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ABSTRACT 

RESOURCE SELECTION AND VIABILITY OF SHARP-TAILED GROUSE IN THE UPPER 

PENINSULA OF MICHIGAN 

By 

Heather M. Porter 

Sharp-tailed grouse (Tympanuchus phasianellus) have experienced declines and range 

contractions across their distribution. Within Michigan, sharp-tailed grouse expanded during 

European settlement but subsequently experienced declines and fragmentation. While 

populations were widespread, these grouse became an important species for hunters and wildlife 

viewers within the state. Uncertainty about their habitat requirements and how management may 

influence populations makes current management difficult. I modeled sharp-tailed grouse 

resource selection and mapped their relative likelihood of occurrence across Michigan’s eastern 

Upper Peninsula. The best model, based on AICc, included the variables of openland, upland 

forestland, lowland forestland, and upland shrubland. Sharp-tailed grouse selected sections with 

higher proportions of openland and shrubland and lower proportions of forest and forested 

wetlands. The relative likelihood of occurrence of sharp-tailed grouse was highest in the eastern 

and central Upper Peninsula. I also created a spatially explicit metapopulation model and used 

the model to predict population response to alternative harvest and habitat management options. 

Scenarios using estimates of current harvest rates did not significantly impact extinction risk and 

simulations of range-wide harvest indicated lower metapopulation viability than when harvest 

was localized. Simulations of habitat improvement indicate greater increases in grouse viability 

when modeled in one large patch versus the addition of small scattered patches. My results 

suggest that harvest regulations should be implemented locally and not exceed a 25% harvest 

rate and habitat management scenarios should be ranked by area of contiguous habitat.        
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INTRODUCTION 

 Openland habitats have been greatly reduced from their historic distributions across 

North America, and often do not receive the conservation attention that other habitats are given 

(Askins 2001). While much of eastern North America was forested pre-settlement, there were 

also large openings that likely supported native openland species (Askins 2001).  These large 

open habitats have declined due to fire suppression, habitat conversion, forest plantings and 

natural succession (Ammann 1963, Askins 2001).  As a result, many species that rely on these 

open habitats have declined substantially (Hunter et al. 2001). Because of the transitory nature 

and low conservation priority of open habitats, special effort must be made to ensure that these 

lands and the wildlife that they support persist (Ammann 1957, Askins 2001).  

 The prairie sharp-tailed grouse (Tympanuchus phasianellus campestris) relies heavily on 

grassland and shrubland habitats throughout their life history (Connelly et al. 1998).  Similar to 

other openland species, sharp-tailed grouse have experienced population declines and range 

contractions throughout their distribution (Braun et al. 1994, Connelly et al. 1998).  These 

declines have resulted in extirpation from 8 of the 21 states they originally occupied and many 

remaining populations have become isolated due to habitat fragmentation (Connelly et al. 1998).  

 Michigan is the eastern edge of the North American sharp-tailed grouse range (Connelly 

et al. 1998, Sjogren and Corace 2006). Sharp-tailed grouse occur in a variety of habitats in 

Michigan, including pine-barrens, non-forested wetlands, shrub lands, grasslands and hayfields, 

and early successional lands created by large clear-cuts and burns (Sjogren and Corace 2006). In 

the mid-1800’s there were likely over 32,000 ha of recently burned forested areas in the eastern 

Upper Peninsula of Michigan (Comer and Albert 1995), and these areas combined with barrens 
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and forest blow downs amounted to approximately 7.5% of the eastern Upper Peninsula habitat 

(Lorimer 2001). It is believed that sharp-tailed grouse resided in these areas of Michigan before 

European settlement, but their prevalence is not well documented and many early sightings were 

likely recorded as prairie-chickens (Ammann 1957).   

 During the late 1800’s and early 1900’s the distribution of available grouse habitat 

expanded considerably throughout Michigan. Open areas were created in the state when timber 

harvest and burning was widespread (Ammann 1957).  This allowed sharp-tailed grouse 

populations to spread eastward through the entire Upper Peninsula by the early 1940s and 

translocations during the winter of 1937-38 established populations in the Lower Peninsula 

(Ammann 1957). Coinciding with population increases, sharp-tailed grouse became a popular 

game bird in Michigan.    

 The openland habitat created during European settlement has since been reduced due to 

forest plantings, fire suppression, and natural succession (Ammann 1963). This reduction in 

habitat led to sharp-tailed grouse population declines and fragmentation. Because of these 

declines and uncertainty about population trends, the sharp-tailed grouse harvest season was 

halted in 1996. Sharp-tailed grouse are no longer present in the Lower Peninsula and there is 

uncertainty about whether they are still present in the western portion of the Upper Peninsula 

(Luukkonen 2012). Current occurrence records indicate that sharp-tailed grouse are present in 

scattered groups in the eastern half of the Upper Peninsula. Recent research focusing on 

monitoring methods have led to a better understanding of sharp-tailed grouse occupancy in the 

far eastern portion of Michigan’s Upper Peninsula (Luukkonen et al. 2009). Populations in the 

eastern Upper Peninsula are believed to be stable enough to tolerate modest hunting pressure, 

and in 2010 a limited hunting season was reopened in this region (Frawley 2011).  
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 While suitable habitat and populations have decreased from historic highs, there is still 

public interest in the status of sharp-tailed grouse in Michigan as these birds provide both 

hunting and viewing recreational opportunities for the public (Luukkonen et al. 2009).   

Maintaining populations of sharp-tailed grouse in Michigan is also important because they are on 

the periphery of the existing sharp-tailed grouse distribution (Connelly et al. 1998). Peripheral 

populations are important to conservation because their genetic diversity may be essential to the 

long term persistence of the species (Lesica and Allendorf 1995). Management for sharp-tailed 

grouse in Michigan may also benefit other species such as black-backed woodpecker (Picoides 

arcticus), sand-hill crane (Grus canadensis) and Kirtland’s Warbler (Setophaga kirtlandii); 

(Sjogren and Corace 2006). Because sharp-tailed grouse are area sensitive, openings large 

enough to sustain them may be used by these and other wildlife species.  

  Population declines have been documented for sharp-tailed grouse since they were 

widespread in Michigan, but uncertainties remain about current population trends, specific 

habitat requirements and the best management practices needed to sustain and/or rebuild 

populations. Maintaining sharp-tailed grouse in Michigan will require a concerted effort on the 

part of managers and a better understanding of habitat requirements and responses to habitat and 

harvest management options will aide in this management. The uncertainties surrounding sharp-

tailed grouse in Michigan have prompted interest in additional research and monitoring to 

increase our knowledge of this species and its habitat requirements. 

 Sharp-tailed grouse are considered an indicator species and a species of special concern 

in Michigan and it is therefore important to be proactive about their management. In the past, 

prairie grouse management efforts have often been reactive (Aldridge et al. 2004), and Michigan 

has already seen the loss of the greater prairie-chicken (Tympanuchus cupido).  The potential 
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benefits of adaptive management, spatially explicit resource selection modeling and 

metapopulation modeling have been advocated throughout grouse research (Akcakaya et al. 

2004, Aldridge et al. 2004, Niemuth 2011). These tools are especially helpful in situations where 

management uncertainties are present, but funding availability is limited. 

 Adaptive management was first described in the mid 1970’s as a strategy for accounting 

for uncertainties associated with managing natural resource systems (Holling 1978, Walters 

1986). The process includes generating models that represent competing hypothesis about how a 

system functions. Adaptive management promotes the involvement of stakeholders throughout 

the planning and implementation process (Lee 1994).  

  Adaptive management can be either passive or active. Active adaptive management is 

experimental in nature because the management is designed to test alternative hypotheses and 

decrease uncertainty about the system of interest (Aldridge et al. 2004). This approach may 

involve contrasting management actions (treatments) such as varying hunter harvest regulations 

in different regions of the study area.  When management’s main purpose is to achieve 

management objectives without being specifically designed to decrease uncertainty, it is 

considered passive (Aldridge et al. 2004). 

 Information gained through experimentation and/or management is then used to 

reevaluate and modify management practices (Holling 1978, Walters 1986).  Monitoring a 

natural resource system’s response to experiments and mangement is key to successfully 

implementing adaptive management. Failure to implement adequate monitoring  has led to 

numerous unsuccessful adaptive management attempts (Aldridge et al. 2004).  
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 The first steps in an adaptive management process are to identify management objectives 

and potential management options. Early in this study the Michigan Department of Natural 

Resources (MDNR) organized a group of sharp-tailed grouse stakeholders to develop a list of 

objectives and options to guide my work (Luukkonen and Jones 2011). The next step is to 

conduct an analysis and develop models that synthesize understanding about the management 

issue – in this case sharp-tailed grouse management in the Michigan Upper Peninsula – that help 

to identify critical uncertainties and highlight opportunities for active adaptive management. My 

thesis is focused on this critical step of the adaptive management cycle.  

 Understanding ecological requirements of a species is essential for making 

knowledgeable habitat management decisions. While broad habitat requirements for sharp-tailed 

grouse have been described (Ammann 1963, Berger and Baydack 1992), the wide range of 

habitats they occupy necessitate region specific studies that address habitat relationships at scales 

applicable to landscape-level management. Geographic information systems (GIS) have 

substantially enhanced our ability to characterize species-landscape relationships at varying 

spatial scales (Niemuth 2011). With GIS we are able to create spatially explicit models using 

digital landcover data to characterize landscape components and configuration specifically for 

the region of interest (Niemuth 2011).  

Resource selection happens hierarchically beginning at a species range and narrowing to 

individual home ranges, habitats within an individual’s home range and ultimately to specific 

resources (Johnson 1980).  Resource selection studies often compare the selection of resources to 

their availability, looking for indications that resources are selected disproportionately to their 

availability (Manly et al. 2002). These studies are useful for natural resources managers because 

they give managers the ability to spatially represent information necessary for conservation 
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planning using a resource selection function (RSF); (Boyce and McDonald 1999, Johnson et al. 

2004). An RSF is any function proportional to the probability of use of a resource (Boyce and 

McDonald 1999). When resource selection is mapped it can be used to determine land best suited 

for preservation or restoration, and to identify sites that have value for connecting suitable 

habitat patches or meta-populations (Niemuth 2011). Determining the best sites for management 

can reduce management costs by limiting the restoration of habitats with little connectivity to 

current grouse populations or population-limiting habitat resources (Niemuth 2011). In addition, 

fine scale monitoring, such as radio telemetry and on the ground habitat assessments, which are 

often time consuming and expensive and are not always required to create useful spatially 

explicit habitat models (Niemuth 2011).  

 Metapopulation models are used to predict the trajectory of a species occurring in sub-

populations that interact across a landscape (Akcakaya et al. 2004).  These models can be useful 

when spatially-explicit habitat modeling is used to identify potential metapopulation structure on 

the landscape. Using this strategy, managers can assess the effects of manipulating habitat 

patches individually based on population status, dispersal patterns, and landscape configuration 

(Barnes 2007).  Metapopulation models can also assist wildlife researchers in evaluating 

hypotheses that would be unrealistic or cost prohibitive to conduct at large spatial scales. In this 

way metapopulation theory and landscape habitat modeling can help design management 

experiments and associated population monitoring strategies.  

Research Objectives  

 The objectives of this research were to (1) use land use/land cover and occupancy data to 

model sharp-tailed grouse resource selection, (2) construct a spatially explicit metapopulation 
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model, (3) use the metapopulation model to predict population dynamics in response to 

alternative habitat and harvest management scenarios, and (4) provide recommendations for 

sharp-tailed grouse management in Michigan.  We used available occurrence data to identify 

resources of importance to sharp-tailed grouse life history. We then identify spatially explicit 

habitat patches suitable for sharp-tailed grouse populations in Michigan and used these patches 

as the landscape structure for a meta-population model. This model is then used to test various 

habitat and harvest management scenarios that could be considered for future adaptive 

management experiments.  
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CHAPTER 1. SHARP-TAILED GROUSE RESOURCE SELECTION IN MICHIGAN  

Introduction 

 The prairie sharp-tailed grouse Tympanuchus phasianellus campestris, has experienced 

significant declines in numbers throughout the southern and eastern portions of its range, 

following a similar pattern to that seen in other prairie grouse species across North America 

(Connelly et al. 1998).  This decline has often been attributed to loss of habitat through grassland 

conversion to farmland and fire suppression leading to habitat succession.  Sharp-tailed grouse 

populations in Michigan have fluctuated extensively throughout the state since they were first 

recorded in 1904 (Ammann 1957).  Deforestation in the 1800’s and sharp-tailed grouse 

translocations between the 1930s and 1950s resulted in expanded populations in Michigan with 

occurrence records in at least 22 counties by 1957 (Ammann 1957).  Since that time habitat loss 

due to vegetation succession, forest plantings, and fire suppression has substantially decreased 

their range and from 2009 to 2013 they were reported to occur in only the 6 easternmost counties 

of Michigan’s Upper Peninsula.  

  Sharp-tailed grouse habitat has been described in the past (Hamerstrom 1939, Ammann 

1957, Berger and Baydack 1992), and Geographic Information Systems (GIS) technology and 

remote sensing advances have facilitated the creation of landscape level habitat analyses 

(Hanowski et al. 2000, Niemuth and Boyce 2004, Goddard et al. 2009).  These grouse generally 

inhabit areas consisting of grassland and shrub cover and many populations have become reliant 

on cropland when pre-settlement habitat types are not available (Connelly et al. 1998).  Sharp-

tailed grouse require large tracts of open habitat (Ammann 1957), although there is uncertainty 

about what opening sizes can support persistent populations (Niemuth and Boyce 2004).   
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To inform management and support spatially explicit modeling, it is important to 

understand the landscape-scale habitat selection of a species, and the likely distributional pattern 

resulting from that selection.  Understanding this pattern can facilitate the identification of lands 

important for sharp-tailed grouse conservation.  A quantitative analysis of sharp-tailed grouse 

habitat use has not been completed in Michigan since GIS technology and remote sensing data 

became widely used in habitat analyses.  This research is especially important within Michigan 

because the state has recently reopened a hunting season in a portion of sharp-tailed grouse 

range.  Michigan is also at the periphery of sharp-tailed grouse range, where morphological and 

genetic differences important for long-term conservation often occur (Lesica and Allendorf 

1995) and habitat quality and availability may differ from core populations.  Accounting for the 

possibility that peripheral populations select habitats differently than those within core 

populations may be helpful when trying to understanding limiting factors to species occurrence.  

Many previous studies on grouse habitat use have focused on understanding habitat 

immediately surrounding leks, because of their importance as breeding habitat.  I chose to look at 

landscape scale habitat selection because studies that look at fine scale resource selection are not 

always applicable to informing large-scale management decisions.  Landscape scale habitat 

selection studies also allow for mapping areas of importance to the species across large expanses, 

which is not practical using habitat characteristics identified as important through local habitat 

measurements (on the ground data collection).  

The study of resource selection in wildlife ecology has refined techniques to 

accommodate studies without credible information on where species are absent by comparing the 

characteristics at presence locations to those at locations considered available to the organism 

(used-available design) (Boyce et al. 2002, Manly et al. 2002, Johnson et al. 2006).  Available 
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locations are intended to describe the environment accessible to the species and should cover the 

range of environmental conditions found within the study region (Franklin 2010).  Elith and 

Leathwick (2009) suggest that available locations are those that can be “reached by the animal”.  

A used-available study design helps to identify landscape characteristics important to a species 

by examining data for indications that resources are being used disproportionately to their 

availability (Manly et al. 2002, Johnson et al. 2006).  When a resource’s use is disproportionate 

to its availability the use is said to be selective (Johnson 1980).  The statistical analysis from 

used-available study designs results in a resource selection function (RSF), which is a function 

that is proportional to the likelihood of use of a resource unit (Manly et al. 2002).  The used-

available research approach has been used to identify critical winter habitats of sage-grouse 

throughout Wyoming, Montana, and Alberta, Canada (Doherty et al. 2008, Carpenter et al. 

2010).  These methods differ from the many statistical techniques used in wildlife habitat studies 

that compare characteristic of used locations to unused or random locations, under the 

assumption that these locations are not occupied by the species of interest (presence-absence 

design) (Guisan and Zimmermann 2000).   

 The objectives of this study were to 1) compare observed spring habitat use of sharp-

tailed grouse with habitat availability to identify landscape characteristics (cover type and 

openland patch size) important to grouse at a 1-square-mile section scale in Michigan’s Upper 

Peninsula; and 2) create a spatially-explicit model predicting the relative likelihood of sharp-

tailed grouse occurrence across the study area.  This model identifies areas potentially important 

to sharp-tailed grouse management and may be used to inform habitat management, 

reintroductions, and identify additional survey locations. It was also the basis for spatially-

explicit metapopulation modeling efforts (Chapter 3).  
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Methods 

Study Area 

 Although all Upper Peninsula sections were considered, I delineated the study extent 

using the range of sections within the central and eastern Upper Peninsula of Michigan classified 

as “available” to sharp-tailed grouse (see Statistical Analysis) based on occurrence data for the 

most recent known occurrences (2009-2013) in the state (Fig. 1.1).  This included portions of 

Chippewa, Mackinac, Luce, Alger, Schoolcraft, Delta, and Marquette counties (approximately 

16,000 km
2
) in the eastern Upper Peninsula.  The study area is primarily forested (66%), with 

some large scrub/shrub and emergent wetland complexes (20%), agricultural lands (4%), 

grassland (4%), and the remainder comprised of barren lands, developed lands, and open water.  

Much of the forest and wetlands of the eastern Upper Peninsula are managed by the United 

States Forest Service, Michigan Department of Natural Resources (MDNR) and the United 

States Fish and Wildlife Service.  The land in the far eastern portions of the Upper Peninsula is 

mainly privately owned and used for pasture and low-intensity agriculture (Eagle et al. 2005).  

Occurrence Data 

 I identified sharp-tailed grouse occurrence by compiling lek and occupancy survey data 

collected by the MDNR and observations by the Michigan Natural Features Inventory between 

2009 and 2013.  Lek surveys were conducted in the early morning hours during the spring 

mating season, with most surveys being conducted between April 1 and May 15.  During these 

surveys, observers would count dancing males while watching the dancing ground from a 

distance, and then approach the lek and count all birds flushed.  The MDNR initiated occupancy 

surveys in 2009 to estimate sharp-tailed grouse occupancy rates and evaluate the Department’s 
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monitoring process (Luukkonen et al. 2009).  Occupancy surveys were conducted between 30 

minutes before sunrise and 3 hours after sunrise from April 1 to May 5.  Some occupancy 

surveys occurred as late as May 15 due to heavy snow cover in 2013.  During occupancy 

surveys, observers visited eight points along road transects bordering 1-square-mile township 

sections.  At each survey point observers listened and scanned for sharp-tailed grouse for 4 

minutes.  Although many observations came with geographic coordinates, I chose to model 

observations at the township section scale to include occupancy survey data which did not have 

specific spatial reference.  Species distributions modeled with logistic regression have been 

shown to perform better with increasing sample size and simulations with at least 50 records of 

occurrence achieved relatively accurate results compared to other modeling techniques 

(Stockwell and Peterson 2002).  To achieve an adequate sample size I pooled data from 2009 to 

2013. 

Combined survey data included 81 sections with occurrence records between 2009 and 

2013.  Thirty-one of 112 sections surveyed during this time resulted in records with no indication 

of sharp-tailed grouse occurrence. Luukkonen et al. (2009) estimated a detection probability of 

approximately 0.54 during occupancy surveys, indicating that surveyed sections without 

occurrence records may indicate non-detection of sharp-tailed grouse rather than non-occurrence.  

In addition, a higher than expected rate of occupancy was found in sections included in 

occupancy surveys initiated by the MDNR in 2009 (D. R. Luukkonen, MDNR, personal 

communication), suggesting that many unsurveyed sections may well be occupied.  Therefore, 

rather than using a statistical method which requires locations without occurrence data to be 

assumed unoccupied, I chose to perform a used-available design analysis which follows a 

presence-only modeling framework.   
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Statistical Analysis 

 I used multiple logistic regression (generalized linear model with a logit link) under a 

used-available design to assess sharp-tailed grouse habitat selection at the 1-square-mile 

township section scale.  I model the relationship between the binary dependent variable, used (1) 

or available (0) sections, and independent landscape variables using the logistic regression 

model: 

    log (
𝑝𝑖

1−𝑝𝑖
) = α + βΧ + ε           (1) 

where pi is the probability of sharp-tailed grouse use, α is the constant, βΧ are vectors of the 

independent covariates and their coefficients, and ε is the error term.  I defined used sections as 

those with one or more sharp-tailed grouse detections between 2009 and 2013.  When 

characterizing available locations it is important to inform decisions using the scale and 

characteristics of the system of interest (Elith and Leathwick 2009, Franklin 2010).  I designated 

all sections within 21 miles of any occupied section (N = 6,518) as the distribution of available 

resource units (study extent, Fig. 1.1).  This distance represented the maximum likely movement 

distance for sharp-tailed grouse (Hamerstrom and Hamerstrom 1951).  Because some sharp-

tailed grouse were observed in sections containing large proportions of forest land, I did not 

exclude largely forested sections from the available sections sample.  To discern variations in 

characteristics of used versus available locations and to ensure negligible sampling errors, it is 

often necessary to select a substantial number of available locations (Manly et al. 2002).  I 

randomly selected a sample of 2,500 available sections within the study extent, which I found 

accurately represented the habitat available to sharp-tailed grouse (Northrup et al. 2013) while 

ensuring that overlap of  used locations within the available sample was limited to a level shown 

to produce unbiased coefficient estimates (Johnson et al. 2006).  
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One of the key assumptions of regression analysis is that model residuals are independent 

and identically distributed (Dormann et al. 2007).  When model data contains spatial 

autocorrelation, a pattern where the values of a variable co-vary across space (Legendre and 

Fortin 1989, Legendre 1993), violations of this assumption may occur.  Ecological data are very 

likely to exhibit patterns of spatially autocorrelated values because the factors influencing their 

distributions (e.g. temperature and dispersal capabilities) are often spatially autocorrelated (Sokal 

and Oden 1978, Legendre and Fortin 1989).  Violations of the assumption of independence may 

lead to parameter estimates with decreased precision and an increased possibility of type 1 errors 

(Franklin 2010).  

 To assess whether spatial autocorrelation might be problematic in my analysis, I 

examined the spatial structure of sharp-tailed grouse survey locations using average nearest 

neighbor statistics.  This method compared the observed versus expected average distance 

between locations to determine if they were distributed randomly or were clustered.  My 

preliminary analysis showed evidence of clustering in survey locations, so I chose to take into 

account the spatial structure of my data by including a spatial covariate in the model using 

autologistic regression.  Autologistic regression builds on traditional logistic regression models 

by incorporating an additional covariate to account for spatial autocorrelation (Augustin et al. 

1996).  With addition of this covariate, the autologistic regression model becomes:  

log (
𝑝𝑖

1−𝑝𝑖
) = α + ρA + βΧ + ε     (2) 

where ρ is the coefficient of the autocovariate (A) (Franklin 2010).   
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 The autocovariate is an estimate of how occurrence at a location reflects occurrence at 

surrounding locations (Dormann et al. 2007).  I modeled the autocovariate using the spatial 

dependence ‘spdep’ package in R as a distance-weighted sum: 

𝐴𝑛 = ∑ 𝑤𝑛𝑚𝑦𝑚

𝑚∈N𝑛

, 

            (3) 

where An is the autocovariation at section n, Nn is the set of sections within the neighborhood of 

section n, wnm  is the neighborhood weight of section m over section n, and ym is the sharp-tailed 

grouse occurrence value at section m during the relevant time frame (Bardos et al. 2015).  I set 

neighborhood distance to 13.36 km, the average movement of female sharp-tailed grouse 

(Ammann 1957), and based neighborhood weights on inverse distance. 

Landscape Habitat Variables 

 I used the National Oceanic and Atmospheric Administration’s (NOAA) Coastal Change 

Analysis Program (C-CAP) 2010 land cover layer to calculate all landscape variables (National 

Oceanic and Atmospheric Administration Coastal Services Center, 1995-present).  This 

classification scheme included 24 land cover categories with 30 m x 30 m pixel resolution 

derived through mostly remote sensing techniques (Appendix B, Table 1.3).  I used ArcMap 

10.3.1 for all spatial analysis (ESRI 2011. ArcGIS Desktop: Release 10. Redlands, CA: 

Environmental Systems Research Institute.).  All proportion landscape variables were calculated 

at the 1-square-mile section scale, and because many survey locations were without precise 

spatial reference, I was unable to explicitly examine landscape variable influences at other 

scales.  For all sections I calculated land cover proportion and opening size variables that I felt 

might be important for sharp-tailed grouse landscape scale habitat selection based on previous 
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research examining landscape level relationships in the Great Lakes region (Appendix C, Table 

1.4).  Because land cover classification can significantly impact model outputs (Roloff et al. 

2009) I used both individual land cover classes (e.g. cultivated crops) and groups of similar land 

cover classes (e.g. pr_open) for calculating variables (N=17).  

 Sharp-tailed grouse are known to occur in prairies and brushlands across their range 

(Connelly et al. 1998, Niemuth and Boyce 2004).  While some research has found that 

landscapes around sharp-tailed grouse leks have greater amounts of shrub cover (Niemuth and 

Boyce 2004), other research indicates that both trees and shrubs may similarly limit the amount 

of openness perceived by sharp-tailed grouse (Ammann 1957, Hanowski et al. 2000).  Therefore, 

I created proportion variables with land cover classes commonly considered to describe prairie 

landscapes (pr_grass, pr_hay, and pr_open), shrub landscapes (pr_srb and pr_srb2) and an 

openland grouping including shrub cover (pr_open2).  The decline of early successional habitats 

in parts of sharp-tailed grouse range has led to many populations relying on cropland (Connelly 

et al. 1998).  This is likely the case in Michigan, as stakeholders (Sharp-tailed Grouse Advisory 

Committee, personal communications) have frequently observed sharp-tailed grouse using lands 

classified as cultivated crops under the NOAA C-CAP classification scheme.  This information 

prompted the inclusion of a cultivated crops variable (pr_cul) and openland grouping variable 

including the cultivated crops land cover class (pr_open3).  Active sharp-tailed grouse leks have 

been shown to occur in areas with higher amounts of wetland cover classes than inactive and 

random locations (Hanowski et al. 2000) and the use of wetlands has been well documented in 

Michigan (Ammann 1957, Sjogren and Robinson 1997, Sjogren and Corace 2006).  I examined 

individual land cover classes of emergent wetland (pr_em_wet) and scrub/shrub wetland 

(pr_srb_wet) and a grouped variable of wetland classes (pr_wet).  Following Hanowski et al. 
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(2000) who found active sharp-tailed grouse leks associated with both hardwood and coniferous 

wetlands, I included a wetland forest variable (pr_forwet).  Research has shown that sharp-tailed 

grouse leks in the Great Lakes region are negatively associated with forest land (Hanowski et al. 

2000) but influence of the number of forest patches on lek locations is mixed depending on scale 

(Niemuth and Boyce 2004).  Because sharp-tailed grouse utilize forest lands for ecological needs 

such as foraging and cover (Connelly et al. 1998) landscape scale selection analyses may not 

show the same relationship as fine scale analyses.  Thus, I included a forest land cover class 

(pr_for) and its squared term (pr_for
2
) to allow for a dome-shaped selection function and assess 

whether sharp-tailed grouse are selecting sections with intermediate proportions of forestland. 

 I calculated land cover proportion variables two ways to assess the influence of land 

cover within and surrounding the sections.  First, I calculated the proportion of all land cover 

variable raster cells within each section (non-focal) and second I used a moving window analysis 

on all cells within a 1,400m radii circular neighborhood averaged to each section (focal).  The 

moving window analysis calculates the average of all cell values within the designated 

neighborhood around each pixel, creating a raster of values relevant to the scale of interest 

(Piorecky and Prescott 2006).  I chose the neighborhood size to approximate the average sharp-

tailed grouse home range.  I then took the average of all cells from the moving window analysis 

within each section for a proportion land cover metric influenced by land cover outside the 

section.  

 Sharp-tailed grouse are known to require large tracts of open land throughout their life 

history (Ammann 1957, Niemuth and Boyce 2004).  To quantify the amount and connectivity of 

openland associated with each section I aggregated openland cover type pixels sharing at least 

one side into patches, based on the above openland grouped variables (pr_open, pr_open2, 
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pr_open3).  I then identified the largest patches of each openland grouping intersecting each 

section to create the sz_open, sz_open2 and sz_open3 variables.  

I selected the final set of explanatory variables for modeling by conducting univariate 

logistic regression (Hosmer et al. 2013) and correlation testing on all variables (Appendix C, 

Table 1.4).  I examined individual p-values and removed all variables with p-values greater than 

0.25 and the least explanatory scale (either focal or non-focal) for all proportion variables.  I 

conducted pairwise Pearson’s correlation coefficient tests on all remaining variables and 

removed the variable with the highest p-value from any pairs with a correlation coefficient ≥ 

0.60.  I removed the predictor variable with the highest p-value when proportion variables 

included overlapping land cover classes (e.g. pr_wet and pr_forwet, see Appendix C, Table 1.4). 

I included only the opening size variable which best characterized sharp-tailed grouse habitat 

selection in the final models, based on the lowest univariate logistic regression p-value.  To test 

the validity of including the quadratic variable of proportion forest (pr_for
2
) I examined the p-

value of the quadratic term in a model including both the proportion forest linear effect variable 

and quadratic variable (Osborne 2014).  

I compared all possible main effects combinations of the candidate landscape variables 

and an autocovariate (N=64) with the glmulti package in RStudio (version 0.99.467, RStudio 

Inc., Boston, Massachusetts, USA).  The glmulti package automates model building and 

selection by building all model possibilities under the constraints specified by the user (Calcagno 

and de Mazancourt 2010).  Running all possible variable combinations allows for multi-model 

inferences while avoiding the pitfalls of stepwise regression analysis which may not always 

converge to the best model (Calcagno and de Mazancourt 2010).  Because of the a priori 

ecological basis for predictor variables and subsequent variable selection procedures the 
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inclusion of all remaining variable combinations is supported, and should control for overfitting 

pitfalls cautioned by Burnham and Anderson (2002).  I evaluated relative model fit using Akaike 

Information Criterion (AICc) values for small sample sizes (Burnham and Anderson 2002).  I 

used model averaging (Burnham and Anderson 2002) to estimate a final model from all 

candidates. 

Predictive Modeling 

 Models of resource selection can also be used to map a resource selection function (RSF) 

predicting the relative likelihood of use of resources given their landscape characteristics 

(Johnson et al. 2006).  I used model averaged coefficient estimates from the above logistic 

regression analysis to model a RSF in ArcGIS using an exponential model:  

w(x) = exp(β1X1 +  β2X2+ . . . + βkXk)     (4) 

where X1 to Xk are predictor variables and β1 to βk their respective coefficients.  The exponential 

model is preferable to the logistic function for creating an RSF with a used versus available 

design because it does not rely on the assumptions that the number of locations be proportional 

to their actual occurrence or that the available sections are unused (Johnson et al. 2006, Pearce 

and Boyce 2006).  The exponential model results are also robust to relatively high levels of 

overlap between used and available locations (Johnson et al. 2006).  I created mapped surfaces of 

all relevant predictor variables at the 1-square-mile scale across the study region before applying 

map algebra using the above equation.  I mapped the predicted RSF in ArcGIS depicting areas 

from high to low relative likelihood of occurrence across the study region (Fig. 1.2).  Because 

the proportion of locations occupied by a species is not known, the RSF predicts the relative 
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likelihood of occurrence (Elith and Leathwick 2009) for sharp-tailed grouse for all sections 

within the study region.  

 I tested model prediction accuracy following k-fold cross validation procedures (Johnson 

et al. 2006),  rather than using classification approaches such as confusion matrices and Receiver 

Operating Characteristics, which are more appropriate for used versus unused sampling designs 

(Boyce et al. 2002).  I used this approach because it tests prediction accuracy and whether the 

RSF is approximately proportional to the likelihood of use by comparing the frequency of 

observed and expected observations within ranked groupings/bins of RSF values (Johnson et al. 

2006).  I separated occurrence locations into 4 random data folds and calculated new logistic 

regression coefficients based on 3 of the 4 folds and mapped the predicted RSF values in 

ArcGIS.  I then grouped the full range of predicted RSF values into 6 ordinal bins classified 

using the geometric intervals classification method. I combined the two highest value RSF bins 

because their predicted area was small, which resulted in 5 bins.  I then calculated the mid-point 

RSF value for each bin.  I calculated a utilization value for each bin using the equation  

         Ui =          (5) 

where 𝑤(𝑥𝑖) and 𝐴(𝑥𝑖) are the RSF midpoint value and area of all pixels within bin i, 

respectively.  I then calculated the expected number of occupied sections within each RSF bin by 

multiplying the utilization value for each bin with the total number of testing locations.  I 

compared the expected number of sections occupied with the actual number of testing sections 

from the remaining cross-validation fold that occurred in each bin using linear regression and a 

chi-square test.  I evaluated whether the slope of the regression line was significantly different 

from 0, representing the null model that use was equivalent to availability, and 1, which would 

𝑤(𝑥𝑖)𝐴(𝑥𝑖)/ ∑ 𝑤(𝑥𝑗) 𝐴(𝑥𝑗)

𝑗
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be the expected slope when the model is approximately proportional to the likelihood of use.  I 

tested whether the intercept was significantly different from 0, which is the expected intercept 

when a model is proportional to the likelihood of use.  Lastly, I examined the R
2
 value of the 

linear regression and conducted a χ
2
 goodness-of-fit test to asses model fit.  A high R

2 
value and 

a non-significant χ
2
 goodness-of-fit test would indicate a model proportional to the likelihood of 

use.  I iterated the above process 4 times, with each data fold used as testing data against all other 

folds and tested prediction accuracy for cross validation groups individually and combined.   

 Using model averaged coefficient estimates and the exponential function (Eq. 4), I 

calculated the relative predicted likelihood of occurrence of sharp-tailed grouse for important 

habitat proportion variables, by varying respective resource proportions (across observed values) 

while holding all other variables at their means (Fig. 1.3).  I bounded the relative likelihoods 

between 0 and 1 using the equation:  

BoundedRSF =  
(RSF Value−Minimum RSF Value)

(Maximum RSF Value− Minimum RSF Value)
          (6) 

Results 

 The final set of landscape variables retained following univariate analysis were the focal 

scale variables pr_forwet and pr_srb, non-focal scale variables pr_open3, pr_for, and the 

maximum opening size variable sz_open2, hereafter also referred to as forested wetlands, 

shrubland, openland, forest, and patch size respectively (see Appendix C, Table 1.4 for variable 

descriptions).  The pr_for
2
 variable was not significant (P = 0.30), so no models with curvilinear 

relationships were considered.  The openland variable pr_open3, which characterized the 

proportion of grassland, herbaceous cover, pasture, hay, and cultivated crops performed best 

during univariate analysis (P ≤ .001).  
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Variables in the best AICc model included pr_open3, pr_for, pr_forwet, pr_srb and the 

autocovariate term (Table 1.1).  This model received an evidence weight of 0.43 and two other 

models were within 2 ∆AICc values.  The maximum opening size variable sz_open2 was also 

included in some top models, but did not strongly influence sharp-tailed grouse resource 

selection.   Sharp-tailed grouse selected for sections with high proportions of openland and 

shrubland and against sections with high proportions of forest and forested wetlands compared to 

what was available in the study region (Table 1.2).  

 Mapping the RSF using model-averaged coefficients showed areas of high relative 

likelihood of occurrence in the eastern and central portions of the study region (Fig. 1.2).  The 

predicted relative likelihood of sharp-tailed grouse occurrence increased sharply with increasing 

proportions of shrubland and openland at around 40% and 50% of each habitat type, respectively 

(Fig. 1.3).  Increasing proportions of forest within sections caused declines in the relative 

likelihood of occurrence, with sections with greater than 50% forest having low relative 

probabilities (Fig. 1.3).   

The RSF model’s predictive ability performed well under model validation.  The highest 

ranking RSF bin contained 75.3% of all used locations and accounted for 8.5% of the study 

region.  The linear regressions between observed and expected number of validation locations in 

5 RSF bins showed good model fit for each cross validation model (Fig. 1.4, a-d).  All models 

had intercepts not significantly different from 0 and slopes significantly different from 0 but not 

from 1, indicating models were proportional to the true likelihood of occurrence.  In addition, R
2 

values (from 0.863 to 0.998) and insignificant χ2 goodness-of-fit tests indicated good model fit 

when predicting the relative likelihood of sharp-tailed grouse occurrence in sections within the 
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study area and supported that models were proportional to the true likelihood of use (Fig. 1.4, a-

d). 

Discussion 

The identification of how resources are selected is a key step in planning species 

management efforts.  This study found the proportions of openland, shrubland, and forest to be 

important drivers of sharp-tailed grouse resource selection at the 1-square-mile scale in 

Michigan.  Sharp-tailed grouse occurred in sections with higher proportions of shrubland than 

what was generally available in the study region.  Previous research looking at the amount of 

shrubland near sharp-tailed grouse lek locations has been mixed.  Hanowski et al. (2000) found 

that inactive lek locations in Minnesota had higher proportions of brush cover types than active 

lek locations.  Research by Niemuth and Boyce (2004) in the Wisconsin pine barrens indicated 

that habitat near sharp-tailed grouse leks contained higher proportions of shrubland than unused 

locations.  The maximum proportion of shrubland (focal scale) in all sections available within 

my study region was 0.69.  Therefore, the range of shrubland proportion within the study region 

likely did not reached levels which would limit sharp-tailed grouse occurrence at the landscape 

scale and the selection of sections with higher proportions of shrub land is consistent with sharp-

tailed grouse utilizing these lands for nesting and feeding (Ammann 1957).  Michigan sharp-

tailed grouse may also be selecting sections with higher proportions of shrubland compared to 

other populations because of their peripheral location, where increased snow depths may 

heighten the importance of these habitats.  

The selection for sections with higher amounts of openland cover types is consistent with 

research on sharp-tailed grouse habitat use and lek locations (Hanowski et al. 2000, Niemuth and 
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Boyce 2004, Orth 2012).  Openland habitats are important because they provide areas for 

loafing, foraging, and for breeding males to display (Ammann 1957).  Areas of forest cover are 

used for winter foraging, refuge from extreme weather and escape cover, and it has been 

suggested that between 20 and 40 percent forest cover is ideal for sharp-tailed grouse in 

Michigan (Ammann 1957).  The avoidance of locations with higher proportions of forest habitat 

than available throughout the study region and exclusion of the squared forest term supports that 

sections with both intermediate and high proportions of forest lands are not selected for by sharp-

tailed grouse.  

Hanowski et al. (2000) found forested wetlands associated with sharp-tailed grouse 

occurrence in Minnesota, but I did not find support for sections with higher proportions of 

forested wetlands having increased selection.  Other wetland cover variables that I considered 

were not included in final model development due to low P-values or correlations with other 

predictor variables.  Although there is evidence of sharp-tailed grouse wetland use in Michigan, 

especially around Seney National Wildlife Refuge (Sjogren and Corace 2006), the selection of 

these habitat types may be diminished outside of fall and winter months when grouse are focused 

on finding food and cover (Ammann 1957, Sjogren and Robinson 1997).  The lack of evidence 

for wetland habitat selection may also be due to a higher amount of grassland and shrubland 

available to sharp-tailed grouse within our study region than compared to other locations in the 

Great Lakes states or an indication that survey data on these locations are lacking.  Surveys of 

wetland cover types are known to be difficult due to limited access, and these findings do not 

necessarily indicate that these areas are not important for sharp-tailed grouse populations in 

Michigan.  
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Past research on the effects of landscape connectivity on sharp-tailed grouse occurrence 

has focused on metrics such as the number of land cover types or habitat patches associated with 

occurrence (Hanowski et al. 2000, Niemuth and Boyce 2004, Orth 2012).  Although these studies 

have shown that the spatial patterning of the landscape is important to sharp-tailed grouse, these 

metrics are difficult for wildlife managers to manipulate.  I attempted to assess whether openland 

patch size directly influenced occurrence, assuming that the largest intersecting patch would 

have the greatest influence on resource selection.  Surprisingly, the opening size variables 

describing the amount and connectivity of openland were not good predictors of grouse 

occurrence at the section scale.  This may be due to instances where large patches intersecting 

only a small portion of a section are inaccurately characterizing the openland connectivity 

available within that section.  Using mean patch size or limiting patch size calculations to only 

openland within the section may provide a more useful explanatory variable.  While I did not 

find strong support for these metrics, future research should attempt to assess the impacts of 

landscape composition with variables which can be realistically manipulated by habitat managers 

whenever possible. 

Many of the previous studies on prairie grouse landscape modeling have addressed 

characteristics surrounding lek locations (Niemuth 2011).  My research attempts to inform 

management by utilizing occurrence data collected through the broader scale occupancy surveys 

recently establish by the MDNR in the eastern Upper Peninsula of Michigan.  This method of 

sampling was instituted to account for changes in grouse distribution and abundance that lek 

surveys may not adequately address (Luukkonen et al. 2009).  The scale of occurrence data and 

environmental predictors I used allowed me to avoid the limitations of GIS mapping with local 

scale variables and create a mapped surface of relative likelihood of occurrence for an extensive 



29 
  

study region.  One issue with using these data was the lack of an explicit spatial location for 

occurrence within surveyed sections. In order to utilize the occupancy surveys it was necessary 

to assume the centroid location of sections as the location of occurrence.  This limited the scale 

of inference to the 1-square-mile section and hindered the use of possibly important explanatory 

variables, including distance to forest edge which has been shown to be an important landscape 

scale predictor of sharp-tailed grouse occurrence (Niemuth and Boyce 2004).  

Management Implications 

Spatially explicit landscape model predictions are useful for planning the conservation 

and management of prairie grouse (Niemuth 2011).  These maps can be used to guide 

translocation efforts, establish priority habitats and direct future survey efforts.  The RSF model I 

created mapping relative likelihood of sharp-tailed grouse occurrence was a good predictor of 

grouse occurrence and should be useful for identifying areas at a landscape scale to focus future 

monitoring and management efforts.  Once sections important for sharp-tailed grouse 

conservation have been identified effort should be made to keep the proportion of forest within 

those sections below 50%.  

Combining this landscape scale research with large-scale studies utilizing habitat use 

information (e.g. metapopulation modeling), which are often constrained to informing modeling 

with general species-habitat relationships coming from locations far outside the study region, 

provides additional opportunities for informing management.  My modeling has increased the 

understanding of sharp-tailed grouse resource selection within Michigan and was subsequently 

used to form the basis of metapopulation modeling experiments (Chapter 3). 
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Appendix A. Tables and Figures.  

 

Figure 1.1 Location of study area in Michigan’s Upper Peninsula. The black dots indicate 1-square-mile
 
township sections with 

recorded occupancy between 2009 and 2013. The shaded area indicates the full distribution of sections designated as available 

resource units (study extent). 
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Figure 1.2 Map of predicted relative likelihood of occurrence of sharp-tailed grouse from 2009-2013 in the Upper Peninsula of 

Michigan, USA.  
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Table 1.1 Resource selection of sharp-tailed grouse modeled from 2009 to 2013 in Michigan’s Upper Peninsula, USA. Reporting 

includes model independent variables (see Appendix C, Table 1.4 for variable descriptions), Akaike Information Criterion values 

corrected for small sample sizes (AICc), change in AICc from model with minimum AICc value (∆AICc), and Akaike evidence 

weights (ωi) (Burnham and Anderson 2002). Models within 4 ∆AICc of lowest AIC model are shown. 

Model Variables  AICc ∆AICc ωi 

pr_open3,  pr_forwet,  pr_srb,  pr_for, autoc 471.53 0.00 0.43 

pr_open3, pr_srb, pr_for,  autoc 472.57 1.04 0.25 

pr_open3, sz_open2, pr_forwet, pr_srb, pr_for, autoc 473.37 1.84 0.17 

pr_open3 + open2_ac + pr_srb + pr_for + autoc 474.50 2.97 0.10 

 

 

 

 



34 
  

Table 1.2 Model averaged habitat coefficient estimates, odds ratios, and variable importance for all models of sharp-tailed grouse 

resource selection in the Upper Peninsula of Michigan, USA.  

Variable β Odds Ratio Importance 

pr_open3  3.537 34.364 1.00 

pr_srb 6.872 964.876 1.00 

pr_for -2.110 0.121 1.00 

autoc   595.394 3.77 x 10
258

 0.95 

pr_forwet -1.414 0.243 0.61 

sz_open2 3.460 X 10
-6 

1.00 0.28 
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Figure 1.3 Relationship between relative likelihood of sharp-tailed grouse occurrence and the 

proportion of forest, openland, and shrubland in 1-square-mile township sections, Upper 

Peninsula of Michigan, USA.  Relative likelihoods were calculated with model averaged 

coefficients (Table 1.2) by varying proportions of the relevant resource, while using mean values 

of all other variables. Relative likelihoods were bounded between zero and one.  
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Figure 1.4 Linear regression of observed versus expected frequencies of validation locations in 5 

resource selection function bins for each of 4 cross-validation folds (a-d).   
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Figure 1.4 (cont’d) 

 

 



38 
  

Appendix B. Land Cover Classification Scheme. 

Table 1.3 Land cover classification scheme, modified from Coastal Change Analysis Program (C-CAP), NOAA Office for Coastal 

Management, Regional Land Cover Classification Scheme. Land cover classes not used in predictor variables are excluded.   

Land Cover 

Class
a 

Class  Description 

Cultivated 

Crops 
6 

Areas intensively managed for cultivated crops. Crop vegetation accounts for > 20% of total 

vegetation. Includes all lands being actively tilled. 

Pasture/Hay 7 

Areas of grasses, legumes, or grass-legume mixtures planted for livestock grazing or the 

production of seed or hay crops, typically on a perennial cycle and not tilled. Pasture/hay 

vegetation accounts for > 20% of total vegetation. 

Grassland/ 

Herbaceous 
8 

Areas dominated by grammanoid or herbaceous vegetation, generally > 80% of total vegetation. 

Not subject to intensive management such as tilling, but can be utilized for grazing. 

Deciduous 

Forest 
9 

Areas dominated by trees generally > 5m tall and > 20% of total vegetation cover. More than 75% 

of the tree species shed foliage simultaneously in response to seasonal change. 

Evergreen 

Forest 
10 

Areas dominated by trees generally > 5m tall and > 20% of total vegetation cover. More than 75% 

of the tree species maintain their leaves all year. Canopy is never without green foliage. 

Mixed Forest 11 

Areas dominated by trees generally > 5m tall and > 20% of total vegetation cover. Neither 

deciduous nor evergreen species are > 75% of total tree cover. Both coniferous and broad leaved 

evergreens are included in this category. 

Scrub/Shrub 12 

Areas dominated by shrubs < 5m tall with shrub canopy typically > 20% of total vegetation. 

Includes tree shrubs, young trees in an early successional stage, or trees stunted from an 

environmental condition. 

Palustrine 

Forested 

Wetland 

13 

Tidal and nontidal wetlands dominated by woody vegetation ≥ 5m in height, and all such wetlands 

that occur in tidal areas in which salinity due to ocean-derived salts is below 0.5%. Total 

vegetation coverage is > 20%. 

Palustrine 

Scrub/Shrub 

Wetland 

14 

Tidal and nontidal wetlands dominated by woody vegetation < 5m in height, and all such wetlands 

that occur in tidal areas in which salinity due to ocean-derived salts is below 0.5%. Total 

vegetation coverage is >20%. Species present could be true shrubs, young trees and shrubs, or 

trees that are small or stunted due to environmental conditions. 

Palustrine 

Emergent 

Wetland 

15 

Tidal and non-tidal wetlands dominated by persistent emergent vascular plants, emerging mosses 

or lichens, and all such wetlands that occur in tidal areas where salinity due to ocean-derived salts 

is below 0.5%. Total vegetation cover is > 80%. Plants generally remain standing until the next 

growing season. 
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Appendix C. Explanatory Variables.  

Table 1.4 Full set of potential explanatory variables considered in modelling sharp-tailed grouse resource selection in the Upper 

Peninsula of Michigan, USA. Focal and non-focal forms (see Methods) of all proportion variables were considered. Landscape 

variables included in model building are in bold.   

Variable 

Name 

Land Cover 

Classes 

Description 

pr_hay
b,c 

7 Pasture/hay vegetation 

pr_grass
b,d 

8 Grassland and herbaceous vegetation 

pr_open
a,c 

7,8 Upland openland including pasture/hay and grassland and herbaceous vegetation 

pr_open2
a,c 

7,8,12 Upland openland including pasture/hay, grassland and herbaceous and scrub/shrub vegetation 

pr_open3
a  

6,7,8 Upland openland including pasture/hay, grassland and herbaceous and cultivated crops 

pr_srb
b 

12 Upland scrub/shrub vegetation 

pr_srb2
b,d 

12,14 Upland and lowland scrub/shrub vegetation 

pr_cul
b,c 

6 Cultivated crops 

pr_for
a 

9,10,11 All upland forestland 

pr_for
2a,b 

9,10,11 Squared term for pr_for 

pr_wet
b,c 

13, 14,15 All wetland including emergent, scrub/shrub, and forested 

pr_forwet
b 

13 Lowland forest vegetation 

pr_srbwet
a,c 

14 Lowland scrub/shrub vegetation 

pr_emgwet
ab 

15 Lowland emergent vegetation 

sz_open
c 

7,8 Maximum intersecting patch of aggregation of non-focal pr_open variable pixels 

sz_open2
 7,8,12 Maximum intersecting patch of aggregation of non-focal pr_open2 variable pixels 

sz_open3
c 

6,7,8 Maximum intersecting patch of aggregation of non-focal pr_open3 variable pixels 
a 
Focal variable removed from model development due to p-value 

b
 Non-focal variable removed from model development due to p-value  

c 
Variable removed from model development due to correlations ≥ 0.60 

d 
Variable removed from model development due to overlapping land cover classes 
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CHAPTER 2.  EVALUATING POTENTIAL MANAGEMENT IMPACTS ON SHARP-

TAILED GROUSE VIABILITY IN THE UPPER PENINSULA OF MICHIGAN 

Introduction 

 It is widely believed that the distribution and abundance of sharp-tailed grouse in 

Michigan are limited by the supply of suitable habitat. In the previous chapter I developed a 

statistical model of sharp-tailed grouse resource selection that was informed by surveys of sharp-

tailed grouse occurrence on the landscape along with detailed maps of habitat conditions 

associated with their occurrence. To forecast future changes to sharp-tailed grouse populations, 

either under status quo conditions, or in the face of management actions targeted at sharp-tailed 

grouse, I need to couple this model of habitat suitability with knowledge of sharp-tailed grouse 

demographics. In this chapter I develop such a model, using a spatially-explicit metapopulation 

modeling approach, and use this model to examine how Upper Peninsula sharp-tailed grouse 

populations might change in the future, and how such changes might be affected by management 

tactics such as changes to harvest regulations and habitat improvement.  

 Metapopulation models include a broad variety of models that can be helpful in 

understanding how landscape structure influences metapopulation dynamics (Beissinger et al. 

2006). These models describe dynamics of species that occur in multiple populations linked by 

dispersal (subpopulations), often with the goal of assessing the ability for these populations to 

persist over some period of time (Akçakaya and Sjögren-Gulve 2000). There are several ways to 

conceptualize metapopulation models. My research involves models of the “patch” class as 

described by Beissinger et al. (2006). This class of models defines populations by distinct habitat 

patches, and any portion of the landscape not included within a patch is only available for 
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individuals to use for dispersal (Beissinger et al. 2006). Beyond their use for assessing 

population viability, metapopulation models can also be used to assess impacts of environmental 

changes, prioritize data collection, and rank management options in terms of their performance at 

meeting management objectives (Akçakaya and Sjögren-Gulve 2000).  

 Previous attempts to model sharp-tailed grouse have been performed by Temple (1992) 

and Akcakaya et al. (2004) on Wisconsin populations. Temple (1992) modeled population 

viability by looking at minimum viable population size, minimum area requirements, and 

metapopulation viability. He found that to have a high probability of persistence, Wisconsin 

sharp-tailed grouse metapopulations needed to consist of at least 280 birds in each of five 

separate populations with suitable habitat of at least 4000 ha. Akcakaya et al. (2004) 

implemented a dynamic landscape and metapopulation model assessing the potential responses 

of sharp-tailed grouse populations to alternative forest management scenarios; varying stand 

harvest age, clear-cut size, and stand composition. They predicted that larger clearcut sizes 

would result in higher carrying capacities, and results were sensitive to fecundity values. This 

study illustrated the importance of combining spatially explicit landscape and metapopulation 

dynamics to inform sharp-tailed grouse management decisions, and that when both were 

incorporated into modeling it was possible to more completely evaluate management options 

(Akcakaya et al. 2004). Although informative, Temple (1992) did not incorporate spatially 

explicit habitat suitability and Akcakaya et al. (2004) modeled habitat suitability without local 

habitat selection data, and the landscape dynamics software (LANDIS) used did not predict 

reasonable dynamics within wildlife management areas where grouse were likely to occur. 

 To date, limitations in computational capacity and/or data availability have restricted 

analyses to geographic scales not ideally suited for evaluating large scale management options. 
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My previous work on sharp-tailed grouse habitat use (Chapter 2) makes large-scale 

metapopulation modeling possible within Michigan without characterizing habitat suitability 

based on habitat use information described in the literature, which often varies considerably 

(Connelly et al. 1998) or on fine scale vegetation data necessary for landscape dynamics 

programs but often not available across large areas.  

 Across much of their range, sharp-tailed grouse are a popular game species (Connelly et 

al. 1998). Beginning in 2010, the Michigan Department of Natural Resources (MDNR) reopened 

portions of Chippewa and Mackinac counties to sharp-tailed grouse hunting after 12 years 

without an open harvest season (Frawley 2011). Each year from 10 October to 31 October, 

hunters were allowed a daily limit of 2 birds per day and 6 birds per season. From 2010 to 2013 a 

minimum of 697 sharp-tailed grouse were harvested, averaging 174 birds per year (Frawley 

2011, 2012, 2013, 2014). Because the MDNR recently increased the area open to sharp-tailed 

grouse hunting, metapopulation models that incorporate hunter harvest scenarios are useful for 

informing management decisions (D. R. Luukkonen, MDNR, personal communication).  

 The objectives of this chapter were to: (1) identify habitat patches with potential to 

support sharp-tailed grouse populations, (2) create a metapopulation dynamics model based on 

habitat size and configuration of these habitat patches, (3) create a baseline model forecasting 

grouse response to persistent habitat conditions without population management, (4) evaluate 

recent harvest management practices and potential increased harvest effects on population 

viability, (5) assess harvest impacts when broad and localized harvest strategies are employed 

and (6) evaluate the effects of habitat management alternatives on population persistence.   
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Methods 

 To model sharp-tailed grouse populations under potential management scenarios I used 

the population viability analysis software RAMAS GIS 6 (Applied Biomathematics, Setauket, 

New York). RAMAS GIS is designed to model population viability by combining a matrix-based 

stage/age metapopulation demographics model (RAMAS Metapop) with spatially explicit 

landscape data in a GIS (Akçakaya and Root 2013). This software has been used in studies 

evaluating management decisions under a variety of circumstances that may influence population 

dynamics. Examples include modeling Amur tigers (Panthera tigris altaica) and poaching (Tian 

et al. 2011), northern spotted owl (Strix occidentalis caurina) population responses to habitat 

loss (Akçakaya and Raphael 1998), snowy plover (Charadrius alexandrinus) responses to sea 

level rise (Chu-Agor et al. 2012) and forest management impacts on ruffed grouse (Bonasa 

umbellus) (Blomberg et al. 2012). RAMAS GIS has also been shown to be an effective tool for 

modeling prairie grouse populations in North America (Akcakaya et al. 2004, Lyons 2008, Pratt 

2010). 

 RAMAS GIS allows the user to import GIS map layers that are used to calculate 

suitability values for all pixels in a layer, and to delineate landscapes into patches that 

subpopulations can occupy. I delineated population patches across the entire Upper Peninsula by 

mapping the resource selection pattern identified for sharp-tailed grouse in the central and 

eastern Upper Peninsula of Michigan (Chapter 2) and importing it into the Spatial Data 

subprogram.  This map depicted the relative likelihood of occurrence for sharp-tailed grouse 

ranging from 0.07 to 345.36 at the 1-square-mile section scale. To evaluate suitability the 

program uses a habitat suitability threshold, which is the cutoff below which it assumes that 

pixels are not suitable for survival or reproduction (Akçakaya and Atwood 1997). I classified 
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pixels as unsuitable if their predicted relative likelihood of occurrence was below 2.89, the 

minimum value of predicted relative likelihood within the two highest RSF classification bins 

(see Chapter 2). I chose to model potential habitat patches across the entire Upper Peninsula, to 

allow for sharp-tailed grouse expansion into currently unoccupied suitable locations. This also 

allows for modeling management scenarios that could occur across large expanses, such as 

translocations.   

  After identifying suitable pixels, I then aggregated pixels into habitat patches (i.e. 

populations) based on a “neighborhood distance”. The neighborhood distance is the maximum 

distance between two pixels for them to be considered in the same patch. Following Akçakaya 

and Atwood (1997), I used the foraging distance of the species to define the neighborhood 

distance. Sharp-tailed grouse in Wisconsin have shown daily movements ranging from between 

200 and 400 meters in the summer to between 800 and 1200 meters in the winter (Gratson 1983). 

I tested sensitivity of the program’s patch delineation using neighborhood distances from 400 to 

1200 meters and found it insensitive to this range of neighborhood distances. Following 

Akcakaya et al. (2004), I used a neighborhood distance equivalent to 500 meters (16.67 pixels) to 

aggregate suitable pixels into patches.  

  From the resulting habitat patch map, each patch’s initial abundance, carrying capacity 

and a distance matrix were calculated based on patch characteristics (e.g. area, edge) and 

location and then exported for use into the metapopulation subprogram RAMAS Metapop. 

Distances between patches were calculated based on the center point of each patch. I established 

nonzero initial abundances for all patches that had a record of sharp-tailed grouse occurrence 

between 2009 and 2013. The recent sharp-tailed grouse distribution in Michigan includes 

sections of Chippewa, Mackinac, Alger, Schoolcraft, and Delta counties in the eastern Upper 



50 
  

Peninsula (Fig. 2.1). I set the initial abundances of these patches equivalent to 5 birds per square 

mile and assumed that carrying capacity varied linearly from 5 birds per square mile when 

habitat suitability was at 2.89 (suitability threshold) to 24 birds per square mile when habitat 

suitability was highest (345.36), based on post-breeding densities typical of multiple states 

(Edminster 1954).   

 Within the RAMAS Metapop module I developed a six stage demographic model with 1 

year time steps, and a 100-year time horizon. Following Akcakaya et al. (2004) the stages 

included 0-year old, 1-year old, and 2-year old and older females (F0, F1, F2+) and males (M0, 

M1, M2+). The model included both demographic and environmental stochasticity, so each 

scenario was simulated 1,000 times to produce a distribution of outcomes. Because demographic 

data for Michigan were limited, rates from outside the state were used when necessary. Similar 

to Akcakaya et al. (2004) and due to the greater availability of demographic data at this time of 

year, I modeled post-breeding abundance.  

 Although there is evidence that female sharp-tailed grouse have higher mortality rates 

than males during the nesting season, differences in survival between sexes are likely offset by 

selective mortality of males displaying on breeding grounds (Ammann 1957). Similar survival 

rates between the sexes were found in South Dakota (Robel et al. 1972). I assumed the 

probability of surviving from hatching to breeding at one year of age was 0.26 (Temple 1992). 

Annual survival of sharp-tailed grouse in Washington was reported as 0.53 for an unhunted 

population (Connelly et al. 1998); I assumed this survival rate would apply to older grouse in our 

model in the absence of hunting.  
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 While sharp-tailed grouse females most likely begin to breed during their first mating 

season (Connelly et al. 1998), first year males (MO) of polygynous tetraonid species do not 

generally breed (Wiley 1974). Therefore, I assumed they did not contribute to reproduction. On 

average, sharp-tailed grouse in Michigan produced 7.7 chicks per female (Ammann 1957). To 

calculate fecundity I multiplied this fertility by stage-specific survival and then divided equally 

between male and female offspring. Thus age zero fecundity equals 1.001, and later stages 

fecundities equal 2.041 (Table 2.1). 

 Unlike populations of sharp-tailed grouse that occur on extensive open prairies, those in 

the Great Lakes states do not often need to travel long distances to reach woody cover 

(Hamerstrom and Hamerstrom 1951). Among 120 sharp-tailed grouse recovered in Wisconsin, 

79% dispersed within 3 miles and the longest dispersal distance observed was 21 miles 

(Hamerstrom and Hamerstrom 1951). While extensive movements have been observed in birds 

after translocation in Michigan, 98% of locally trapped sharp-tailed grouse recoveries were 

within 3 miles of the release location (Ammann 1957). Female sharp-tailed grouse translocated 

to Michigan from Wisconsin, Alberta and within higher abundance areas of the state traveled on 

average 13.36 km, while males were less mobile than females, with an average dispersal of 7.89 

km (Ammann 1957). Although average distances based on translocation have been shown to be 

higher than distances traveled by native birds (Hamerstrom and Hamerstrom 1951, Ammann 

1957), these values probably more closely approximate movement of Great Lakes birds than 

estimates of movement available from western states. Similar dispersal rates have been exhibited 

by sharp-tailed grouse in both South Dakota and Wisconsin, with 58.2% percent of birds 

traveling greater than 0.5 miles and 59.2% of birds traveling greater than 1 mile, respectively 

(Hamerstrom and Hamerstrom 1951, Robel et al. 1972). I used Robel et al. (1972) dispersal rate 
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of 58.2% because the distance constituting a dispersal event (.5 miles) was more similar to our 

neighborhood distance (distance used to delineate patches) of 500 meters.  

 I modeled dispersal using an exponential decay function: 

 Mij = a exp (-Dij/b),       (1) 

where Mij is the proportion dispersing from patch j to patch i, Dij is the distance between patches, 

and a and b are scaling parameters calculated using the above movement data, with b equal to the 

rate of decline in dispersal with increasing distance and a equal to the maximum rate of 

dispersal. I calculated b as -ln(0.5)*13.36 = 9.26 and a as 0.582/b= 0.063; the total proportion of 

dispersers scaled by the rate of dispersal decline (Akçakaya and Raphael 1998). Following 

Akcakaya et al. (2004) I modeled differences in dispersal rates among sexes and life stages: 

juvenile females were assumed to have the highest rates, calculated from equation (1), with 

scalars reducing the rates for adult females (0.66), juvenile males (0.44), and adult males (0.33). 

I set the maximum possible dispersal distance to 34 km, above which dispersal is unlikely to be 

sufficiently common to affect population growth rates (Sjogren and Corace 2006).  

 Many external factors vary across time and can lead to fluctuations in vital rates. In 

particular, factors such as predator abundance, spring weather and prey availability are important 

drivers of sharp-tailed grouse demographics (Sjogren and Corace 2006, Goddard and Dawson 

2009). Following Temple (1992), I simulated environmental stochasticity in vital rates using a 

coefficient of variation (CV) of 40% for fecundity, 30% for juvenile survival, and 20% for adult 

survival. Using these CVs, I then sampled the vital rates from a lognormal distribution. To 

account for demographic stochasticity, I allowed the number of survivors and dispersers of the 

ith stage to be drawn from a binomial distributions with parameters Ni (abundance) and Si 
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(survival rate) or Di (dispersal rate), respectively (Akçakaya and Root 2013). The number of 

young produced in the ith stage are drawn from a Poisson distribution with a mean of FiNi 

(fecundity∙abundance) (Akçakaya and Root 2013).  

 Environmental factors, such as temperature and rainfall, tend to be correlated across 

space and can lead to spatially correlated population dynamics. Models that assume complete 

independence in correlation of vital rates among populations tend to underestimate the actual 

metapopulation extinction risk (Akçakaya 2000). The synchronous nature of environmental 

dynamics often extend large distances, and can result in synchronized declines in populations 

(Akcakaya and Brook 2008). Baines et al. (2007) found spatially correlated rates of black grouse 

fecundity (r = 0.64) in regions of the United Kingdom separated by around 250 km, but did not 

find significant evidence for correlation (r = 0.08) among regions separated by around 500 km. I 

modeled vital rate correlation with an exponential decay function:  

    Cij = a exp (-Dij/b),       (2)  

where Cij is the correlation coefficient between patch i and patch j, Dij is the distance between 

patch i and patch j, a is a function parameter equivalent to the maximum correlation rate at a 

distance of 0 km and b is a scaling parameter of the rate of correlation decline. I set a = 0.99 to 

model high correlation for populations separated by short distances and b = 573 where 

populations separated by 250 km would have a correlation coefficient equal to 0.64.  

 At the end of each time step RAMAS recorded the total number of male and female birds 

in all stages immediately after breeding. In Michigan peak activity on breeding grounds is 

roughly the third week in April (Drummer et al. 2011), and peak hatching occurs between June 

6-10 (Ammann 1957). I used a ceiling type density dependence (Temple 1992), which allowed 

the populations to grow exponentially until patches reached carrying capacity. If a population’s 
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abundance exceeded carrying capacity during any time step it was set equal to the carrying 

capacity (Akçakaya and Root 2013). 

Simulations 

 To predict basic metapopulation dynamics I simulated initial models assuming no 

population or habitat management efforts, with and without dispersal between populations 

(simulation 1 and 2, respectively). To simulate scenarios including hunter harvest, I estimated 

recently observed harvest mortality by increasing reported harvest values by 20% to account for 

unreported harvest and wounding loss. I then removed the equivalent harvest from either the two 

largest eastern Upper Peninsula populations, which are within the current hunt region 

(populations 53 and 98, Fig. 2.2 A) (localized harvest), or from across the entire metapopulation 

(range-wide harvest). I initiated harvest in the 10
th

 time step, to allow populations to stabilize 

after increases from their initial abundances. I predicted sharp-tailed grouse response to a range 

of harvest mortality rates ranging from current rates to 4.5 times current rates (Table 2.2). I 

removed the harvest each time step in proportion to members in each age and sex class, before 

dispersal.  

I simulated sharp-tailed grouse response to habitat management by adding patches of 

habitat, which I assumed were optimally managed for sharp-tailed grouse, to the Spatial Data 

subprogram input map. Pixels within these patches were set to the highest suitability value and 

consequently these patches had the maximum carrying capacity of 24 birds per square mile. I 

evaluated the influence of habitat patch size by creating both large and small patches, which 

were equal in total area (Table 2.3, Fig. 2.3 A-D). I compared the importance of patch location 

by creating equal area patches in a location chosen to increase population connectivity and a 
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random location on the landscape (Fig. 2.3 A, E). I ran additional simulations that incorporated 

moderate localized harvest rates (2 times current levels) into each habitat management scenario 

to rank management strategies according to their ability to increase population viability (Table 

2.2, simulations 24 to 28).   

The MDNR has established a goal to “maintain a viable population of sharp-tailed grouse 

that supports both hunting and non-consumptive recreation in the Upper Peninsula” (Luukkonen 

et al. 2009) . While the MDNR has not established a specific population objective, according to 

Temple (1992), five populations of at least 280 individuals would be necessary for a 95% 

certainty of population persistence over a 50 year period. Therefore, simulations were evaluated 

based on their final average metapopulation abundance, expected minimum abundance (EMA), 

percentiles of final total abundance, and terminal quasi-extinction risk (risk that the 

metapopulation will be below 1400 birds at the end of the 100 year simulation) (Akçakaya and 

Root 2013). Because of the importance of maintaining a sharp-tailed grouse population than can 

support hunting, models including hunter harvest were also evaluated based on cumulative 

harvest. 

Results 

 RAMAS GIS identified 143 suitable habitat patches totaling 2172 km
2
, with the majority 

of suitable habitat in the central and eastern Upper Peninsula (Fig. 2.2 A-B). Patches ranged from 

2 km
2
 to 362 km

2
, with an average patch area of 15 km

2
. Many of the patches were small and the 

4 largest patches accounted for 52.9% of the suitable habitat. Of these patches, 13 coincided with 

recorded sharp-tailed grouse occupancy between 2009 and 2013. Carrying capacity totaled 4976 

birds for all patches, and initial abundance was 2526 birds. Under the dispersal assumptions and 
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initial distribution settings, large patches in the central and eastern Upper Peninsula had a higher 

average number of time steps occupied and suitable habitat patches in the western Upper 

Peninsula did not become occupied during the 100 year simulation (Fig. 2.4).    

The metapopulation’s finite rate of increase was 1.53, without accounting for 

stochasticity and management actions. The metapopulation abundances of simulations 1 and 2, 

with no management actions, grew rapidly to near carrying capacity of occupied patches and 

then gradually increased throughout the remainder of the simulation or oscillated near carrying 

capacity, respectively (Fig. 2.5). Final average metapopulation abundance and EMA were 

highest for simulation 1, when compared to all simulations without addition of suitable habitat 

patches (Table 2.3). The terminal quasi-extinction risk of metapopulation abundance ending 

below 1400 was negligible for both base simulations 1 and 2 (Table 2.3).  

Recent harvest mortality rate estimates were approximately 6% and 12% of the predicted 

metapopulation and localized patch abundances (average abundances of simulation 1, time step 

10), respectively. Final average metapopulation abundance, EMA and percentiles of total 

abundance decreased with increasing localized and range-wide harvest rates (Table 2.3). Across 

all localized harvest simulations metapopulation abundance trends were relatively stable 

following a decrease due to harvest initiation in time step 10 (Fig. 2.6 A). Localized and range-

wide harvest strategies had similar terminal quasi-extinction rates for simulations up to 3 times 

current harvest estimates (approx. 19.4% metapopulation harvest rate, Table 2.3). Simulations of 

large harvest rates resulted in lower quasi-extinction risks for localized harvest simulations than 

for range-wide harvest simulations. Range-wide harvest exceeding 3 times current harvest rates 

led to a declining metapopulation abundance trend (Fig. 2.6 B). Cumulative harvest increased 
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with increasing localized and range-wide harvest up to 2 and 3.5 times current harvest rates, 

respectively (Fig. 2.7 A-B). 

 Metapopulation viability was higher for all simulations modeling the addition of suitable 

habitat (Simulations 19 to 24, Table 2.3) than for base simulations. Large habitat patches 

increased viability more than equal area smaller patches. The addition of habitat patches near 

important patches in the eastern Upper Peninsula and randomly placed (Fig. 2.3 A, E) showed 

similar metapopulation viability. Scenarios modeling combined harvest and habitat management 

resulted in higher abundance values and lower terminal quasi-extinction risks than comparable 

harvest scenarios without habitat management, with the exception of simulation 26.         

Discussion 

 The rapid increase in sharp-tailed grouse abundance and range expansion following 

timber harvest and increased occurrence of fire coincident with European settlement in Michigan 

(Ammann 1957) is consistent with dynamics predicted under initial abundance and dispersal 

assumptions of my metapopulation model.  The subsequent stable metapopulation dynamics 

predicted under the base and current harvest rate simulations are also consistent with occupancy 

surveys conducted in the eastern Upper Peninsula by the MDNR. These surveys have not 

indicated a declining trend in sharp-tailed grouse occupancy rates in sections with and without 

hunting since they were established in 2009 (D. R. Luukkonen, MDNR, personal 

communication).  

 The base simulation without dispersal was completely dependent upon the initial 

occupancy pattern on the landscape because patches not initially occupied and those that went 

extinct could not be colonized during simulations. While not truly realistic, this simulation 
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served to illustrate the importance of dispersal to metapopulation viability by allowing occupied 

patches to recolonize extinct habitat patches within the maximum dispersal distance. Individual 

patch occupancy results indicated that the observed distribution of sharp-tailed grouse used to 

parameterize the model is not within dispersal proximity to suitable habitat patches in the 

western Upper Peninsula.  This highlights the importance of understanding the current 

occupancy pattern when performing spatially-explicit modeling. Before management actions 

such as translocation can be recommended it would be useful to better understand current 

occupancy patterns in the western Upper Peninsula. Suitable habitat patches not overlapping 

known sharp-tailed grouse occurrences can inform additional survey locations. 

 Model results indicated that populations subjected to localized hunter harvest, which 

resulted in extinction of target populations when subjected to high harvest rates, had lower 

extinction risks than when harvested at similar rates across their entire range. While 

metapopulation viability was higher in these scenarios, the extirpation of subpopulations is 

problematic and decreases in hunter satisfaction and opportunities for people to view grouse 

would likely occur. Harvest results were similar to Akcakaya et al. (2004) research showing 

declining viability when simulated harvest rates increased from 20% to 30%. Therefore, harvest 

regulations using a localized framework, with harvest limited to no more than 2 times the 

estimated current rate (approx. 25% harvest) should exhibit low extinction risk for sharp-tailed 

grouse populations in Michigan’s Upper Peninsula. 

 Simulations of habitat management generally increased population viability, with larger 

patches having a greater benefit to sharp-tailed grouse viability than similar areas distributed 

among smaller patches. This pattern is similar to findings by Akcakaya et al. (2004) who found 

that scenarios with larger clear cut sizes increased carrying capacity of sharp-tailed grouse 
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patches more than scenarios with small clear cuts. Research by Blomberg et al. (2012) also 

indicated that large suitable habitat patches were more beneficial to ruffed grouse viability than 

small patches of the same total area. Interestingly, under moderate hunting pressure, simulation 

of the addition of 9 mi
2
 suitable habitat with several small patches resulted in lower viability than 

similar hunting pressure without the addition of habitat. This may be due to source-sink 

dynamics among populations where birds from these small patches are dispersing to locations 

where reproduction does not keep up with mortality rates (i.e. nearby hunter harvested patches) 

(Pulliam 1988) and therefore not contributing to metapopulation viability. 

 While this study did not find a high risk of sharp-tailed grouse decline under simulations 

approximating recent harvest trends, these results are based on the current landscape 

configuration of the Upper Peninsula. The Upper Peninsula of Michigan was historically 

predominantly forested and the favorable landscape created in Michigan through forest clearing 

and slash fires has seen dramatic declines since the mid-1900s (Maples and Soulliere 1996). This 

trend is continuing within the Great Lakes region and management efforts such as timber harvest 

and prescribed fire are necessary to control the expansion of succession (Sjogren and Corace 

2006). Additional simulations modeling the effects of habitat loss on sharp-tailed grouse are 

needed to further inform habitat management goals within Michigan.  Based on the current 

habitat management simulations I would recommend that locations for sharp-tailed grouse 

habitat management are ranked based on the area of contiguous habitat managed rather than total  

area of managed habitats.  
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Figure 2.1 Locations of recent observations (2009-2013) of sharp-tailed grouse in 1mi² township sections within Michigan’s Upper 

Peninsula. 
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Table 2.1 Population projection matrix showing average female offspring per breeding female 

(upper left quadrat top line), average male offspring per breeding female (lower left quadrat top 

line) and stage specific survival rates (remaining non-zero cells) for sharp-tailed grouse 

metapopulation modeling in the Upper Peninsula of Michigan, USA.  

Stage Matrix 

 F0 F1 F2+ M0 M1 M2+ 

F0 1.001 2.041 2.041 0 0 0 

F1 0.26 0 0 0 0 0 

F2+ 0 0.53 0.53 0 0 0 

M0 1.001 2.041 2.041 0 0 0 

M1 0 0 0 0.26 0 0 

M2+ 0 0 0 0 0.53 0.53 
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Figure 2.2 Locations of potentially suitable habitat patches in the (A) eastern and (B) western Upper Peninsula of Michigan, identified 

by RAMAS GIS Spatial Data program. Populations 53 and 98 were used for localized harvest scenarios.  
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Figure 2.2 (cont’d) 
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Table 2.2 Localized and range-wide harvest rates used in simulations of sharp-tailed grouse 

metapopulation viability in the Upper Peninsula of Michigan, USA. Localized harvest was 

removed from two largest eastern Upper Peninsula populations within the current hunt region 

(populations 53 and 98).  

 

Simulation 
Population 53 

harvest
 
rate 

Population 98  

harvest rate  

Metapopulation  

harvest rate 

1 N/A N/A N/A 

 2
a 

N/A N/A N/A 

3 0.1238 0.1248 N/A 

4 0.1856 0.1872 N/A 

5 0.2475 0.2496 N/A 

6 0.3094 0.3120 N/A 

7 0.3713 0.3743 N/A 

8 0.4331 0.4367 N/A 

9 0.4950 0.4991 N/A 

10 0.5569 0.5615 N/A 

11 N/A N/A 0.0646 

12 N/A N/A 0.0969 

13 N/A N/A 0.1291 

14 N/A N/A 0.1614 

15 N/A N/A 0.1937 

16 N/A N/A 0.2260 

17 N/A N/A 0.2583 

18 N/A N/A 0.2906 

19 N/A N/A N/A 

20 N/A N/A N/A 

21 N/A N/A N/A 

22 N/A N/A N/A 

23 N/A N/A N/A 

24 N/A N/A N/A 

25 0.2475 0.2496 N/A 

26 0.2475 0.2496 N/A 

27 0.2475 0.2496 N/A 

28 0.2475 0.2496 N/A 

29 0.2475 0.2496 N/A 

30 0.2475 0.2496 N/A 
 a 

Simulation assumed no dispersal between populations 
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Table 2.3 Number of patches, patch area, total area managed, patch location and harvest for 

simulations of sharp-tailed grouse metapopulation viability under habitat management scenarios 

in the Upper Peninsula of Michigan, USA.  

Simulation Number of 

Patches 

Patch Area 

(mi
2
) 

Total Area 

(mi
2
) 

Harvest 

19 1 9 9 No 

20 9 1 9 No 

21 1 25 25 No 

22 25 1 25 No 

23 1 9 9 No 

24 25 1 25 No 

25 1 9 9 Yes 

26 9 1 9 Yes 

27 1 25 25 Yes 

28 25 1 25 Yes 

29 1 9 9 Yes 

30 25 1 25 Yes 
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Figure 2.3 Locations of habitat patches (black) added for habitat management simulations 19 

through 24 (A-F, respectively) and 25 through 30 (A-F, respectively).   
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Figure 2.3 (cont’d) 
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Figure 2.3 (cont’d) 
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Figure 2.4 Average number of time steps (100 time steps total) metapopulation patches were occupied during Simulation 1, with 

2009-2013 initial occupancy pattern and no population management actions in Michigan’s Upper Peninsula, USA. Populations outside 

map extent did not become occupied during simulations. 
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Figure 2.5 Average metapopulation abundance dynamics of base sharp-tailed grouse 

metapopulation modeling simulations (without population management), with (black) and 

without (grey) dispersal in the Upper Peninsula of Michigan, USA. 
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Table 2.4 Final average metapopulation abundance, expected minimum abundance (EMA), percentiles of final total abundance, and 

terminal quasi-extinction risks (N=1400) for all simulations. 

Simulation 

Final average 

metapopulation 

abundance 

EMA 
Percentiles of final total abundance Terminal quasi-

extinction risk 
5

th
 25

th
 50

th
 75

th
 95

th
 

1 3308 2240 2754 3315 3382 3425 3481 0 

2 3106 2218 2798 3123 3165 3168 3171 0 

3 3025 1928 2399 2928 3144 3195 3256 0 

4 2776 1711 2052 2559 2932 3061 3133 0.004 

5 2359 1463 1603 1995 2397 2766 2987 0.009 

6 1547 1116 1259 1488 1542 1593 1817 0.107 

7 1510 1046 1267 1483 1537 1573 1631 0.12 

8 1509 1035 1267 1489 1536 1575 1621 0.112 

9 1506 1042 1239 1486 1535 1572 1635 0.127 

10 1511 1028 1273 1484 1535 1576 1635 0.115 

11 3064 1936 2545 3039 3156 3205 3257 0.001 

12 2884 1770 2149 2820 3023 3075 3131 0.001 

13 2698 1552 1893 2603 2858 2924 2983 0.004 

14 2506 1351 1672 2304 2667 2801 2867 0.009 

15 2186 1058 1233 1863 2348 2583 2705 0.076 

16 1789 771 662 1379 1882 2318 2557 0.256 

17 991 392 21 434 922 1476 2194 0.714 

18 299 123 0 0 103 423 1293 0.957 

19 3528 2346 3015 3532 3606 3648 3701 0 

20 3472 2296 2904 3436 3580 3630 3695 0 

21 3953 2511 3384 3948 4028 4083 4172 0 

22 3839 2482 3231 3736 3932 4042 4152 0 

23 3556 2341 3024 3556 3625 3677 3751 0 

24 3607 2357 2931 3570 3693 3767 3866 0 
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Table 2.4 (cont’d) 

Simulation 

Final average 

metapopulation 

abundance 

EMA 
Percentiles of final total abundance Terminal quasi-

extinction risk 
5

th
 25

th
 50

th
 75

th
 95

th
 

25 2579 1604 1831 2192 2636 3000 3199 0.005 

26 2276 1426 1597 1909 2206 2617 3114 0.018 

27 2995 1852 2255 2643 3026 3411 3638 0.001 

28 2883 1725 1926 2490 2919 3355 3639 0.005 

29 2609 1579 1843 2238 2637 3046 3250 0.004 

30 2625 1594 1811 2229 2637 3074 3329 0 
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Figure 2.6 Effects of localized (A) and range-wide (B) harvest of sharp-tailed grouse on average metapopulation abundance dynamics 

in the Upper Peninsula of Michigan, USA.  Harvest was initiated in time step 10.  

A B 



75 
 

 

 

 

Figure 2.7 Effects of localized (A) and range-wide (B) harvest rate on cumulative harvest (time 

step 10 to 100) in the Upper Peninsula of Michigan, USA. Localized harvest rates are from 

subpopulation 98
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