder et al. (2014) estimated that the value of the recreational fishery 

in terms of economic activity generated was $33 million per year between 2008 and 2010. As a 

follow up to MacMillan and Roth (2012), an expanded study of walleye commercial by-kill in 

Lake Huron was proposed, estimated to cost $496,000 (B. Roth, Michigan State University, 

personal communication). Amortized over the 50-year simulation period, the study cost would be 

$9,920/year, This is well below EVPI of 5.5% ($1,815,000) of the annual recreational fishery 

value, of $33 million total (Fielder et al. 2014). The lesser utility based on the EVII still 

constitutes a $99,000/year value easily exceeding the expected cost of the study. However 
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trialing probabilities of a successful study of by-kill at less than 95% results in a loss of positive 

value to the reduction of this uncertainty. This suggests that the benefit of further by-kill research 

is at its margins of justification should the study’s probability of success be questionable in 

anyway. One possibility is that the actual by-kill is not close to the two alternatives we 

considered, but rather at a more intermediate level.  This would reduce the benefits associated 

with improving the estimated level of by-kill.  Nevertheless, from the value of information 

analysis, I conclude that further research to eliminate the uncertainty over the by-kill catchability 

magnitude is justified. In addition to potential fishery gains from optimizing management in light 

of this added information, the Saginaw Bay walleye SCA model would also be improved by 

better by-kill information, and this would benefit all other uses of those estimates.   

The uncertainty over alewife futures is another matter. While not the subject of its own 

value of information analysis, due to the complexity or inability to reduce that uncertainty, it 

unquestionably is a profound driver of all the simulations. Fielder et al. (2007) aptly concluded 

that alewife effects dwarfs all other determinants of walleye recruitment in Saginaw Bay. For the 

wild walleye S/R function, I included stock size as I wanted that feedback from population trends 

but any stock size effect seems to be vastly overshadowed by trends with alewives. Of the two 

sustainability based performance measures, the maintenance of the SSB at or above 20% β0 

might be less consequential.  

The decision and value of information analysis was not substantially sensitive to the 

probability of alewife recovery. The lower tested probability of 10% likelihood (versus 25% 

likelihood of alewife recovery) did not alter the optimal management option choice.  In fact, it 

appears from Table 3.3 that if the true probability of alewife recovery was nil, the optimal 

management option would remain unchanged from the 1.5 recreational fishing intensity. Thus 



98 
 

lingering uncertainty over the future of alewives does not greatly affect the benefits from 

management options I explored. The lower, 10% probability of alewife recovery did, reduce the 

EVPI over by-kill catchability from 5.5% of the fishery value to 4.2%. This suggests that as 

alewife recovery likelihood decreases, the benefit of further by-kill research becomes less. The 

low sensitivity of the probability of alewife recovery and the profound effects if alewives do 

recover as indicated in Figures 3.3 and 3.4, are not contradictory. The probability of recovery is a 

variable in testing management options and a reduction to 10% probability or less was not 

consequential, but the effects of alewives, if they in fact do recovery, is a function of their 

influence on recruitment of walleye, which is profound. 

Herein I explored options where recreational fishing mortality rates were fixed over time, 

based on the assumed level of knowledge regarding an alewife recovery.  In reality a recovery of 

alewife would probably not take managers by surprise, given that alewives would likely need to 

build at least two year classes (thus giving two years advanced notice) before having deleterious 

effects on walleye recruitment.  Results presented here suggests that under conditions when a 

recovery does occur, substantially lower fishing mortality rates are necessitated to maximize 

benefits.  It is possible that an adaptive policy where harvest rates are reduced (and stocking of 

walleye is initiated) when a recovery of alewife begins would provide benefits and be more 

practical than determining in advance whether alewife will recover or not. 

Managers wanted to be able to evaluate the tradeoffs between management options based 

partly on the effects of walleye predation on alewives, and how that in turn modulated the effect 

of alewife on walleye recruitment. While these interactions were incorporated in the model and 

consequently the decision and value of information analysis, I do not feel as if I fully captured 

that complex dynamic. The abundance of alewives in the model was a function of the expansion 
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of alewife densities across the total alewife habitat of the lake. I rationalized a minimal value (1.5 

million ha) in an attempt to maximize The model’s sensitivity to this dynamic while others (He 

et al. in press) have used a much greater estimate of alewife habitat area of 3.2 million ha. I 

recognize that the ability of alewives to be suppressed by predation is a function of the suite of 

all predators in Lake Huron. He et al. (in press) estimated that walleyes in Lake Huron 

constituted about 10% of the collective consumption demand on available prey forms in the main 

basin since 2003. Very possibly alewives cannot recover in the face of predation across all 

predators but such an analysis was beyond the scope of this study. 

Fielder and Bence (2014) in their analysis of walleye stock dynamics in Lake Huron, 

included the effects of walleye immigration from Lake Erie and their contribution to the overall 

fisheries in Lake Huron. Some proportion of adult walleyes has been documented to make such a 

migration (Thomas and Haas 2005, Wang et al. 2007). As part of their analysis, Fielder and 

Bence (2014) estimated that from 1986-2011 Lake Erie walleyes averaged 8% as much as 

Saginaw Bay fish but only 2.8% since 2004.  While at times these numbers were considerable, in 

recent years jaw tag returns from Lake Erie tagged fish have trailed off to zero (Lake Erie 

Walleye Task Group of the Great Lakes Fishery Commission, unpublished data; Thomas et al. 

2011). The simulation analysis was limited to the scope of the Saginaw Bay walleye stock. I 

elected not to attempt to additionally account for the effects of Lake Erie walleyes. If there were 

to be greater future contributions by Lake Erie fish, likely the realized fishery response would be 

slightly greater than the predictions in the analysis reflecting the supplementary catch. Predatory 

effects of Lake Erie walleyes on alewives might be another effect but given the difficultly of 

documenting any limiting effect on alewives by Saginaw Bay fish alone, I hypothesize that Lake 

Erie predation effects would be negligible.  
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While this analysis may be a step forward in the evolution of management tools for the 

Saginaw Bay stock of walleyes in Lake Huron, further advancement will necessitate more 

deliberate objective setting by fishery managers. An essential element to making decisions is the 

formulation of management objectives (Peterman and Peters 1998). Without defined 

management objectives, it is difficult or impossible for management strategy evaluations or 

decision analysis to effectively proceed. Collaborations for this analysis were merely a first step 

of the sort of efforts required. Further deliberation, and clear declarations of goals and objectives 

in consultation with stakeholders, will be needed before further evaluation of options can be 

generated. Quantitative stock assessment, management option evaluation, and decision analysis 

can only proceed so far in the absence of these goals and objectives.  
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Table 3.1. Description of critical uncertainties (uncertain states of nature), management 

scenarios, and performance measures.  
 

Component Description 

Uncertainties  

  

By-kill low 

State-licensed by-kill catchability is correctly depicted 

by 21,500 value for May-August observed period. 

Assigned probability of 0.5 

  

By-kill high 

State-licensed by-kill catchability is correctly depicted 

by 102,000 extrapolated value for entire year. Assigned 

probability of 0.5 

  

Alewives recover 

Alewives in Lake Huron follow a logistic population 

trend with a finite rate of increase ‘R’ of 1.5. Assigned 

probability of 0.25 

  

Alewives remain scarce 

Alewives in Lake Huron don’t recovery (follow a 

logistic population trend with a finite rate of increase ‘R’ 

of 0). Assigned probability of 0.75 

  

Harvest policies  

  

Scalars (multipliers) of Frecreational 

intensity 
0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0        x the current F 

  

Performance measures  

  

Sustainable harvest 

Average recreational harvest with zeros applied for 

years when other performance measure thresholds are 

exceeded. This measure to be maximized. 

  

% years  SSB < 20% β0 
Percentage of years  with SSB below 20% unfished 

level (β0) 

  

% years mean TL (age-3) > 425mm 

Percentage of years that mean total length of age 3 

walleyes exceeds 110% state average growth rate 

(recovery index) 
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Table 3.2. Equations, symbols and descriptions of variables used in the stochastic simulation 

model. 

Equation Number Symbol Description 

  Index variables 

 T2.1 y Year 

  a Age 

 T2.2 State and control variables 

  N Number of walleye 

  for recreational fishery only T2.3 Z Instantaneous total mortality  

  M Instantaneous natural 

mortality 

 

T2.4  
Instantaneous fishing 

mortality for each individual 

fishery 
  

F 
Instantaneous total fishing 

mortality 

 T2.5  Yearly wild recruitment 

   Yearly hatchery recruitment 

 T2.6 Sy 
Yearly stock size (100K egg 

increments) 

  Ay Yearly density of alewives 

 T2.7 Py 
Yearly number of fingerlings 

planted 

  

Cony 

Yearly consumption of 

alewives by walleyes, 

expressed on a density unit 

 
T2.8 Ca,y 

Catch (harvest) from each of 

the fisheries 

  
L3,y 

Yearly mean total length age-

3 walleyes 

 T2.9 
 Three prior year running-

average number of walleye 

  Structural parameters 

 T2.10 sa 
Age specific selectivity for 

each fishery 
  q Catchability of each  fishery 
  

Ey 
Year specific fishing effort 

for each fishery 
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Table 3.2 (cont’d)    
    

2
1

,

13

2

yaa

a

ay NWMatSSB 




  T2.11 Mata Maturity by age 

  Wa Weight at age 

 
 βs 

Ricker stock-wild recruitment  

parameter for stock size  
 

 βA 
Ricker stock-wild recruitment 

parameter for alewife density 
  

βP 
Ricker stock-hatchery 

recruitment parameter for 

number planted 
 

 βW 
Ricker stock-hatchery 

recruitment parameter for 

wild recruitment 
  

 
Ricker stock-wild recruitment 

parameter 
  

 
Ricker-hatchery recruitment 

parameter 
  

R 
Finite rate of increase for 

alewives 
  

k 
Carrying capacity for 

alewives 
  

å 
Attack rate by walleyes on 

alewives 
  

h 
Alewife handling time by 

walleyes 
  Distributional parameters and 

associated stochastic errors 
  

 
Yearly wild recruitment 

deviation 
  

 
Yearly hatchery recruitment 

deviation 
  

 

Catchability deviation for 

each value of q (from a 

random walk process for the 

recreational fishery or as 

white noise drawn from a 

normal distribution for all 

others) 
  

 

Yearly deviation from 

random-walk process for 

recreational fishery 

catchability 
    

  

W

H

W

y

H

y

y

y
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Table 3.3. Decision analysis of eight varying degrees of fishing intensity (applied as a multiplier 

to the recreational fishing mortality F) across two critical uncertainties regarding alewife futures 

and true levels of commercial by-kill of walleyes resulting in a total of four combinations.   

Values are sustainable recreational harvest of walleyes in Saginaw Bay; mean recreational 

harvest with zeros assigned to years exceeding sustainability thresholds. Maximum value is 

indicated with box.  
 

Recreational F 

multiplier 

Low by-kill 

rate & 

alewives 

scarce 

Low by-kill 

rate & 

alewives 

recover 

High by-kill 

rate & 

alewives 

scarce 

High by-kill 

rate & 

alewives 

recover 

Expected 

value 

Probability 0.375 0.125 0.375 0.125  

0.1 4896 18335 3120 12817 6900 

0.5 23253 53722 15420 46192 26992 

1.0 45173 50609 30317 43422 40063 

1.5 52922 46431 43355 41435 47087 

2.0 49799 35397 45952 36124 44847 

2.5 45056 28858 41847 27480 39631 

3.0 40763 23755 38144 21324 35225 

4.0 31487 16601 29737 12728 26625 
 

 

Table 3.4. Analysis of the expected value of perfect by-kill information (EVPI) and expected 

value of imperfect by-kill information (EVII). High and low by-kill reference two alternative 

states of nature based on the magnitude of inner Saginaw Bay state-licensed commercial by-kill 

stemming from two estimates  (a lower value based on an observed period and a higher value 

based on an extrapolated  annual basis).  
 

Metric   Value 

Expected value of “best” decision (maximum value from 

Table 3.3) 

  47087 

    

EVPI Calculation    

Value if we know high by-kill model was true   46072 

Value if we know low by-kill model was true   53322 

Expected value after knowing true by-kill model   49697 

EVPI 49697- 47087 2610 

% EVPI of total fishery   5.5% 

    

EVII Calculation    

Value if we know high by-kill model was true   43768 

Value if we know low by-kill model was true   50656 

Expected value after knowing true by-kill model   47212 

EVII 47212- 47087 125 

% EVII of total fishery   0.3% 
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Figure 3.1. Saginaw Bay and Lake Huron.  
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Figure 3.2. Decision tree reflecting alternative harvest policies for varying levels of recreational 

fishing mortality (Frec depicted as low, medium, and  high). In actuality, eight different levels 

were evaluated. 
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Figure 3.3. Forecasts for different levels of recreational fishing intensity (applied as a scalar to fishing mortality) across uncertain 

states of future alewife trends: , based on means of 50 year forecasts of: total catch (all 

fisheries), recreational harvest, population size, percent of years that age-3 walleye total length exceeds management target, percent of 

years spawning stock biomass (SSB) drops below the 20% of unfished threshold, and total annual mortality (A).  
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Figure 3.4. Mean spawning stock biomass (SSB) and mean total length (TL) of age-3 walleyes 

and critical thresholds of management importance across 50 year forecasts of six recreational 

fishing intensity management options, across two versions of future alewife trends (without 

alewife recovery; graphics A and B, and with alewife recovery; graphics C and D).   
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