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ABSTRACT 

 

AN INVESTIGATION OF LAKE ERIE YELLOW PERCH STOCK ASSESSMENT 

ASSUMPTIONS 

 

By 

 

Lisa Kay Peterson 

 

 The purpose of this research was to investigate two of the assumptions made in the 

assessment of Lake Erie yellow perch (Perca flavescens). In any model, assumptions have to be 

made in both model structure and data utilization. Testing these assumptions is important to 

ensure results are not being biased. In Chapter 1, I tested the assumption that each management 

unit (MU) in Lake Erie has a distinct yellow perch population with no mixing. I investigated the 

effect this assumption has on assessment and whether it could bias the results if it was being 

violated. I developed a statistical catch-at-age model that allowed movement between two of the 

MUs and evaluated how abundance estimates changed for 24 different movement scenarios. The 

abundance estimates differed between scenarios in unexpected and inconsistent ways, suggesting 

these models are sensitive to assumptions about movement. In Chapter 2, I investigated the 

assumption that one of the fishery independent surveys used in the stock assessment model is an 

unbiased indicator of trends in abundance. If these surveys are being affected by factors besides 

trends in abundance, the resulting index could be biased if these factors are not taken into 

account. I used a catch-rate standardization and model selection approach to investigate the 

effect of temporal, spatial, and environmental factors. Wind was incorporated using a novel 

approach that combined both wind direction and speed into a single parameter. The patterns seen 

in the standardized index of abundance from the best-fit model that incorporated other factors 

versus the non-standardized index were similar for both MUs; however, using a standardized 

index has the potential to accommodate for future changes in the environment of Lake Erie.  
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PREFACE 

 

 Both Chapters 1 and 2 were written with the assumption that both would be submitted for 

publication in peer-reviewed journals. For this reason, both are in the first person plural 

narrative, even though the thesis has one author. All references are formatted in a style consistent 

with the North American Journal of Fisheries Management. 
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INTRODUCTION 

 

 

 

Yellow perch (Perca flavescens) have been an important component of the commercial 

and recreational fisheries in Lake Erie for over 200 years. Historically, Lake Erie fishery harvests 

were dominated by cisco and blue pike, but the loss of these two stocks gave way to a 

commercial and recreational fishery dominated by percids. Today, yellow perch remain one of 

the most popular fish species in the lake. All Lake Erie jurisdictions except Michigan contain a 

yellow perch commercial fishery and all jurisdictions except Ontario contain a recreational 

fishery (YPTG 2014).  

The past 40 years have seen fluctuations in both the harvest and abundance of yellow 

perch. In the 1970s and early 1980s, commercial percid harvest was dominated by yellow perch 

and this reflected abundances that were among the highest on record. It is hypothesized that this 

was due to decreased fishing pressure and pollution (Kenyon and Murray 2001). Commercial 

catch declined with the collapse of the yellow perch population in the early 1990s, which 

Kenyon and Murray (2001) suggested was because of the dreissenid mussel invasion, 

overfishing, and poor weather conditions. In recent years, the perch population has recovered and 

again has been dominating the commercial percid catch, although recruitment continues to be 

variable. The recreational fishery is also prominent in Lake Erie, and tends to focus in the central 

and western basins, with the majority of the harvest occurring in Ohio waters, and has been 

variable throughout the time period (YPTG 2014).  

The 2004 State of the Lake Report for Lake Erie (Tyson et al. 2009) identified many 

issues facing cool-water species such as yellow perch, including invasive species spread, 

increased exploitation, recruitment fluctuation, pathogens and parasites, and habitat loss. To 
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protect this valuable fish species, yellow perch are managed by an interagency quota system, 

with a total allowable catch (TAC) determined annually and allocated to each jurisdiction based 

on area. The Lake Erie Committee – which is the management body that determines the TAC – 

is trying to sustain the yellow perch population at a level that allows for consistent sizes of 

harvest (Ryan et al. 2003). 

The YPTG determines a recommended allowable harvest using statistical catch-at-age 

(SCAA) models to assess yellow perch abundance. Lake Erie is separated into four management 

units (MUs) and each has a unique stock assessment model with data specific to the area. These 

models use a variety of data sets, including fishery-dependent catch and effort data and fishery-

independent survey indices, to estimate fishing mortality and abundance. With any SCAA 

assessment, as with all models, there are a variety of assumptions that must be made in the 

creation and evaluation of the model. These assumptions are an important component of a 

model; if they are incorrect the conclusions drawn from the results may be biased and inaccurate. 

It is important to investigate assumptions for validity and re-investigate as new data become 

available. The goal of this research was to investigate two assumptions made in the assessment 

models for yellow perch. 

Chapter 1 investigated an assumption in the structure of the assessment models, 

specifically the assumption that there is no movement of yellow perch between MUs. There is a 

stock assessment model for each MU in Lake Erie and each model is assumed to be independent 

of the others. Previous tagging work and an on-going tagging study in Lake Erie all suggest that 

while yellow perch do not move a lot, they do move enough to cross MU boundaries (Mraz 

1952; Glover et al. 2008; A. Cook, OMNR, personal communication). I developed a stock 

assessment model that included movement between MUs 1 and 2 and investigated a range of 
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movement scenarios. Chapter 2 investigated an assumption made when using the data in the 

stock assessment model. The fishery independent indices are assumed to be proportional to 

yellow perch abundance. However, research has indicated that fishery independent survey 

catchability can be susceptible to changing environmental factors (Gunderson 1993; Maunder et 

al. 2006). By using catch-rate standardization I evaluated whether there were important factors 

that affect survey catch rates other than abundance and also whether the standardized index 

based on the model and the original non-standardized index had similar trends. I considered year, 

week, management unit, water temperature, depth, secchi depth, hypoxia, and wind as potential 

factors affecting survey catch rates. I included wind as an indicator of current speed and 

direction, introducing a new approach to including this factor and evaluating its potential 

importance.  
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CHAPTER 1 

DOES MOVEMENT OF YELLOW PERCH ACROSS MANAGEMENT BOUNDARIES IN 

LAKE ERIE MATTER FOR ASSESSING THE STOCK? 

 

Introduction 

 

Fisheries managers often assess the status of a fish population and then implement 

harvest control rules (HCRs) that, in part, reflect understanding of the biological processes 

governing the dynamics of the population. To perform these tasks, it is useful to have an 

understanding of the distribution of the population and knowledge of discrete stocks in the 

management area. Management units (MUs) are often defined to separate stocks and allow 

managers to implement different HCRs depending on the status of specific fish stocks (Halliday 

and Pinhorn 1990; Stephenson 1999; Reiss et al. 2009). For each MU, the population dynamics 

of the fish stock are assessed within its boundaries and a MU-specific harvest level is applied. 

However, the actual rationale for the delineation of MUs is often quite arbitrary, based on a 

combination of presumed stock structure and existing political boundaries. It has been suggested 

that these stocks should represent evolutionarily significant units (Ryder 1986), but the actual 

application of this is not clear (Dizon et al. 1992; Vogler and DeSalle 1992). Stock structure can 

be evaluated based on morphological differences (e.g., Wilson et al. 1991), the identification of 

genetically-distinct population sub-units (e.g., King et al. 2001), or a combination of 

morphology, genetics, and behaviour (e.g. Toth et al. 2012). Even when distinct stock units can 

be identified, there remain questions about the most appropriate scale of management: if there is 

some mixing of individuals among discrete stocks, should managers use a larger scale than 

genetic or morphological differences may imply, or use a smaller scale to manage each of these 
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stocks individually? Assumptions regarding the population’s structure and movement among 

sub-populations are important components of stock assessment and fisheries management.  

 Fish move for a variety of reasons. Migration of fish, as defined by Lucas et al. (2001), is 

simply the movement by all or part of a population between sites that have differing biotic and 

abiotic characteristics. Using this definition, all scales of movement are included in the term 

migration. Marine movement tends to be well studied compared to freshwater movement; large 

oceanic migrations are easy to identify and can have an impressive scale, as is the case for 

Atlantic bluefin tuna (Thunnus thynnus) that travel across the ocean or most species of Pacific 

salmon (Oncorhynchus spp.) that migrate to the ocean before returning to freshwater to spawn 

(Block et al. 2001; Behnke and Tomelleri 2002). However, smaller scale movements that occur 

in freshwater environments can be just as important to the biology and survival of fish species as 

the spawning run of Pacific salmon. Fish migration is highly variable in space and time, and has 

been shown to be triggered by a variety of internal and external stimuli.  

Genetic and ontogenetic factors can influence life history and migration characteristics, 

as seen in diadromous species of salmonids (Jonsson 1982; Näslund 1993) and the dispersal of 

walleye (Sander vitreus; Berger et al. 2012). An example of an ontogenetic trigger is a fish 

undergoing a spawning migration once they have reached maturity. Hunger and metabolic 

factors are other internal triggers of migration. The search for food and the density of prey has 

been argued to influence distance and speed traveled for foraging (Thomas 1977). The marginal 

value theorem is similar to this idea – animals will leave an area if the return rates on foraging 

falls below a certain value (Charnov 1976). Homing or spawning site fidelity can be a trigger as 

well. This movement allows fish to return to a spawning site that is known to be suitable for 

spawning when other sexually mature fish will also be present (Wootton 1990). This is well 
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documented for salmonids but this behaviour has also been seen in many freshwater fish, 

including lake whitefish (Coregonus clupeaformis; Ebener et al. 2010), white bass (Roccus 

chrysops; Hasler et al. 1969), white sucker (Catostomus commersoni; Werner 1979), common 

carp (Cyprinus carpio; Otis and Weber 1982), and yellow perch (Perca flavescens; Aalto and 

Newsome 1990). Predator avoidance can be considered both an internal and external trigger for 

migration. Alarm substances trigger a response, such as Schrekstoff in teleosts (Smith 1992) and 

the necromone of larval sea lamprey (Petromyzon marinus; Wagner et al. 2011). The presence of 

a predator may also trigger fish to move to refuge areas and this avoidance behaviour could be 

innate or learned. The opposite is true as well; prey behavior could affect the movement of its 

predator. This is illustrated by foraging arena theory, which asserts that a prey species can be 

partitioned into vulnerable and invulnerable components, and predators’ success is dependent on 

the exchange between them (Ahrens et al. 2012). A predator may move to take advantage of a 

large group of vulnerable prey, or a prey species may be adapted to spend most of its time in 

invulnerable areas. Many factors have the potential to trigger fish movement; whether this trigger 

leads to short movements in search of prey or more optimal habitat or a large migration to a 

spawning area, this movement is important for survival.  

As techniques for quantifying movement advance, we have greater ability to observe this 

movement and potentially its cause. Historically, managers had to rely on commercial fishery 

logs, recreational catch records, and small-scale mark-recovery studies to determine movement. 

These data require major assumptions which limit their application to fisheries management, and 

often movement was assumed inconsequential for freshwater species (Lucas et al. 2001). More 

recently, extensive tagging studies and the development of effective biotelemetry techniques 

(radio, acoustic or satellite technologies) are being used to evaluate the degree of movement in 
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many fish species and quantifying movement is an increasingly achievable goal. Kapuscinski et 

al. (2005) used tag-recovery data for lake trout (Salvelinus namaycush) in Lake Superior to 

estimate the different rates of movement between MUs. In Guam, acoustic telemetry was used to 

establish that unicornfish (Naso unicornis and Naso lituratus) remained inside a marine reserve, 

which is the primary management tool for Guam’s reef fishery (Marshell et al. 2011). Stock 

assessment models can now incorporate movement rates in their evaluation of a fish stock. 

However, quantifying movement can be complex and costly. Extensive tagging and telemetry 

studies require considerable resources and time. It would be useful to identify evidence that 

movement is in fact important to the assessment of the stock before extensive movement studies 

are performed. 

The movement of fish can be a concern to both managers and stakeholders. If MUs are 

used to manage a fish population, but the fish are moving across those boundaries, the results of 

the stock assessment could be biased and lead to total allowable catches (TACs) that are not 

reflective of the actual status of the population (Cadrin and Secor 2009; Berger et al. 2012; 

Molton et al. 2012). Misidentification of fish stocks can have detrimental effects on both the fish 

species and the fishery it supports (Pawson and Jennings 1996; Begg et al. 1999). Abundance 

overestimates, possibly due to movement of fish from other stocks into the MU when the 

population is being assessed, can lead to increased biological risk to the fish stock in the MU if a 

high fishing rate is used. Conversely, abundance underestimates can lead to unnecessarily low 

fishing rates and increased economic risk to the fisheries. Incorrectly assessing the population of 

the stock can be an issue for any fishery that is divided into MUs, such as yellow perch in Lake 

Erie, which is the focus of this study.  

  



10 
 

 

Figure 1.1. Lake Erie management units (MUs) for yellow perch. 

Lake Erie is the smallest, but most biologically productive, of the Laurentian Great 

Lakes, and is the location of very large recreational and commercial fisheries for walleye and 

yellow perch. Yellow perch are found throughout Lake Erie, but are most abundant in the 

warmer waters of the central and western basins (YPTG 2013). The yellow perch fishery in Lake 

Erie is economically valuable for both commercial and recreational interests in the United States 

and Canada. In Ontario, yellow perch is considered to be the most valuable commercial species 

in the lake (Brown et al. 2009), representing 55% of the economic benefit of all fish taken in 

Lake Erie from 1980-1984 (Craig 1987). Recreational fishermen value yellow perch in the Great 

Lakes as well; in Ohio, yellow perch has been an important target species of anglers for many 

years.  In 2012, Ohio alone logged 1.5 million angler hours in Lake Erie for yellow perch (YPTG 

2013). To try to ensure the sustainability of the yellow perch fishery, the Lake Erie Committee 

(LEC) – a group of fishery managers from the Michigan, New York, Ohio, Ontario, and 

Pennsylvania agencies that have jurisdiction over Lake Erie fisheries – determines an allowable 

harvest level each year. Yellow perch fisheries in Lake Erie are managed as four separate MUs, 

from west to east across the lake (Figure 1.1), with each MU receiving a different harvest level 
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based on the assessed abundance of yellow perch in each unit and a target fishing mortality rate. 

The stock assessment models currently used assume that there is no movement of fish between 

MUs. A broadly representative group of Lake Erie managers and stakeholders (Lake Erie Percid 

Management Advisory Group: LEPMAG), while reviewing yellow perch management in Lake 

Erie, identified the potential for movement among MUs and its consequences for harvest policies 

to be a key uncertainty.   

Previous research suggests many reasons for yellow perch movement. Environmental 

factors such as water temperature (Ferguson 1958; Engel and Magnuson 1976; Ross and Siniff 

1982), light intensity (Craig 1977; Helfman 1979), and dissolved oxygen (Sandheinrich and 

Hubert 1984; Imbrock et al. 1996) have all been suggested to influence the movement of perch. 

Habitat characteristics such as availability of submerged vegetation and substrate composition or 

predator/prey presence and distribution, can affect yellow perch distribution as well (Fish and 

Savitz 1983; Eklov 1997). It has been suggested that perch do not move much and the movement 

they do exhibit is mostly localized (Lucas et al. 2001), with one tagging study capturing most of 

the released fish less than 45 km from the point of release within 60 days (Smith and Van Oosten 

1939). Even though they may move moderate distances in response to environmental factors, 

yellow perch appear to have spawning site fidelity, returning each year to a specific spawning 

site (Kipling and Le Cren 1984; Aalto and Newsome 1990; Glover et al. 2008). 

Recent tagging studies, particularly in Lake Michigan, have attempted to more explicitly 

estimate the magnitude of movement and spawning site fidelity of yellow perch. Glover et al. 

(2008) analyzed tagging data from 1996 to 2001 in the southern basin of Lake Michigan and in 

Green Bay. They inferred that yellow perch did return to the same spawning site, but movement 

occurred throughout the year (on average, fish were found 60.4 km away from the tagging site), 
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with most of the fish moving soon after spawning. Another study in Lake Michigan could not 

make many inferences because of tagging difficulties, but of the fish that were tagged and 

recovered, 27.8% were caught outside the tagging area with 8.4% over 32 km away (Mraz 1952). 

Yellow perch movement in Lake Erie has not been studied until recently. An on-going tagging 

study by the Ontario Ministry of Natural Resources (A. Cook, OMNR, personal communication) 

has been collecting data since 2009. Preliminary results showed that the average distance 

traveled by all fish recovered in the study was 24 km from the tagging area to location of 

recovery in the fishery harvest. Together, these tagging studies and previous research suggest 

that yellow perch have the potential to move across MU boundaries in Lake Erie, but will likely 

return to their original MU to spawn. 

Statistical catch-at-age (SCAA) models are used to assess the status of the Lake Erie 

yellow perch population. These models rely on fishery-dependent and -independent data to 

estimate trends in abundance and determine the harvest rate. The MU-level assessments in Lake 

Erie for yellow perch effectively assume dynamics among the four units are independent of one 

another. Movement of yellow perch across these boundaries would be a violation of that 

assumption and might bias the results of the SCAA models (Punt et al. 2005; Dichmont et al. 

2006; Kell et al. 2009; Kerr et al 2010). The goal of this research was to investigate if the rate of 

movement of yellow perch is important to the assessment of the stock. To address this goal, we 

developed a SCAA model for yellow perch that allows for movement between MUs and 

evaluated a range of movement scenarios. Specifically, we focused on evaluating the difference 

in abundance estimates between movement scenarios and investigating the consistency of the 

model’s response to differing levels of movement. 



13 
 

Methods 

Study system 

Lake Erie is approximately 400 km in length and 92 km across at its widest point. It is 

composed of three basins, which differ considerably. The western basin is the shallowest with an 

average depth of just 7.3 m; it is also the most turbid, warmest and most biologically productive 

of the three basins. The central basin is intermediate between the other two basins, with cooler 

water temperatures and an average depth of 18.3 m.  The eastern basin is the deepest (average 

depth of 24.4 m), coldest and least productive (Ryan et al. 2003). This gradient of habitat 

characteristics provides a suitable environment for a wide variety of species, ranging from 

mostly warm-water species in the western basin, to cool-water species in the central basin, and 

cold-water species in the eastern basin. Lake Erie is surrounded by four states (Michigan, Ohio, 

Pennsylvania, and New York) and one Canadian province (Ontario). Each of these jurisdictions 

is home to a variety of fisheries, both commercial and recreational. Walleye and yellow perch are 

the two main targeted fish species in the lake. In 2012, an estimated 31.5 million yellow perch 

and 2.5 million walleye were harvested from Lake Erie (WTG 2013; YPTG 2013). 

Yellow perch can be found throughout the lake and are an important component of the 

Lake Erie ecosystem. Yellow perch reach sexual maturity around two to three years of age (Scott 

and Crossman 1973; Becker 1983; Moyle 2002). Yellow perch spawn in the spring, hiding their 

eggs in the shallower parts of Lake Erie within submerged vegetation or fallen brush (Brown et 

al. 2009). Once the eggs hatch, larvae feed primarily on zooplankton. But as they grow they 

undergo an ontogenetic diet shift, feeding on insects, then larger invertebrates, and finally 

becoming piscivorous as adults, feeding on the eggs and young of other fish, sometimes even 
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other yellow perch (Brown et al. 2009). They are also an important prey species for predators 

such as walleye and double-crested cormorants (Phalacrocorax auritus). 

The LEC, with representatives from each authority (four states and one Canadian 

province), coordinates management of the yellow perch fishery. The Yellow Perch Task Group 

(YPTG) conducts a yearly statistical catch-at-age assessment to determine the status of the 

fishery. The current year’s abundance and survival estimates are used to predict the abundance 

for the following year. Based on this prediction and the application of a harvest control rule, a 

recommended allowable harvest (RAH) is produced. The RAH is presented to the LEC which 

then decides on a TAC. For this management process, as mentioned before, Lake Erie is 

separated into MUs, which are used to specify areas of discrete yellow perch stocks while also 

acknowledging political boundaries. There are four MUs numbered from west to east. MU 1 is 

the western basin of the lake, MUs 2 and 3 encompass the central basin, and MU 4 is the eastern 

basin (Figure 1.1). The majority of the overall harvest takes place in MUs 2 and 3 (35% and 43% 

in 2012 respectively), with 16% of the 2012 harvest in MU 1 and only 6% in MU 4 (YPTG 

2013). Each MU is assumed to be independent of the others, with unique data sets and stock 

assessment models. 

To examine the potential effect of movement on the stock assessments, I chose to focus 

my analysis on two MUs: 1 and 2. MU 1 and 2 were chosen because they represent two adjacent 

MUs with a large combined harvest (51% of the total lake wide harvest in 2012) as well as 

angler harvest (77% of the total lake wide harvest in 2012) and because they were the primary 

target of the OMNR tagging study, which informed the estimates of fish movement used in the 

model.  
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Data 

Five data sets are included in the stock assessment for each MU. These include both 

fishery dependent and independent data sets (Table 1.1). Commercial and angler catch and effort 

data are used for the fishery dependent data sets. There are also two fishery independent surveys 

for each MU. The OMNR and the Ontario Commercial Fisheries’ Association (OCFA) partner to 

conduct an annual gillnet survey in each MU while Ohio conducts their own fall trawl surveys. 

The longest data sets begin in 1975, which is when the model starts. 

Table 1.1. Data sources for the Lake Erie yellow perch stock assessment models. Includes the 

management unit, the names of the data source, the type of gear, the first year included in the 

data sets (all data goes to 2011), whether it is a fishery independent or dependent data source, 

and the weight (λ) of the data set in the model (used in the objective function, see Table 1.3). 

MU Name Gear First Year 
Independent or 

Dependent? Weight 

1 

Ontario 

commercial catch 

and effort 

Gillnet 1975 Dependent 1.0 

1 
Ohio commercial 

catch and effort 
Trapnet 1975 Dependent 0.7 

1 
Angler catch and 

effort 
Sport 1975 Dependent 0.9 

1 
Partnership survey 

catch-per-effort 
Gillnet 1990 Independent 1.0 

1 
Ohio fall survey 

catch-per-effort 
Trawl 1990 Independent 1.0 

2 

Ontario 

commercial catch 

and effort 

Gillnet 1975 Dependent 1.0 

2 
Ohio commercial 

catch and effort 
Trapnet 1989 Dependent 0.7 

2 
Angler catch and 

effort 
Sport 1987 Dependent 0.9 
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Table 1.1 (cont’d) 

2 
Partnership survey 

catch-per-effort 
Gillnet 1990 Independent 1.0 

2 
Ohio fall survey 

catch-per-effort 
Trawl 1990 Independent 0.9 

Assessment model incorporating movement  

Automatic Differentiation Model Builder (ADMB; Fournier 2012) software was used to 

construct and fit the statistical-catch-at-age model. ADMB is an optimization tool for non-linear 

statistical modeling and is the same software used by the YPTG for conducting their annual 

assessments. Our stock assessment model estimates yellow perch population dynamics beginning 

in 1975 and is age-structured, covering five age classes (2, 3, 4, 5, 6+) for both MU 1 and 2 

(Table 1.2 and 1.3). Fishery effort data and CPE from fishery independent surveys provides the 

information for estimating fishing mortality and abundance. The natural mortality rate is 

assumed to be constant and known (M=0.4 yr
-1

). Biomass was calculated as the product of the 

observed mean weight-at-age and the estimated abundance-at-age (Eq. 1.3.11). The mean 

weights-at-age for both MUs were obtained from the fishery independent surveys. 

 The model itself was a modification of the model currently used for yellow perch 

management in Lake Erie. Instantaneous fishing mortality was defined as the product of 

observed fishing effort, catchability, and selectivity (Eq. 1.3.5). Catchability is estimated as a 

free parameter and reflects the relationship between the catch rate and the true population size. In 

our model; catchability for each data set was determined using a ‘constrained random walk’ 

approach (Wilberg et al. 2010). This approach allowed the catchability to be time-varying and is 

becoming increasingly common in statistical catch-at-age models (Fournier et al. 1998; Wilberg 

and Bence 2006). The catchability could gradually change over time in either direction to reflect 
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differences in the factors that affect catchability, including changes in management, gear, angler 

behavior, or changes in fish distribution, without having to define the specific factors. This 

parameter was calculated for each year by multiplying the previous year’s catchability by the 

previous year’s process error deviation (Eq. 1.3.3 and 1.3.4). The error deviations were assumed 

to be log-normally distributed. The deviations were also penalized in the objective function for 

large changes, which resulted in an approximate coefficient of variation for catchability over 

time of 10%. Selectivity is another free parameter that encompasses both the gear selectivity and 

the species availability in the area of capture. Age-specific selectivity for each data set was 

calculated relative to a fully selected age, and no functional form was assumed, resulting in five 

different selectivity curves for each MU (three fishery-dependent data sets and two fishery-

independent surveys). Fishing and natural mortality were used to calculate total mortality (Eq. 

1.3.6). Total mortality was converted to survival, which was then used to estimate abundance 

(Eq. 1.3.7-1.3.10).  For the fishery-independent surveys, catchability and selectivity were used 

with the estimated abundance to predict the survey catch-per-effort (Eq. 1.3.13). 

The use of multiple data sources requires an assumption about the relative quality of 

different data sets. A weighting factor (λ) was used to control the amount of influence each data 

set had on the fit of the model (Table 1.1). The weighting factors are assumed to be inversely 

proportional to the observation and process error variance associated with each data source. 

These weights were determined by the YPTG using an expert opinion approach, where Lake Erie 

managers and assessment biologists considered different attributes of the data set such as spatial 

and temporal coverage, sampling technique, and fishing methodology to evaluate the relative 

quality and assign a weighting factor (YPTG 2012).  
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To incorporate fish movement into the two stock assessment models, we adjusted the 

standard SCAA equation used to estimate abundance. In a standard statistical catch-at-age 

model, abundance is determined by the previous year’s abundance and the previous year’s 

survival estimates. For our analysis, this equation was divided into two equations, spawning area 

abundance (Eq. 1.3.8-1.3.9) and vulnerable abundance (Eq. 1.3.10).  

Spawning area abundance is defined as  

            

where  𝑁      was the abundance at MU m, year y, and age a; 𝛾    was the movement proportion 

where 𝑥 is the starting MU and 𝑧 is the destination MU; and 𝑆      was the survival in MU m at 

the current age and current year. This equation assumed that the yellow perch that moved out of 

the current MU were affected by the mortality that occurred in the other MU during the fishing 

season before the fish returned to the original MU to spawn. This equation reflected the observed 

spawning site fidelity of yellow perch.  

Vulnerable abundance is defined as 

 

where 𝑁𝑣      is the vulnerable abundance at MU m, year y, and age a. This abundance was used 

to describe the fish population in MU m during the fishing season. The movement parameter (𝛾) 

and the spawning area abundance were used to calculate this abundance. The movement 

parameter in both these equations represents the proportion of fish that travel from one MU to 

another after spawning into an area vulnerable to fishing during the year.  The vulnerable 

𝑁         = 𝑁     (𝛾     𝑆       + 𝛾     𝑆       )               (1.3.8) 

𝑁𝑣     = (𝑁       𝛾     ) + (𝑁       𝛾     )                            (1.3.10) 
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abundance is then used in the calculation of estimated catch using Baranov’s catch equation (Eq. 

1.3.12) and the calculation of the estimated survey abundance index (Eq. 1.3.13). For each 

movement scenario, the parameter 𝛾 was fixed for each MU and assumed to be constant for all 

ages and all years for both the spawning area and vulnerable abundances. 

Table 1.2. Description of symbols in Table 1.3 describing the base assessment model. 

Symbol Description 

 Subscript Indicators 
m Management unit (1 and 2) 
y Year (1975-2011) 
a Age (2-6+) 
f Fishery (commercial gillnet, commercial trapnet, recreational angler) 
i Survey (Ontario, Ohio) 
x Starting MU (1 and 2, used in movement value below) 
z Destination MU (1 and 2, used in movement value below) 

 Assumed Values 

M Instantaneous rate of natural mortality (0.40 yr
-1

) 

λf Weight for fishery catches (Table 1.1) 

λi Weight for survey index catch rates (Table 1.1) 

λq 
Random walk catchability penalty (scaled so standard deviation of catchability 

deviations was ~0.1) 

γx,z 

Movement proportion, x is the starting MU and z is the destination MU (e.g. γ1,2  

is the proportion of fish from MU 1 that traveled to MU 2 while γ1,1 is the 

proportion of fish from MU 1 that stayed in MU 1), assumed to be fixed and 

constant across ages and years 

 Observed Data 

Cm,y,a,f Annual numbers of yellow perch caught at age by fishery and MU 

Im,y,a,i Survey abundance index at age 

Em,y,f Fishery effort 

wm,y,a Mean weight 

 Estimated Parameters 

Rm,y Recruitment 

Gm,a Initial abundances at age (>2) in first year 

qm,y=1975,f Initial catchability coefficient for each fishery 

qm,y=1990,i Initial catchability coefficient for each survey 

εm,y>1975,f Random walk catchability deviations for each fishery 
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Table 1.2 (cont’d) 

εm,y>1990,i Random walk catchability deviations for each survey 

sm,a,f Selectivity at age for each fishery 

sm,a,i Selectivity at age for each survey 

 Calculated Parameters 

qm,y>1975,f Catchability coefficient for each fishery following the first year 

qm,y>1990,i Catchability coefficient for each survey following the first year 

Fm,y,a,f Instantaneous fishing mortality rate 

Zm,y,a Instantaneous total mortality rate 

Sm,y,a Survival rate 

Nm,y,a Spawning area abundance at age 

Nvm,y,a Vulnerable abundance at age 

Bm,y Total biomass 

 m,y,a,f Model predicted catch at age 

 m,y,a,i Model predicted survey abundance index at age 

n Sample size of objective function components 

 

Table 1.3. Equations for population and observation submodels used in the yellow perch 

assessment model. 

Equation Reference 

Population Submodel 

Recruitment and initial numbers at age  

  𝑁       =      (1.3.1) 

  𝑁            =      (1.3.2) 

Random walk catchability  

          =        
       (1.3.3) 

          =        
       (1.3.4) 

Mortality and survival rates  

          =                    (1.3.5) 

        =  +∑         
 

 (1.3.6) 

  𝑆     =  
        (1.3.7) 
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Table 1.3 (cont’d)  

Population dynamics  

  𝑁             = 𝑁     (𝛾     𝑆       + 𝛾     𝑆       ) (1.3.8) 

  𝑁         

= 𝑁       (𝛾     𝑆         + 𝛾     𝑆         )

+ 𝑁       (𝛾     𝑆         + 𝛾     𝑆         ) 

(1.3.9) 

  𝑁𝑣     = (𝑁       𝛾     ) + (𝑁       𝛾     ) (1.3.10) 

      =∑ 𝑁           
 

 (1.3.11) 

Observation Submodel 

   ̂       =
        

      
(  𝑆     )𝑁𝑣      (1.3.12) 

   ̂       =             𝑁𝑣      (1.3.13) 

 

Table 1.4. The objective function. Calculated by summing weighted individual log-normal 

likelihood components (f). The final likelihood (F) was penalized by sample size. 

Equation Reference 

 =   ∑ [  (
        

 ̂       
)]

 

   
 (1.4.1) 

 =   ∑ [  (
        

 ̂       
)]

 

   
 (1.4.2) 

 =   ∑ [  (      )]
 

   
 (1.4.3) 

 =   ∑ [  (      )]
 

   
 (1.4.4) 

 =
 

 
  (

  ∑ 

 
) +

 

 
 (1.4.5) 

 

We fit the model to observed harvest, effort, and survey data. The objective function is the log-

likelihood for each data source penalized by the sample size (Table 1.4). The expert opinion 
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weights are used to effectively scale the error variance of each data source to that estimated for 

the two partnership surveys, the two commercial gillnet data sets, and the MU 1 Ohio survey 

which all received the highest quality rating by the expert opinion approach. 

Movement scenarios 

We investigated 25 different movement scenarios with two time series (MU 1 and MU 2) 

of 37 years, with the movement parameter for each scenario ranging from 0% to 40% in 

increments of 10% for each MU (e.g., Scenario 1: MU 1=0%, MU 2=0%; Scenario 2: MU 

1=0%, MU 2=10%; Table 1.5). The OMNR tagging study results suggested an average travel of 

24 km over one to two years’ time. Lake Erie is 388 km across and the MUs are approximately 

84-100 km wide, so a distance of 24 km could move a not insignificant amount of fish into an 

adjacent MU, but yellow perch do not appear to be traveling all over the lake. The range of 

movement used in this study was informed by the OMNR tagging study and previous tagging 

studies, but because of the lack of extensive data we included larger amounts of movement (30 

and 40%) as well as more moderate amounts of movement in the range.  

Evaluation of results 

The estimated spawning area abundance in both MUs was the focus of our comparison of 

the different movement scenarios. The complete time series was analyzed for trends but the 

terminal abundance (abundance in the final year) was primarily used to compare scenarios. 

Changes to key parameters, particularly catchability, were also used to compare scenarios. We 

additionally considered the sensitivity of the model to the starting values used. 

We looked at the last five years’ abundance estimates for each scenario to determine if 

the terminal abundance for a specific scenario relative to the rest of the scenarios’ terminal 
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abundance estimates reflected the patterns seen at the end of the time series. Eight scenarios did 

not; these were the scenarios with 30 and 40% movement from MU 2 to MU 1 with at least 10% 

movement from MU 1 to MU 2. These discrepancies between the terminal abundance patterns 

across the scenarios and the last 5-year patterns across the scenarios did not make a difference to 

the final conclusions drawn from the results, and they will be discussed but not presented. We 

also investigated the patterns in the catchability estimates for the different data sets.  

For the presentation of the results, the 25 scenarios are organized into five groups. For 

each group, the movement from MU 1 to MU 2 is constant, while each individual scenario in the 

group has a different rate of movement from MU 2 to MU 1. 

Table 1.5. Movement scenarios. 

Scenario 
Movement from 

MU 1 to MU 2 (%) 

Movement from 

MU 2 to MU 1 (%) 

1 0 0 

2 0 10 

3 0 20 

4 0 30 

5 0 40 

6 10 0 

7 10 10 

8 10 20 

9 10 30 

10 10 40 

11 20 0 

12 20 10 

13 20 20 

14 20 30 

15 20 40 

16 30 0 

17 30 10 

18 30 20 

19 30 30 

20 30 40 



24 
 

Table 1.5 (cont’d) 

21 40 0 

22 40 10 

23 40 20 

24 40 30 

25 40 40 

 

Results 

Comparison of the different movement scenarios 

When movement from MU 1 to MU 2 was low, estimated abundance in both MUs was 

similar to that obtained when there was no movement (10% maximum discrepancy; Table 1.6). 

The two scenarios within 10% of the no-movement scenarios for the abundance estimates of both 

MUs were when movement from MU 1 to MU 2 was 10% and movement out of MU 2 was 0% 

or 40% (scenario 6 and 10, respectively). However, scenario 10 was not consistent across the 

time series in its difference from the no-movement scenario. Looking at the most recent five 

years, scenario 10’s MU 1 abundance was much lower than the no-movement scenario until the 

final year. Scenario 6 was the only scenario consistently close to the no-movement scenario for 

both MU 1 and MU 2 abundances. 

Table 1.6. Terminal spawning area abundance estimates by management unit for each of the 

movement scenarios with the percent change from the no-movement scenario (scenario 1) 

specified. 

Scenario 

(𝛾    𝛾   ) 
MU 1 abundance 

(millions of fish) 

% Change 

from scenario 

1 

MU 2 abundance 

(millions of fish) 

% Change from 

scenario 1 

1 (0,0)  23.24 0 43.37 0 

2 (0,10)† 19.26 -17.1 40.64 -6.3 

3 (0,20)† 15.99 -31.2 42.57 -1.8 

4 (0,30)† 14.98 -35.6 45.50 4.9 

5 (0,40) 16.42 -29.4 47.75 10.1 

6 (10,0)*†‡ 25.58 10.0 44.73 3.1 

7 (10,10)† 20.62 -11.3 39.05 -10.0 
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Table 1.6 (cont’d) 

8 (10,20)† 17.40 -25.1 39.32 -9.3 

9 (10,30)† 20.77 -10.6 45.07 3.9 

10 (10,40)*†‡ 21.95 -5.6 41.80 -3.6 

11 (20,0) 32.50 39.8 38.41 -11.4 

12 (20,10) 26.18 12.6 31.98 -26.3 

13 (20,20)* 22.42 -3.5 33.07 -23.8 

14 (20,30)* 22.76 -2.1 34.38 -20.7 

15 (20,40) 25.77 10.9 35.90 -17.2 

16 (30,0) 30.87 32.8 49.08 13.2 

17 (30,10) 27.24 17.2 29.54 -31.9 

18 (30,20) 20.47 -11.9 32.59 -24.9 

19 (30,30) 25.76 10.9 33.08 -23.7 

20 (30,40) 27.85 19.8 32.87 -24.2 

21 (40,0) 28.52 22.7 49.32 13.7 

22 (40,10) 20.77 -10.6 30.90 -28.8 

23 (40,20) 16.12 -30.6 31.44 -27.5 

24 (40,30)* 21.38 -8.0 29.89 -31.1 

25 (40,40) 30.82 32.6 26.32 -39.3 

* scenarios with MU 1 abundance estimates within 10% of the no-movement scenario 

† scenarios with MU 2 abundance estimates within 10% of the no-movement scenario 

‡ scenarios with MU 1 and MU 2 abundance estimates within 10% of the no-movement scenario 

 

At higher levels of movement, the trends seen in the abundance estimates do not suggest 

a consistent response to changes in movement. Focusing on MU 1 abundance, estimates were 

erratic with increasing movement in either direction (Figure 1.2). The estimates tended to 

increase with increasing movement from MU 1 to MU 2, which is what would be expected. As 

more fish leave MU 1 the model estimates a higher MU 1 abundance in the spawning area to 

explain the catch seen during the vulnerable time, after the fish have traveled to MU 2. However, 

there are exceptions to this trend at the highest levels of movement (e.g. scenario 22-24). 

Looking at movement from MU 2 to MU 1, the MU 1 estimates tended to decrease with 

increasing movement, which again would be expected, but this became more erratic when 

movement out of MU 1 was increasing as well. Focusing on MU 2 abundance, estimates seemed 

relatively insensitive to increasing movement out of MU 2 when movement out of MU 1 was 
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low (e.g. scenarios 2-10; Figure 1.2). When movement out of MU 1 increased, MU 2 abundance 

estimates tended to be lower, as expected, but there were exceptions at the highest levels of 

movement (e.g. scenario 16 and 21).  There were some trends, but no consistent patterns in 

abundance across the different levels of movement for MU 1 or MU 2. 

 
 

Figure 1.2. Terminal spawning area abundance for MU 1 (white circles) and MU 2 (black 

circles). Dashed lines are abundance estimates from a no-movement scenario (lower line is MU 

1, upper line is MU 2). Each panel contains 5 scenarios with the same movement from MU 1 to 

MU 2, with increasing movement from left to right. 

 

Changes in estimates of other parameters in the model, specifically catchability, appeared 

to be driving some of these inconsistent patterns of abundance, again in erratic ways. Fishery 

catchability seemed to be more sensitive to high levels of movement than the fishery-

independent surveys. In five high movement scenarios (scenarios 9, 16, 21-23), fishery 

catchability was estimated to be multiple orders of magnitude higher than all other estimated 

catchabilities (Figure 1.3). Generally, MU 1 fishery catchability tended to decrease with 

increasing movement from MU 2 to MU 1, but there were exceptions in addition to the scenarios 

with extremely large values (e.g. scenario 12). MU 2 fishery catchability seemed relatively 
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insensitive to increasing movement out of MU 2, with the exception of scenario 9. The fishery 

independent survey catchabilities showed less erratic results (Figure 1.4 and 1.5). MU 1 survey 

catchabilities tended to increase with increasing movement out of MU 2 while MU 2 survey 

catchabilities tended to decrease. However, there were some exceptions at higher levels of 

movement (e.g. scenario 10 Ohio survey catchability). 

Sensitivity of model to starting values 

The model was sensitive to the starting values for catchability in many of the movement 

scenarios. The starting values used by the ‘no-movement’ model (original YPTG stock 

assessment starting values) were insufficient for many of the higher movement scenario models 

to obtain convergence. Often a specific starting value needed to be used, sometimes obtained by 

the results of a similar scenario (if convergence was achieved) or by using a number of iterations 

testing a variety of starting values. All models eventually achieved convergence, as indicated by 

all parameter gradients fulfilling the derivative criterion and no error messages in the output.  
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Figure 1.3. Gillnet catchability for MU 1 (white circles) and MU 2 (black circles) for the 25 

different movement scenarios grouped by the amount of movement from MU 1 to MU 2. No 

movement is the scenario with 0% movement between MUs. Note the scale for each of these 

plots is different and some of the points in the panels are offset.  
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Figure 1.4. OH survey catchability for MU 1 (white circles) and MU 2 (black circles) for the 25 

different movement scenarios grouped by the amount of movement from MU 1 to MU 2. No 

movement is the scenario with 0% movement between MUs. Note the scale for each of these 

plots is different and some of the points in the panels are offset. 
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Figure 1.5. ONT survey catchability for MU 1 (white circles) and MU 2 (black circles) for the 25 

different movement scenarios grouped by the amount of movement from MU 1 to MU 2. No 

movement is the scenario with 0% movement between MUs. Note the scale for each of these 

plots is different and some of the points in the panels are offset. 
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Discussion 

Consistency in the way the model responds to the movement parameter 

The Lake Erie yellow perch models appear to be very sensitive to assumptions of non-

zero movement. Except in very low movement scenarios, the models do not respond consistently 

to different rates of movement and appear to be confounding abundance estimates and 

catchability to explain the observed catch when movement was assumed. We attempted to 

evaluate the confounding of parameters by assuming catchability was fixed at the values 

estimated in the no-movement scenario. This approach resulted in non-convergence for the 

majority of the movement scenarios; further supporting the idea that catchability is being used to 

explain observed catch and that these models are sensitive to movement assumptions.  

Assumptions of the movement model 

There are assumptions underlying the conclusions and implications of this research 

below: that these results can be applied to all of Lake Erie, that yellow perch exhibit spawning 

site fidelity, and that movement is constant across years and ages. The models used in this 

research only covered the western half of Lake Erie (MU 1 and MU 2). This was an exploratory 

analysis and these two MUs represent a large amount of the lake-wide harvest for both the 

commercial and recreational fisheries, so it seemed appropriate to adopt this simplification for 

our analysis. However, it is possible that if all four MUs were included in this analysis we would 

see different patterns in the results. Adding MUs would also increase the complexity and amount 

of overall movement in the model which would most likely increase problems with model 

convergence. 
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This analysis also assumed that yellow perch spawn in their ‘home’ MU, move during the 

fishing season, and return to their ‘home’ MU to spawn again. This is consistent with the 

evidence of spawning site fidelity found in the literature (Kipling and Le Cren 1984; Aalto and 

Newsome 1990; Glover et al. 2008). However, site fidelity is still an understudied characteristic 

of yellow perch, particularly in Lake Erie, and it is possible that this assumption is not 

representative of the biology of Lake Erie yellow perch. If this assumption is being violated, 

these results would not accurately represent the stock assessment model’s response to the 

assumption of non-zero movement. 

The movement parameter in this analysis is assumed constant across ages and years. It is 

possible that incorporating a more specific movement pattern into the model would be better able 

to accommodate movement or would better reflect actual conditions in the lake. A fixed 

parameter was used because there has been little evidence to suggest what an age-specific 

movement pattern for yellow perch would be. A constant yearly pattern was used for model 

simplicity; however there has been some research into environmental factors that change 

temporally that could affect the distribution and movement of yellow perch, such as the presence 

of hypoxia (Roberts et al. 2009). Adding this complexity could likely increase convergence 

issues and could not be justified based on existing knowledge. 

Management implications 

If yellow perch are moving across MU boundaries, the current MU stock assessment 

structure may not be sufficient to assess abundance accurately at the MU level unless movement 

between MUs is very low. At higher levels of movement, these stock assessment models have 

difficulty both finding best-fit parameters and fitting the data in a consistent way. Both 

catchability and abundance appear to be used to fit the data in a confounded and unpredictable 
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manner. If movement is quantified in the future and more than approximately 10% of the stock is 

moving across MUs, it may be necessary to consider an alternate assessment model structure. 

Further, if movement is occurring, it is possible that the current stock assessment models are 

giving biased estimates that do not accurately reflect the status of the yellow perch population. 

The framework of this analysis could also be applied to other managed fish populations 

that use a similar multi-MU approach when levels of movement are hypothesized. It would be 

useful to re-do this analysis using a lower, narrower range of movement to investigate if more 

modest changes in movement lead to different results. It is possible the issues with convergence 

and erratic results at the higher levels of movement are because those levels of movement are 

enough higher than the ‘true’ movement that the model had a hard time finding the parameter 

estimates that would accommodate unrealistically high rates of movement. Also a general 

investigation into using different ways to incorporate movement into this type of MU structure 

could aid the management of yellow perch and other fish species that may be moving across 

management boundaries. 

There are a variety of ways to incorporate movement; one approach that has been 

evaluated for other stocks would be to aggregate MUs into one stock assessment model. Previous 

simulation work on other fish species compared a ‘pooled’ assessment approach to a separate 

assessment approach and found that even with modest amounts of movement, which is likely the 

case for yellow perch, aggregated stock assessment models performed better than separate 

models (Ying et al. 2011; Guan et al. 2013; Li et al. in press). However, an aggregated approach 

does not take into account different productivities of different areas. If there are separate stocks 

that are subject to different fishing rates and histories, even if there is mixing occurring, using an 
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aggregated assessment can lead to biased results (Cope and Punt 2007; Kell et al. 2012; Hart et 

al. 2013).  

Another option for Lake Erie yellow perch would be to continue to separate the lake into 

MUs but allocate the catch and survey data to its actual source population, making each dataset 

population-specific (Powers and Porch 2004; Guan et al. 2013). Guan et al. (2013) found this 

approach to have low estimation bias compared to other approaches. However, it can be difficult 

to implement in practice and would require a high investment into sourcing fish with uncertain 

benefit. This approach utilizes additional data, such as tagging and otolith microchemistry, which 

tends not to be readily available for all commercially harvested fish species. 

The model structure used in this research explicitly allowed for movement between MUs 

as opposed to a ‘pooled’ or separate approach, but there are other ways to include movement. A 

simulation study for lake whitefish used a similar model structure, except the stock assessment 

used the ‘true’ mixing rate, and they found this approach performed well in some scenarios but 

not all (Li et al. in press). Alternatives to this movement model have been explored in the 

literature, such as specifying movement of fish before recruitment (Cope and Punt 2011), 

specifying movement into and subsequent spawning in another area (Ying et al. 2011), or 

allowing movement with no relationship between spawning and fishing area (Guan et al. 2013). 

These may be further avenues of research for Lake Erie yellow perch stock assessment models. 

This research shows that the current Lake Erie yellow perch stock assessment models are 

sensitive to movement assumptions and ignoring movement has the potential to lead to biased 

results. However, there is still a lot of uncertainty about yellow perch movement and it is not 

clear what approach should be taken to account for movement in the assessment of the stock. 
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This is an economically and culturally valuable resource and uncertainty in the stock assessment 

leads to uncertainty in the management of this species. Future work needs to focus on reducing 

this uncertainty to ensure appropriate management of yellow perch in Lake Erie.    
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CHAPTER 2 

STANDARDIZATION OF CATCH-PER-EFFORT DATA FOR YELLOW PERCH IN LAKE 

ERIE: EFFECT OF WIND CONDITIONS ON SURVEY INDICES 

 

Introduction 

Stock assessment techniques use a variety of data sources to estimate the dynamics of an 

exploited fish population. Generally, data sets include commercial catch or recreational harvest 

and effort data, which are assumed to be proportional to abundance. However, it has been 

frequently shown that this relationship may not be accurate (Beverton and Holt 1957; Harley et 

al. 2001). Fishery data are inherently biased by the distribution of fishing effort and the fact that 

it is a targeted effort. Walters and Maguire (1996) concluded from the analysis of the northern 

cod (Gadus morhua) collapse that when commercial catch per unit effort (CPE) is assumed to be 

proportional to abundance, there is increased risk of overestimating the stock size. Accounting 

for this bias has been a popular topic of research. Stock assessment models now tend to include a 

measure of both the catchability of the fishing gear as well as the age-specific vulnerability of 

fish to the fishing gear.  

Fishery-independent surveys are also used as data sources and are often assumed to 

provide a less biased indicator of abundance (Kimura and Somerton 2006; Link et al. 2008).  

These surveys can vary from trawls and gillnets to baited hooks and traps, and include indirect 

methods such as acoustic telemetry. These surveys are generally designed to be representative of 

the population, as opposed to fishery-dependent sources that tend to target heavily-populated or 

more vulnerable to harvest areas. They are therefore assumed to show trends similar to those of 

the actual population. However, even fishery-independent surveys are susceptible to factors other 
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than the abundance of the fish stock that can influence catch rates (Gunderson 1993; Maunder et 

al. 2006).  

Many factors that have the potential to influence the catch rates of a survey can vary over 

time. Location and season can influence catch rates (Punt et al. 2000; Deroba and Bence 2009). 

Berger et al. (2012) found that water clarity and surface water temperature affected survey catch 

rates of walleye (Sander vitreus) on the United States side of Lake Erie. Water clarity and depth 

have been shown to affect the catchability of ruffe (Gymnocephalus cernua) and young 

pikeperch (Stizostedion lucioperca) in the Netherlands (Buijse et al. 1992). Temperature can 

influence swimming performance in an area (Wardle 1983), as well as affect abundance, (Hart et 

al. 2011), both of which can affect survey catch rates. Perry et al. (2000) observed that stronger 

winds and tides with reduced sunshine increased the catch rates of smooth pink shrimp 

(Pandalus jordani). Arreguin-Sanchez (1996) reviewed several studies that illustrated the 

potential variability in survey data resulting from a variety of factors including water 

temperature, tidal cycles, time of day of the survey, and wind strength. By adjusting for factors 

that have an impact on survey catch rates you can obtain a more accurate representation of the 

trends in the abundance of a fishery.  

A common way to adjust a survey index to account for factors besides abundance is 

catch-rate standardization (Gavaris 1980; Kimura 1981; Harley et al. 2001; Hinton and Maunder 

2004; Yu et al. 2011; Berger et al. 2012). There are many different approaches to catch-rate 

standardization, but it usually involves constructing and fitting a model of CPE that includes the 

effects of environmental factors as well as spatial factors such as location of the survey and water 

depth (Maunder and Punt 2004). Historically, each vessel’s fishing power was determined 

relative to a standard fishing vessel (Gulland 1956; Beverton and Holt 1957), but more recent 
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methods use statistical tools such as generalized linear models (GLMs; Gavaris 1980), spatial 

generalized linear models (s-GLMs; Nishida and Chen 2004), generalized additive models 

(GAMs; Bigelow et al. 1999), and generalized linear mixed models (GLMMs; Berger et al. 

2012). For each technique it is important to identify the needed explanatory variables for the 

fishery in question (Maunder and Punt 2004).     

Even though many recognize the need for catch-rate standardization, not many fisheries 

incorporate it into their stock assessments. Yellow perch (Perca flavescens) in Lake Erie are 

managed as four separate management units (MUs). A stock assessment is performed for each of 

these MUs annually to inform managers about the status of the population. Each of these models 

use two fishery-independent surveys, a trawl survey in U.S. waters and a gillnet survey in 

Canadian waters. The stock assessments for MUs 1-3 use a fall Ohio trawl survey. The trends 

seen in this trawl survey are given a higher weight in the assessment, meaning the model relies 

more heavily on them to evaluate the status of the yellow perch population. The index is 

assumed to be an unbiased indicator of the trends in yellow perch abundance. However, trawl 

surveys are susceptible to the effects of environmental factors as are other surveys (e.g., water 

temperature: Smith and Page 1996; water clarity: Buijse et al. 1992). As described in Chapter 1, 

many environmental factors potentially affect the distribution of yellow perch in Lake Erie. The 

trawl survey records include water transparency, water temperature, and dissolved oxygen, all of 

which have been shown to influence catch in the lake (Hartman 1972; Ryder 1977). Accounting 

for these factors could potentially increase the accuracy of the trends seen in the survey and 

subsequently the results of the stock assessment. 

Wind condition is another environmental factor that can influence trawl surveys because 

it is a measureable indicator of water current speed and direction (Engas 1994; Perry el at. 2000; 
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Bolle et al. 2001; Poulard and Trenkel 2007). Queirolo et al. (2012) investigated the effect of 

wind condition on trawl geometry, and found that both net spread and variability in the contact 

of the footrope with the seabed were significantly affected by wind speed and direction. 

However, this environmental variable is rarely included in trawl CPE standardization because 

wind speed and direction are not often recorded and the relationship between wind and trawl 

geometry is difficult to determine. Lake Erie is surrounded by a number of climate observation 

stations, along with a few weather buoys in the lake, which record wind speed and direction. 

Therefore, for the yellow perch fishery in Lake Erie, wind can be included in catch rate 

standardization and improve the accuracy of the abundance index derived from the survey data. 

Wind condition, as well as other factors such as dissolved oxygen, temperature, and water 

turbidity, will be included as potential influential factors in this investigation. Environmental 

factors need to be investigated to determine which significantly contribute to the standardized 

index for the Ohio trawl survey, and then after taking these into account, the temporal index can 

be extracted as a more unbiased estimate of the trends in abundance.  The objectives of this study 

are to 1) develop an approach to converting wind speed and direction observations into a single 

parameter appropriate for this analysis; 2) develop a model for CPE that includes environmental 

factors using a GLM; 3) use model selection to identify the significant factors of the best-fit 

model; and 4) extract the year-by-MU effect from the best-fit model and compare the trends of 

the standardized index to the original non-standardized trends derived from the CPUE data. 
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Methods 

Study site 

Lake Erie is the southernmost, shallowest, and most biologically productive of the Great 

Lakes. Lake Erie is home to a large commercial fishery and is a popular destination for 

recreational anglers. Yellow perch and walleye are the two main targeted species in this lake, and 

both are managed by the Lake Erie Committee. Lake Erie, yellow perch, and the management of 

yellow perch are described in more detail in Chapter 1. Yellow perch in each of four MUs are 

evaluated yearly using a statistical catch-at-age model that incorporates fishery-dependent and 

fishery-independent data.  

Survey data 

The survey data used in this analysis were provided by the Ohio Department of Natural 

Resources (ODNR). The survey data used in the yellow perch stock assessment models start in 

1990 and continue through the present. Each fall, the ODNR performs a bottom trawl survey 

(September through the first week of November) in the Ohio waters of Lake Erie. This involves 

towing a flat-bottom semi-balloon otter trawl with a 10.7-m head rope and 13-mm bar mesh in 

the cod end through the water at a specific location for a short period of time (5-10 minutes). 

These surveys are used in MUs 1-3, in addition to a gillnet survey performed by the Ontario 

Ministry of Natural Resources and Ontario Commercial Fisheries’ Association partnership in 

Canadian waters, to provide fishery-independent indices of abundance for the stock assessment 

models for these three management units. The trawl site location is determined using a double-

stratified random sampling approach (K. Kayle, ODNR, personal communication). Lake Erie is 

divided into 2.5 minute grids. The grids sampled are stratified by ports (Vermillion, Lorain, 

Cleveland, Chagrin, Fairport/Perry, and Astabula/Conneaut). The grids are then stratified by 
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depth contour (5, 10, 15, or 20 m) and three grids per depth and location are sampled. Many of 

the trawls measure environmental data: dissolved oxygen, turbidity of the water, and 

temperature. To include wind observations in our standardization model, we needed to know the 

starting and ending location of the trawl, or the bearing at which it trawled, as well as the wind 

direction, in order to determine the wind direction relative to the direction of the trawl. For MUs 

2 and 3, this information was noted in the catch data, so the data for these two MUs were used in 

the analysis. Only the trawl data that included environmental records were used; all other 

observations were omitted. The final data set included 241 observations from 1997 to 2011 with 

no observations for 1998, 1999, and 2006. The location of the trawls is shown in Figure 2.1. 

 

Figure 2.1. Trawl locations. 
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Objective 1: Converting wind observations into a single wind parameter for each trawl 

Hourly wind observations for direction and speed were obtained from 22 stations around 

the lake. This data was gathered from the National Oceanic and Atmospheric Administration’s 

National Climatic Data Center (NCDC). For each trawl date per station, a half-daily average 

wind vector was calculated. This method is similar to the way the NCDC provides daily wind 

summaries in its Local Climatic Data product (called the resultant wind speed and direction) and 

how Poulard and Trenkel (2007) included wind in their investigation of its effect on survey 

indices. The half-daily wind vector was calculated by converting all wind observations from 12 

hours before the trawl end time into Cartesian coordinates. The sum was then obtained for the X 

and Y components of the coordinates and the angle of the resultant vector and average resultant 

length were computed and converted back to polar coordinates. The angle was the resultant wind 

direction. The length divided by the number of observations was the resultant wind speed.    

Queirolo et al. (2012) have shown that wind speed and direction can affect water 

currents, which in turn can affect the geometry of the trawl. This suggests that the important 

component of the wind observation is the one that is perpendicular to the trawl. This 

perpendicular component was calculated for each resultant wind observation by transforming the 

angle of the resultant wind vector to the angle relative to the trawl. We calculated the length of 

the perpendicular component of the resultant wind vector by multiplying the resultant wind 

speed by the sine of the new wind angle (Figure 2.2).  
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Figure 2.2. Illustration of wind parameter calculation. Each wind observation is converted into a 

vector. Then the resultant vector is calculated from all of the wind observations within the 12 

hours before the trawl occurred (dashed line). The angle of this resultant vector is the half-daily 

wind direction. The length of this vector divided by the number of observations is the half-daily 

wind speed. Then the angle of the resultant vector is transformed to be relative to the trawl 

direction. Then we multiply the half-daily wind speed by the sine of the transformed angle, this 

gives us the length of the perpendicular component of the resultant wind vector (red line). 

To interpolate the wind observation data over the trawl locations we used the spline 

interpolation routine in the ArcGIS software package (version 9.2, 2007, ESRI Inc., USA). 

Interpolation takes known values from one or more locations (weather stations) and uses them to 

estimate a value at a location where no measurement was taken (trawl locations). The locations 

and values from the known locations are used to weight those observations and create a surface 

of predicted parameter values for the space between the observations. We used this technique to 

identify a wind observation surface for each trawl observation. For each climate station we had 

calculated the perpendicular component of the resultant wind vector for each specific trawl time. 
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The interpolated value was the perpendicular component at each trawl location. The result was 

used as the wind parameter for catch-rate standardization. 

Objective 2: Catch-rate standardization model 

We used a GLM to standardize the Ohio trawl survey for yellow perch in Lake Erie using 

the log(CPE) as the dependent variable. A GLMM was used to investigate the inclusion of 

random effects (year-by-week, MU-by-week, and year-by-week-by-MU interactions). Using a 

backward selection approach, random effects that deteriorated model fit of the full model (i.e. 

any effect that increased the Akaike’s information criterion corrected for small sample sizes, 

AICc, by more than two), were dropped before the fixed effects were analyzed (Deroba and 

Bence 2009; Berger et al. 2012). Since all random effects were dropped from the model using 

this approach, a GLM was then used to investigate the fixed effects.  Fixed effects included in 

this model were year (y), week (w), MU (m), water temperature (t), Secchi depth (s), water depth 

(d), presence of hypoxia (h), wind observation (n), and the interaction between MU and year.  

 The fully parameterized model with lognormal error is 

  (           )

=  +   +   +   +    +    +   +   +    +    

+           

where μ is the overall mean;    are the parameter coefficients for the fixed effects i; and   is the 

residual error term. The specific effects are the factors described above. The glmulti package in 

the R statistical computing environment is used for all analyses (Calcagno 2013; R Core Team 

2013). 
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Objective 3: Model selection 

The full model and all nested models (models with fewer parameters) were evaluated 

using the AICc (Akaike 1973; Burnham and Anderson 2002). The model selected as best had the 

lowest AICc value. However, models within 2 AIC were considered to be very similar in terms of 

goodness of fit. In this case, top models were model-averaged to get the best fit parameter 

estimates. The relative importance of each factor was determined by the number of top models 

that included the factor. Factors that were included in a large number of top models were 

presumed to be more important to model fit. Year, management unit, and the interaction between 

these effects were included in all models because these were required to extract the standardized 

index. The number of possible models in the model selection process was 64. 

Objective 4: Comparison of the standardized and non-standardized index 

To compare the standardized and non-standardized indices we extracted the yearly MU 

index of abundance from the model. The standardized index,  ̂    was calculated as  ̂ +  ̂ +

 ̂  . In this way we extracted a standardized yearly index for each MU, which we then 

compared to the non-standardized index computed from the raw CPE data. 

Results 

The wind values that resulted from the interpolation ranged from 0.01 to 6.46 m/s with a 

mean value of 2.20 m/s (Figure 2.3). Approximately 75% of the wind parameter values were less 

than 3 m/s. We speculate this reflects the protocol for the ODNR trawl survey that specifies they 

will not go out on the water in high wind conditions. However, these protocols do not take into 

account wind conditions before the trawl, which could explain the substantially higher wind 

parameter values making up the other 25% of our results. This wind parameter was not 
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correlated by more than 20% with any of the other factors used in the full model (Pearson’s rank 

correlation). 

 

Figure 2.3. Wind interpolation results. Panel A is the catch rate versus the wind parameter and 

panel B is the frequency distribution of the wind parameter itself.  

None of the random effects investigated in the model selection procedure appreciably 

increased the fit of the model. Therefore, only fixed effects were used in the final model 

selection. There were 64 possible models compared using AICc. The top five models were 

within two AICc units of each other, thus we concluded that each of these was a plausible model 

of trawl catch rate. To account for each of these top models, we used a model-averaging 

approach to determine the included effects and their corresponding parameter estimates.  An 

analysis of using a wider range of AIC values revealed that this small AICc range yielded similar 

results (and the same conclusions) to a model that included all possible models. 

 The final averaged model included categorical and continuous environmental variables in 

addition to the effect of year, management unit, and the interaction between the two (Table 2.1). 

The importance of each variable was determined by the number of top models in which it was 

included and the parameter estimate itself (Table 2.1). The most important variable was water 
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depth, which was included in all five top models. This categorical variable had a positive 

relationship with the catch rate, with the depth strata of 15 m having the strongest effect. This 

affect is visible looking at a box plot of the data (Figure 2.4).  Catch rates were also associated 

with, in order of importance, the presence of hypoxia (positive), water temperature (negative), 

and the wind parameter (negative).  

Table 2.1. Factors included in the final model. Table includes parameter estimates, 

standard deviations, and the number of models the parameter was included in out of the top five 

models within 2 AIC that were used in the final averaged model. 

Factor Estimate Standard Deviation # Models 

Wind - 0.0156 0.031464 1 

Temperature - 0.0286 0.047645 2 

Presence of Hypoxia 0.4906 0.484881 3 

(Intercept) 3.1938 1.004445 5 

Water depth (10) 0.4325 0.303348 5 

Water depth (15) 1.2188 0.30848 5 

Water depth (20) 0.9988 0.324869 5 

 

Figure 2.4. Boxplot of yellow perch catch-per-effort grouped by water depth. 
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 Model diagnostics were used to investigate the goodness of fit for the final averaged 

model. The plot of observed versus expected (Figure 2.5a) shows that this model does seem to 

reduce the variance in the data, with the exception of very low and very high CPE values where 

there appears to be evidence of lack of fit. The expected values do appear to satisfy the 

assumption of constant variance (Figure 2.5b). There also appears to be no trend in the residuals, 

suggesting the model was specified correctly (Figure 2.5c), and they appear to be normally 

distributed on the log-normal scale, fulfilling the assumption of normality (Figure 2.5d).     

 

 

Figure 2.5. Model diagnostics. Panel A shows the observed versus predicted from the final 

averaged model. Panel B suggests the model fulfills the assumption of constant variance with 

expected values. Panel C investigates the trends in residuals. Panel D shows the residuals are 

normally distributed on the log-normal scale. 
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 The coefficients for the annual differences by management unit ( ̂ +  ̂ +  ̂  ) from 

the final averaged model were extracted and used to develop standardized indices. These 

standardized indices of yellow perch abundance were then compared to the non-standardized 

indices from the Ohio trawl catch rate data. Each MU was investigated separately because the 

stock assessments that use these data are also separated by MU. In general, the MU 2 patterns 

were the same for both the standardized and non-standardized indices (Figure 2.6). The indices 

are relative so the constant difference in scale between them is not important. Both indices 

predicted the same trends of increasing and decreasing yellow perch abundance. Rankings were 

very similar, for example the lowest MU 2 index in the time series occurred in 2010 for both 

indices, and 2008 and 2005 were the two highest ranked years for both indices. MU 3 indices 

were not as similar. For most years the trends in abundance were the same, but the indices 

predicted different trends between 2000 and 2004 (Figure 2.6). The standardized index predicted 

a decreasing trend throughout the time period while the non-standardized index increased in 

2002. The rankings also had more discrepancies. The lowest ranked year for the non-

standardized index was 1997 while the lowest ranked year for the standardized index was 2004. 

In more recent years the rankings and trends were very similar. In the case of the Ohio trawl 

survey for yellow perch, there does not appear to be a consistent temporal trend in the deviation 

of the standardized index from the non-standardized index for either MUs 2 or 3. 
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Figure 2.6. Standardized (solid) versus non-standardized (dashed) indices of yellow perch 

abundance for MU 2 and 3. 

Discussion 

 Fishery-independent surveys are important components of stock assessment models. 

They are given a lot of weight in the overall assessment model for yellow perch in Lake Erie and 

can influence the estimated abundance produced by the stock assessment models, which are then 

used for setting total allowable catches (TACs). It is therefore vitally important that these indices 

of abundance are unbiased by environmental factors that are also changing over time other than 

actual changes in the yellow perch population. Our analysis suggests that environmental factors 

including water depth, the presence of hypoxia, temperature, and wind can influence the catch 

rates of the fall trawl survey performed by the ODNR. While the standardized index that 

accounts for these factors generally showed the same trends as seen in the non-standardized 

index for both MUs 2 and 3, there were a few years in the MU 3 index where the standardized 

index suggested trends that were the opposite direction as the non-standardized index. If the 

yellow perch population was actually decreasing instead of increasing, the stock assessment 

models could produce overestimates of the size of the stock, which in turn would lead to 

incorrectly increasing TACs, or vice-versa. Using the standardized index allows the model to 
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account for future inconsistencies that may arise in the survey data that are not caused by 

changes in abundance. 

Water temperature, water depth, presence of hypoxia, and wind were all influencing 

factors for Lake Erie yellow perch trawl survey catch rates. Water depth was the most important 

factor of these four factors. As the depth strata increased from 5 m to deeper, catch rates also 

increased, with a depth of 15 m having the strongest positive effect. Not accounting for any other 

factors, the mean catch rate for each depth strata increases as the depth increases. Water depth, 

particularly bottom depth, has been shown to affect CPE data for yellow perch (Bacheler et al. 

2011) and is corroborated by our findings. This affirms the approach used for the ODNR; having 

the samples stratified by depth is a valuable component of the survey. Future work could involve 

taking a closer look at the interaction between this important factor and temporally and spatial 

factors, such as year and MU, that may also contribute to the observed catch-rate. If one of the 

MUs had more 15 m depth samples in a certain year would it have a higher catch rate? 

The presence of hypoxia was another important factor, included in three of the top five 

models. Hypoxic conditions had a positive influence on catch rates of yellow perch. The highest 

catch rate in the data set took place in hypoxic conditions. Of the 241 observations, 22 (9%) took 

place in hypoxic conditions. Of those 22, nine (41%) were in the upper quantile of catch rates for 

the entire data set. This is a counterintuitive relationship according to the low tolerance levels of 

yellow perch for hypoxia reported in previous studies (Moore 1942; Brown et al. 2009). This 

could be explained by yellow perch moving to avoid hypoxic conditions and concentrating into 

groups near the edges of these areas. A trawl is not a static sample, it moves through the water, 

meaning it could travel through a hypoxic area and then sample the aggregated fish on the 
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outside. Hypoxic conditions can also increase the physiological stress of the fish, leading to 

reduced gear avoidance capacity and higher catch rates.  

Temperature and wind were also influential, though to a lesser degree. In the case of 

temperature, the negative estimate suggests increasing temperature decreased catch rates. 

Temperature observations from our data ranged from 7.9 °C to 21.8 °C. Yellow perch generally 

prefer cool temperatures (<20.1 °C; McCauley and Read 1973), and it is possible in Lake Erie 

they prefer even cooler temperatures, particularly in the fall (when the trawls are done) and the 

lake is still warm and just beginning to cool down.  Wind was an influencing factor in only one 

of the top five models. The negative relationship suggests that increased wind speed 

perpendicular to the trawl does negatively affect the performance of the trawl.  

Wind is not often included in catch rate standardization and the way it is included differs 

among the few studies that have investigated this environmental effect. We used an approach 

that relied on wind speed and direction observation from weather stations. In most cases, these 

weather stations were a large distance away from the trawl locations and we interpolated from 

only 22 locations, at most, around the lake. This approach, while valid, does provide an 

opportunity for increased error or noise to be included in our parameter estimates. The range of 

wind estimates was also restricted by the protocols in place for the Ohio trawl survey. But even 

with this lack of site-specific data and the trawl protocols, wind was still included as an 

influencing factor in the final averaged model. While it is possible that this approach captured 

some other factor or that wind would not be significant with a more accurate measurement, this 

result suggests it should not be ignored as a potentially important factor in catch rate 

standardizations, for yellow perch and other species that are surveyed using trawl gear. The 

approach described here was used because only region-wide wind observations are available. 
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However, in addition to the need for interpolation, this limited the analysis to trawl records that 

included trawl bearings and that occurred on days where wind observation data was available. A 

more effective approach would be to include current speed and direction as an environmental 

variable measured for each trawl or even some measure of the trawl geometry itself (such as 

trawl spread). This would provide much more accurate measures of this potential source of bias 

in the trawl survey. 

  Recognizing that there are environmental factors that can affect catch rate besides 

changes in abundance of the targeted species has led to an increased interest in catch rate 

standardization (Maunder and Punt 2004). It is common to use the available site-level 

measurements of factors such as water depth, water temperature, or the presence of hypoxia. For 

yellow perch, these factors did affect the catch rates. But it is important when designing the 

surveys themselves to also think about what other factors might affect catch rates. In the case of 

yellow perch, current, as indirectly measured from wind data, may be having a negative effect on 

trawl catch rates, but having the actual current measurement would give us a clearer look at that 

effect. 

Lake Erie yellow perch surveys are susceptible to the influence of environmental factors 

besides changes in fish abundance. The catch rate standardization described here is a way to 

account for a variety of these environmental factors, but it is limited by the information that is 

available. These surveys could be improved by incorporating our understanding of yellow perch 

ecology and how they are influenced by changes in their environment. This knowledge can be 

used to inform future sampling approaches, such as requiring the measurement of current speed 

and other factors at trawl locations, as well as future catch rate standardizations. This will 

increase the accuracy of our stock assessment models and better inform management of the 
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status of fish populations, enabling them to make decisions that will protect the fish and fisheries 

for years to come.    
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