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ABSTRACT 

 

EVALUATION OF GREAT LAKES SEA LAMPREY CONTROL BARRIER 

EFFECTIVENESS UNDER CLIMATE CHANGE 

 

By 

 

Connor McHenry Buckley 

 

Control of invasive sea lamprey (Petromyzon marinus) populations in the Great Lakes is 

dependent upon migration barriers in suitable tributaries to limit spawning habitat, but these 

barriers are occasionally overcome by spawning-phase adults, leading to observable larval 

production upstream of these barriers. Despite this, empirical evidence of escapement events at 

barriers is rare. Escapement is hypothesized to be influenced by warmer stream temperatures and 

high discharge, therefore shifting regional patterns of water temperature and hydrological 

conditions under climate change could lead to less effective barriers and higher larval production. 

Increased escapement over barriers would negatively affect control efforts by increasing larval 

habitat and diluting treatment resources across additional reaches. We applied Bayesian belief 

network models to categorize the probability of observing adult lamprey upstream of terminal 

barriers across the Great Lakes Basin and understand the influence of climatic, landscape, and 

hydrological variables on this parameter. Sensitivity analyses were used to assess the relative 

importance of each variable and indicated that variation in the size of the spawning run in a stream, 

and the proportion that subsequently reaches a barrier, have the largest effect on both the 

probability of passing a moderate or high abundance of adult sea lampreys above a barrier. 

Incorporating future climate projections into the model to evaluate the effect of climate change did 

not lead to substantial changes in the probability of escapement at each barrier, suggesting that any 

potential changes in barrier permeability or spawning run size are masked by the large uncertainties 

in sea lamprey spawning phenology that will require further research to elucidate.  
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CHAPTER 1:  

INTRODUCTION AND LITERATURE REVIEW 

The sea lamprey (Petromyzon marinus) is a hematophagous fish species considered 

invasive in the Great Lakes Basin that has caused significant ecological damage to both native 

and introduced fishes. These fishes traditionally support enormous recreational, commercial, and 

indigenous fisheries in the U.S and Canada estimated to be worth $7 billion annually (Great 

Lakes Fishery Commission 2020). Sea lampreys are thought to have invaded most of the Great 

Lakes through a series of dispersal events throughout the early twentieth century (Lawrie 1970; 

Smith and Tibbles 1980). Documented collapses of ecologically and economically important 

species followed increases in sea lamprey abundance, particularly their preferred host species 

lake trout (Salvelinus namaycush) (Lawrie 1970; Smith and Tibbles 1980). During their parasitic 

juvenile life stage, individuals will attach themselves to host fish and feed on their blood. After 

12 to 18 months juveniles begin moving towards suitable spawning streams, undergoing 

metamorphosis into their sexually mature adult phase upon entering the streams, and 

subsequently, reproduce and die (Lawrie 1970; Smith and Tibbles 1980). Larval sea lampreys 

hatch and burrow into the substrate for 3 to more than 10 years, eventually emerging from the 

stream bed, metamorphosing into juveniles, and migrating back out into the lake. 

Due to coordinated control measures maintained by the Great Lakes Fishery Commission 

(GLFC), the U.S. Fish and Wildlife Service, and Fisheries and Oceans Canada, sea lamprey 

populations have been reduced to mere fractions of their former abundance (GLFC 2020; 

Robinson et al. in press). These measures typically include active control measures such as the 

application of lampricides 3-trifluoromethyl-4-nitrophenol (TFM) and niclosamide to infested 

tributaries and trapping of spawning adults, as well as passive measures such as low-head barrier 
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dams (Hunn and Youngs 1980; Smith and Tibbles 1980). Stream low-head barriers prevent up-

migrating adult sea lampreys from accessing suitable spawning habitat, thereby intentionally 

fragmenting populations. These barriers play an important role in preventing infestation in 

streams that are prohibitively difficult to treat and reducing the need for expensive chemical 

treatments, but also negatively impact aquatic habitat connectivity (Brege et al. 2003; Dodd et al. 

2003; Lavis et al. 2003; McLaughlin et al. 2013; Milt et al. 2018; Hume et al. in press). These 

lowermost barriers block over 54,000 km of stream, which represents $16,215,000 in saved 

chemical control costs. By comparison, the Sea Lamprey Control Program (SLCP) spends on 

average $12,900,000 to treat less than 3000 km of stream habitat (Hrodey et al. in review). 

Without these barriers, chemical treatment of all sea lamprey producing streams would be cost-

prohibitive. Were upstream barriers to be removed in an effort to improve aquatic connectivity, 

these lowermost barriers would block an even greater amount of habitat and be of greater 

importance for sea lamprey control. 

Sea lamprey control barrier designs come in a variety of forms but generally are based on 

a low-head, fixed-crest design that attempts to maintain a 45-centimeter crest height throughout 

the length of the spawning migration. These barriers are a mix of purpose-built barriers and 

adaptations of previous dams for sea lamprey control. The SLCP has identified 598 barriers in 

Great Lakes streams that are important for sea lamprey control, of which 87% were non-purpose 

built and intended for such uses as hydropower generation, flood control, and navigation, and 

13% are purpose-built or modified barriers (Hrodey et al. in review). Alternative designs, 

including adjustable-crest, velocity, and electrical barriers have been used in some places with 

mixed success, and the SLCP relies on the traditional, fixed-crest design for most control effort 

(Zielinski et al. 2019). These barriers often include a jumping pool or fishway to aid in the 
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passage of migratory fish species and limit the negative consequences of stream impoundment 

(Lavis et al. 2003). Barriers may be removed intentionally to improve connectivity but are also at 

risk of unintentional failure, possibly allowing spawning sea lampreys access to upstream habitat 

(Lavis et al. 2003; Jensen and Jones 2018). As of 2003, sea lamprey control barriers operated 

with a 90% effectiveness (Lavis et al. 2003). This rate increases to 94% when considering only 

low-head, fixed-crest barriers (Lavis et al. 2003). Imperfect blockage has been attributed to 

washouts from floods, inadequate design or modification to existing dams, improper timing of 

adjustable-crest barriers, and inadequate construction (Brege et al. 2003; Dodd et al. 2003; Lavis 

et al. 2003; McLaughlin et al. 2013; Milt et al. 2018). Acknowledgment of the spatial and 

temporal variation in barrier effectiveness has resulted in several hypotheses of the cause of this 

variation, but these hypotheses have so far been difficult to test empirically (McLaughlin et al. 

2003). These hypotheses include differences in vertical drop distance, barrier design, stream 

thermal conditions and hydrology, and the size and timing of the spawning migration. 

Although an estimate of the rate of escapement can be used as the sole metric to evaluate 

barrier effectiveness, the size of the spawning run and the subsequent larval production are a 

better indication of the consequences of barrier failure. While understanding variability in the 

effectiveness of control barriers is essential, quantifying how and where less effective barriers 

will affect larval production is more important for control efforts. The GLFC has long set a goal 

of reducing lampricide use by 50% through alternative methods, and the majority of this 

reduction is made possible through the use of barriers (Brege et al. 2003). This goal relies on two 

assumptions: that the mean effectiveness of control measures is not changing over time, and that 

the public’s sanctioning of current control measures will not negate future efforts to maintain or 

increase control effort (Hume et al. in press; Gaden et al. 2021). Both of these constraints should 
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not be taken for granted, and improving sea lamprey control resiliency to social and ecological 

change should be prioritized. 

Climate change and Great Lakes fishes 

Climate change is predicted to have important effects on Great Lakes fishes through both 

direct effects on fish habitat quantity and quality, as well indirect interactions with other stressors 

(Magnuson et al. 1997; Lynch et al. 2010; Cline et al. 2013; Collingsworth et al. 2017). Warming 

lake water temperatures are predicted to significantly alter the distributions of existing coldwater, 

coolwater, and warmwater fishes (Lynch et al. 2010; Melles et al. 2015; Collingsworth et al. 

2017). In particular, coolwater fishes will likely face decreased thermal habitat in southern 

regions of Lakes Michigan, Erie, and Ontario, while parts of Lake Superior will become more 

favorable (Cline et al. 2013; Collingsworth et al. 2017). Increased temperature and precipitation 

can also further exacerbate existing stressors such as nutrient loading and eutrophication by 

increasing surface runoff and stratification (Collingsworth et al. 2017). Seasonal decreases in 

primary production will affect the abundance and distribution of higher trophic levels (Brooks 

and Zastrow 2002). Invasive species that were previously limited to the lower lakes by water 

temperature may also find an opportunity to proliferate, including white perch (Morone 

americana), alewife (Alosa pseudoharengus), ruffe (Gymnocephalus cernua), round goby 

(Neogobius melanostomus), and carp species (Rahel and Olden 2008; Melles et al. 2015; 

Collingsworth et al. 2017). 

Sea lamprey life history is predicted to be altered by both warming water temperatures 

and the effects of increased precipitation (Cline et al. 2014; Collingsworth et al. 2017). Although 

the optimal growth rate for parasitic sea lampreys is 15∘C, their thermal history is completely 

dependent upon host choice and host preferred thermal habitat (Cline et al. 2014). Parasite 
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growth has been strongly linked to prey availability and the preferred thermal habitat of their 

host species, with increasing preferred thermal habitat for host species such as Chinook salmon 

(Oncorhynchus tshawytscha), lake whitefish (Coregonus clupeaformis), and lake trout 

(Salvelinus namaycush), leading to larger, more fecund sea lampreys inflicting greater mortality 

upon host fish (Cline et al. 2014; Hansen et al. 2016; Gambicki and Steinhart 2017). The 

effectiveness of lampricide application will also decrease with sufficiently high stream 

temperatures (Scholefield et al. 2008), and streams with extremely high or low flows will likely 

be less feasible to treat. 

Warming temperatures will likely have a large effect on sea lamprey life history across  

multiple life stages, through both direct effects of more favorable temperatures and the expansion 

of the preferred thermal range of host fish (Figure 1). Previously thermally unfavorable habitat 

might begin to produce sea lampreys, particularly in the upper Great Lakes, while parts of the 

Lake Michigan

Lake Superior

Lake Huron

Lake Erie

Lake Ontario

North: more spawning and rearing habitats in rivers, 
longer feeding and growing seasons for sea lamprey and 
their host fish in rivers and lakes, higher fecundity, earlier 
migration, easier to pass migration barriers

South: less suitable habitats for larvae in rivers, more anthropogenic disturbances 

Uncertainties: extreme events like 
flood, drought, and short-term high-
intensive rain, the interaction 
between these events and local 
human land-use

Fig 1: The effects of climate change on sea lamprey populations in the Great Lakes basin. The blue 
upward arrow represents a potential increase of sea lamprey populations in the northern Great Lakes 
while the red downward arrow represents a potential decrease in the south.

Figure 1. Potential effects of climate change on Great Lakes sea lamprey populations, adapted 

from Lennox et al. 2020. The blue arrow represents a potential increase in sea lamprey 

abundance, while the red arrow represents a potential decrease. 
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lower Great Lakes might become too unfavorable and cease production (Lennox et al. 2020; 

Hume in press). Warming is strongly linked to shorter egg incubation periods (Holmes 1990; 

Holmes and Lin 1994) as well as altering the duration of the parasitic life stage (Cline et al. 

2014). Longer periods of stream temperatures within the preferred thermal niche of larval sea 

lampreys, 17.8∘C – 21.8∘C, would likely result in faster growth in non-density-limited streams 

(Holmes and Lin 1994; Lennox et al. 2020), while temperatures outside of that range would 

likely lead to decreased survival (Dawson and Jones 2009). The upper thermal constraint for 

survival in sea lampreys is variable and dependent on the life stage, but embryos are the most 

stenothermic and vulnerable (Beamish 1975; Manion and Hanson 1980; Rodríguez‐Muñcoz et 

al. 2001; Hansen et al. 2016). Metamorphosis of larval sea lampreys is largely a factor of body 

size, condition, and water temperature, and with a lower thermal threshold of 9∘C – 13∘C and the 

highest rate of metamorphosis at 21∘C (Holmes and Youson 1994, 1998), warmer streams might 

allow for increased metamorphosis in smaller, younger individuals. Warming conditions will 

likely alter the phenology of the sea lamprey life cycle, with earlier warming leading to earlier 

upstream migrations as spawning events typically only occur once stream temperatures reach 

15∘C (Holmes 1990; Jones 2007; Binder et al. 2010; McCann et al. 2018; Lennox et al. 2020). 

Additionally, warmer temperatures in the upper Great Lakes might elicit a shift in the timing of 

the sea lamprey life cycle that would more closely mirror that of sea lampreys residing in the 

lower Great Lakes (McCann et al. 2018). 

Previous hydrologic modeling studies predict that flood events in many watersheds of the 

Great Lakes will be more intense, frequent, and occur earlier in the year as the effects of climate 

change continue to intensify (Magnuson et al. 1997; Cherkauer and Sinha 2010; Verma et al. 

2015; Byun et al. 2019). Greater winter and spring precipitation, predominately rain, may lead to 
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higher flows in many watersheds. Conversely, summer precipitation is predicted to decline, 

leading to an increased risk of dewatering (Rahel and Olden 2008). High flow events, while 

unlikely to affect larval lamprey buried in the substrate, would elevate the risk of eggs being 

washed out of nests and increase egg mortality through predation and decreased chance of 

settling on suitable habitat (Smith and Marsden 2009), but may contribute to lentic larval 

populations. In areas where average streamflow might decline during periods of the year, lack of 

flow might present a problem for larval survival and outmigration (Guo et al. 2017). In total, 

altered climatic constraints will act in multiple directions across multiple sea lamprey life stages, 

making the end consequence for the aggregate sea lamprey population difficult to predict. 

Climate change and control effectiveness 

Physical barriers to sea lamprey upstream migration, both natural and man-made, face an 

increased risk of failure due to increased precipitation and higher magnitude flood events (Rahel 

and Olden 2008; Danso-Amoako et al. 2012; Lennox et al. 2020). Higher flows might increase 

the physical stress on aging or structurally unsound barriers, and higher water levels might allow 

spawning sea lampreys to overcome barriers during flood events by bringing the vertical drop 

(difference in height between headwater and tailwater elevation) below 45-centimeters (Lucas et 

al. 2009; Lennox et al. 2020; Hume et al. in press). Human-made barriers beyond their life span 

or those of a smaller, shallower design might also be at increased risk of failure. Warmer stream 

temperatures would alter sea lamprey swimming performance and could allow for passage under 

a wider range of conditions (Castro-Santos et al. 2017). Sea lampreys would likely respond non-

linearly to increases in available habitat due to barrier failure, combined with a dilution of 

lampricide control efforts across a larger treatment area, leading to higher sea lamprey 

production (Jensen and Jones 2018). 
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While critical for sea lamprey control, low-head barriers are not without negative 

consequences to migratory fish passage and stream community health (Dodd et al. 2003; 

McLaughlin et al. 2011, 2013). While barrier removal or mitigation through a fishway structure 

can be necessary to improve fish passage, uncertainty in the predicted use of upstream habitat by 

native migratory species and the consequences for sea lamprey control need to be accounted for. 

Therefore, it remains essential to correctly categorize the effectiveness of a given barrier at 

blocking sea lampreys as a part of a larger effort towards prioritizing sea lamprey control barriers 

for remediation or removal. To accurately allocate limited resources to the most productive 

streams, the GLFC would benefit from the knowledge of which barriers are at greatest risk of 

passing sea lampreys and which streams might produce more or fewer larvae than expected 

under the current assumption of static temperature and flow regimes. 

Bayesian belief networks 

Bayesian belief networks (BBN) are an increasingly common tool in natural resource 

management for modeling data-scarce systems and informing complex decisions (Marcot et al. 

2001, 2006; McCann et al. 2006; Aguilera et al. 2011; Death et al. 2015; McVittie et al. 2015; 

Gibson et al. 2017), as is the case for understanding the effects of climate change on barrier 

effectiveness for sea lamprey control. BBNs are directed acyclic graphs that leverage Bayes’ 

theorem to model causal relationships between important correlates influencing the likelihood of 

a management target or objective. 

In the network, variables are represented as a series of nodes linked through causal 

relationships (Norsys, 2020). A causal node is referred to as a parent node, with its dependent 

node referred to as a child node. The structure of the model flows from nodes represented by 

only marginal distributions, or parent-less nodes, through a flexible hierarchy of causality that 
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terminates in one or more target variables, or child-less nodes. Each link between nodes 

represents the specific conditional probability distribution governing their relationship. The 

possible values of each node are represented by a series of states which must take the form of 

discrete values or a discretized range of continuous values. The joint posterior probabilities of 

each node are structured through a conditional probability table (CPT), which can be specified 

through several different methods, including algorithmic learning, statistical models, or expert 

elicited knowledge. This flexibility in the type and completeness of the data used to build the 

model has led to the increased usage of BBNs in natural resource management decision-making 

(Marcot et al. 2001, 2006; McVittie et al. 2015; Kaikkonen et al. 2020). BBNs also allow for 

transparent representation of variables and their major influences and interactions, incorporation 

of a wide variety of data types, and estimation of outcomes as probabilities for easy 

communication of risk. Nodes can be deterministic or stochastic depending on how each 

conditional probability is structured. Their ability to handle missing data and latent variables is a 

useful characteristic in addressing uncertainty in barrier effectiveness due to the complexity of 

the system and scarcity of data appropriate to the spatial and temporal scale of interest. While 

there are multiple programs built for the graphical construction of BBNs, I chose to use the 

modeling shell Netica (versions 2.17 or later, Norsys Systems Corp., Vancouver, British 

Columbia) for its ability to use cases to describe our knowledge of the system as well as native 

algorithmic learning functionality to build conditional probability distributions from the data.  

While BBNs are appropriate tools for certain questions, their usefulness is limited by 

their lack of capacity to represent feedback loops or continuous variables (Uusitalo 2007). 

Feedback loops must either be ignored or approximated, and continuous variables must be 

discretized, resulting in potential information loss. While there are advanced methods of building 
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BBNs that have addressed these concerns (e.g., dynamic BBNs), I judged these assumptions to 

be acceptable for the purpose of my research questions. Feedback loops are not important to the 

proposed explanations for variation in barrier failure and the effects of climate change on sea 

lampreys, as changes to sea lamprey physiology and phenology do not in turn affect the stream 

hydrology or climate. The loss of information imposes restrictions on the precision of estimates, 

but this can be mitigated through informed, ecologically meaningful discretization of each 

variable. 

Research objectives 

To address poor understanding of the factors driving variation in barrier effectiveness, 

especially under changing climatic conditions, I focused on two main questions. First, I aimed to 

identify the influential factors and uncertainties driving variation in the effectiveness of sea 

lamprey control barriers and the implications for sea lamprey control. I assessed the relative 

importance of (1) climatic conditions (2) landscape conditions and (3) the abundance of 

spawning-phase sea lampreys within a stream in each month. Secondly, I aimed to evaluate how 

climate change in the Great Lakes Basin might impact the effectiveness of sea lamprey control 

barriers for future sea lamprey control, hypothesizing that climate change will lead to an increase 

in the abundance of sea lampreys passing a barrier in regions where the overlap between optimal 

stream temperatures, heavy precipitation, and sea lamprey spawning activities is greatest.   
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CHAPTER 2: 

METHODS 

Overview 

 I utilized a BBN to evaluate both the variables influencing barrier effectiveness and the 

potential consequences of climate change across the Great Lakes Basin over time. Multiple BBN 

structures were developed to account for structural uncertainty in the understanding of known 

relationships. Two model structures were built with different collections of climatic, landscape, 

hydrological, physical, and ecological variables associated with lowermost sea lamprey control 

barriers. The models were parameterized using a combination of algorithmic learning, structural 

equations, and expert elicitation (Figure 3). Data were obtained from sources with varying 

comprehensiveness and resolution, which required aggregating and transforming data with 

statistical models that were then spatially associated with each lowermost barrier. I analyzed the 

strength and uncertainty of each relationship in the model with the abundance of spawning-phase 

sea lampreys above a barrier using both sensitivity to findings analysis and one-way sensitivity 

analysis. Lastly, the posterior probability distribution for the abundance of spawning-phase sea 

lampreys above each barrier was estimated using historical climate data as well as modeled 

climate data at four, twenty-year time intervals. Each barrier was then categorized by its 

probability of a low, moderate, or high abundance of sea lampreys upstream of the structure 

under each climate projection. 

Study area 

 The data used for this project focused on lowermost sea lamprey control barriers on the 

U.S side of the Great Lakes Basin. The GLFC provided a list of barriers and metadata, which 

included 655 structures in total, and comprised of low-head dams, road culverts, hydropower 
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dams, earthen embankments, and waterfalls. Of these, 263 are located in the Lake Erie 

watershed, 139 are in the Lake Michigan watershed, 94 are in the Lake Ontario watershed, 81 are 

in the Lake Superior watershed, and 78 are in the Lake Huron watershed. Each barrier was 

spatially verified using Google Earth Pro (Version 7.3.3; https://www.google.com/earth) to 

ensure that the coordinates were accurate and could be matched to an associated flowline in the 

National Hydrography Dataset Plus Version 2 (NHDPlus V2; 1:100,000-scale; 

http://www.horizon-systems.com/nhdplus). This framework was used to spatially organize and 

associate barriers with a particular stream reach, local catchment, and network catchment, 

allowing me to correctly attach spatial variables to each barrier. After removing barriers I was 

unable to spatially verify, 372 of the 655 barriers were included in this analysis. The spatial 

distribution of the barriers and the relative proportions of different barrier types, ages, and 

heights in this subset were similar in proportion to the original list of lowermost barriers 

(Appendix A). Of these, 127 are in the Lake Erie watershed, 51 are in the Lake Huron watershed, 

105 are in the Lake Michigan watershed, 37 are in the Lake Ontario watershed, and 52 are in the 

Lake Superior watershed (Figure 2).  

https://www.google.com/earth
http://www.horizon-systems.com/nhdplus
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Figure 2. Location of project subset of lowermost sea lamprey control barriers in the Great Lakes 

Basin, based on data collected and compiled by the GLFC in 2020.  

BBN development 

I aimed to evaluate the variability in the effectiveness of control barriers through 

scientists’ and managers’ current understanding of influential relationships in the system. 

However, this objective is difficult to address directly because of a lack of data on the passage of 

spawning-phase sea lampreys over barriers under variable conditions. Instead, I evaluated a set 

of relationships suspected to be important to the effectiveness of a control barrier and worked 

backward to obtain an “ecological causal web” that maps all suspected causal variables in this 

system. 

I developed the BBN following the steps outlined in Marcot et al. (2006) and Marcot 

(2017). Potential responses of sea lampreys to changes in climate were first identified through a 
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thorough literature review and consultation with four subject-matter experts at the GLFC. We 

discussed important hydrologic and landscape variables and their potential effects on sea 

lamprey growth, survival, phenology, and habitat while assuming several regional climatic trends 

that were well-established in the literature (Byun et al. 2019). After this discussion, I built an 

influence diagram, or “ecological causal web” (Marcot et al. 2006), which linked climate, 

landscape, and hydrology variables by their identified relationships to each stage of the sea 

lamprey life cycle. I returned the initial influence diagram for comments and review by the 

GLFC and adapted the diagram into unparameterized BBNs in Netica. Nodes were organized 

into node sets describing a category of influence, including climate, hydrology, landscape, 

physical barrier characteristics, and sea lamprey ecology. The initial BBN structures included 

relationships affecting sea lampreys at multiple life stages. I refined the scope of the BBN to 

focus on solely spawning-phase sea lampreys due to a greater body of research regarding 

important biological thresholds for streamflow and temperature, and the direct effect these have 

on the success of barriers for control and decisions regarding prioritization. 

Efforts to minimize the complexity of the BBNs appreciably improved model tractability 

(Marcot et al. 2006). Where possible I kept the number of parent nodes of a single child node to 

three or fewer, which reduced the size and complexity of the associated conditional probability 

table (CPT). The number of levels in each network was also minimized within the bounds of the 

process complexity and interactions across spatial scales. Intermediate nodes were generally 

grouped in a loose hierarchy based on relationship to the target node, and classified by a theme, 

such as “hydrology” or “climate” (Figures 3-6). This structure allowed for the separation of 

processes into sub-models to ease comprehension and development, as well as to remove 

potential probabilistic biases from the asymmetry of the model hierarchy. Continuous variables 
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were discretized by identifying important thresholds in certain processes, or where this was not 

possible through examining the distribution of available data.  

Conditional probabilities were estimated through several methods, based on available 

data and process complexity. While previous studies have used data from the literature to 

complete CPTs in a BBN, many CPTs in my BBNs were too complex to be well-suited to this 

approach. However, my initial literature review did provide system thresholds for bounding 

discretized states of certain continuous variables as well as several influential variables to 

include in the network.  

Model structures and uncertainty 

A single BBN represents a hypothesis about the structure and causality of the modeled 

system, and the uncertainty around the accuracy of the structure of any individual network 

necessitated building several candidate networks. Given the general goal of a parsimonious 

model structure, the BBN with the greatest predictive ability and the fewest number of nodes, 

links, and states would be the most useful. I built a base model that represented a simplified 

system with fewer nodes and links (Figures 3, 4), as well as a full model with the complete suite 

of identified causal variables and corresponding relationships (Figures 5, 6; Appendix B). The 

nodes in the network fall into several loose groupings that are the same between both network 

structures, but the included variables are different in each.  

In the base model (Figures 3, 4) the left-most level of the network represents parentless 

nodes, including the lake basin and month which describe the spatial and temporal scales 

respectively, landscape variables including the network catchment area, cross-sectional bankfull 

area of the stream reach at a barrier, and the distance from the stream outlet to the barrier, as well 

as the physical characteristics of the barrier including the slope of the barrier face and the 
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absolute height of the barrier. Air temperature and total precipitation are then influenced by the 

lake basin and month. Stream temperature is influenced by the month, lake basin, and air 

temperature nodes, while streamflow is influenced by the network catchment area and total 

precipitation. The vertical drop is influenced by the streamflow, bankfull area, and absolute 

barrier height. Stream velocity is influenced by the streamflow and bankfull area, and the 

physical permeability of a barrier is influenced by the barrier slope, effective height, and stream 

velocity. The abundance of spawning-phase sea lampreys in a stream is influenced by the lake 

basin, month, network catchment area, and stream temperature. The proportion of those sea 

lampreys that migrate upstream to a barrier is influenced by the abundance in the stream, the 

stream temperature, and the distance upstream to the barrier. The abundance of sea lampreys at 

the barrier is influenced by the total abundance in the stream and the proportion that migrate 

upstream to the barrier, and the abundance of sea lampreys to pass a barrier is influenced by the 

abundance at the barrier and the physical permeability of that barrier. 

 The full model (Figures 5, 6) was based on the same structure as the base model, with 

additional nodes and links. Landscape nodes were added that describe the percentage of 

vegetated cover in the network catchment, the percentage of impervious surface cover in the 

network catchment, and flowline slope. These variables, along with the total precipitation, 

influenced the proportion of rainfall that becomes runoff into the stream. The frequency of 

precipitation was added to influence the streamflow. Lake temperature was added and influenced 

the average total body length and weight of spawning-phase sea lampreys upon entry into a 

stream. Total body length influenced the permeability of a barrier, and body weight influenced 

the proportion of spawning-phase sea lampreys to reach a barrier. 
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Each model was further divided into three scenarios representing a different 

understanding of the average vertical drop at the barrier face. This was necessary because of the 

importance of this variable in determining how permeable a barrier will be to upstream migrating 

sea lampreys, as well as data scarcity. These scenarios were developed and transformed into a 

CPT via the same methods used in the structured expert elicitation described below. For each 

combination of the parent nodes of the effective barrier height, I specified a maximum likely 

value, minimum likely value, most likely value, and my confidence level that the true value was 

within the provided bounds, as described in Speirs-Bridge et al. 2010. These values were based 

on my understanding of the system and the literature. For each model structure, the first scenario 

(V1) describes a conservative effect of streamflow on the stream water level, the second scenario 

(V2) describes a moderate effect, and the third scenario (V3) describes a substantial effect. For 

each increasing state of the node describing the ratio of runoff to rainfall, the confidence level of 

the effect of streamflow was decreased by 0.1. A stream with a ratio of runoff to rainfall closer to 

1 will be more flood-prone than one closer to 0 and would be more likely to exceed the 

boundaries of the provided range.  
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Figure 3. Network structure of the base model showing the variable name and series of linkages between nodes, with the direction of 

causality following the direction of each arrow. Tan nodes depict the spatial and temporal scales, green nodes depict landscape 

variables, grey nodes depict variables relating to a barrier’s physical characteristics, blue nodes depict precipitation and hydrology, red 

nodes depict variables relating to temperature, and orange nodes depict variables relating to sea lampreys. 
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Figure 4. Network structure of the base model V2 with each node state and its naïve belief shown. Naïve beliefs represent 

understanding given complete uncertainty in the parentless nodes. Tan nodes depict the spatial and temporal scales, green nodes depict 

landscape variables, grey nodes depict variables relating to a barrier’s physical characteristics, blue nodes depict precipitation and 

hydrology, red nodes depict variables relating to temperature, and orange nodes depict variables relating to sea lampreys. 
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Figure 5. Network structure of the full model showing the variable name and series of linkages between nodes, with the direction of 

causality following the direction of each arrow. Nodes not present in the base model structure are shown within black boxes. Tan 

nodes depict the spatial and temporal scales, green nodes depict landscape variables, grey nodes depict variables relating to a barrier’s 

physical characteristics, blue nodes depict precipitation and hydrology, red nodes depict variables relating to temperature, and orange 

nodes depict variables relating to sea lampreys. 
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Figure 6. Network structure of the full model V2 with each node state and its naïve belief shown. Naïve beliefs represent 

understanding given complete uncertainty in the parentless nodes. Nodes not present in the base model structure are shown within 

black boxes. Tan nodes depict the spatial and temporal scales, green nodes depict landscape variables, grey nodes depict variables 

relating to a barrier’s physical characteristics, blue nodes depict precipitation and hydrology, red nodes depict variables relating to 

temperature, and orange nodes depict variables relating to sea lampreys. 
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< 500 

500 to 600 

>= 600 

79.2 

20.3 

0.49 

471 ± 51 

Abundance (in stream,monthly)  

0 to 100 

100 to 1000 

>= 1000 

59.3 

21.3 

19.5 

429 ± 560 

Abundance (at barrier, monthly)  

0 to 50 

50 to 500 

>= 500 

56.8 

27.6 

15.6 

203 ± 260 

Abundance (above barrier, monthly)  

0 to 25 

25 to 250 

>= 250 

61.2 

31.1 

7.71 

78.3 ± 110 

Upstream movement (%, monthly)  

0 to 10 

10 to 50 

50 to 100 

8.94 

50.5 

40.6 

46 ± 28 

Flowline Slope (degree)  

0 to 1e-4 

1e-4 to 0.001 

0.001 to 0.01 

0.01 to 0.1 

>= 0.1 

20.0 

20.0 

20.0 

20.0 

20.0 

0.0412 ± 0.058 

Lake 

Erie 

Ontario 

Huron 

Michigan 

Superior 

20.0 

20.0 

20.0 

20.0 

20.0 

Month 

January 

February 

March 

April 

May 

June 

July 

August 

September 

October 

November 

December 

8.33 

8.33 

8.33 

8.33 

8.33 

8.33 

8.33 

8.33 

8.33 

8.33 

8.33 

8.33 
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Data transformation and aggregation 

The data used to build the models were obtained from a wide number of sources and 

represent different spatial and temporal resolutions and extent. Based on the data available, I 

selected month as the temporal scale and stream reach as the spatial scale for the models. 

Monthly water temperature in the stream reach was estimated from air temperature data using a 

simple linear mixed-effect model. Candidate models were compared using AIC (Sakamoto et al. 

1986), with the best candidate model including monthly air temperature and month as linear 

predictors, and the stream reach as a random effect,  

𝑌𝑖𝑗   =  β0 + β1𝐴𝑖𝑗 + β2𝑀𝑖𝑗 + 𝑢𝑗 + ε𝑖𝑗, 

where Yij represents mean water temperature on day i in stream reach j, β represents the estimated 

coefficients, Aij represents the air temperature at day i in stream reach j, Mij represents the month 

at day i in stream reach j, 𝑢𝑗 represents the random effect of stream reach j, and 𝜀𝑖𝑗 represents a 

normally-distributed error. 

The vertical drop from the barrier crest to the height of the tailwater flow was considered 

an important cause of sea lamprey barrier passage (McLaughlin et al. 2003). Data from 23 level 

loggers placed at sea lamprey control barriers around the state of Michigan were used to gain an 

understanding of the frequency of inundation at the barriers but were insufficient to complete the 

CPT for that node. I created several scenarios to describe the uncertainty around the effect of the 

vertical drop at the barrier based on my understanding of the literature, conversations with GLFC 

Barrier Task Force staff, and evaluation of the available data, as described above (Model 

structures and uncertainty). These varied the effect of the mean monthly streamflow and the 

cross-sectional bankfull area as a fraction of the absolute height of the barrier. In the full model, 

variables that influence the flood potential, such as the percentage of vegetation and impervious 
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surface cover, modified the confidence level of each scenario. This allowed me to create three 

different CPTs for the vertical drop for each structure of the model. 

I used the methods described in Mullett et al. (2003) to estimate the monthly abundance 

of adult sea lampreys in each stream and year. This model estimates the abundance of sea 

lampreys in each stream as a function of stream drainage area, geographic region, larval sea 

lamprey production potential, the number of years since the last lampricide treatment, and the 

spawning year to predict the abundance of spawning adults as, 

𝑙n(𝑆𝑖𝑗)  =  𝛽0 + 𝛽1ln(𝐷𝑖) + 𝛽2𝑅𝑖 + 𝛽3ln(𝐷𝑖)𝑅𝑖  +  𝛽4𝛲𝑖 + 𝛽5𝑇𝑖𝑗 + 𝑌𝑗 + 𝜀𝑖𝑗, 

where 𝑆𝑖𝑗 represents the number of spawning-phase sea lampreys migrating up stream i in year j 

(obtained from mark-recapture and trap catch estimates), β represents an estimated coefficient, 

𝐷𝑖 represents the drainage area, 𝑅𝑖 represents the region, 𝛲𝑖 represents the production potential, 

𝑇𝑖𝑗 is the number of years since the last treatment, 𝑌𝑗 is the year effect, and 𝜀𝑖𝑗 is the normally-

distributed error. 

The abundance of sea lampreys within any Great Lakes stream is highly variable both 

throughout the spawning migration and among years. While some streams see spawning-phase 

sea lampreys annually, others may only see spawning adults every few years (Dawson and Jones 

2009). Trap catch data from the SLCP, which describes captures of adults moving upstream on a 

subset of streams in the Great Lakes Basin, were used to determine monthly relative proportions 

of spawning-phase sea lampreys present in the stream during the spawning migration. 

Deployment and collection dates for these traps are relatively standardized across years, and 

therefore may miss early or late migration spawning-phase sea lampreys. To allocate adults to 

different months of the year, I used the monthly proportion of trap catch in each month for each 

stream in each year and the estimated stream population for each stream in each year. This 
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yielded a matrix of monthly abundances of adults in the stream in each year, which was averaged 

across all years to obtain an average monthly abundance for each stream.  

All data about the state of each node in the model for each barrier was aggregated into a 

series of cases, called a case file. Depending on the specificity available, data about each node 

for each case were entered as a single value, bounded ranges of possible values, or Gaussian 

distributions described by a mean and standard deviation. I created the first case file with 

historical data reflecting current knowledge of conditions at each barrier, and a case file for each 

of sixteen modeled future climate projections. 

Expert elicitation 

I used a structured expert elicitation protocol to generate CPTs for two nodes in the 

Bayesian belief network that were lacking comprehensive empirical information: adult sea 

lampreys moving upstream and adult sea lampreys passing over a control barrier. My protocol 

was based on the modified Delphi approach (Kuhnert et al. 2010; Hanea et al. 2017; de Little et 

al. 2018), but was adapted to an online format.  

I first created a question protocol consisting of a series of scenarios for each node I was 

attempting to inform, with each scenario representing a combination of each state of the parent 

nodes. The number of combinations was reduced to minimize survey fatigue, and I relied on 

interpolation to calculate the conditional probabilities of non-elicited scenarios. I organized 

scenarios into a series of Microsoft Excel spreadsheets, with a written and pictorial description of 

the scenario (Appendix C). For each scenario, I asked experts to answer according to the four-

point method (Speirs-Bridge et al. 2010), reporting a maximum realistic value, a minimum 

realistic value, a “best-guess” or modal value, and their confidence that the true value was 

located within the interval provided. After my initial call for experts, five individuals agreed to 
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participate in both questionnaires and discussions, while two agreed to just participate in that 

regarding upstream movement, and one agreed to just participate in that regarding barrier 

passage. I created a scenario guide to explain the purpose of my elicitation process, how the 

questions were to be interpreted and answered, and definitions of the terms used. Each 

participant received the scenario guide and questionnaires, which they completed individually to 

reduce cognitive biases due to “group think”. I grouped the results of the individual 

questionnaires by topic and expert and averaged the responses, assuming that each expert’s 

knowledge was equally valid (de Little et al. 2018). These aggregated responses were used to 

estimate parameters of a beta distribution using the R statistical environment (R Core Team 

2020), and the R package ‘prevalence’ (Devleesschauwer et al. 2014). This allowed me to 

standardize each expert’s provided values to an 80% confidence interval. The aggregate beta 

density curves for each scenario response were integrated and divided by the range that fell 

within each discretized state, yielding a table of elicited probabilities (EPT).  

As the scenarios included in the questionnaires did not contain each possible combination 

of parent node states, the non-elicited scenarios were interpolated using the method outlined by 

Cain (2001). An interpolation factor (IF) was calculated for the number of parent nodes – 1, 

representing the difference in the state probability when a parent node is transitioned from a 

more favorable to a less favorable state, as a proportion of the difference between the highest and 

lowest probability of the target node state across all scenarios. Each IF was calculated as 

I𝐹𝑥,𝑐1:𝑠−1
=

𝑃𝑥,𝑐1:𝑠−1−𝑚𝑖𝑛(𝑃𝑥)

𝑚𝑎𝑥(𝑃𝑥)−𝑚𝑖𝑛(𝑃𝑥)
, 

where c is a parent node, s is the number of states of parent node c, 𝑃𝑥 is the probability of a 

child node state x, min(𝑃𝑥) is the minimum value of 𝑃𝑥 across all elicited scenarios, and max(𝑃𝑥) 
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is the maximum value of 𝑃𝑥 across all elicited scenarios. The probability of each target node state 

of a non-elicited scenario was calculated as 

𝑃𝑥,𝑁 = [(𝑃𝑥,𝐸 − 𝑚𝑖𝑛(𝑃𝑥)) ∗ 𝐼𝐹] + min(𝑃𝑥), 

where E is an elicited scenario, N is the non-elicited scenario containing a single shift in the state 

of a single parent node to a less favorable state, x is a single target node state, and IF is the 

interpolation factor for the difference in the states of E and N. 

Once I obtained a complete CPT for each of the elicited child nodes, I scheduled an 

online meeting to discuss and evaluate the aggregate and individual responses to the 

questionnaires. I designed an R Shiny web application to allow participants to explore the raw 

and processed data, a beta density plot for each scenario, and a plot comparing the range and 

modal values identified by each participant for each scenario. Individual data were de-identified, 

and participants were provided a number that corresponded with their responses. The purpose of 

this meeting was to allow participants to discuss potential differences in their interpretation of 

the presented scenarios, share their reasoning with the group, and evaluate whether the aggregate 

distribution was reasonable and acceptable. Where participants felt they either misinterpreted the 

parameters of the scenario or otherwise felt that their original response was not correct, they 

were encouraged to submit a revised estimate. 

Algorithmic learning 

I used the EM algorithm within Netica to learn the structure of CPTs in the BBN using 

case files, as this algorithm is often faster and more robust to missing data than other options 

(Chen and Pollino 2012). The historical case file was used, with missing data in each case were 

represented as complete uncertainty in the corresponding row of the CPT. Algorithmic learning 

was used to learn the majority of CPTs in the BBN (Figure 3). 
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Climate scenario projections 

 I created additional case files using modeled data from future climate projections. Future 

climate projections included four time horizons: 2021 – 2040, 2041 – 2060, 2061 – 2080, and 

2081 – 2100, as well as four shared socio-economic pathways (SSPs) for each time horizon 

describing the potential emissions trajectory and alternative socio-economic development, from 

1–2.5, 2–4.5, 3–7.0, and 5–8.5 (O’Neill et al. 2014). SSP 1 represents the greatest reduction in 

emissions and largest mitigation strategy, while SSP 5 represents a worst-case scenario where 

emissions continue to rise unabated, and no mitigation policies are implemented. In total, sixteen 

future climate projections were used to inform the future case files.  

Bayesian belief network analysis 

I analyzed each scenario of both model structures using two methods described in Marcot 

(2012). I used sensitivity to findings analysis to evaluate the degree of uncertainty in the belief 

about the target node that is explained by other variables. This was performed within the Netica 

software and measures the mutual information, or reduction in entropy, of the node describing 

the abundance of sea lampreys above a barrier that is associated with a finding at each variable in 

the model. I also performed a one-way sensitivity analysis, which measures the degree of 

influence of each variable in the model on the target node (Marcot 2012; Conroy and Peterson 

2013). Each node is varied, one at a time, from its minimum to maximum state, and the variation 

in the probability of each state of the target node is recorded. One-way sensitivity analysis is 

important for understanding which variables are driving less than optimal barrier performance, 

while sensitivity to findings analysis is important for understanding where a lack of 

understanding around certain variables is limiting certainty in the performance of a barrier.  
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Barrier analysis 

 I used the case files describing the state of knowledge about each variable under average 

climate conditions from 2000 to 2020, and for the sixteen future climate scenarios describing the 

four twenty-year average climates under each of the four emissions scenarios (Appendix B). 

Historical conditions were based on precipitation and air temperature monthly averages from 

2000 to 2020, while future scenarios used twenty-year monthly precipitation and air temperature 

averages from downscaled future climate projections estimated from the CMIP6 climate models 

(Eyring et al. 2016). Projected climate data were spatially associated with the local or network 

catchment containing each barrier, depending on the scale at which it was relevant. Air 

temperature values relevant to each barrier were averaged across each local catchment, while 

precipitation values were averaged across each network catchment. I evaluated each case file 

using Netica’s “Process Case File” tool to obtain the posterior probabilities of each state of the 

target node. This allowed me to compare each probability of each state of the target node and its 

change across each climate scenario. Barriers were evaluated based on the proportion of the 

posterior probability distribution within each state, from the best-case state (0 to 25 sea lampreys 

passed) to the worst-case state (more than 250 sea lampreys passed). I also created two metrics to 

classify a high-risk barrier: a conservative metric that included barriers with a greater than 50% 

mean monthly probability of passing more than 25 sea lampreys, and a stricter metric that 

included those with a greater than 10% mean monthly probability of passing more than 250 sea 

lampreys. To account for the uncertainty in the true CPT of the effective barrier height, I 

averaged the posterior distributions across the three scenarios of each model structure. To do 

this, I compiled the posterior probability distributions for each barrier in each climate scenario 

into tables organized by the barrier and climate scenario and averaged across the month to obtain 



 29 

an aggregate posterior probability distribution across each twenty-year period. To account for 

uncertainty in how future global greenhouse gas emissions will affect the trajectory of climate 

change, I compared each of the four emissions scenarios and selected a reasonable intermediate 

scenario based on the observed response, and how each was described in Eyring et al. (2016). To 

minimize the uncertainty caused by sea lamprey upstream migration across each lake and over 

time, I created a case file for each climate scenario that fixed the spawning run size in each 

stream at 500 in each month. This fixed-stream abundance scenario was used to isolate the 

changes in the physical permeability and rate of upstream passage caused by changes in climatic 

conditions, which may be a more useful metric for barrier success given current uncertainties.  

Peer review 

Without data on the abundance of sea lampreys passing each barrier in each month, there 

are no quantitative methods of estimating the categorization accuracy of each model to determine 

which model structure is most correct. Therefore, I utilized a combination of the two methods of 

sensitivity analysis, and an informal peer review process to begin to validate the usefulness of 

each BBN. I sent reviewers written documentation of the model to help explain both the 

components of a BBN and the structure and purpose of the specific BBN, a brief video 

walkthrough that narrated and described the components and structure of the specific BBN, 

several images of the model, a table containing the posterior beliefs of each barrier at each 

climate range, and the results of the one-way sensitivity analyses (Appendix D). Reviewers 

evaluated the model structure, causal relationships, results of the sensitivity analyses, and several 

lists of barriers for two scenarios to determine if they were valid given the reviewer’s 

understanding of the outlined processes. 
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 CHAPTER 3: 

RESULTS OF THE EVALUATION OF VARIABLES INFLUENCING SEA LAMPREY 

PASSAGE OVER BARRIERS  

Expert elicitation  

As a whole, participants had higher self-reported confidence about the probability of 

upstream movement of spawning adults under varying conditions. Participants were noticeably 

less confident in their understanding of variation in the proportion of spawning adults that would 

pass over a control barrier under different conditions. This appeared to be from a lack of 

agreement as to the effect of spawning adult body length on the capacity to successfully pass 

over a barrier. Participants agreed that more precision required further details on the hydraulic 

conditions at the barrier, including the depth of tailwater flowing over the barrier face. After 

discussion, no participants opted to revise and resubmit their responses, and the original 

responses were used directly to generate the CPTs for upstream movement and barrier 

permeability (Appendix F). 

Model evaluation 

 Model complexity was measured using the number of nodes, links, and the total number 

of conditional probabilities, as described in Marcot (2012). The base model was made up of a 

single network with 18 nodes, 28 links, and contained a total of 5,645 conditional probabilities. 

The full model was made up of a single network, with 26 nodes, connected by 42 links, and 

contained a total of 16,218 conditional probabilities. Under complete uncertainty, there was more 

variation in the posterior distribution of the three scenarios of the base model structure, than 

those of the full model structure, while the variation among barriers was similar regardless of the 

model and scenario (Table 1). Averaged across scenarios, the full model structure estimated a 
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0.2847 probability of passing 25 – 250 sea lampreys and a 0.0588 probability of passing > 250 

sea lampreys, while the base model structure estimated a 0.2786 probability of passing 25 – 250 

sea lampreys and a 0.0551 probability of passing > 250. 

Table 1: Mean and standard deviation of the posterior distribution of each state of upstream 

passage for each model and scenario across all barriers. 

Model and scenario P(<25) P(25-250) P(>250) 

Base Model V1 0.6458 (0.2415) 0.2850 (0.1784) 0.0692 (0.0702) 

Base Model V2 0.6989 (0.2193) 0.2589 (0.1776) 0.0422 (0.0458) 

Base Model V3 0.6541 (0.2226) 0.2920 (0.1772) 0.0539 (0.0502) 

Full Model V1 0.6571 (0.22598) 0.2847 (0.1702) 0.0582 (0.0618) 

Full Model V2 0.6529 (0.22967) 0.2860 (0.1718) 0.0608 (0.0633) 

Full Model V3 0.6589 (0.22396) 0.2837 (0.1688) 0.0575 (0.0616) 

 

Sensitivity to findings 

 A sensitivity to findings analysis was performed in Netica for each scenario of the base 

model and full model on the ultimate node representing the abundance of sea lampreys upstream 

of a barrier (the target node), and comparisons across variants and between models are shown 

(Table 2). The upper limit for the target node’s largest state was unbounded, and an artificial 

upper limit of 15,000 sea lampreys was used for the analysis. Nodes were ranked by the 

proportion of entropy reduction observed in the target node given complete certainty about each 

other node. Nodes with > 1% reduction in entropy were taken to be the main drivers of target 

node uncertainty, while nodes below 1% were taken to be responsible for only trace amounts of 

target node uncertainty. Low values of entropy reduction indicate that there is little uncertainty in 

the values of the described node, or a small influence on the target node, and further knowledge 

of that node would do little to provide greater target node certainty. For all scenarios of both the 

base and full model structure, uncertainty in the abundance of sea lampreys in the stream, and the 

proportion that would successfully reach the barrier, were responsible for > 31% and > 52% of 
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total target node uncertainty respectively. The other main drivers of target node uncertainty, the 

physical permeability of a barrier, the proportion of successful upstream movement, the size of 

the network catchment area, the mean monthly streamflow, and the lake basin, were ranked the 

same among all model and scenario combinations. In the three scenarios of the full model 

structure, adult length was also responsible for a > 1.6% reduction in entropy. The remaining 

variables were responsible for < 1% of the entropy reduction, with the five lowest-ranked 

variables responsible for < 0.001%, suggesting that these variables were less important for 

accurate categorization of barrier effectiveness. 
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Table 2. Results of a sensitivity analysis of the Bayesian belief network models created to predict 

the effects of climate change on sea lamprey passage above barriers in the Great Lakes. Each 

column represents either a base (i.e., less complex) or full (i.e., more complex) model 

framework, and one of three scenarios (V1–V3) of the model that describe uncertainty in the 

effective barrier height. Sensitivity is measured as the percentage of entropy reduction observed 

upon a finding at each node. The target node is the abundance of spawning-phase sea lamprey 

upstream of a barrier. 

Node Base V1 Base V2 Base V3 Full V1 Full V2 Full V3 

Abundance at barrier 52.30 52.30 52.30 53.40 53.50 53.20 

Abundance in stream 32.10 32.10 32.20 31.90 31.90 31.80 

Catchment area 5.24 5.23 5.23 5.20 5.26 5.25 

Barrier permeability 6.74 6.69 6.66 5.07 5.02 5.11 

Upstream movement 3.36 3.36 3.35 3.03 3.00 3.01 

Lake 2.50 2.50 2.50 2.25 2.27 2.27 

Streamflow 1.61 1.60 1.59 1.72 1.73 1.73 

Adult total length NA NA NA 1.69 1.72 1.70 

Month 0.96 0.96 0.96 0.72 0.74 0.73 

Barrier slope 0.03 0.05 0.04 0.53 0.50 0.55 

Air temperature 0.70 0.97 0.97 0.44 0.46 0.46 

Stream temperature 0.96 0.96 0.96 0.42 0.43 0.45 

Lake temperature  NA NA NA 0.20 0.22 0.22 

Precipitation 0.34 0.34 0.34 0.18 0.19 0.19 

Vertical drop height 0.70 0.71 0.75 0.15 0.15 0.16 

Precipitation frequency NA NA NA 0.10 0.10 0.10 

Distance to barrier 0.05 0.05 0.05 0.05 0.06 0.06 

Stream velocity 0.05 0.02 0.02 0.03 0.03 0.03 

Adult weight NA NA NA 0.00 0.02 0.02 

Runoff/Rainfall Ratio NA NA NA 0.01 0.01 0.01 

Vegetation cover NA NA NA 0.00 0.00 0.00 

Stream bankfull area 0.00 0.00 0.00 0.00 0.00 0.00 

Impervious surface cover NA NA NA 0.00 0.00 0.00 

Flowline slope  NA NA NA 0.00 0.00 0.00 

Barrier total height 0.00 0.00 0.00 0.00 0.00 0.00 

 

One-way sensitivity analysis 

One-way sensitivity analysis, or sensitivity to parameters analysis, was separately 

conducted for each of the three scenarios of both the base and full models, and each of the three 

states of the node representing the abundance of sea lampreys upstream of a barrier. Analysis of 

the best-case state of the target node (< 25 sea lampreys passed) for each combination of scenario 

and model ranked the same nodes as being the most influential, while the rank-ordered variables 
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were different when measuring the sensitivity to the worst-case state (> 250 sea lampreys 

passed).  

In the base model V2, the default posterior probability distribution of the target node 

under complete uncertainty and across all barriers, was estimated to be a 65.8% probability of < 

25 sea lampreys passed, a 29.0% probability of 25 – 250 passed, and a 5.2% probability of > 250 

passed. In all scenarios, the posterior probability of passing < 25 sea lampreys < 25% given the 

worst-case state of the abundance present at the barrier and in the stream, while the probability 

was > 75% given the best-case state of the abundance present at the barrier and in the stream, the 

physical permeability of the barrier, the proportion of sea lampreys that reach the barrier, the 

network catchment area, the lake basin, the mean monthly streamflow, and the mean monthly 

stream temperature (Figure 7). In all scenarios of the base model the posterior probability of > 

250 sea lampreys passing above a barrier was nearly 0% given the best-case state of the 

abundance present at the barrier and in the stream, the physical permeability of the barrier, and 

the proportion of sea lampreys that reach the barrier, while the probability was greater than 10% 

only under the worst-case state of the abundance present at the barrier and in the stream, the 

physical permeability of the barrier, the vertical drop between the barrier crest and the tailwater 

flow, and the air temperature (Figure 8). 

In the full model V2, the default posterior probability distribution under complete 

uncertainty was estimated to be a 61.2% probability of < 25 sea lampreys passed, a 31.1% 

probability of 25 – 250 passed, and a 7.7% probability of > 250 passed. In all scenarios, the 

posterior probability of passing < 25 sea lampreys was < 25% given the worst-case state of the 

abundance present at the barrier and in the stream, while the probability was > 75% given the 

best-case state of the abundance present at the barrier and in the stream, the physical 
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permeability of the barrier, the proportion of sea lampreys that reach the barrier, and the network 

catchment area (Figure 9). In all scenarios, the posterior probability of the worst-case state of the 

target node was > 20% given the worst-case state of the abundance present at the barrier and in 

the stream, as well as the physical permeability of the barrier and was nearly 0% given the best-

case state of the abundance present at the barrier and in the stream, the physical permeability of 

the barrier, and the proportion of sea lampreys that reach the barrier (Figure 10). 

Peer review 

Three reviewers participated in the informal review of the model structure and 

preliminary results. Each reviewer considered a different facet of the materials they were 

presented with, and there was little overlap in the content of their feedback. In their review of the 

model and the results of the one-way sensitivity analysis, Reviewer 1 focused on how the model 

may be improperly categorizing the risk of flood at each barrier and the lack of model sensitivity 

to the month, given that many variables in the model could be expected to vary monthly. While 

Reviewer 1 found it difficult to interpret the results of the table of posterior beliefs for each 

barrier, this reviewer mentioned the negligible difference among lakes across each climate 

projection. Reviewer 2 focused on the ecological relevance of the model and preliminary results, 

and thought the model overall represented a reasonable first attempt at addressing the research 

questions. This reviewer considered that the monthly time scale of the model is likely blunting 

the influence of variables relevant over the course of several days. They also mentioned that 

there is a knowledge gap around the difference between the consequences of passing two adult 

sea lampreys as opposed to more than 250, but that it is out of the point of current research. 

Lastly, they identified the larval survey data as a potential validation dataset, and that it would be 

useful to recategorize the barriers in each case file to match the internal Barrier Task Force 
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designations that are based on the years between inspections. Reviewer 3 considered the model 

to be redundant in several places, including nodes around air, lake, and stream temperatures, as 

well as both adult sea lamprey length and weight. They also thought that some important 

variables were not being included, such as groundwater influence on stream temperature and 

streamflow influence on upstream movement of adult sea lampreys. They also mentioned that the 

model only included several proposed explanations for variation in barrier effectiveness and 

neglected to include variables relating to more fine-scale characteristics of each barrier and their 

hydraulic conditions. Commenting on the model results, Reviewer 3 acknowledged that they did 

not have sufficient expertise to evaluate the posterior probabilities for each barrier, but identified 

a lack of any noticeable variation attributed to each climate projection and a clustering of the 

posterior beliefs for each barrier into two groupings. The reviewers’ concerns were important 

critiques of the BBNs, but the structural changes and additions to each BBN were largely beyond 

available time and data. I instead addressed the feedback from each reviewer by incorporating 

their concerns in the discussion of both the implications and limitations of this work, and suggest 

them as considerations for future research. 
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Figure 7. Results of a one-way sensitivity analysis of the base model V2 for the best-case state of 

abundance of sea lampreys above a barrier. Each node is varied from the worst-case to the best-

case state, and the change in the state probability of the target node is recorded. The best-case 

state of a node is considered that which maximizes the best-case state of the target node, and vice 

versa. 
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Figure 8. Results of a one-way sensitivity analysis of the base model V2 for the worst-case state 

of abundance of sea lampreys above a barrier. Each node is varied from the worst-case to the 

best-case state, and the change in the state probability of the target node is recorded. The best-

case state of a node is considered that which minimizes the worst-case state of the target node, 

and vice versa. 
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Figure 9. Results of a one-way sensitivity analysis of the full model V2 for the best-case state of 

abundance of sea lampreys above a barrier. Each node is varied from the worst-case to the best-

case state, and the change in the state probability of the target node is recorded. The best-case 

state of a node is considered that which maximizes the best-case state of the target node, and vice 

versa. 
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Figure 10. Results of a one-way sensitivity analysis of the full model V2 for the worst-case state 

of abundance of sea lampreys above a barrier. Each node is varied from the worst-case to the 

best-case state, and the change in the state probability of the target node is recorded. The best-

case state of a node is considered that which minimizes the worst-case state of the target node, 

and vice versa.  
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CHAPTER 4: 

RESULTS OF THE ASSESSMENT OF SEA LAMPREY BARRIER PASSAGE IN 

HISTORICAL AND FUTURE CLIMATES 

Evaluation of high-risk barriers 

 Barriers evaluated with the base model did not exhibit large decreases in barrier 

effectiveness across projected future climates using either measure of high-risk. Using the 

conservative metric, approximately 13% of barriers in the Lake Michigan and Superior 

watersheds were considered high-risk under 2000 – 2020 climate conditions, while in the Lake 

Huron or Ontario watersheds, more than 30% of barriers were included under 2000 – 2020 

climate conditions (Table 3; Figure 11). However, when transitioned from historical climate data 

to the 2021 – 2040 climate projection, far fewer barriers were considered high-risk with almost 

no change across further climate projections. Using the stricter metric this trend was largely the 

same, although the proportion of barriers in the Lake Superior watershed increased slightly 

(Table 4, Figure 12). Data about each node in the future climate case files were much more 

uncertain, and so this pattern is likely a result of poor categorization of these uncertain nodes 

under limited data. While the Lake Erie watershed had a high proportion of barriers considered 

high-risk using both metrics in each set of climate conditions, results from these barriers were 

considered unreliable due to large uncertainties in spawning migration timing and magnitude.  

 There was little change in barrier effectiveness over time under the full model, and the 

proportion of high-risk barriers in each Great Lake watershed was lower than that estimated from 

the base model. Using the conservative risk metric, fewer than 8% of barriers in the Lake 

Michigan watershed were included under historical climatic conditions, but this increased to 

between 10-12% for the remainder of the century (Table 5; Figure 13). More than 25% of 
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barriers in the Lake Huron watershed were included under historical conditions, increasing to 

27% for the remainder of the century. Under historical conditions, 27% of the barriers in the 

Lake Ontario watershed were included, but this decreased to approximately 13% of barriers for 

the remainder of the century. Approximately 15% of the barriers in the Lake Superior watershed 

were included under both historical conditions and future climate projections. Almost all barriers 

in the Lake Erie watershed were included under both historical conditions and future climate 

projections. Using the strict metric of risk, the Lake Michigan watershed had fewer than 4% of 

barriers included under both historical conditions and future climate projections. Approximately 

18% of barriers in the Lake Huron watershed were included under historical conditions, which 

increased slightly under each future climate projection. In the Lake Ontario watershed, 

approximately 13% of barriers were included under both historical conditions and future climate 

projections. In the Lake Superior watershed, fewer than 8% of barriers were included under 

historical conditions, which increased to more than 11% for the remainder of the century. In the 

Lake Erie watershed, approximately 28% of barriers were included under historical conditions, 

which increased to more than 85% under the projected climates of 2021 – 2040, 2041 – 2060, 

and 2081 – 2100, then decreased to 70% in 2081 – 2100. 

Table 3. Estimated percentage of lowermost barriers within each Great Lake watershed with a 

greater than 50% mean monthly probability of passing more than 25 sea lampreys across each 

twenty-year average climate, averaged across the three scenarios of the base model. Each climate 

projection used the SSP 3-7.0 emissions scenario. 

Range of 

climate data 

Erie  

(n=127) 

Michigan  

(n=105) 

Huron 

(n=51) 

Ontario 

(n=37) 

Superior 

(n=52) 

2000 – 2020 64.57 13.33 31.37 32.43 13.46 

2021 – 2040 66.93 10.50 5.88 21.62 3.85 

2041 – 2060 73.23 10.50 5.88 21.62 3.85 

2061 – 2080 67.72 10.50 5.88 21.62 3.85 

2081 – 2100 74.02 10.50 5.88 18.92 3.85 
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Table 4. Estimated percentage of lowermost barriers within each Great Lake watershed with a 

greater than 10% mean monthly probability of passing more than 250 sea lampreys across each 

twenty-year average climate, averaged across the three scenarios of the base model. Each climate 

projection used the SSP 3-7.0 emissions scenario. 

Range of 

climate data 

Erie  

(n=127) 

Michigan  

(n=105) 

Huron 

(n=51) 

Ontario 

(n=37) 

Superior 

(n=52) 

2000 – 2020 44.88 10.50 17.65 29.73 1.92 

2021 – 2040 59.84 10.50 5.88 18.92 3.85 

2041 – 2060 62.99 10.50 5.88 18.92 3.85 

2061 – 2080 60.63 10.50 5.88 18.92 3.85 

2081 – 2100 60.63 10.50 5.88 18.92 3.85 

 

Table 5. Estimated percentage of lowermost barriers within each Great Lake watershed with a 

less than 50% mean monthly probability of passing more than 25 sea lampreys across each 

twenty-year average climate, averaged across the three scenarios of the full model. Each climate 

projection used the SSP 3-7.0 emissions scenario. 

Range of 

climate data 

Erie 

(n=127) 

Michigan 

(n=105) 

Huron 

(n=51) 

Ontario 

(n=37) 

Superior 

(n=52) 

2000 – 2020 99.21 7.62 25.49 27.03 15.38 

2021 – 2040 96.85 12.38 27.45 13.51 15.38 

2041 – 2060 97.64 11.43 27.45 13.51 15.38 

2061 – 2080 96.86 12.38 27.45 13.51 15.38 

2081 – 2100 97.64 10.48 27.45 13.51 15.38 

 

Table 6. Estimated percentage of lowermost barriers within each Great Lake watershed with a 

greater than 10% mean monthly probability of passing more than 250 sea lampreys across each 

twenty-year average climate, averaged across the three scenarios of the full model. Each climate 

projection used the SSP 3-7.0 emissions scenario. 

Range of 

climate data 

Erie 

(n=127) 

Michigan 

(n=105) 

Huron 

(n=51) 

Ontario 

(n=37) 

Superior 

(n=52) 

2000 – 2020 27.56 3.81 17.65 13.51 7.69 

2021 – 2040 88.98 3.81 19.61 13.51 11.54 

2041 – 2060 85.83 3.81 19.61 13.51 11.54 

2061 – 2080 88.61 3.81 19.61 13.51 11.54 

2081 – 2100 70.08 3.81 19.61 13.51 11.54 
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Figure 11. Location of the lowermost barriers within each Great Lake watershed with a greater than 50% mean monthly probability of 

passing more than 25 sea lampreys across each twenty-year average climate, averaged across the three scenarios of the base model. 

SSP 3-7.0 was used as the emissions scenario for each future climate projection. 
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Figure 12. Location of the lowermost barriers within each Great Lake watershed with a greater than 10% mean monthly probability of 

passing more than 250 sea lampreys across each twenty-year average climate, averaged across the three scenarios of the base model. 

SSP 3-7.0 was used as the emissions scenario for each future climate projection. 
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Figure 13. Location of the lowermost barriers within each Great Lake watershed with a greater than 50% mean monthly probability of 

passing more than 25 sea lampreys across each twenty-year average climate, averaged across the three scenarios of the full model. 

SSP 3-7.0 was used as the emissions scenario for each future climate projection. 
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Figure 14. Location of the lowermost barriers within each Great Lake watershed with a greater than 10% mean monthly probability of 

passing more than 250 sea lampreys across each twenty-year average climate, averaged across the three scenarios of the full model. 

SSP 3-7.0 was used as the emissions scenario for each future climate projection. 
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Comparisons across climate projections 

 Both model structures resulted in variation among months of the spawning migration that 

appeared to greatly surpass variation among climate projections (Figures 15, 16). The base 

model resulted in little variation in the posterior probability distributions among months other 

than May and June (Figure 15), which represent the peak months of sea lamprey spawning 

activity. This peak was larger for barriers in the Lake Huron and Lake Ontario watersheds. In the 

Lake Ontario watershed, the probability of passing > 25 sea lampreys was > 50% in May, 

surpassing the probability of passing < 25 sea lampreys, and in the Lake Huron watershed, the 

probability of passing > 25 sea lampreys was almost equally as likely as passing < 25. For both 

lakes, the probability of passing > 25 sea lampreys decreased in all future climate projections. In 

the Lake Superior and Lake Michigan watersheds, while the months with the highest probability 

of passing > 25 and > 250 still appeared to track the months of peak spawning activity, this effect 

appeared weaker than for barriers in the Lake Huron or Lake Ontario watersheds. For barriers in 

the Lake Erie watershed, uncertainty in migration timing and magnitude left the model unable to 

effectively categorize the state of abundance upstream of a barrier, and the probability of each 

state had very little variation across climate projections. Overall, the base model did not 

characterize any substantial variation among months, or among climate projections, for barriers 

in any of the Great Lakes watersheds.  

The full model resulted in much more noticeable variation among lakes and months of 

the spawning season (Figure 16).  The probability of < 25 sea lampreys passing was lowest in 

May for the watersheds of Lakes Ontario, Michigan, and Huron, and in June in the Lake 

Superior watershed. In May, when the spawning migration is typically at its peak, the probability 

of 25 – 250 sea lampreys passing above barriers in the watersheds of Lakes Ontario and Huron 
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was greater than the probability of < 25. This was particularly true for Lake Ontario barriers, 

where the probability of passing > 250 sea lampreys was nearly 20%. A secondary peak was 

observed in the probabilities of both 25 – 250 and > 250 sea lampreys passing in August in the 

2081 – 2100 projection for barriers in the Lake Ontario watershed. In most scenarios, the 

probabilities of passing 25 – 250 or > 250 sea lampreys were consistent among months in the 

Lake Michigan watershed, except for a small peak in August of the probability of passing 25 – 

250 sea lampreys in the 2081 – 2100 projection, and those in the Lake Superior watershed had   

> 30% probability of passing 25 – 250 sea lampreys in both May and June. For barriers in the 

Lake Erie watershed, uncertainty in migration timing and magnitude left the model unable to 

effectively categorize the state of abundance upstream of a barrier, and the probability of each 

state varied little across climate projections. Excepting barriers in the Lake Ontario and Lake 

Michigan watersheds, the full model described considerable variation among months and among 

each Great Lake watershed, but little variation due to climate change. Where variation among 

climate projections existed, it was in the form of a secondary peak in the probability of passing 

25 – 250 and > 250 sea lampreys in August, and only in the 2081 – 2100 climate projections. 

For both model structures, varying the emissions scenario of each climate projection had 

little effect on the probability of each target node state of both model structures, even in the 2081 

– 2100 climate projection where any difference between the effects of each emissions scenario 

would be the greatest (Figures 17, 18). SSP 1 and SSP 2 in both model structures showed very 

little change. The probability of passing 25 – 250 sea lampreys increased in August for barriers 

in the Lake Ontario and Lake Michigan watersheds under SSP 3, while the probabilities of 

passing 25 – 250 and > 250 sea lampreys increased in August in all Great Lake watersheds under 

SSP 5.  
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Figure 15. Estimated probability of each state of the abundance of sea lampreys upstream of a barrier across the months of the 

spawning season for barriers in each Great Lake watershed across each twenty-year climate average, averaged across the three 

scenarios of the base model. SSP 3-7.0 was used as the emissions scenario for each future climate projection. 
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Figure 16. Estimated probability of each state of the abundance of sea lampreys upstream of a barrier across the months of the 

spawning season for barriers in each Great Lake watershed across each twenty-year climate average, averaged across the three 

scenarios of the full model. SSP 3-7.0 was used as the emissions scenario for each future climate projection. 
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Figure 17. Estimated probability of each state of the abundance of sea lampreys upstream of a barrier across the months of the 

spawning season for barriers in each Great Lake watershed across each emissions scenario (SSP) for the projected climate of 2081 – 

2100, averaged across the three scenarios of the base model. 
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Figure 18. Estimated probability of each state of the abundance of sea lampreys upstream of a barrier across the months of the 

spawning season for barriers in each Great Lake watershed across each emissions scenario (SSP) for the projected climate of 2081 – 

2100, averaged across the three scenarios of the full model. 
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Fixed-abundance scenario 

With the number of spawning-phase sea lampreys in the stream fixed at 500 throughout 

the year, variation in the abundance upstream of a barrier is solely a factor of the physical 

permeability of a barrier, and the proportion of sea lampreys in the stream that reach the barrier. 

With 500 spawners present, the target node can be interpreted as the proportion that would pass 

the barrier, with the states of the target node interpreted as 0 – 5% passed, 5 – 50% passed, and 

50 – 100% passed. The base model showed remarkably little variation among barriers of each 

Great Lake watershed and over each set of climatic conditions (Figures 19, 20). For nearly every 

scenario, there was a single transition in May to a decreased probability of less than 5% passage, 

and an increased probability of passing both 5 – 50% and more than 50% of sea lampreys 

(Figure 19). The full model characterized noticeable differences among barriers of each Great 

Lake watershed, but relatively little variation across climatic conditions (Figure 20). While 

barriers in the watersheds of Lakes Erie, Michigan, and Superior had an increased probability of 

greater than 50% passage from June onwards, barriers in the watersheds of Lakes Huron and 

Ontario had an increased probability of less than 5% passage from June onwards. For the Lake 

Ontario watershed in particular, the results suggest that barriers are very likely to be passed 

during April and May, but much less likely to be passed afterward. In the 2081 – 2100 climate 

projection, barriers in this watershed had a large increase in the probability of between 5 – 50% 

passage in August. 
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Figure 19. Base model V2 estimated probabilities of each state of the abundance of sea lampreys upstream of a barrier across the 

months of the spawning season for barriers in each Great Lake watershed across each twenty-year climate average, given a fixed 

abundance of 500 spawning-phase sea lampreys in the stream. SSP 3-7.0 was used as the emissions scenario for each future climate 

projection. 
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Figure 20. Full model V2 estimated probabilities of each state of the abundance of sea lampreys upstream of a barrier across the 

months of the spawning season for barriers in each Great Lake watershed across each twenty-year climate average, given a fixed 

abundance of 500 spawning-phase sea lampreys in the stream. SSP 3-7.0 was used as the emissions scenario for each future climate 

projection. 
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CHAPTER 5: 

DISCUSSION 

This project sought to understand the drivers of variation in the failure of barriers to 

perfectly block upstream migrating sea lampreys, and the degree to which climate change may 

affect these variables. I hypothesized that climate, landscape, hydrology, physiology, and 

phenology would all be influential in categorizing this variation and that where the sea lamprey 

spawning run overlaps with warming stream temperatures and higher streamflows, the 

probability of passage would increase. The results of this project suggest that the abundance of 

spawning-phase sea lampreys in a stream, and the resulting proportion that arrive at the barrier, 

are both the most critical drivers of the abundance of sea lampreys passing a barrier and the most 

important sources of uncertainty in evaluating the effectiveness of individual barriers. The effect 

of these two variables outweighed other variables, including the permeability of a barrier given 

reductions in the vertical drop at the barrier face. Landscape variables, including those assumed 

to influence the probability of a flood, were less important drivers; however, the strength of these 

relationships is uncertain. The watersheds of Lakes Ontario and Huron had the highest 

proportion of high-risk barriers under each risk metric, but the risk of passage at barriers in each 

other Great Lake watershed remained largely uncertain. The probability of passing a greater 

number of sea lampreys increased in all watersheds during the months of peak spawning 

migration, which may indicate that the consequences for control would be more severe in 

streams that experience an increase in an earlier or larger spawning run. Varying climatic 

conditions at each time scale did not strongly affect the risk of passage at barriers in most 

projections, except for an increased probability of passing a greater number of sea lampreys in 

August in the 2081 – 2100 climate projection. While these results do not suggest that climate 
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change has a strong influence on barrier passage, knowledge of the spatial and temporal variation 

is ultimately still useful for sea lamprey control. This work represents a framework for 

understanding the effects of climate change on sea lampreys and control barriers that can be 

improved upon given new knowledge and used to inform decisions regarding barrier 

prioritization and the allocation of sea lamprey control effort. 

 With no empirical data for quantitative testing of the accuracy of each model structure, I 

was unable to determine which structure was best able to accurately categorize sea lamprey 

passage over barriers. The base model structure was able to evaluate the sensitivity of the target 

node to important causal variables in the network, and the additional variables included in the 

full model structure did not have a strong influence on the categorization of sea lamprey passage 

of a barrier. As several of the additional variables included in the full model were intended to 

categorize the potential for flooding at each barrier, the lack of sensitivity to these variables was 

unexpected. Potentially, the spatial scale of the model may not have been adequate to capture the 

influence of the landscape on the potential for flooding, and the monthly time scale of the model 

likely resulted in important variation being averaged out. Additionally, as there is certainly 

variation in the propensity of a stream to flood, either the effect of these variables is not being 

captured adequately by the model or there are aspects of flood potential that were not included. 

The additional variables included in the full model may also be important for categorizing sea 

lamprey passage of a barrier, however without the data to complete a robust CPT they are adding 

very little to the current uncertainty structure. Among the three scenarios of each model 

structure, the sensitivity to findings analysis indicated that the variance explained by each 

variable was not affected by uncertainty in the vertical drop height. This was counter to my 

expectations given the large differences between the CPTs representing each scenario, given the 



 59 

evident differences in the permeability of a barrier under flood conditions as opposed to one with 

a 45-centimeter vertical drop. This finding could be the result of an inappropriate method used to 

quantify the three scenarios of the vertical drop, or that the discretization thresholds used to 

describe barrier permeability are obscuring this influence. Additional data will be necessary to 

generate a robust CPT and improve model performance.  

While the influence of the spawning run size and timing in each stream was dominant, 

precipitation, stream temperature, the absolute and effective height of the barrier crest, and all 

landscape descriptors, had a small influence on the number of sea lampreys passed. There are 

several potential explanations for this given my initial hypothesis of the importance of climatic 

and landscape variables to barrier effectiveness. First, these variables are relatively certain at the 

scale of the model, with landscape variables not subject to any change over time and climatic 

variables included as twenty-year monthly averages. This would lead to high categorization 

accuracy and little marginal uncertainty. Their influence on the total abundance upstream of a 

barrier is also likely minimized due to the outsize influence of other variables, particularly those 

that are highly correlated, and the structure of the model and the data available did not allow us 

to precisely estimate the effect of these variables on the spawning run size or monthly 

distribution. Given the current understanding of the effect of temperature and streamflow on sea 

lamprey spawning, this result is counter to expectation (Binder et al. 2010). Greater certainty 

about the influence of climatic variables on sea lamprey passage of barriers could be gained with 

data to precisely categorize the relationship between climatic variables and the monthly 

distribution of the spawning run. Lastly, while a reduction of the vertical drop at a barrier and 

variation in the spawning run were modeled as the primary explanations for variation in barrier 

passage, alternative hypotheses were not modeled. Variables relating to the hydraulic conditions 
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approaching the barrier face, or the presence of native lampreys in streams, were not included 

and may be responsible for additional unexplained variation that could be influenced by climatic 

variables (McLaughlin et al. 2003). 

While BBNs have been shown to make accurate predictions with scarce data and high 

uncertainty (Death et al. 2015; Kaikkonen et al. 2020), there were several CPTs with uninformed 

rows which may have substantially decreased the categorization accuracy of the corresponding 

nodes. The lack of available data describing the abundance of sea lampreys within a stream in 

each month of the spawning season is likely a critical uncertainty in the model. Much of the 

uncertainty about sea lamprey spawning run size and timing appears to come from a lack of 

knowledge about spawning effort under unfavorable conditions, such as extreme flows or water 

temperatures at the limit of their physiological capability. As sea lampreys are highly unlikely to 

spawn in these conditions, traps are not deployed, and no data are collected (McCann et al. 

2018). This issue is especially apparent for barriers in the Lake Erie watershed, where sea 

lamprey production and trapping effort are both low (Mullett et al. 2003). For barriers in the 

Lake Erie watershed, the model was unable to distinguish differences among months due to this 

uncertainty, leading to a higher estimated probability of passing sea lampreys than is likely given 

the low productivity of Lake Erie tributaries.  

I observed few substantial changes in the permeability of barriers or the number of sea 

lampreys passed across each climate projection, my results suggest that unforeseen changes in 

sea lamprey spawning migration are still a potential problem for maintaining adequate control 

pressure with barriers and that better prediction of the consequences of climate change on sea 

lampreys are currently limited by lack of knowledge and available data. While further stream 

monitoring efforts are necessary to better understand the relationship between climate and sea 
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lamprey phenology and physiology, several studies have begun to predict how sea lampreys 

might respond to climate change in the Great Lakes (Rahel and Olden 2008; Cline et al. 2014; 

McCann et al. 2018; Lennox et al. 2020). Current climate models predict warming stream 

conditions and higher precipitation in the winter and spring in more northern Great Lakes 

tributaries, and warmer summers in southern tributaries, with a higher risk of dewatering 

(Cherkauer and Sinha 2010; Byun et al. 2019). Previous work on spawning-phase sea lamprey 

stream entry and rate of upstream movement (Binder and McDonald 2008; Binder et al. 2010; 

McCann et al. 2018) suggests that some sea lampreys enter streams as soon as the stream 

temperature reaches 4˚C with stream entry peaking at 12˚C, whereas trap catches peak at 

approximately 15˚C. Increased discharge was also correlated with increased spawning activity 

(McCann et al. 2018), and could also alter the concentration of larval pheromone (Brant et al. 

2015; Lennox et al. 2020).  Although water temperature is known to be an important predictor of 

the initiation of the sea lamprey spawning migration, it is still thought to be of secondary 

importance compared to the concentration of larval pheromone in the water column (Binder and 

McDonald 2008; Binder et al. 2010; Brant et al. 2015). Future additions to the model could 

include the effect of changing stream temperature and streamflow on the dispersal and 

concentration of larval pheromone. Streams experiencing earlier snowmelt-driven runoff, shorter 

iced-over periods, and higher streamflow could also see earlier stream entry and an increase in 

the proportion of spawning-phase sea lampreys migrating upstream in tributaries (Lennox et al. 

2020). Furthermore, any increase in the number of days with optimal water temperatures for 

spawning activity could also increase the window of opportunity for barrier passage. An 

increased density of adults at the barrier might also increase motivation to pass barriers to 

alleviate habitat limitations. Uncertainty in spawning migration timing may also negatively affect 
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seasonal barrier and trap deployment, further decreasing both control and assessment 

effectiveness. Additionally, warming conditions may shift the distribution of suitable spawning 

habitat northward into previously unsuitable streams, and away from previously productive 

streams. Where streams are becoming prohibitively warm, it is unlikely that upstream migrants 

will travel far upstream, as spawning activity has been shown to decrease steeply at temperatures 

above 15˚C, with activity ceasing above 20˚C (Binder and McDonald 2008; Binder et al. 2010).  

Another limitation of our approach is the granularity of available data versus the scale at 

which a barrier passage event might occur. Although the model was developed to evaluate events 

on a monthly time step, based on climatic and hydrological data resolution, migration events of 

sea lampreys likely occur over several days (Castro-Santos et al. 2017). Future research should 

focus on modeling individual processes, with particular focus on the relevant scale of direct 

effects and indirect interactions with sea lamprey life history. For example, higher streamflow 

will alter the water level of the stream, the concentration of larval pheromone in the water 

column, the water velocity in which spawning-phase sea lampreys must swim against, and the 

substrate composition that affects both spawning and larval habitat, all of which are likely 

influential at different spatial and temporal scales (Lennox et al. 2020). The modular structure of 

BBNs lends itself to providing a probabilistic framework for other sub-models, such as 

individual or cohort-scale models that could precisely estimate upstream movement or barrier 

passage, which could substantially improve our ability to evaluate the effectiveness of barriers. 

Water temperature data for each stream reach containing a barrier were relatively sparse, 

with the most comprehensive data coming from the USGS Water Data for the Nation (U.S. 

Geological Survey 2016), but these data were often not located in or close to the reaches of 

interest. Water temperature data were also available at barriers with traps incorporated, but while 
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usable did not have sufficient spatial extent for my purposes, representing only a small fraction 

of the total barriers and biased towards streams in the state of Michigan. More complete data, 

both historical and modeled projections, would strengthen the relationship between changes in 

climate and potential shifts in sea lamprey phenology and range. The use of level logger data 

describing the water level at several control barriers was limited by the length of time since 

deployment, as well as the majority of the level loggers being placed on barriers in the northern 

Lower Peninsula of Michigan. Lastly, the lack of empirical data to quantify the abundance of sea 

lamprey adults above a barrier limits quantitative validation efforts such as k-fold or leave-one-

out cross-validation. While larval surveys are periodically conducted in stream reaches upstream 

of a barrier, this data only supports that escapement occurred, and does not inform the number of 

spawning-phase sea lampreys passed, nor the conditions under which it occurred (McLaughlin et 

al. 2003). Recent research has shown the power of genetic analysis to estimate the potential 

number of sea lampreys that spawned a cohort (Sard et al. 2020). Further research to understand 

the hydrological and hydraulic conditions that lead to passage, as well as how increasing passage 

of spawning-phase adults is related to observable larval production, would be worthwhile.  

The posterior probability of each state of upstream passage did not vary as much as I 

expected, given the variation in spawning run size, stream conditions, and differences in climate. 

Across all barriers, the average change in monthly precipitation across climate projections was 

between -3.90 mm and 7.35 mm (SD=2.01), while for monthly minimum temperature it was 

between 0.80ºC and 2.78ºC (SD=0.28), and for monthly maximum temperature it was between 

0.79ºC and 1.64ºC (SD=0.19), but this variation was not present in the posterior probability of 

each state. There were substantial differences between the estimates of the two model structures, 

and the full model structure estimated more variation among each Great Lake watershed and 
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month than the base model structure. Given the similarity of both the data included in the 

construction of the model and the similarity of both sensitivity analyses, this was unexpected. 

Despite the small percentage of uncertainty on the target node attributed to the variables that 

were added to the base model structure, they appear to have a substantial influence on barrier 

passage. This is likely due to how the additional nodes and linkages reduced the uncertainty in 

nodes that, in turn, have a strong effect on barrier passage. Comparisons across Great Lake 

watersheds indicated that the Lake Huron and Ontario watersheds contain the highest proportion 

of high-risk barriers, regardless of climate or the risk metric used. Results from the base model 

show a noticeable transition from 2000 – 2020 to 2021 – 2040, followed by little change across 

further climate projections. This does not appear to have an ecological explanation and could 

indicate that the base model is not accurately estimating barrier passage.  

Results from the full model show little change in the proportion of high-risk barriers over 

time. Comparing across each month of the spawning run, there was little change in the 

distribution given future climate projections. Although there was a substantial decrease in barrier 

effectiveness in August in the 2081 – 2100 climate projection, this would be unlikely to affect 

control efforts as it is after the majority of adult sea lampreys have spawned. If the spawning 

migration does shift earlier in the year due to warming streams, less effective barriers in August 

would likely be of even less importance as spawning activity and success would be very low. 

Although there are relatively few barriers in the Lake Superior watershed, those barriers had a 

high probability of passing > 250 sea lampreys in June, which is often the peak of the spawning 

migration in that watershed. If spawning activity increases in more northern streams, such as 

those in the watersheds of Lakes Superior and Huron, then this could be of consequence for 

controlling sea lamprey populations in those lakes. When evaluating barriers in streams that 
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would be conducive to sea lamprey spawning based on hydraulic conditions and bottom 

substrate, but are not currently or regularly producing larvae, efforts should be taken to gauge the 

stream’s suitability for sea lamprey spawning under warmer spring water temperatures.  

Differences in the spawning run size in tributaries across the Great Lakes Basin have 

been previously proposed as a driver of variation in observed larval production upstream of 

barriers (McLaughlin et al. 2003), which is likely to be influenced by climatic variables. 

However, we were unable to address several hypotheses (McLaughlin et al. 2003), including the 

method of attaching a barrier to the streambank, hydraulic characteristics such as water turbidity, 

and the presence and effect of native lamprey, for which comprehensive data were not available. 

Therefore, future research should attempt to address each hypothesis when exploring variation in 

barrier effectiveness. Further data collection should focus on the variables that were found to 

contribute large amounts of uncertainty to the classification of the risk of passage at each barrier, 

as well as influence the number of sea lampreys passed, for a greater understanding of both the 

effectiveness of a barrier and the consequences of passage. Furthermore, while two spawning-

phase sea lampreys are sufficient to infest a stream, little is known about the success of spawning 

after passage. While warming temperatures and more flood-prone streams could drive more sea 

lampreys to attempt passage, this likely comes at an energetic cost that could negatively affect 

spawning success (Castro-Santos et al. 2017), particularly if temperatures rose above the 

optimum for either spawning or egg development. In prioritizing barriers for remediation or 

removal, combining this body of work with separate models to estimate projected shifts in 

suitable sea lamprey spawning habitat due to climate change would be useful for predicting 

barriers that might become more or less essential to the SLCP in the future. Understanding how 
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these climatic changes affect sea lamprey reproductive success, directly and indirectly, is needed 

to maintain sufficient biological control of the species. 

There is little evidence to suggest that the basic structural design of the low-head barrier 

is flawed (McLaughlin et al. 2003, 2007; Lavis et al. 2003), and these structures have been 

remarkably successful at preventing passage. However, small reductions in barrier effectiveness, 

or increases in either the size of the spawning run or the proportion that arrive at a barrier, could 

result in a greater number of sea lampreys overcoming the structure. A small number of 

spawning-phase adults can potentially infest a stream given sufficient larval habitat, and the 

failure of a single, significant control barrier has been shown to lead to a non-linear increase in 

lake-wide abundance (Jensen and Jones 2018). The potential for even marginal reductions in 

barrier effectiveness should be a concern, and further research into the number of spawning-

phase adults needed to infest a stream could be used to set stream-specific thresholds for control 

success. Although this study focused on the effectiveness of barriers at preventing invasive sea 

lampreys from accessing upstream spawning habitat, a similar approach could also be used for 

assessing and improving passage of migratory fish species over human-made and natural 

barriers, including anadromous sea lampreys, a species of conservation concern in their native 

range (Wilkes et al. 2018). This work provides a framework for the creation of a decision-

support tool to aid decision-making under multiple uncertainties, whether in the Great Lakes 

Basin for barrier prioritization and sea lamprey control, or elsewhere for migratory fish 

conservation. 
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APPENDIX A: 

SUMMARY TABLE OF LOWERMOST BARRIER TYPES 

Table 7: Lowermost barriers by type and Great Lake watershed before and after subsetting the 

GLFC list of barriers. 

Lake Name Barrier Type Pre-subset Post-subset 

Erie Channel 2 0 

Erie Culvert 21 9 

Erie Earthen embankment 32 8 

Erie Hydropower 1 0 

Erie Low head sloped concrete (<8ft) 10 8 

Erie Low head steel sheetpile (<8ft) 3 3 

Erie Low head vertical concrete (<8ft) 12 9 

Erie Other 16 5 

Erie Seasonal (lift gate) 2 2 

Erie Seasonal (stoplog) 1 0 

Erie Sloped concrete non-hydropower (>8 ft) 21 16 

Erie Standpipe 91 38 

Erie Vertical concrete non-hydropower (>8 ft) 15 11 

Erie Waterfall 3 1 

Erie Unknown 33 15 

Huron Culvert 19 10 

Huron Earthen embankment 3 1 

Huron Hydropower 6 5 

Huron Low head sloped concrete (<8ft) 6 5 

Huron Low head steel sheetpile (<8ft) 1 0 

Huron Low head vertical concrete (<8ft) 10 8 

Huron Low head vertical concrete (<8ft)/electrical 1 1 

Huron Other 1 1 

Huron Seasonal (lift gate) 3 3 

Huron Seasonal (stoplog) 1 1 

Huron Sloped concrete non-hydropower (>8 ft) 3 2 

Huron Standpipe 10 5 

Huron Vertical concrete non-hydropower (>8 ft) 6 4 

Huron Unknown 8 5 

Michigan Culvert 6 5 

Michigan Earthen embankment 3 2 

Michigan Hydropower 16 12 

Michigan Low head sloped concrete (<8ft) 6 5 
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Table 7 (cont’d) 

Lake Name Barrier Type Pre-subset Post-subset 

Michigan Low head steel sheetpile (<8ft) 7 5 

Michigan Low head vertical concrete (<8ft) 38 30 

Michigan Other 4 2 

Michigan Sloped concrete non-hydropower (>8 ft) 9 7 

Michigan Standpipe 23 14 

Michigan Steel sheetpile non-hydropower (>8ft) 3 3 

Michigan Vertical concrete non-hydropower (>8 ft) 21 18 

Michigan Unknown 3 2 

Ontario Culvert 6 3 

Ontario Earthen embankment 1 1 

Ontario Hydropower 4 4 

Ontario Low head sloped concrete (<8ft) 6 3 

Ontario Low head steel sheetpile (<8ft) 2 0 

Ontario Low head vertical concrete (<8ft) 21 7 

Ontario Seasonal (lift gate) 2 0 

Ontario Seasonal (stoplog) 1 1 

Ontario Sloped concrete non-hydropower (>8 ft) 6 3 

Ontario Standpipe 11 4 

Ontario Steel sheetpile non-hydropower (>8ft) 1 0 

Ontario Vertical concrete non-hydropower (>8 ft) 18 6 

Ontario Waterfall 8 4 

Ontario Unknown 7 1 

Superior Culvert 3 2 

Superior Earthen embankment 1 0 

Superior Hydropower 6 3 

Superior Low head steel sheetpile (<8ft) 1 1 

Superior Low head vertical concrete (<8ft) 22 16 

Superior Other 3 2 

Superior Seasonal (stoplog) 1 0 

Superior Sloped concrete non-hydropower (>8 ft) 1 1 

Superior Standpipe 9 2 

Superior Vertical concrete non-hydropower (>8 ft) 4 4 

Superior Waterfall 24 20 

Superior Unknown 6 1 
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APPENDIX B: 

DATA SOURCES 

Table 8. Full list and description of nodes used between both model structures of the BBN, and source of the data. 

Node name Node description Unit Spatial 

scale 

Temporal scale Source of 

data 

Method used 

to populate 

CPT 

Lake Describes watershed  NA Lake NA NA NA 

Month Describes month NA NA Monthly NA NA 

Catchment area Total drainage area of the upstream 

network catchment 

m2 Network 

catchment 

NA NHDplus V2 NA 

Bankfull area Mean cross-sectional area of the reach 

containing the control barrier 

m2 Reach NA NHDplus V2.1 NA 

Downstream 

mainstem 

distance 

The distance of the mainstem of the 

stream, or shortest traveled distance 

between the barrier and the stream outlet 

km Outlet to 

barrier 

NA NHDplus V2 

High Definition 

NA 

Barrier type Describes the angle of the barrier face NA Barrier NA GLFC list of 

lowermost 

barriers 

NA 

Barrier height 

(absolute) 

The total height of the barrier, not 

accounting for water level 

m Barrier NA GLFC list of 

lowermost 

barriers 

NA 

Vegetation 

cover 

The percentage of vegetated land cover 

(forested, wetland, grassland, scrub, 

etc.) of the network catchment that 

drains to the reach containing the barrier 

% Network 

catchment 

NA NHDplus V2 

modified 

NA 

Impervious 

surface cover 

The percentage of impervious surface 

cover (asphalt, concrete, etc.) of the 

% Network 

catchment 

NA NHDplus V2 

modified 

NA 
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network catchment that drains to the 

reach containing the barrier 

Flowline slope The average slope of the network 

catchment that drains to the reach 

containing the barrier 

degree Network 

catchment 

NA NHDplus V2 

modified 

NA 

Lake 

temperature 

The average monthly lake water 

temperature 

C Lake Monthly NOAA GLERL EM algorithm 

Air temperature The average monthly air temperature C Local 

catchment 

Monthly WorldClim 

V2.1, 5m 

EM algorithm 

Precipitation The average monthly precipitation mm Network 

catchment 

Monthly WorldClim 

V2.1, 5m 

EM algorithm 

Precipitation 

frequency 

The average number of rainy days 

(>1cm) per month 

days Network 

catchment 

Monthly NHDplus V2.1 EM algorithm 

Rainfall/runoff 

ratio 

The average monthly runoff divided by 

the average monthly precipitation of the 

network catchment that drains to the 

reach containing the barrier. 

NA Network 

catchment 

Monthly NHDplus V2.1 EM algorithm 

Mean adult 

weight 

The average annual weight at capture of 

adult sea lampreys 

g Lake Annual SLCP trap catch 

data 

EM algorithm 

Mean adult 

length 

The average annual length at capture of 

adult sea lampreys 

mm Lake Annual SLCP trap catch 

data 

EM algorithm 

Stream 

temperature 

The average monthly water temperature 

of the reach containing a barrier 

C Reach Monthly Estimated from 

air temperature 

EM algorithm 

Streamflow The average monthly streamflow at the 

reach containing a barrier 

m3/s Reach Monthly USGS 

Enhanced 

Runoff Method 

(EROM)  

EM algorithm 

Barrier height 

(effective drop) 

The average vertical drop of the barrier, 

or the distance between the barrier crest 

and the water level 

m Barrier Monthly Level loggers at 

control barriers, 

scenarios 

Multiple 

scenarios 

Stream velocity The average monthly water velocity at 

the reach containing a barrier 

m/s Reach Monthly USGS 

Enhanced 

EM algorithm 
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Runoff Method 

(EROM)  

Barrier 

permeability 

The proportion of spawning-phase sea 

lampreys able to overcome a barrier in 

each month 

% Barrier Monthly Expert 

knowledge 

Expert 

knowledge 

Upstream 

movement 

The proportion of spawning-phase sea 

lampreys able to reach a barrier in each 

month 

% Outlet to 

barrier 

Monthly Expert 

knowledge 

Expert 

knowledge 

Abundance (in 

stream) 

The number of spawning-phase sea 

lampreys present throughout the stream 

in each month 

#  Outlet to 

barrier 

Monthly Calculated from 

stream 

abundance 

model estimates 

and trap catch 

data 

EM algorithm 

Abundance (at 

barrier) 

The number of spawning-phase sea 

lampreys that are present at the barrier 

and available to pass in each month 

#  Barrier Monthly NA Abundance 

(in stream) x 

Upstream 

movement % 

Abundance 

(above barrier) 

The number of spawning-phase sea 

lampreys that escaped and are present 

above a barrier in each month 

# Barrier Monthly NA Abundance 

(at barrier) x 

Barrier 

permeability 

% 
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APPENDIX C: 

EXPERT ELICITATION MATERIAL 
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Figure 21. Scenario 1 of expert elicitation questionnaire about spawning-phase sea lamprey upstream migration. 
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Figure 22. Scenario 2 of expert elicitation questionnaire about spawning-phase sea lamprey upstream migration. 
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Figure 23. Scenario 3 of expert elicitation questionnaire about spawning-phase sea lamprey upstream migration. 
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Figure 24. Scenario 4 of expert elicitation questionnaire about spawning-phase sea lamprey upstream migration. 
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Figure 25. Scenario 5 of expert elicitation questionnaire about spawning-phase sea lamprey upstream migration. 
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Figure 26. Scenario 6 of expert elicitation questionnaire about spawning-phase sea lamprey upstream migration. 
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Figure 27. Scenario 7 of expert elicitation questionnaire about spawning-phase sea lamprey upstream migration. 
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Figure 28. Scenario 8 of expert elicitation questionnaire about spawning-phase sea lamprey upstream migration. 
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Figure 29. Scenario 9 of expert elicitation questionnaire about spawning-phase sea lamprey upstream migration. 
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Figure 30. Scenario 1 of expert elicitation questionnaire about spawning-phase sea lamprey passage over control barriers. 



 85 

 
Figure 31. Scenario 2 of expert elicitation questionnaire about spawning-phase sea lamprey passage over control barriers. 
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Figure 32. Scenario 3 of expert elicitation questionnaire about spawning-phase sea lamprey passage over control barriers. 
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Figure 33. Scenario 4 of expert elicitation questionnaire about spawning-phase sea lamprey passage over control barriers. 
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Figure 34. Scenario 5 of expert elicitation questionnaire about spawning-phase sea lamprey passage over control barriers. 
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Figure 35. Scenario 6 of expert elicitation questionnaire about spawning-phase sea lamprey passage over control barriers. 
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Figure 36. Scenario 7 of expert elicitation questionnaire about spawning-phase sea lamprey passage over control barriers. 
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Figure 37. Scenario 8 of expert elicitation questionnaire about spawning-phase sea lamprey passage over control barriers. 
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APPENDIX D: 

DOCUMENTATION FOR INFORMAL REVIEW OF BAYESIAN BELIEF NETWORK 

Documentation for informal review of Bayesian belief network 

 

Project objectives  

 

The main objective of this project is to develop a Bayesian belief network model (BBN) to evaluate 

the effect of various factors on the effectiveness of a sea lamprey control barrier. As direct 

monitoring of escapement is difficult, our model instead integrates our knowledge of the factors 

responsible for escapement, quantifies these relationships, and hopefully results in a fairly accurate 

representation of the system. Without data on the number of sea lamprey passing each barrier, we 

cannot quantitatively determine the categorization accuracy of the model. Therefore, as part of our 

project, we are conducting an expert review of the model and its components to help ensure that 

model behavior conforms with our best understanding. 

 

Bayesian belief network models 

 

BNs are probabilistic models that graphically represent the conditional independence between 

variables. This type of model is a directed, acyclic graph, with causation flowing in a single 

direction, and is incapable of representing feedback loops. In a BN, each variable is shown as a 

node, and each relationship is shown as a link. A causal node is referred to as a parent node, and 

each node it influences, a child node.  

 

Each node is broken down into a series of discrete states that represent the possible outcomes of 

that node. Continuous variables need to be discretized into “bins” for proper classification. In 

general, we attempt to keep the number of discretized states of a continuous variable to five or 

fewer to improve classification accuracy but this can come with a degree of information loss. These 

states can either be determined by evenly dividing the data into equally sized bins, or based off of 

important ecological or physical thresholds.  

 

Each node is defined by a conditional probability table (CPT) that structures the relationship 

between the child node and its parent nodes, giving the probability of each state under each 

combination of states of the parent nodes. These CPTs form the basis of the model and can be 

completed in a number of ways depending on the complexity of the process and the availability of 

data. It is important to note that these CPTs directly reflect the spatial and temporal resolution and 

extent of the data, and thus there can often be missing or highly uncertain values that represent 

real-world scenarios that are either impossible or infrequent. 

 

In our model, we have a hierarchy of parent nodes that are loosely grouped by the spatial scale at 

which they are influential. Starting with nodes defining the lake basin and the month, we look at 

climate, hydrology, landscape, ecology, and physical barrier characteristics and their effect on the 

state of the abundance of sea lamprey upstream of a barrier. CPTs are completed using several 

methods, including machine-learning algorithms using a series of cases describing the conditions 
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of each barrier in each month, expert knowledge gathered through a structured elicitation process, 

and structural equations representing simpler relationships between nodes.  

 

For a video walkthrough of the model function, please refer to the explanation in 

modelwalkthrough.mp4. 

 

Model review 

 

The primary purpose of this review is to evaluate whether the behavior of the model matches 

experts’ best understanding of the factors that influence the effectiveness of a control barrier, and 

which barriers are likely to be less effective than others over the year. We are using this review as 

a means to validate model behavior, and to that end we’ve provided a series of model outputs 

evaluating both our current best knowledge, and a scenario that attempts to reduce output 

uncertainty by fixing an important node in the model.  

 

Results are in the form of a table of lowermost barriers and their associated probabilities of the 

true state of the abundance upstream of the barrier, including 0 to 25, 25 to 250, and > 250 adult 

sea lamprey. For the first table, these are the mean probabilities of each month of the year, using 

historical data from 2000 – 2020, and projected climate scenarios from 2020 to 2100, while the 

second table reports only the results from the projected climate scenarios.  

 

The first table (barrierranks_fullv2_1.csv) represents our expectations of the abundance of 

spawning adults in each stream in each month, while the second table (barrierranks_fullv2_2.csv) 

specifies a scenario in which each stream and each month are identical in their abundance of 

spawning adults. The latter effectively ignores differences between streams in the total pool of 

spawning adults available to pass a barrier across the year, and solely look at differences between 

barriers that can be attributed to the effectiveness of the barrier and the proportion that would move 

upstream to the barrier. We have also included the results of a one-way sensitivity analysis that 

was performed, looking at the individual influence of each node in the model on the abundance of 

sea lamprey that have passed a barrier. There are several aspects we would request you focus your 

attention on, however more general comments and observations on the model are also welcome.  

 

1. Does the relative influence of each node make sense? Are there variables you would 

think to be more or less influential relative to others? 

 

2. Does the risk of escapement at various barriers make sense for each scenario? For 

each table of barrier risk, does the order make sense for each scenario? 

 

Included files 

 

modelwalkthrough.mp4 – An explanation of the different components of BBNs in general and how 

they function, as well as a brief walkthrough of our specific model. 

 

nodedescription.csv – A spreadsheet with a description of each node in the model, including units, 

scale, data sources, and method of populating the CPT 
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modelstructure_minimized.pdf – An image of the model structure, minimized to more clearly show 

the links between nodes 

 

modelstructure.pdf – An image of the model structure, expanded to show the default belief of each 

node 

 

tornadoplot.png – Tornado plot displaying results of one-way sensitivity analysis in which we 

evaluate the sensitivity of the probability of a large escapement event (> 250 adults) to the range 

of potential values for each other node in the network. The plot shows the range of potential 

probabilities of this escapement event when each node (parameter) shown on the y-axis is varied 

from its minimum to maximum state. 

 

barrierranks_fullV2_1.csv – A table of the estimated probability of escapement at each terminal 

(first blocking) barrier from the U.S side of the GL basin and across each modeled climate 

projection. This is a fairly rough first look, as our categorization accuracy of the abundance of 

adults in the stream in each month varies depending on the lake and month. Where no data exists 

(months or lakes where there is no trap catch data, like January in a tributary of Lake Erie), these 

show perfect uncertainty (a uniform probability of each state of the abundance of passed adults). 

While this helps us be transparent about where we are missing data, it also inflates the probability 

of sea lamprey being in a stream outside the months of the spawning run. 

 

barrierranks_fullV2_2.csv – A table of the estimated probability of escapement at each terminal 

(first blocking) barrier from the U.S side of the GL basin and across each modeled climate 

projection, but with the abundance of adults within each stream in each month fixed to 500 adults. 

Essentially, this is a scenario ignoring spatial and monthly differences in the abundance of adults 

within a stream, focusing just on the permeability of the control barrier and their rate of upstream 

movement. We anticipate this being a more useful scenario to investigate which barriers are 

most/least effective at blockage, but it ignores the more relevant question of where are adults 

passing in numbers likely to lead to significant production.  
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APPENDIX E: 

RESULTS OF EXPERT ELICITATION 

Table 9: Conditional Probability Table describing the relationship between barrier permeability and its parent nodes, ordered by the 

decreasing probability of passing more than 50% of sea lampreys present at the barrier. Rows of the CPT are also labeled with the 

method used to obtain the values, either directly through the expert’s responses, or interpolated from those data. 

Type Water 

Velocity 

Vertical 

Drop 

Adult 

Weight 

Method pLower pModerate pHigh 

sloped 0 to 2 0 to 15 600 to 700 Elicited 0.00116 0.23676 0.76208 

sloped 0 to 2 0 to 15 500 to 600 Elicited 0.00075 0.31240 0.68684 

vertical 0 to 2 0 to 15 600 to 700 Elicited 0.00408 0.33370 0.66221 

sloped 2 to 4 0 to 15 600 to 700 Elicited 0.00026 0.37273 0.62700 

vertical 0 to 2 0 to 15 500 to 600 Elicited 0.00134 0.42951 0.56915 

sloped 0 to 2 0 to 15 400 to 500 Elicited 0.00043 0.44580 0.55377 

vertical 2 to 4 0 to 15 600 to 700 Interpolated 0.00408 0.45108 0.54484 

sloped 2 to 4 0 to 15 500 to 600 Elicited 0.00038 0.56990 0.42972 

vertical 0 to 2 0 to 15 400 to 500 Elicited 0.00130 0.59071 0.40799 

sloped 0 to 2 15 to 30 600 to 700 Elicited 0.01572 0.59263 0.39165 

vertical 2 to 4 0 to 15 500 to 600 Interpolated 0.00134 0.64257 0.35609 

vertical 0 to 2 15 to 30 600 to 700 Interpolated 0.01947 0.64020 0.34033 

sloped 2 to 4 15 to 30 600 to 700 Interpolated 0.01572 0.66205 0.32223 

vertical 2 to 4 15 to 30 600 to 700 Interpolated 0.01947 0.70052 0.28001 

sloped 0 to 2 15 to 30 500 to 600 Elicited 0.00851 0.71507 0.27642 

sloped 2 to 4 0 to 15 400 to 500 Elicited 0.00074 0.76204 0.23722 

vertical 0 to 2 15 to 30 500 to 600 Interpolated 0.00947 0.76147 0.22905 

sloped 0 to 2 15 to 30 400 to 500 Elicited 0.00873 0.79838 0.19289 

vertical 2 to 4 0 to 15 400 to 500 Interpolated 0.00161 0.82362 0.17477 

sloped 2 to 4 15 to 30 500 to 600 Interpolated 0.00851 0.81854 0.17294 
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vertical 2 to 4 15 to 30 500 to 600 Interpolated 0.00947 0.84722 0.14331 

vertical 0 to 2 15 to 30 400 to 500 Interpolated 0.00960 0.84829 0.14211 

sloped 0 to 2 30 to 45 600 to 700 Elicited 0.06386 0.82870 0.10744 

sloped 2 to 4 15 to 30 400 to 500 Interpolated 0.00904 0.90833 0.08263 

vertical 2 to 4 15 to 30 400 to 500 Interpolated 0.00990 0.92922 0.06088 

vertical 0 to 2 30 to 45 600 to 700 Interpolated 0.08177 0.87025 0.04798 

sloped 2 to 4 30 to 45 600 to 700 Interpolated 0.07827 0.87630 0.04543 

vertical 2 to 4 30 to 45 600 to 700 Interpolated 0.08177 0.87875 0.03948 

sloped 0 to 2 30 to 45 500 to 600 Elicited 0.07263 0.89626 0.03111 

sloped 0 to 2 >45 600 to 700 Elicited 0.15234 0.83448 0.01318 

sloped >4 0 to 15 600 to 700 Elicited 0.07057 0.91677 0.01266 

vertical 0 to 2 30 to 45 500 to 600 Interpolated 0.08103 0.90859 0.01038 

vertical >4 0 to 15 600 to 700 Interpolated 0.07410 0.91685 0.00905 

sloped 0 to 2 30 to 45 400 to 500 Elicited 0.14049 0.85123 0.00827 

sloped 2 to 4 30 to 45 500 to 600 Interpolated 0.08014 0.91202 0.00783 

sloped >4 15 to 30 600 to 700 Interpolated 0.08487 0.90863 0.00650 

vertical 2 to 4 30 to 45 500 to 600 Interpolated 0.08103 0.91248 0.00649 

sloped >4 0 to 15 400 to 500 Elicited 0.35494 0.63925 0.00581 

vertical >4 15 to 30 600 to 700 Interpolated 0.08834 0.90701 0.00465 

sloped >4 0 to 15 500 to 600 Elicited 0.15299 0.84364 0.00337 

sloped 0 to 2 >45 500 to 600 Elicited 0.19368 0.80409 0.00223 

vertical 0 to 2 30 to 45 400 to 500 Interpolated 0.14836 0.84951 0.00212 

sloped >4 15 to 30 400 to 500 Interpolated 0.36026 0.63772 0.00202 

vertical >4 0 to 15 400 to 500 Interpolated 0.35569 0.64247 0.00183 

vertical >4 0 to 15 500 to 600 Interpolated 0.15380 0.84445 0.00175 

sloped >4 15 to 30 500 to 600 Interpolated 0.15981 0.83883 0.00136 

sloped 2 to 4 30 to 45 400 to 500 Interpolated 0.14788 0.85088 0.00123 

sloped >4 30 to 45 600 to 700 Interpolated 0.14274 0.85634 0.00092 

vertical 2 to 4 30 to 45 400 to 500 Interpolated 0.14863 0.85047 0.00091 
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vertical 0 to 2 >45 600 to 700 Interpolated 0.22067 0.77850 0.00083 

sloped 2 to 4 >45 600 to 700 Interpolated 0.21774 0.78148 0.00079 

vertical >4 15 to 30 500 to 600 Interpolated 0.16061 0.83868 0.00070 

sloped 0 to 2 >45 400 to 500 Elicited 0.29314 0.70617 0.00069 

vertical 2 to 4 >45 600 to 700 Interpolated 0.22067 0.77865 0.00068 

vertical >4 30 to 45 600 to 700 Interpolated 0.14598 0.85336 0.00066 

vertical >4 15 to 30 400 to 500 Interpolated 0.36101 0.63835 0.00064 

sloped >4 30 to 45 500 to 600 Interpolated 0.21982 0.78012 0.00006 

vertical 0 to 2 >45 500 to 600 Interpolated 0.25776 0.74221 0.00003 

vertical >4 30 to 45 500 to 600 Interpolated 0.22056 0.77941 0.00003 

sloped >4 30 to 45 400 to 500 Interpolated 0.44928 0.55069 0.00003 

sloped 2 to 4 >45 500 to 600 Interpolated 0.25706 0.74292 0.00003 

vertical 2 to 4 >45 500 to 600 Interpolated 0.25776 0.74222 0.00002 

sloped >4 >45 600 to 700 Interpolated 0.27179 0.72820 0.00002 

vertical >4 30 to 45 400 to 500 Interpolated 0.44993 0.55006 0.00001 

vertical 0 to 2 >45 400 to 500 Interpolated 0.39722 0.60278 0.00000 

sloped 2 to 4 >45 400 to 500 Interpolated 0.39688 0.60312 0.00000 

vertical 2 to 4 >45 400 to 500 Interpolated 0.39740 0.60260 0.00000 

sloped >4 >45 500 to 600 Interpolated 0.36802 0.63198 0.00000 

sloped >4 >45 400 to 500 Interpolated 0.60893 0.39107 0.00000 

vertical >4 >45 500 to 600 Elicited 0.94092 0.05908 0.00000 

vertical >4 >45 600 to 700 Elicited 0.94092 0.05908 0.00000 

vertical >4 >45 400 to 500 Elicited 0.98784 0.01216 0.00000 

 

Table 10: Conditional Probability Table describing the relationship between the proportion of sea lampreys that migrate upstream to a 

barrier and its parent nodes, ordered by the decreasing probability of more than 50% of sea lampreys successfully migrating upstream 
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to a barrier. Rows of the CPT are also labeled with the method used to obtain the values, either directly through the expert’s responses, 

or interpolated from those data. 

Abundance 

(stream) 

Stream 

temperature 

Distance to 

barrier 

Adult 

length 

Method pLower pModerate pHigh 

>=1000 5 to 15 <5 150 to 200 Elicited 0.00000 0.00623 0.99377 

>=1000 5 to 15 <5 100 to 150 Elicited 0.00000 0.00630 0.99370 

>=1000 5 to 15 <5 200 to 250 Elicited 0.00000 0.00699 0.99301 

>=1000 5 to 15 5 to 25 200 to 250 Elicited 0.00000 0.02982 0.97018 

>=1000 5 to 15 5 to 25 150 to 200 Elicited 0.00000 0.03435 0.96565 

100 to 1000 5 to 15 <5 200 to 250 Elicited 0.00000 0.03992 0.96008 

100 to 1000 5 to 15 <5 150 to 200 Elicited 0.00000 0.04302 0.95698 

100 to 1000 5 to 15 <5 100 to 150 Elicited 0.00000 0.04813 0.95187 

>=1000 5 to 15 5 to 25 100 to 150 Elicited 0.00000 0.05573 0.94427 

100 to 1000 5 to 15 5 to 25 200 to 250 Interpolated 0.00000 0.06199 0.93801 

100 to 1000 5 to 15 5 to 25 150 to 200 Interpolated 0.00000 0.07010 0.92990 

<100 5 to 15 <5 200 to 250 Elicited 0.00000 0.08096 0.91903 

<100 5 to 15 <5 150 to 200 Elicited 0.00000 0.08808 0.91192 

100 to 1000 5 to 15 5 to 25 100 to 150 Interpolated 0.06092 0.03456 0.90452 

<100 5 to 15 <5 100 to 150 Elicited 0.00000 0.09728 0.90272 

<100 5 to 15 5 to 25 200 to 250 Interpolated 0.00000 0.10209 0.89791 

<100 5 to 15 5 to 25 150 to 200 Interpolated 0.00000 0.11388 0.88612 

<100 5 to 15 5 to 25 100 to 150 Interpolated 0.06092 0.08127 0.85781 

>=1000 15 to 25 <5 200 to 250 Elicited 0.00003 0.15423 0.84574 

>=1000 15 to 25 <5 150 to 200 Elicited 0.00000 0.16372 0.83628 

>=1000 15 to 25 5 to 25 200 to 250 Interpolated 0.00003 0.17368 0.82629 

>=1000 5 to 15 25 to 100 200 to 250 Elicited 0.00000 0.18094 0.81906 

100 to 1000 15 to 25 <5 200 to 250 Interpolated 0.00003 0.18228 0.81769 

>=1000 15 to 25 <5 100 to 150 Elicited 0.00000 0.18581 0.81419 

>=1000 15 to 25 5 to 25 150 to 200 Interpolated 0.00000 0.18738 0.81261 
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100 to 1000 15 to 25 <5 150 to 200 Interpolated 0.00000 0.19468 0.80532 

100 to 1000 15 to 25 5 to 25 200 to 250 Interpolated 0.00003 0.20108 0.79889 

>=1000 5 to 15 25 to 100 150 to 200 Elicited 0.00000 0.20805 0.79195 

<100 15 to 25 <5 200 to 250 Interpolated 0.00003 0.21724 0.78273 

100 to 1000 15 to 25 5 to 25 150 to 200 Interpolated 0.00000 0.21747 0.78253 

100 to 1000 15 to 25 <5 100 to 150 Interpolated 0.00000 0.22008 0.77992 

100 to 1000 5 to 15 25 to 100 200 to 250 Interpolated 0.00000 0.22631 0.77369 

>=1000 15 to 25 5 to 25 100 to 150 Interpolated 0.06092 0.16540 0.77369 

<100 15 to 25 <5 150 to 200 Interpolated 0.00001 0.23259 0.76740 

<100 15 to 25 5 to 25 200 to 250 Interpolated 0.00003 0.23523 0.76474 

<100 15 to 25 5 to 25 150 to 200 Interpolated 0.00001 0.25431 0.74569 

100 to 1000 15 to 25 5 to 25 100 to 150 Interpolated 0.06092 0.19796 0.74112 

100 to 1000 5 to 15 25 to 100 150 to 200 Interpolated 0.00000 0.25895 0.74105 

<100 5 to 15 25 to 100 200 to 250 Interpolated 0.00000 0.25938 0.74061 

<100 15 to 25 <5 100 to 150 Interpolated 0.00000 0.26035 0.73965 

>=1000 5 to 15 25 to 100 100 to 150 Elicited 0.00000 0.28802 0.71198 

<100 5 to 15 25 to 100 150 to 200 Interpolated 0.00000 0.29384 0.70616 

<100 15 to 25 5 to 25 100 to 150 Interpolated 0.06092 0.23623 0.70285 

>=1000 15 to 25 25 to 100 200 to 250 Interpolated 0.00003 0.31843 0.68154 

100 to 1000 15 to 25 25 to 100 200 to 250 Interpolated 0.00003 0.34103 0.65894 

100 to 1000 5 to 15 25 to 100 100 to 150 Interpolated 0.06092 0.29100 0.64809 

>=1000 15 to 25 25 to 100 150 to 200 Interpolated 0.00000 0.35241 0.64759 

<100 15 to 25 25 to 100 200 to 250 Interpolated 0.00003 0.36920 0.63077 

100 to 1000 15 to 25 25 to 100 150 to 200 Interpolated 0.00000 0.37638 0.62361 

<100 5 to 15 25 to 100 100 to 150 Interpolated 0.06092 0.32446 0.61462 

<100 15 to 25 25 to 100 150 to 200 Interpolated 0.00001 0.40574 0.59425 

>=1000 15 to 25 25 to 100 100 to 150 Interpolated 0.06092 0.38474 0.55434 

100 to 1000 15 to 25 25 to 100 100 to 150 Interpolated 0.06092 0.40807 0.53101 

<100 15 to 25 25 to 100 100 to 150 Interpolated 0.06092 0.43549 0.50359 
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>=1000 >=25 <5 100 to 150 Elicited 0.00863 0.90524 0.08614 

>=1000 >=25 5 to 25 100 to 150 Interpolated 0.06879 0.84936 0.08185 

100 to 1000 >=25 <5 100 to 150 Interpolated 0.00863 0.92377 0.06760 

>=1000 >=25 <5 150 to 200 Elicited 0.00742 0.92781 0.06476 

100 to 1000 >=25 5 to 25 100 to 150 Interpolated 0.06880 0.86696 0.06424 

>=1000 >=25 <5 200 to 250 Elicited 0.00499 0.93085 0.06416 

<100 >=25 <5 100 to 150 Interpolated 0.00863 0.92726 0.06411 

>=1000 >=25 5 to 25 150 to 200 Interpolated 0.00742 0.92965 0.06293 

>=1000 >=25 5 to 25 200 to 250 Interpolated 0.00499 0.93232 0.06268 

<100 >=25 5 to 25 100 to 150 Interpolated 0.06880 0.87028 0.06092 

>=1000 >=25 25 to 100 100 to 150 Interpolated 0.06879 0.87256 0.05865 

100 to 1000 >=25 <5 200 to 250 Interpolated 0.00502 0.94215 0.05283 

100 to 1000 >=25 <5 150 to 200 Interpolated 0.00743 0.94009 0.05248 

>=1000 >=25 25 to 100 200 to 250 Interpolated 0.00499 0.94330 0.05170 

100 to 1000 >=25 5 to 25 200 to 250 Interpolated 0.00502 0.94336 0.05162 

100 to 1000 >=25 5 to 25 150 to 200 Interpolated 0.00743 0.94158 0.05100 

<100 >=25 <5 200 to 250 Interpolated 0.00503 0.94440 0.05057 

>=1000 >=25 25 to 100 150 to 200 Interpolated 0.00742 0.94243 0.05015 

<100 >=25 <5 150 to 200 Interpolated 0.00743 0.94256 0.05001 

<100 >=25 5 to 25 200 to 250 Interpolated 0.00503 0.94556 0.04941 

<100 >=25 5 to 25 150 to 200 Interpolated 0.00743 0.94398 0.04860 

100 to 1000 >=25 25 to 100 100 to 150 Interpolated 0.06880 0.88518 0.04603 

<100 >=25 25 to 100 100 to 150 Interpolated 0.06880 0.88755 0.04365 

100 to 1000 >=25 25 to 100 200 to 250 Interpolated 0.00502 0.95240 0.04257 

<100 >=25 25 to 100 200 to 250 Interpolated 0.00503 0.95422 0.04075 

100 to 1000 >=25 25 to 100 150 to 200 Interpolated 0.00743 0.95193 0.04064 

<100 >=25 25 to 100 150 to 200 Interpolated 0.00743 0.95384 0.03873 

>=1000 <5 <5 200 to 250 Elicited 0.16255 0.80993 0.02752 

>=1000 <5 5 to 25 200 to 250 Interpolated 0.16255 0.81056 0.02689 



 101 

>=1000 <5 <5 150 to 200 Elicited 0.17568 0.79998 0.02433 

>=1000 <5 5 to 25 150 to 200 Interpolated 0.17568 0.80067 0.02364 

>=1000 <5 <5 100 to 150 Elicited 0.19251 0.78512 0.02237 

>=1000 <5 25 to 100 200 to 250 Interpolated 0.16255 0.81527 0.02218 

>=1000 <5 5 to 25 100 to 150 Interpolated 0.23675 0.74200 0.02126 

>=1000 <5 25 to 100 150 to 200 Interpolated 0.17568 0.80547 0.01884 

>=1000 <5 25 to 100 100 to 150 Interpolated 0.23675 0.74802 0.01523 

100 to 1000 <5 <5 100 to 150 Interpolated 0.19878 0.79970 0.00152 

100 to 1000 <5 <5 200 to 250 Interpolated 0.16627 0.83226 0.00146 

100 to 1000 <5 5 to 25 100 to 150 Interpolated 0.24247 0.75609 0.00145 

<100 <5 <5 100 to 150 Interpolated 0.19878 0.79978 0.00144 

100 to 1000 <5 5 to 25 200 to 250 Interpolated 0.16627 0.83230 0.00143 

<100 <5 <5 200 to 250 Interpolated 0.16627 0.83232 0.00140 

<100 <5 5 to 25 100 to 150 Interpolated 0.24247 0.75616 0.00137 

<100 <5 5 to 25 200 to 250 Interpolated 0.16627 0.83236 0.00137 

100 to 1000 <5 <5 150 to 200 Interpolated 0.18108 0.81764 0.00129 

100 to 1000 <5 5 to 25 150 to 200 Interpolated 0.18108 0.81767 0.00125 

<100 <5 <5 150 to 200 Interpolated 0.18108 0.81769 0.00122 

<100 <5 5 to 25 150 to 200 Interpolated 0.18108 0.81773 0.00119 

100 to 1000 <5 25 to 100 200 to 250 Interpolated 0.16627 0.83255 0.00118 

100 to 1000 <5 25 to 100 100 to 150 Interpolated 0.24247 0.75650 0.00104 

100 to 1000 <5 25 to 100 150 to 200 Interpolated 0.18108 0.81793 0.00100 

<100 <5 25 to 100 200 to 250 Elicited 0.62685 0.37315 0.00000 

<100 <5 25 to 100 150 to 200 Elicited 0.64205 0.35795 0.00000 

<100 <5 25 to 100 100 to 150 Elicited 0.70297 0.29703 0.00000 
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APPENDIX F: 

RESULTS OF ONE-WAY SENSITIVITY ANALYSIS 

 
Figure 38. Results of a one-way sensitivity analysis of the base model V1 for the worst-case state 

of abundance of sea lampreys above a barrier. Each node is varied from the worst-case to the 

best-case state, and the change in the state probability of the target node is recorded. The best-

case state of a node is considered that which minimizes the worst-case state of the target node, 

and vice versa. 
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Figure 39. Results of a one-way sensitivity analysis of the base model V1 for the best-case state 

of abundance of sea lampreys above a barrier. Each node is varied from the worst-case to the 

best-case state, and the change in the state probability of the target node is recorded. The best-

case state of a node is considered that which maximizes the best-case state of the target node, and 

vice versa. 
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Figure 40. Results of a one-way sensitivity analysis of the base model V3 for the worst-case state 

of abundance of sea lampreys above a barrier. Each node is varied from the worst-case to the 

best-case state, and the change in the state probability of the target node is recorded. The best-

case state of a node is considered that which minimizes the worst-case state of the target node, 

and vice versa. 
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Figure 41. Results of a one-way sensitivity analysis of the base model V3 for the best-case state 

of abundance of sea lampreys above a barrier. Each node is varied from the worst-case to the 

best-case state, and the change in the state probability of the target node is recorded. The best-

case state of a node is considered that which maximizes the best-case state of the target node, and 

vice versa. 
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Figure 42. Results of a one-way sensitivity analysis of the full model V1 for the worst-case state 

of abundance of sea lampreys above a barrier. Each node is varied from the worst-case to the 

best-case state, and the change in the state probability of the target node is recorded. The best-

case state of a node is considered that which minimizes the worst-case state of the target node, 

and vice versa. 
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Figure 43. Results of a one-way sensitivity analysis of the full model V1 for the best-case state of 

abundance of sea lampreys above a barrier. Each node is varied from the worst-case to the best-

case state, and the change in the state probability of the target node is recorded. The best-case 

state of a node is considered that which maximizes the best-case state of the target node, and vice 

versa. 
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Figure 44. Results of a one-way sensitivity analysis of the full model V3 for the worst-case state 

of abundance of sea lampreys above a barrier. Each node is varied from the worst-case to the 

best-case state, and the change in the state probability of the target node is recorded. The best-

case state of a node is considered that which minimizes the worst-case state of the target node, 

and vice versa. 
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Figure 45. Results of a one-way sensitivity analysis of the full model V1 for the best-case state of 

abundance of sea lampreys above a barrier. Each node is varied from the worst-case to the best-

case state, and the change in the state probability of the target node is recorded. The best-case 

state of a node is considered that which maximizes the best-case state of the target node, and vice 

versa.
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