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ABSTRACT 

Chapter 1 Resource managers frequently are tasked with mitigating or reversing adverse 

effects of invasive species through management policies and actions. In Lake Superior, of the 

Laurentian Great Lakes, invasive sea lamprey populations are suppressed to protect valuable fish 

stocks. However, the relationship between choice of long-term control strategy and the future 

chance of achieving the suppression target is unclear. Using a 60+ year time-series of 

suppression effort and monitoring data from 50 assessment sites located on Lake Superior 

tributaries, we developed a Bayesian state-space model to forecast the probability of suppressing 

lamprey below the suppression target. With annual application of lampricide (i.e., lamprey-

specific pesticide) at historical mean levels, we forecasted a 15% chance of achieving the Lake 

Superior sea lamprey suppression target in 2040. Increasing lampricide effort and/or 

supplementing lampricide control with age-1 recruitment reduction increased suppression 

chance. Annual application of the maximum historical lampricide effort resulted in a 50% 

predicted chance of achieving the target, annual application of the mean historic lampricide 

effort plus a 40% reduction in recruitment resulted in a 54% chance, and the maximum amount 

of effort considered (maximum historic lampricide and 60% reduction in recruitment) resulted in 

a 94% chance. We developed a simulation model from a robust, long-term monitoring dataset 

that improves understanding of why long-term sea lamprey suppression objectives have been 

difficult to achieve in Lake Superior. Furthermore, the model provides a means to gauge efficacy 

of sea lamprey control policy and action scenarios based on forecasted chance of achieving the 

suppression target. Creating processes for iteratively refining our forecasting model with 

stakeholder and technical-expert input and integration with a decision analysis framework could 

strengthen the link between ecological knowledge obtained from long-term monitoring and 

invasive sea lamprey management. 

Chapter 2 Quantifying fish spatial recruitment dynamics at the sibling group offers a 

powerful methodology for understanding density-dependent and environmental drivers of 

recruitment. We propose a continuous-time multistate modeling framework that combines 

sibship and abundance estimation datasets to estimate mean sibling group size, sibling group size 

process error, environmental and density-dependent effects on sibling group size, dispersal, and 

mortality rate. Geographic states in the model consist of discrete habitat patches connected 

through dispersal. Simulations were used to investigate the influence of sampling processes and 



 
 

mean sibling group size on parameter estimation accuracy and precision for our proposed 

modeling framework. Mean sibling-group size, environmental effects on recruitment, and 

dispersal rate among habitat patches could be estimated with high accuracy under a wide range 

of sampling conditions, including imprecise out-of-model estimates of capture probability, 

subsampling within habitat patches (extrapolating density estimates to habitat abundance using 

area expansion), and subsampling among habitat patches. Density-dependent effects on 

recruitment and process error tended to be estimated with lower accuracy than other model 

parameters, though accuracy improved as sibling group size increased and sampling intensity 

increased. The main contribution of this work is a flexible quantitative modeling framework for 

conducting power analyses and parameterizing mechanistic models of recruitment dynamics in 

spatially structured fish populations with empirical sibship data. 

Chapter 3 A major aim of invasive species management is to enact Integrated Pest 

Management (IPM) principles. However, operationalizing IPM can be challenging due to 

ecological and values-driven uncertainties. We applied decision analysis to develop a 

collaborative adaptive management framework that enables effective consideration of the 

societal and environmental consequences of control tactic selection and use decisions for 

invasive sea lamprey (Petromyzon marinus) in North America’s Laurentian Great Lakes. We 

developed a multi-level objective hierarchy that included both localized management and multi-

stream coordination fundamental objectives, conducted a feasibility analysis that constrained 

alternatives to those with high probability of social acceptance and technical success, and 

quantified expected outcomes of alternatives in terms of multi-stream coordination objectives 

(minimize costs and maximize learning about efficacy of novel sea lamprey control strategies). 

Optimal deployment configurations for scenarios that favored maximize learning over minimize 

costs consisted of a more diverse portfolio of control tactics compared to scenarios that favored 

cost effectiveness, which demonstrates the sensitivity of sea lamprey control tactic selection and 

use decisions to values-driven uncertainty. Iterative application of our collaborative adaptive 

management framework could support social learning and cross-scale linkages if ideas about 

multi-stream coordination and internal validity of invasive sea lamprey management practices 

can be exchanged in a trusting environment. Collaborative adaptive management frameworks 

capable of enabling such social learning may be broadly useful for operationalizing IPM in 

heterogeneous social-ecological landscape.
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PREFACE 

The chapters in this dissertation were drafted as stand-alone manuscripts that have 

been/will be submitted for publication in peer-reviewed journals. First-person plural pronouns are 

used within the body of the chapters because multiple co-authors will be credited in publication. 

  



v 
 

TABLE OF CONTENTS 

INTRODUCTION ...........................................................................................................................1 

REFERENCES .....................................................................................................................4 

CHAPTER 1. FORECASTING SUPPRESSION OF INVASIVE SEA LAMPREY IN LAKE 

SUPERIOR ......................................................................................................................................6 

REFERENCES ................................................................................................................... 26 

CHAPTER 2. A MODELING FRAMEWORK FOR QUANTIFYING SPATIAL 

RECRUITMENT DYNAMICS USING ABUNDANCE ESTIMATION AND SIBSHIP 

ANALYSIS .................................................................................................................................... 33 

REFERENCES ................................................................................................................... 59 

CHAPTER 3. A COLLABORATIVE ADAPTIVE MANAGEMENT FRAMEWORK FOR 

SELECTION AND USE OF INVASIVE SPECIES CONTROL TACTICS ................................ 66 

REFERENCES ................................................................................................................... 96 

CONCLUSION ............................................................................................................................ 102 

APPENDIX A: LAKE SUPERIOR SEA LAMPREY POPULATION DYNAMICS MODEL 

DETAIL ....................................................................................................................................... 104 

APPENDIX B: LAKE SUPERIOR SEA LAMPREY POPULATION DYNAMICS MODEL 

PARAMETERS ........................................................................................................................... 106 

APPENDIX C: LAKE SUPERIOR SEA LAMPREY POPULATION DYNAMICS MODEL 

POST-POSTERIOR CHECKING METHODS AND RESULTS ............................................... 110 

APPENDIX D: SEA LAMPREY CONTROL TACTICE FEASIBILITY ASSESSMENT AND 

COST MODEL DETAIL ............................................................................................................. 113



1 
 

INTRODUCTION 

Invasive species are one of the largest direct drivers of ecosystem change and can 

negatively affect human well-being (Pyšek and Richardson, 2010). While preventative measures 

that limit establishment and spread of invasive species are crucial for grappling with this global 

problem, suppression or eradication can help reverse or alleviate societal and ecological damage 

caused by established invasive populations (Baker and Bode, 2021; Lambin et al., 2020). 

Achievement of these desired effects through invasive species management is usually not 

straightforward; management decisions involving invasive species are often challenged by 

multiple sources of uncertainty (e.g., abundance levels, population dynamics, spatial locations) 

and are made in pursuit of multiple objectives, requiring appraisal of collateral damage and 

opportunity-cost tradeoffs (Dobiesz et al., 2018; Fenichel and Hansen, 2010). Mathematical 

models of population dynamics and control offer a value-added tool for invasive species 

management by providing probabilistic measures of predicted suppression or eradication success 

that can be weighed against tradeoffs associated with a particular management action and can be 

continually updated as new information becomes available (Tiberti et al., 2021; van Poorten et 

al., 2019). However, population dynamics modeling by itself offers little guidance for evaluating 

tradeoffs among multiple invasive species management objectives. Decision analysis helps 

practitioners decompose problems into key components, account for multiple objectives, foster 

group deliberation, and identify desirable action alternatives (Hemming et al., 2022). Combined 

applications of population dynamics modeling and decision analysis may build capacity to 

engage with complex invasive species management challenges and opportunities. 

The construction of navigable canals in the late 1900s that bypassed natural barriers 

between the Atlantic Ocean and the Great Lakes basin allowed sea lamprey (Petromyzon 

marinus) to invade the Great Lakes and become established by 1938 (Docker et al., 2021). Sea 

lamprey live primarily burrowed in sediment for 2 or more years, undergo metamorphosis, then 

outmigrate into the Great Lakes (Applegate, 1950; Bergstedt and Swink, 1995). Semelparous 

adults return to tributaries to spawn but, lacking natal philopatry, redistribute widely among 

Great Lakes tributaries. These life history traits lead to widespread production of parasitic 

juvenile sea lamprey, each capable of damaging valuable fishes by consuming approximately a 

kilogram of host-fish blood during their lifespan (Jorgensen and Kitchell, 2005; Madenjian et al., 

2003). Prior to efforts to control their densities in the Great Lakes, sea lamprey parasitism 
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contributed to significant abundance declines of native lake trout (Salvelinus namaycush) 

populations and limited efficacy of fish stocking for lake trout conservation and development of 

recreational salmonid fisheries (Dann and Schroeder, 2003; Muir et al., 2012). 

Success in controlling invasive sea lamprey in the Great Lakes traces back to the 1954 

Convention on Great Lakes Fisheries and the formation of the Great Lakes Fishery Commission 

(GLFC). The 1954 bi-national treaty and the GLFC mobilize funding from the United States and 

Canada for sea lamprey control in the Great Lakes. By 1980, integrated pest management (IPM) 

principles began to influence sea lamprey control practices and a strategic vision for allocating 

these funds (Sawyer, 1980). Sea lamprey control decisions often have high degrees of 

uncertainty, require consideration of conflicting values systems, and necessitate tradeoffs among 

multiple objectives. IPM provides clarity on how to address these complexities through “… a 

decision support system for the selection and use of pest control tactics, singly or harmoniously 

coordinated into a management strategy, based on cost/benefit analyses that take into account the 

interests of and impacts on producers, society, and the environment” (Kogan, 1998). However, 

applying IPM to sea lamprey control is challenging. Implementing IPM requires both an 

understanding of the target species’ life history and ecology and fine-tuned institutional 

structures and communication pathways for effective consideration of the societal and 

environmental consequences of control tactic selection and use decisions (Arora and Dhawan, 

2012). Scientists, practitioners, and policy makers have confronted these challenges for decades 

and, in doing so, have updated and refined the science and practice of applying IPM to invasive 

sea lamprey control in the Great Lakes (Christie and Goddard, 2003; Sawyer, 1980). Forward-

looking analyses and institutional reviews from the 3rd Sea Lamprey International Symposium 

(2019) suggest that continued success in delivering sea lamprey control in the complex and ever-

changing Great Lakes social-ecological system may depend on continued effort to better 

understand and overcome barriers to applying IPM (McLaughlin et al., 2021). 

The objective of my dissertation was to advance the science of applying IPM to sea 

lamprey control in the Great Lakes using population dynamics modeling and decision analysis. 

In Chapter 1, Lake Superior adult sea lamprey trapping data and control effort records (1953-

2019) and a Bayesian state-space population dynamics model provide the basis for generating 

probabilistic forecasts of sea lamprey control outcomes under alternate hypothetical control 

effort scenarios. In Chapter 2, I develop an analytical framework for using combined genetic 
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pedigree analysis (a method that uses genetic markers for relationship estimation) and abundance 

estimation datasets to resolve demographics of spatially structured fish populations. The sea 

lamprey control program launched an integrated genetic pedigree analysis and conventional 

fisheries survey monitoring program in 2020 that spans 13 tributaries in the Upper Great Lakes 

(Lewandoski et al., 2021). My analytical framework combined with this novel dataset offers a 

promising avenue for learning about the cryptic early-life history of sea lamprey. These 

innovations in sea lamprey population dynamics modeling advance the science of applying IPM 

to sea lamprey control by providing quantitative tools capable of using ecological monitoring 

data to make probabilistic predictions of sea lamprey control outcomes. 

In Chapter 3, I synthesize a collaborative application of decision analysis that was 

motivated by the decision support needs for an ongoing management-scale experiment (the Sea 

Lamprey Supplemental Control Initiative http://www.glfc.org/supplemental-controls.php). This 

work culminated in an adaptive management framework that enables overlapping decision-

making processes occurring at the localized and multi-system coordination levels. This work 

advanced the science of applying IPM to sea lamprey control by developing a decision support 

framework that can be iteratively applied to refine how achievement of multiple objectives 

related to environmental and societal consequences of sea lamprey control (maximizing sea 

lamprey control, minimizing non-target effects, minimizing collateral damage, minimizing cost, 

and maximizing learning) are considered in sea lamprey control decisions. 

  

http://www.glfc.org/supplemental-controls.php
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CHAPTER 1. FORECASTING SUPPRESSION OF INVASIVE SEA LAMPREY IN 

LAKE SUPERIOR 

Abstract 

Resource managers frequently are tasked with mitigating or reversing adverse effects of 

invasive species through management policies and actions. In Lake Superior, of the Laurentian 

Great Lakes, invasive sea lamprey populations are suppressed to protect valuable fish stocks. 

However, the relationship between choice of long-term control strategy and the future chance of 

achieving the suppression target is unclear. Using a 60+ year time-series of suppression effort 

and monitoring data from 50 assessment sites located on Lake Superior tributaries, we developed 

a Bayesian state-space model to forecast the probability of suppressing lamprey below the 

suppression target. With annual application of lampricide (i.e., lamprey-specific pesticide) at 

historical mean levels, we forecasted a 15% chance of achieving the Lake Superior sea lamprey 

suppression target in 2040. Increasing lampricide effort and/or supplementing lampricide control 

with age-1 recruitment reduction increased suppression chance. Annual application of the 

maximum historical lampricide effort resulted in a 50% predicted chance of achieving the target, 

annual application of the mean historic lampricide effort plus a 40% reduction in recruitment 

resulted in a 54% chance, and the maximum amount of effort considered (maximum historic 

lampricide and 60% reduction in recruitment) resulted in a 94% chance. We developed a 

simulation model from a robust, long-term monitoring dataset that improves understanding of 

why long-term sea lamprey suppression objectives have been difficult to achieve in Lake 

Superior. Furthermore, the model provides a means to gauge efficacy of sea lamprey control 

policy and action scenarios based on forecasted chance of achieving the suppression target. 

Creating processes for iteratively refining our forecasting model with stakeholder and technical-

expert input and integration with a decision analysis framework could strengthen the link 

between ecological knowledge obtained from long-term monitoring and invasive sea lamprey 

management. 

Introduction 

Invasive species are one of the largest direct drivers of ecosystem change and can 

negatively affect human well-being (Pyšek and Richardson, 2010). While preventative measures 

that limit establishment and spread of invasive species are crucial for grappling with this global 

problem, suppression or eradication can help reverse or alleviate societal and ecological damage 
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caused by established invasive populations (Baker and Bode, 2021; Lambin et al., 2020). 

Achievement of these desired effects through invasive species management is usually not 

straightforward; management decisions involving invasive species are often challenged by 

uncertainty and necessitate appraisal of collateral damage and opportunity cost tradeoffs 

(Dobiesz et al., 2018; Fenichel and Hansen, 2010). Mathematical models of population dynamics 

and control offer a value-added tool for invasive species management by providing probabilistic 

measures of predicted suppression or eradication success that can be weighed against tradeoffs 

associated with a particular management action (Tiberti et al., 2021; van Poorten et al., 2019). 

Time-series analytic techniques provide the foundation for building population management 

forecasting models from long-term monitoring datasets (Shea et al., 1998). Additional 

information on vital rates from short-term studies of the population of interest (Shea and Kelly, 

1998), studies of other representative populations (Jensen et al., 2009), expert elicitation 

(Johnson et al., 2017), or a combination of these sources (Govindarajulu et al., 2005) provide the 

means to develop forecasting models with stage or age structure and control tactics targeting 

multiple life stages (Shea and Kelly, 1998; Vélez-Espino et al., 2008). Bayesian approaches can 

combine multiple sources of information into a common statistical framework and allow for 

seamless building of forecasting models (with robust consideration of uncertainty) from the 

posterior distribution of process-based model elements. Hobbs et al. (2015) suggested that 

Bayesian forecasting approaches are versatile for evaluating population management challenges, 

including management of invasive species, and noted that the probabilistic output from these 

approaches is well suited to evaluations of alternate management actions within decision analysis 

frameworks. Indeed, applications of Bayesian forecasting approaches range from consideration 

of how management actions influence Brucellosis prevalence in Yellowstone National Park 

bison (Bison bison) (Hobbs et al., 2015), feasibility of sterilization as a management tool for 

reducing white-tailed deer (Odocoileus virginianus) density (Raiho et al., 2015), to the influence 

of harvest policy on Eurasian lynx (Lynx lynx) abundance (Andrén et al., 2020). 

Lake Superior, of the North American Great Lakes, supports valuable populations of lake 

trout (Salvelinus namaycush) that have been the target of extensive conservation and 

management efforts undertaken to mitigate anthropogenic threats, including depredation by 

invasive sea lamprey (Petromyzon marinus). Lake Superior is the largest freshwater lake by 

surface area in the world. It is a glacial lake formed during the Pleistocene; the earliest 
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zoogeographically significant lake in the current Lake Superior basin was formed roughly 12000 

years ago (Bailey and Smith, 1981). Lake trout inhabiting Lake Superior differentiated into 

multiple morphotypes, each with specialized habitat preferences, diet, and physiology that, 

presumably, are the result of divergence and adaptation to habitat niches present in large lakes 

with abundant deep-water habitat (>100 m) (Muir et al., 2014). After European colonization of 

the region, unsustainable fishing practices, habitat degradation, and the establishment of invasive 

sea lamprey caused the collapse of Lake Superior lake trout fisheries. Sea lamprey consume 

blood and other body fluids during their parasitic juvenile lifestage. Lake trout are killed directly 

by sea lamprey parasitism (Madenjian et al., 2008) and sub-lethal effects can be energetically 

costly (Firkus et al., 2022). Multi-jurisdictional, cooperative efforts that have been undertaken to 

reestablish and sustain lake trout fisheries include stocking hatchery-reared lake trout to 

supplement wild stocks, fishery regulation and assessment, and sea lamprey suppression (Hansen 

and Bronte, 2019). These ongoing efforts have since helped to reverse abundance declines of 

lake trout and enabled development of co-managed lake trout fisheries (Hansen and Bronte, 

2019; Mattes, 2020). However, invasive sea lamprey remain the single largest threat to lake trout 

fisheries in Lake Superior (Muir et al., 2012). Lake Superior fisheries managers determined that 

this threat was acceptably low during 1993-1997, based on lake trout wounding metrics (sea 

lamprey wounds per 100 lake trout captured in standardized surveys), and set the sea lamprey 

suppression target to mean sea lamprey abundance during this time period (Treska et al., 2021). 

Despite this long-standing management objective, sea lamprey abundance has often been above 

the suppression target in Lake Superior and the quality and amount of effort required to 

consistently suppress abundance below the target is unclear. Forecasts of sea lamprey 

suppression given a suite of hypothetical sea lamprey control policy and action alternatives could 

address this knowledge gap.  

Our objective was to develop a Bayesian forecast model of sea lamprey dynamics and 

control in Lake Superior that makes use of information from long-term population abundance 

trend monitoring and apply this model towards the evaluation of alternate sea lamprey 

suppression scenarios. Sea lamprey are anadromous and do not exhibit natal philopatry, rather 

they are guided into tributaries by river plumes containing pheromones emitted by stream-

resident lamprey larvae (Buchinger et al., 2015). As part of our modeling effort, it was necessary 

to consider the intricacy of relating observations (catch of adult sea lamprey in individual 
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tributaries) to the population-level process of interest (change in lake wide sea lamprey 

abundance over time). We accomplished this through multivariate autoregressive state-space 

modeling (Holmes et al., 2012; Tolimieri et al., 2017) to represent the geographically dispersed 

long-term monitoring dataset with patchy temporal coverage and concerns regarding 

heterogeneous observation variability among monitoring sites. A further intricacy of the 

observation process, the possibility of reduced pheromone signal in the years following 

application of lamprey-specific pesticides (hereafter lampricides) causing reduced catch of adult 

sea lamprey (Mullett et al., 2003), was addressed by modeling the relationship between 

lampricide application history and expected catch at each monitoring site. 

Materials and Methods 

Catch Data 

Catch data have been collected in Lake Superior tributaries since 1953 to monitor adult 

sea lamprey population trends. We grouped these catch data into assessment units based on 

location and gear type. From 1953 to 1979, catch data were obtained from traps operated in 

conjunction with electric weirs deployed to halt upstream spawning migration of sea lamprey. 

Since 1980, catch data have come primarily from traps operated immediately downstream of 

dams, weirs, or natural stream features. Daily catches were summed by year to generate annual 

catch time series for each assessment unit. To be included in analyses, assessment units needed 

at least 10 years of catch data to ensure there was sufficient information to estimate assessment 

unit-specific scaling parameters, observation covariate effects, and observation variance 

parameters. With this criterion, the Lake Superior adult sea lamprey catch dataset contained 50 

assessment units. In any given year, between 9 and 31 units had sea lamprey catch data available.  

Most assessment units were associated with tributaries located in the southeast region of Lake 

Superior (35), with 12 units associated with southwest shore tributaries and 3 units associated 

with north shore tributaries (Figure 1). The imbalanced north-south geographic distribution of 

assessment units follows the distribution of sea lamprey producing tributaries in Lake Superior, 

as much of the north shore coastline does not contain sea lamprey producing tributaries (Heinrich 

et al., 2003). Our research did not involve activities requiring approval by Michigan State 

University Institutional Animal Care & Use Committee (IACUC). Adult sea lamprey catch 

records used in our research were obtained from Fisheries and Oceans Canada and US Fish and 

Wildlife Service databases. 
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Figure 1.1. Map of Lake Superior of the North American Great Lakes with the locations of long-

term monitoring sites included in the analysis. Points are located at the mouth of the 

corresponding tributary.  

Control Effort Indices 

Multiple control tactics have been used on Lake Superior to suppress invasive sea 

lamprey populations (Figure 1.2). As previously indicated, traps in conjunction with electric 

weirs were heavily relied upon prior to the 1980s in an attempt to reduce spawning sea lamprey 

abundance in Lake Superior tributaries (Hunn and Youngs, 1980). Electric weir control effort 

peaked in 1957 (n=73) and declined incrementally over the next two decades as the objective of 

electric weir operation switched from suppression to assessment of adult sea lamprey population 

trends. Two lampricides have been used to kill sea lamprey larvae. Treatment of lotic habitats 

within Lake Superior tributaries with TFM (3-trifluoromethyl-4'-nitrophenol) began in 1958 and 

has been a heavily relied upon control tactic ever since, though effort has been variable with 

peaks early and late in the time series. Slow moving tributaries of Lake Superior and associated 

lakes, large connecting waterways, and estuaries off the mouths of tributaries (lentic habitats) 

have been treated with granular Bayluscide (2', 5-dichloro-4'-nitrosalicylanilide) since 1960, 

although application was temporarily halted from 1989 to 1999 due to registration issues with the 

lampricide. Bayluscide effort increased within the last decade, as lentic areas within the US 

waters of Lake Superior began being treated in addition to infested lentic areas in Canadian 
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waters. From 1991 to 1996, large scale trials of a control tactic referred to as the sterile-male-

release-technique (SMRT) were conducted (Twohey et al., 2003). This tactic was implemented 

by sterilizing captured male sea lamprey with bisazir, and then releasing sterilized males back 

into Lake Superior tributaries where they would compete with fertile males for spawning 

females. Construction of permanent weirs has been another sea lamprey control tactic 

implemented in tributaries to Lake Superior. The distribution of sea lamprey larvae within Lake 

Superior tributaries was concentrated by the construction or modification of 18 permanent weirs 

between 1967 and 2014 (Hrodey et al., 2021). Cumulatively, these barriers blocked spawning sea 

lamprey from approximately 2,100 river km. Annual indices of these control tactics (km of 

stream treated with TFM, kg of Bayluscide applied, number of electric weirs operated, SMRT 

applied (Y/N), and km of stream blocked by permanent weirs) were amalgamated from control 

program records and incorporated in our population dynamics and control model as time-varying 

covariates associated with control-induced mortality parameters. Control effort also varied 

spatially from year-to-year, but our population and control dynamics model was not spatially 

explicit and did not account for this variability. 
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Figure 1.2. Estimated index of adult sea lamprey abundance in Lake Superior 1953-2019 with 

95% credible intervals indicated by the shaded ribbon (a) and time-series of sea lamprey control 

effort indices (b). The adult index is scaled by the suppression target (indicated by the broken 

horizontal line). Control effort indices are plotted as proportion of maximum effort (granular 

Bayluscide (gB)= 1032 kg of active ingredient; TFM= 1114 km of stream treated; electric weir= 

74 weirs deployed; permanent barrier= 2100 km of stream blocked). The shaded region in panel 

(b) indicates the duration of the large-scale trial of the sterile-male-release-technique. 
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Population dynamics and control model 

We developed a combined stage- and age-structured model for the Lake Superior sea 

lamprey population that included multiple life stages (larval, juvenile, adult), age-classes, and 

larval habitat types (see Appendix A and Appendix B for detail on model development). 

Changes in abundance in each state (stage or age class) were affected by multiple processes, 

including recruitment, mortality, and juvenile and adult transformation rates (Figure 1.3). The 

number of age-1 larvae produced each year (age-1 recruitment) was based on the number of age-

1 larvae produced per adult (recruitment rate) and abundance of adults the previous year. 

Recruitment rate was parameterized by a long-term average recruitment rate, annual deviation 

from the long term average, control-induced effects, and abundance of adults the previous year 

(inverse density-dependence). Age-1 larvae were assumed to be distributed among three habitat 

types: lentic, lotic, and areas invulnerable to lampricides. Larval survival was influenced by 

natural mortality and treatment mortality stemming from application of either granular 

Bayluscide or TFM, depending on the habitat occupied. Age-5, age-6, and age-7+ larvae 

transform into parastic juveniles. Finally, individuals remained in the juvenile life stage for one 

or two years before they transitioned to the adult (i.e., spawning) lifestage. Sea lamprey are 

semelparous; adult abundence in any given year was equal to the number of juveniles that 

transitioned into the adult life stage that year. 
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Figure 1.3. Lifecycle graph showing states included in the Lake Superior sea lamprey population 

model and proceses affecting transition between states. States include larvae inhabitating 

invulernable to lampricde habitat (n1-n7), larvae inhabitating lotic habitat vulnerable to TFM 

application (n8-n14), larvae inhabiating lentic habitat vulnerable to Bayluside application (n15-

n21), juveniles (n22-n23), and adults (n24). Processes influencing state transitions include 

recruitment of age-1 larvae (u’), probablity of age-1 larvae recruiting to lotic habitat (plotic), 

probability of age-larvae recruiting to lentic habitat (plentic), annual larval survival in lampricide 

invulnerable habitat (𝑆𝑙,𝐼𝑛𝑣), annual larval survival in lotic habitat (𝑆𝑙,𝑙𝑜𝑡𝑖𝑐), annual larval survival 

in lentic habitat (𝑆𝑙,𝑙𝑒𝑛𝑡𝑖𝑐), metamorphasis probability of ages 5-7+ larvae (φage-5, φage-6, and φage-

7+), probability of juveniles becoming spawning adults after one year (φjuv), and annual juvenile 

and adult survival (Sj). 

Observation model 

The observation model relating annual catches of adult sea lamprey at each assessment 
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unit to the population-level index of adult abundance took the form of 

𝑦𝑡,𝑘~𝑁𝑜𝑟𝑚𝑎𝑙(log𝑒[𝑛𝑡
𝑎𝑑𝑢𝑙𝑡] + 𝑠𝑘 + 𝛽𝑡𝑟𝑒𝑎𝑡,𝑠⸱𝑋𝑡,𝑠, 𝜎𝑘)  

where y was the loge catch of adult sea lamprey at site k during year t, 𝑛𝑡
𝑎𝑑𝑢𝑙𝑡was lake-wide 

expected adult abundance index at year t (a derived parameter obtained from parameters of the 

stage-age population model), sk was a scaling parameter for site k, βtreat,s was the stream-specific 

effect of number of years after treatment on the observation process, Xt,s was an ordered 

categorical covariate for stream s at year t with three levels (0,1,2) corresponding to 0, 1, or 2+ 

years after TFM treatment, and σk was site-specific observation variance. The sk parameters 

allowed for multiple observations of the same state process with potentially different scalings to 

be included in the analysis (Holmes et al., 2012). An arbitrary assessment unit was selected as 

the reference scale for the adult abundance index and had its scaling parameter fixed at zero.  

Parameter estimation 

 Posterior distributions of model parameters were generated through Markov Chain Monte 

Carlo (MCMC) sampling implemented in Stan (Carpenter et al., 2017) using the rstan package 

(Stan Development Team, 2020) and R version 4.0.2 (R Core Team, 2020). Four MCMC chains 

were run for 28000 iterations with a warmup of 8000 iterations. Visual inspection of trace plots 

and computation of R-hat statistics indicated that saved iterations after the burn-in period were 

sampling from the posterior distribution and had achieved stationarity. 

We generated a posterior distribution for long-term deterministic population growth rate 

of sea lamprey in Lake Superior in the absence of control (λ) from the posterior distributions of 

population dynamics parameters. We calculated this derived parameter (for each MCMC 

iteration) as the dominant eigenvector of the stage-age matrix population dynamics model using 

the popbio package (Stubben and Milligan, 2007). 

Post posterior checking 

 We simulated replicated datasets of adult sea lamprey catch from the posterior 

distribution of our fitted model and compared the observed data to the predicted range of values 

(full post-posterior checking results are presented in Appendix C). Plotting observed values 

against the range of predicted values for each assessment unit allowed us to examine for 

evidence of systematic lack-of-fit in the model. We also calculated the percentage of 

observations that fell within the corresponding estimated 95% credible interval. Finally, we 

calculated residuals for each observed data point and summarized them by year to assess for 
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temporal patterns in model over or under prediction. We did not observe strong evidence of 

systematic lack-of-fit or autocorrelation in annual observation-level residuals. 

Forecasting suppression strategies 

We forecasted future sea lamprey population abundance for a suite of long-term 

lampricide suppression strategies with consistent annual effort. We considered lampricide effort 

levels encompassing the historic range of annual granular Bayluscide (0 – 1,032 kg of active 

ingredient) and TFM (0 – 1,113 km of stream treated) application crossed with different levels of 

management-induced reduction in age-1 recruitment rate (0, 0.20, 0.40, 0.60). Reductions in age-

1 recruitment were modeled, rather than annual effort of historically applied control tactics, 

because the current suppression program would ostensibly adopt recruitment-reducing tactics 

that differ from historically applied approaches. We generated approximate posterior 

distributions for projected adult sea lamprey abundance in 2040 for each strategy using the 

posterior distribution of our 2019 abundance index derived parameters (for each stage-age class) 

and population dynamics and control process model parameters. In this fashion, our forecasts 

accounted for uncertainty in sea lamprey population dynamics, uncertainty in the relationship 

between lampricide effort and control-induced mortality, correlation among estimated 

parameters, and stochastic age-1 recruitment. We assumed that management actions were 

implemented annually and that there was no implementation uncertainty associated with any of 

the control measures.  

Target suppression abundance index was calculated based on the methodology used to set 

the sea lamprey suppression target for Lake Superior, which is the average sea lamprey 

abundance during 1993-1997 (Treska et al., 2021). We present our forecast results as the 

probability of projected 2040 adult sea lamprey abundance being less than this target. 

Results 

Sea lamprey population dynamics in the absence of control comprise expected long-term 

annual population growth rate (λ) and year-to-year variability in λ (modeled as stochastic 

variability in age-1 recruitment rate). At target suppression abundance, mean λ was estimated at 

1.19 (95% credible interval: 1.06-1.43). Year-to-year variability in age-1 recruitment rate was 

substantial, the ratio of the standard deviation of year-to-year variability in recruitment rate to 

mean age-1 recruitment rate was 0.14 (0.08-0.22). This translated to high year-to-year variability 

in realized λ. With recruitment rate set at one standard deviation below the mean, λ was 1.07 
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(0.93-1.30); at one standard deviation above the mean, λ was 1.33 (1.18-1.58). Though we 

included inverse-density dependent recruitment in our model, the posterior distribution for b was 

nearly identical to the prior distribution (see Appendix B for detail on posterior and prior 

distributions for b and other model parameters), which indicates that our prior assumption of 

weak inverse density dependent recruitment rate was neither supported nor refuted by our data 

analysis. 

Sea lamprey suppression tactics either targeted recruitment of age-1 larvae (electric weir 

operation and sterile-male-release technique), larvae inhabiting lotic habitat (application of 

TFM), or larvae inhabiting lentic habitat (application of granular Bayluscide). Estimated amount 

of management-induced mortality and associated 95% credible intervals are reported for each 

suppression tactic at the mean effort level (calculated only from years in which the tactic was 

implemented). Electric weir operation (mean effort of 24 operational weirs) reduced age-1 

recruitment rate by 29% (12 - 44%). The effect of implementing SMRT in Lake Superior on 

recruitment rate was less clear. There was a 74% chance that recruitment rate declined during 

years SMRT was implemented. The mean estimated effect was an 11% decrease in recruitment 

rate, although based on the 95% credible interval, recruitment may have decreased by as much as 

44% or increased by as much as 33%.  

Population-level effects of lampricide application depended upon two modeled processes, 

the percentage of age-1 recruits distributed to each habitat type (lentic, lotic, or habitat 

invulnerable to lampricides) and mortality caused by lampricide application. Of all recruited age-

1 larvae, 21% (2% – 63%) recruited to habitat invulnerable to lampricide application, 16% (0%-

70%) recruited to lentic habitat and were vulnerable to granular Bayluscide application, and 63% 

(6%-96%) recruited to lotic habitat and were vulnerable to TFM application. Granular 

Bayluscide application (mean effort of 279 kg of active ingredient applied) resulted in a finite 

management-induced larval mortality rate of 0.18 (0.02-0.65). The relationship between TFM 

application and larval mortality depended upon the amount of river kilometers blocked by 

permanent barriers to migration. At the amount of river blocked by permanent barriers to 

migration by 2019, TFM application (mean effort of 542 km of river treated) resulted in a finite 

larval mortality rate of 0.23 (0.02-0.74). At the amount of river blocked by permanent barriers to 

migration by 1963 (2100 km less than was blocked by 2019), TFM application resulted in a 

finite larval mortality rate of 0.18 (0.01-0.58). 
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Observation processes associated with TFM application history in tributaries containing 

assessment sites influenced expected catch. However, this effect was variable among tributaries; 

expected number of sea lamprey captured was positively associated with years-after-treatment in 

20 of the 34 tributaries. There was strong evidence (>0.90 probability of an effect) of a positive 

effect in 8 tributaries and of a negative effect in 1 tributary. 

The historic mean scenario with no age-1 recruitment reduction had a 15% chance of 

achieving the suppression target in 2040. Decreasing age-1 recruitment by 20, 40, and 60% 

combined with historical mean lampricide application increased the probability of achieving 

suppression target to 30%, 54%, and 84%, respectively (Figure 1.4). At the highest level of effort 

considered for lampricide control, but without age-1 recruitment reduction, the chance of 

achieving suppression target was 50%. At 60% reduction in age-1 recruitment but in the absence 

of lampricide application, there was a 24% chance of achieving the suppression target. 

The scenario consisting of annually applying the historical mean TFM and granular 

Bayluscide effort had a wide 2040 forecasted posterior distribution (90% quantile interval: 5.95-

0.64) compared with the scenarios with maximum annual lampricide application (90% quantile 

interval: 3.88-0.14) and mean lampricide integrated with 40% recruitment reduction (90% 

quantile interval: 3.02-0.27) (Figure 1.5). The scenario composed of maximum annual 

lampricide application and 60% recruitment reduction had a narrow posterior distribution 

centered well below the suppression target (90% quantile interval: 1.01-0.02). Individual 

simulated adult abundance trajectories were autocorrelated and displayed periodicity (Figure 

1.5). 
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Figure 1.4. Forecasts of the probability of achieving sea lamprey suppression target in Lake 

Superior in 2040 for a suite of long-term sea lamprey suppression strategies. Facets show level of 

control-induced reduction in age-1 recruitment rate (status quo reduction in age-1 recruitment is 

0). The probability gradient is represented by color gradient, with warmer colors indicating 

higher probability (0 to 1 scale). Dotted lines are the mean historic annual lampricide application 

effort. 
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Figure 1.5. Forecast of adult sea lamprey abundance index (2020-2040) for long-term strategies 

consisting of (a) annual application of the historic mean amount of lampricide and no control-

induced reduction in age-1 recruitment, (b) annual application of the historic mean amount of 

lampricide combined with 0.40 reduction in age-1 recruitment, (c) annual application of the 

historic maximum amount of lampricide, and (d) annual application of the historic maximum 

amount of lampricide combined with 0.60 reduction in age-1 recruitment. Warmer colors show 

higher density regions of the approximate posterior distribution of forecasted abundance. Grey 

lines show three randomly selected trajectories to demonstrate model behavior. The broken 

horizontal line is placed at the suppression target.   

Discussion 

 Forecasts of lamprey suppression were regulated by the amount of control-induced 

mortality required to suppress sea lamprey (i.e., shift population growth from positive to 

negative) and the relationship between management-induced mortality and lampricide effort. 
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Based on our empirical estimates of these phenomena, applying the historic average amount of 

lampricide effort annually, without supplemental management-induced reduction in age-1 

recruitment, is unlikely to result in consistent achievement of the sea lamprey suppression target 

in Lake Superior. We identified two divergent strategic directions (representing end points of a 

continuum of possible strategies) that could be implemented to boost probability of achieving the 

suppression target to approximately 0.50: 1) annually apply lampricide effort equal to the 

maximum levels that have been historically applied or 2) annually apply mean lampricide levels 

in combination with deployment of management tactics that cause 40% reduction in age-1 

recruitment. This level of reduction in age-1 recruitment may have historic precedent. Based on 

our modeled estimates, the extensive network of electric weirs deployed in Lake Superior from 

1956-1962 probably reached 40% management-induced reduction in age-1 recruitment at its 

peak operation.  

Both the strategic directions considered here would require substantial capacity building 

in the sea lamprey control program to fully implement as long-term strategy. Lampricide 

application is a pillar of current sea lamprey suppression strategy (Sullivan et al., 2021), but 

applying the annual historical maximum lampricide effort on an annual basis over a two-decade 

period would represent a massive increase from status-quo control effort because recent peaks in 

effort occurred as part of an intermittent targeted treatment strategy, not a sustained annual effort 

(Symbal et al., 2021). The electric weir program was discontinued because electric weir 

technology circa the 1960s had issues related to perceived effectiveness as a sea lamprey control 

tool and persistent non-target fish mortality (Hunn and Youngs, 1980). Modern electric weirs can 

be highly effective at reducing sea lamprey recruitment with much less non-target fish mortality 

(Johnson et al., 2021); application of the sterile-male-release-technique has effectively reduced 

larval recruitment in scenarios when a high ratio of sterile to non-sterile males (>40:1) can be 

achieved (Johnson et al., 2020). Other approaches to reducing age-1 recruitment, such as 

enhanced sea lamprey trapping techniques involving attractive and/or repellent semiochemicals, 

have been developed (Hume et al., 2020; Johnson et al., 2016). However, there currently is not 

capacity to implement management actions capable of achieving large-scale reduction of age-1 

recruitment rate in Lake Superior using modern, socially acceptable tactics (Siefkes et al., 2021). 

Furthermore, it is not clear how much effort would be required to cause large-scale reduction of 

age-1 recruitment rate, though resource managers are seeking to learn about this relationship by 
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using an adaptive management framework to investigate alternative control policies on some 

target streams in the Great Lakes basin (Lewandoski et al., 2021).  

Contextualizing our sea lamprey suppression forecasts within ecosystem-based fisheries 

management could clarify potential tradeoffs between sea lamprey control policies that prioritize 

augmentation of either lampricide application or age-1 recruitment reduction capacities. 

Ecosystem-based fisheries management situates invasive species control outcomes within the 

larger goal of achieving conservation objectives (Brodziak and Link, 2002; Prior et al., 2018). 

Ecosystem-based management is implemented in Lake Superior with multiple management 

levers hypothesized to protect and sustain fisheries resources (Melius et al., 2011), including fish 

stocking (Hansen et al., 1995; Hansen and Bronte, 2019), fishery regulation and assessment 

(Nieland et al., 2008), habitat restoration (Bouvier et al., 2009; Host et al., 2011; Mitsch and 

Wang, 2000), and invasive sea lamprey suppression. Within this management framework, 

neither over- nor under-investment in sea lamprey suppression is desirable. At some point, over-

investment will result in diminishing returns possibly at the expense of applying other 

management levers; conversely, under-investment in an effective sea lamprey suppression 

strategy would be a missed opportunity to realize conservation objectives and perhaps lead to 

unacceptable damage on valuable fisheries. Furthermore, decision makers must consider non-

target outcomes of sea lamprey control actions that may work against achievement of other 

resource management objectives and vice versa. For example, dam removal decisions that 

increase connectivity between lake and tributary habitat in the Great Lakes basin involves 

consideration of tradeoffs among multiple resource management objectives (Walter et al., 2021) 

and deferred lampricide application costs (Hrodey et al., 2021). Thus, while our forecast model 

sheds light on the linkage between achievement of sea lamprey suppression goals and choice of 

control strategy, it represents only a piece of the decision-making capacity needed to holistically 

consider tradeoffs among alternative long-term sea lamprey control strategies. Combining 

probabilistic predictions of management outcomes with values-based models elicited from 

stakeholders in a multi-objective decision analysis framework offers a rigorous approach to 

invasive species management using both defensible science and stakeholder values (Maguire, 

2004; Robinson et al., 2021; van Poorten et al., 2019). This could be an effective methodology 

for bolstering the effectiveness of sea lamprey suppression as a tool for achieving ecosystem-

based Lake Superior fishery management conservation objectives. 
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 Model-generated probabilistic forecasts of management alternatives can add value to 

decision making processes when there is buy-in from those involved in the decision and sensible 

alignment between the model and system characteristics expected to influence the outcomes of 

management alternatives. Thus, for the task of developing a sea lamprey suppression forecast 

model capable of improving conservation outcomes in Lake Superior, the challenge remains in 

creating an iterative model refinement process that enables decision-makers, stakeholders, and 

technical experts to identify key elements of model uncertainty, identify technical issues with the 

forecast model, and implement solutions. Designing processes that follow best-practice 

recommendations for evaluating fisheries stock assessment models and management procedures, 

including stakeholder involvement in model development and identification of optimization 

targets, explicit delineation of what constitutes unacceptable model behavior, external peer 

review, a holistic approach to model evaluation, and standardized sensitivity tests, may be 

advantageous (Goethel et al., 2019; Punt et al., 2020, 2016; Smith, 1999). 

Communicating a model’s strengths and weaknesses can help maintain sensible 

alignment between a forecast model and its intended management application. The strengths of 

our forecast model are that it makes use of a robust long-term monitoring dataset in Lake 

Superior spanning 60+ years to inform estimates of sea lamprey population and control dynamics 

and directly relates implementation of a given long-term suppression strategy to probability of 

achieving a politically-agreed-upon sea lamprey suppression target. A limitation of our forecast 

model is that it does not use information from available larval survey data – perhaps the most 

relevant dataset for conducting short-term forecasts of adult sea lamprey abundance. In contrast, 

established approaches for ranking streams for lampricide application rely heavily on the most 

recently available larval survey data (Jubar et al., 2021). Furthermore, our model assumes larvae 

inhabiting a given habitat type (lotic, lentic, or invulnerable to lampricide) constitute a single 

population. Thus, our model is not appropriate for evaluating management approaches 

leveraging among-stream heterogeneity to improve lake-wide control effectiveness or decisions 

related to a specific river system. However, a management strategy evaluation model developed 

to simulate the full sea lamprey control management process that generates basin-wide 

population dynamics from estimates of stream-level stock and recruitment relationships has 

provided useful insight in these types of scenarios (Dawson and Jones, 2009; Jensen and Jones, 

2017; Jones et al., 2009; Miehls et al., 2020). Finally, we model the Lake Superior sea lamprey 
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population as a single stock and consider each assessment site a valid (but possibly imprecise) 

index of lake wide abundance. While lack of homing behavior and long-distance movement of 

juvenile sea lamprey indicate that widespread mixing probably occurs within Lake Superior, 

complete panmixia is unlikely (Docker et al., 2021). Robust parasitic juvenile dispersal datasets 

would facilitate development of sea lamprey population dynamics models with sub-basin stock 

structure. 

A further aspect of our forecast model that warrants evaluation through an iterative 

refinement process is our assumption of stationary population and control dynamics from 1953-

2019 and during the forecasted time period (2020-2040). Climate change could influence future 

sea lamprey population and control dynamics in the Great Lakes (Lennox et al., 2020), such that 

empirical estimates of these dynamics from time-series data assuming stationarity may generate 

unreliable predictions of mid-century control outcomes. Analyses investigating sensitivity of sea 

lamprey control forecasts to different model formulations and climate change scenarios, 

including alternate non-stationary population and control dynamics assumptions, would build on 

our work herein and provide a more in-depth treatment of the uncertainty associated with 

forecasting sea lamprey control outcomes. 

Globally, resource managers are faced with the challenge of developing effective 

management solutions to mitigate or reverse adverse effects of established invasive populations. 

The modeling approach we demonstrated can provide insight into the effectiveness of potential 

management solutions by forecasting suppression of invasive populations. Furthermore, 

intricacies we encountered associated with relating observation data to population-level 

processes of interest (that we expect are common to many long-term monitoring datasets 

collected by invasive species management institutions) were addressed by applying elements of a 

previously-developed, flexible statistical framework (Holmes et al., 2012; Tolimieri et al., 2017). 

Incorporating long-term monitoring data into actionable forecasts of invasion dynamics, as we 

do here, can help bring ecological knowledge to the forefront of invasive species management 

decision making.  

The crux of transforming a forecast model into a useful conservation tool may be in 

creating effective processes within invasive species management institutions that enable iterative 

refinement, with the aim of building technical proficiency and buy-in from end users regarding 

the role of the model in decision processes. In a recent review of published invasive species 
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management case studies, half of the case studies reported positive responses after invader 

removal or suppression, with the rest reporting mixed results, no change, or negative impacts 

(Prior et al., 2018). Because many invasive species management actions do not generate 

expected, positive outcomes, data-driven forecast model development should become a higher 

priority within invasive species management institutions. For example, emerging strategies for 

controlling invasive carps in North America include forecast model development through 

population dynamics modeling and decision analysis (Cupp et al., 2021; Robinson et al., 2021). 

Given the overlap of fisheries science and invasive species management objectives from a 

population ecology perspective (Shea et al., 1998), lessons learnt by fisheries scientists could 

provide guidance on how to more fully integrate forecast model development with invasive 

species control practice. 
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CHAPTER 2. A MODELING FRAMEWORK FOR QUANTIFYING SPATIAL 

RECRUITMENT DYNAMICS USING ABUNDANCE ESTIMATION AND SIBSHIP 

ANALYSIS 

Abstract 

Quantifying fish spatial recruitment dynamics at the sibling group offers a power 

methodology for understanding density-dependent and environmental drivers of recruitment. We 

propose a continuous-time multistate modeling framework that combines sibship and abundance 

estimation datasets to estimate mean sibling group size, sibling group size process error, 

environmental and density-dependent effects on sibling group size, dispersal, and mortality rate. 

Geographic states in the model consist of discrete habitat patches connected through dispersal. 

Simulations were used to investigate the influence of sampling processes and mean sibling group 

size on parameter estimation accuracy and precision for our proposed modeling framework. 

Mean sibling-group size, environmental effects on recruitment, and dispersal rate among habitat 

patches could be estimated with high accuracy under a wide range of sampling conditions, 

including imprecise out-of-model estimates of capture probability, subsampling within habitat 

patches (extrapolating density estimates to habitat abundance using area expansion), and 

subsampling among habitat patches. Density-dependent effects on recruitment and process error 

tended to be estimated with lower accuracy than other model parameters, though accuracy 

improved as sibling group size increased and sampling intensity increased. The main 

contribution of this work is a flexible quantitative modeling framework for conducting power 

analyses and parameterizing mechanistic models of recruitment dynamics in spatially structured 

fish populations with empirical sibship data.  

Introduction 

Effective fisheries management depends on a good understanding of recruitment 

dynamics. Expected efficacy of harvest regulations, habitat enhancement actions, and changes in 

stocking rates are strongly affected by the underlying recruitment rate of the targeted fish 

population (Arlinghaus et al., 2015). Quantitative models of fish population dynamics that 

include recruitment processes provide guidance on sustainable harvest of exploited populations, 

conservation status of threatened or endangered populations, and the amount of control effort 

needed to reduce densities of invasive species (Boyce, 1992; Jones et al., 2015; Quinn and 

Deriso, 1999; Syslo et al., 2020). However, unambiguously explaining the mechanisms driving 
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recruitment with the goal of improving forecasts of fisheries management outcomes is 

challenging. Recruitment is a complex process that seems at odds with the relatively simple 

concept of young fish produced from mature adults (mathematically formulated as a linear stock-

recruitment relationship with recruitment proportional to spawning stock size). Density-

dependent processes can lead to reductions in per capita recruitment at high population densities, 

which ultimately gives rise to non-linear stock-recruitment relationships (Rose et al., 2001). For 

some fish populations, environmental factors that are independent of population density may be 

the dominant driver of recruitment and impart a high degree of variability in observed data. 

Indeed, a meta-analysis of stock-recruitment data from commercially exploited marine fish 

stocks found that recruitment was not positively related to spawning stock size in 61% of stocks 

analyzed and that environmental factors possibly played a dominant role in recruitment for these 

stocks (Szuwalski et al., 2015). Density-independent environmental factors can also be 

consequential for recruitment in freshwater fish populations. Habitat enhancement (deliberate 

manipulation of environmental factors) can increase recruitment rates (Radinger et al., 2023), 

while anthropogenic degradation of habitats cause recruitment declines and failures (Dudgeon et 

al., 2006). Finally, successful implementation of management actions intended to build or sustain 

climate-resilient fish populations, such as development of harvest control rules robust to 

environmentally-driven recruitment uncertainty and variability (Plagányi et al., 2019), 

identification and management of climate refugia (Ebersole et al., 2020), and conservation 

aquaculture (Overton et al., 2023), require at least a basic understanding of how environmental 

factors influence recruitment processes in fish populations. Given both the importance of 

understanding recruitment to fisheries management and its complexity, untangling how 

spawning stock size, density-dependent compensation, and environmental factors influence 

recruitment remains a fundamental challenge of fisheries science. 

Spatially-explicit study design and data analysis offers more power to resolve recruitment 

mechanisms compared to non-spatial approaches. Evaluating data at spatial scales conducive to 

biological realism, rather than aggregating across broad spatial scales for pragmatic purposes, 

may improve efforts to quantify and make predictions about relationships between 

environmental factors and fish population dynamics (Rose, 2000). Indeed, a common limitation 

in studies of physical habitat–fish population productivity relationships in freshwater habitats has 

been scale mismatch between expected functional relationships and study design (Smokorowski 
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and Pratt, 2007). However, even with appropriate scale considerations, a challenge arises when 

analyzing and interpreting spatial data: are population fluctuations in spatial subsets related to 

demographic connectivity or environmental factors (Liebhold et al., 2004)? 

Metapopulation models, in which species occurrences are conceptualized as idealized, 

well-mixed populations inhabiting discrete habitat patches connected by migration (Hanski, 

1998), provide a framework for simultaneous consideration of demographic connectivity and 

environmental heterogeneity. While foundational metapopulation theory focused on colonization 

and extinction (Levins, 1969), applications of metapopulation concepts to fisheries science and 

management describe a broad range of population characteristics (abundance, size/age structure, 

and genetic structure) (Kritzer and Sale, 2004). Metapopulation concepts are formative in 

domains such as the theory and use of marine protected areas and habitat manipulation for 

conservation and fisheries management (Baine and Side, 2003; Cowen and Sponaugle, 2009), 

configuration of spatial-stock assessment methods (Cadrin and Secor, 2009), habitat 

fragmentation and connectivity in dendritic river networks and connected river-lake systems 

(Fagan, 2002; Jones, 2010), dispersal and establishment of invasive fish populations (Docker et 

al., 2021), and the effects of climate change on recruitment processes in marine and freshwater 

habitats (Cowen and Sponaugle, 2009; Kaeding and Mogen, 2023; Munday et al., 2009; Troia et 

al., 2019). 

Genetic identification of parent-offspring pairs and/or sibling groups (Blouin, 2003) has 

been used to advance understanding of spatial recruitment dynamics in fish metapopulations. 

Sibling group identification (sibship analysis) is particularly effective because it is not limited by 

sampling constraints on the parental population (Schunter et al., 2014). Understanding 

recruitment processes related to local retention and planktonic dispersal of reef fishes during 

their larval stage is crucial for management of exploited and threatened marine fishes (Botsford 

et al., 2009). Sibship analysis has advanced understanding in this domain by providing empirical 

measures of recruitment dispersal among open-coastline rocky reefs (Schunter et al., 2014) and 

among neighboring (Baetscher et al., 2019) and regional marine protected areas separated by 

>500 km (Stockwell et al., 2016). Alternative larval dispersal hypotheses have been investigated 

with sibship analysis. Observations of collocated siblings on small reefs despite life history 

strategies with long pelagic drift duration have been interpreted as support for the cohesive larval 

dispersal hypothesis (i.e., that larvae use behavioral and sensory adaptations to maintain group 
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cohesiveness during dispersal) (Bernardi et al., 2012; Robitzch et al., 2020). Spatial patterning of 

siblings across a 41-km reef transect was parsimoniously explained by the distance-limited 

dispersal model (declining number of collocated siblings as the distance between them increases) 

and did not lend support for cohesive dispersal (D’Aloia et al., 2018). In freshwater systems, 

sibship analysis has also been used to look for distance-limited dispersal patterns as predicted by 

the restricted movement paradigm (Rodriguez, 2002). Distance-limited dispersal was observed in 

studies of juvenile brown trout (Salmo trutta) (Vøllestad et al., 2012), age-1 sea lamprey 

(Petromyzon marinus) larvae (Derosier et al., 2007), and brook charr (Salvelinus fontinalis) 

alevin (Morrissey and Ferguson, 2011). Conversely, there was little evidence of distance-limited 

dispersal for young-of-year largemouth bass (Micropterus salmoides) siblings in a 126 ha lake 

(Hessenauer et al., 2012) and juvenile Roanoke log (Percina rex) perch siblings at scales ≤15 

km, though distance-limited dispersal was detected at greater spatial distances (Roberts et al., 

2016). Sibship analysis has also been used in freshwater systems to evaluate the effects of 

potential barriers (e.g., natural falls, perched culverts, and dams) on dispersal (Bowersox et al., 

2016; Neville and Peterson, 2014; Weinstein et al., 2019; Zhai et al., 2019). Simulation research 

revealed that an analytic approach sib-split based on detections of full-siblings on opposite sides 

of potential barriers could accurately estimate dispersal across a barrier, and this method has 

been applied to resolve fisheries management questions related to dispersal across barriers and 

road crossing culvert remediation efforts (Neville and Peterson, 2014; Whiteley et al., 2014). 

Finally, in addition to advancing ecological theory and practical understanding of dispersal, 

sibship analysis applications have revealed novel insight into mating systems and levels of 

reproductive skew in wild fish populations (Liu and Ely, 2009; Sard et al., 2020; Serbezov et al., 

2010; Shen et al., 2020). 

While inferences from sibship analysis are typically made from a sample of individuals 

rather than an exhaustively sampled population (but see Serbezov et al., 2010), there has been 

little research into how sampling processes could mediate the effectiveness of sibship analysis as 

a tool for learning about recruitment dynamics at the sibling group scale. Spatially varying 

capture probability could lead to inaccurate inferences about dispersal and/or recruitment 

variability. For example, Morrissey and Ferguson (2011) noted that capture probability was 

expected to vary throughout the sampled stream reach so they accounted for spatially varying 

capture probability in their analysis of dispersal rate from sibship data. However, while methods 
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for quantifying abundance and demographic parameters for the parental sample of genetic 

parent-offspring pair datasets are well studied (i.e. close-kin mark recapture) (Bravington et al., 

2016), quantitative methods for integrating inferences from sibship analysis with the range of 

survey methodologies and abundance estimation approaches used by fisheries managers and 

scientists are underrepresented in the literature. Methodological advances in this area may be 

broadly useful for predictive modeling in support of fisheries management and conservation 

because it would provide a novel approach to empiric estimation of recruitment and dispersal in 

metapopulations.  

Herein, we propose a continuous-time multistate modeling framework that combines 

sibship and abundance estimation datasets to improve fine-scale understanding of the recruitment 

process. In essence, the aim of the framework is to quantify sibling-group-scale recruitment 

dynamics in spatially-structured populations given that habitat patch abundance is usually not 

directly observed and requires estimation. We conducted simulations to evaluate how sampling 

processes associated with abundance estimation influenced estimation of dispersal, mortality 

rate, and recruitment dynamics parameters (mean sibling group abundance, environmental 

effects, density dependent effects and variability in sibling group abundance). Specifically, we 

examined how parameter estimation was influenced by imprecise out-of-model estimates of 

capture probability, application of area expansion to estimate habitat patch abundance from 

localized density estimates, and the number of habitat patches sampled. The main contribution of 

the work is a flexible modeling framework that can be used to parameterize mechanistic models 

of recruitment and survival with demographic connectivity among habitat patches and guide field 

sampling efforts for future sibship analysis applications investigating recruitment dynamics in 

spatially structured populations. 

Methods 

Data Generating Processes 

Our modeling framework and simulation study were based on a continuous-time 

multistate model of fish metapopulation dynamics (Miller and Andersen, 2008). We extend this 

modeling framework to accommodate applications that track genetically tagged sibling groups, 

rather than physically tagged individual fish. This extension introduces further complexity. The 

number of individuals being tracked (the number of individuals in a sibling group) and their 

initial location (the spawning patch location) become model output rather than model input. Our 



38 
 

theoretical contribution is to accommodate this added complexity within the continuous-time 

multistate modeling framework.  

Sibling group recruitment events are defined by a spatial component (the spawning 

habitat patch situated within a larger metapopulation) and the number of individuals in the 

sibling group at the time of initial sampling (t1). We define sibling group generically here, but a 

sibling group could be alternatively defined (based on sibship data limitations, analytical 

constraints, and learning objectives of the model application) as full siblings, full and half 

siblings, or all individuals that share at least one parent. The number of individuals in a sibling 

group can be influenced by environmental effects, density-dependent compensation, and a 

sibling-group-specific deviation from mean recruitment rate (Eq. 1; Figure 2.1). Sibling-group-

specific deviations follow a normal distribution with a variance parameter representing the 

magnitude of among-sibling group variation in recruitment rate (Eq. 2). 

𝑙𝑜𝑔𝑒(𝑎𝑔,ℎ) = 𝑙𝑜𝑔𝑒(𝑎 + 𝑋ℎ ∙ 𝑎𝑒𝑛𝑣 + 𝐷ℎ ∙ 𝑎𝑑𝑑 + 𝑒𝑎)  (1) 

𝑒𝑎~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑎)  (2) 

Recruitment rate of sibling group g spawned in habitat patch h (ag,h) on a loge scale equals the 

sum of the mean recruitment rate a and deviations from the mean stemming from environmental 

effects, density-dependent compensation (product of spawning density in habitat patch h Dh and 

the per unit change in recruitment due to compensation add), and random error ea. Index g ranges 

from 1 to the number of sibling groups detected in the dataset Nobs, whereas h ranges from 1 to 

the number of habitat patches in the metapopulation. 
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Figure 2.1. Schematic of mechanisms influencing sibling group size (ag). As spawning density 

(Dh) increases, density dependent compensation results in declining sibling group size (panel A; 

curve depicted add=-0.3). In addition to density dependent compensation, sibling group size 

depends upon average sibling group size, environmental conditions in the spawning patch and 

process error (panel B; median, 10th quantile, and 90th quantile of ag depicted for exp(a)=100, 

σa=0.5, aenv=1, Xh=low quality=-1, and Xh=high quality=1).  

We assume that spawning and recruitment occur spatially over a set of discrete, non-

overlapping habitat patches. We represent the spatial aspect of recruitment through a 

multinomial probability distribution where the probability of sibling group g spawning in patch h 

sg,h is bounded between 0 and 1 and the sum of sg,h values across all habitat patches equals one. 
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Expected spawning density is solely based on the number of sibling groups observed and will 

tend to underestimate the true spawning density when sibling groups present in the 

metapopulation are not sampled. Expected spawning density in habitat patch h (Dh) with area Ah 

is equal to the sum of sg,h values across all sibling groups multiplied by a constant Cg related to 

how spawner density is characterized (Eq. 3). Two approaches are considered for characterizing 

the constant in the spawning density numerator: 1) the number of unique parental parings in a 

habitat patch, or 2) the number of unique parents that contribute to recruitment in a habitat patch. 

In applications where sibling groups are defined as full siblings, this constant will be the same 

for every sibling group and can be dropped from the equation. 

𝐸(𝐷ℎ) =
  ∑ 𝑠𝑔,ℎ ∙ 𝐶𝑔𝑔  

𝐴ℎ
(3) 

Metapopulation spatial network structure can be seamlessly represented within the 

continuous-time multistate modeling framework. Habitat patches are discrete states in the model 

and instantaneous transition rates q represent movement among connected habitat patches. 

Survival dynamics are modeled as one-way transitions from geographic states into absorbing 

mortality states. Survival can be represented as homogenous throughout the metapopulation or 

allowed to vary spatially among habitat patches. Multiple absorbing mortality states can be 

included to represent multiple mortality sources and/or life-stage transitions resulting in 

emigration from the sampled metapopulation (e.g., smolting). Movement and survival dynamics 

are represented mathematically as a matrix of transition rates among states (both geographic and 

mortality states). The transition intensity matrix Q includes all allowable state transitions, with 

the diagonal elements of Q equal to the negative sum of all transitions out of a given state, such 

that each row of the matrix sums to one. Instantaneous transition intensities can vary spatially, 

temporally, and with age. Covariates on transition intensities (hazards) can be modeled using 

proportional intensities (Jackson, 2011). Using this approach, baseline rate q is replaced with 

q(z), the baseline line rate multiplied by vectors of explanatory variables z and covariates X (Eq. 

4). 

𝑞𝑗,𝑘(𝑧) = 𝑞𝑗,𝑘 ∙ exp (∑𝑋𝑖 ∙ 𝑧𝑖)   (4) 

Assuming constant state transition rates, the exponential of a matrix containing all 

possible state transitions provides a generalizable method to calculate the probability of 

movement among states after a given timestep. Time- and age-varying state transition rates can 



41 
 

be accommodated by relaxing the constant transition rate assumption to piece-wise constant and 

recursively modeling each timestep (Jackson and others, 2011). The transition probability matrix 

for timestep Δti is calculated as Pi =exp(Q Δti). Elements of Pi pj,k correspond to the probability 

of moving from j to state k during time interval i. These state transitions include all geographic 

state transitions and transitions into absorbing mortality states. Mortality that occurs between 

hatch (t0) and the initial sampling time (t1) is confounded with abundance at t0. Accordingly, the 

transition matrix for the initial timestep from t0 to t1 (Δt1) in our baseline model only includes 

dispersal, but mortality could be included if auxiliary information on survival during Δt1 is 

available (resulting in sibling-group recruitment a being defined as abundance at hatch rather 

than abundance at the time of the first sample). 

The expected distribution and abundance of individuals from a sibling group can be 

calculated from the transition probability matrix and recruitment model. These dynamics can be 

written as a discrete-time difference equation (Eq. 5). 

𝑛𝑡,𝑔,ℎ′ =

{
 
 

 
 ∑𝑎𝑔 ∙ 𝑝ℎ,ℎ′

ℎ

∙ 𝑠𝑔,ℎ

∑𝑛𝑡−1,𝑔,ℎ ∙ 𝑝ℎ,ℎ′
ℎ

𝑖𝑓 𝑡 = 1
𝑖𝑓 𝑡 > 1

 (5) 

At the initial sampling time, the number of individuals from sibling group g in habitat patch h is 

calculated from the sum of a vector of products that combines elements from the recruitment 

model and transition probability matrix. Elements of the vector are equal to the product of the 

sibling group abundance ag, the probability of moving from habitat patch h to h’ (h’ indexes all 

habitat patches in the same fashion as h), and the probability of spawning in habitat patch h. In 

cases where all spawning occurs in a single habitat patch, this collapses to ag multiplied by the 

probability of moving from the spawning habitat patch to habitat patch h’. For subsequent 

timesteps, the process is similar except the abundance multiplier is the number of individuals in 

habitat patch h at t-1 rather than the number of age-t recruits. 

The discrete-time difference equation (Eq. 5) takes into account losses due to mortality as 

sibling groups age. The sum of transition probabilities among geographic states ∑ 𝑝ℎ,ℎ′ℎ′  is equal 

to the discrete-time survival probability over timestep i. Exponential mortality is modeled with a 

single instantaneous transition rate (M) linking each habitat patch to an absorbing mortality state 

such that 𝑒𝑥𝑝(−𝑀) = ∑ 𝑝ℎ,ℎ′ℎ . For the general case, allowing for spatially heterogenous 

transitions into one or more absorbing mortality or permanent emigration states, expected 
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number of individuals entering a given absorbing state can be tracked in a similar fashion as in 

Equation 5 by replacing movement probabilities among geographic states with the set of 

probabilities representing transition probabilities from each geographic state to the absorbing 

state of interest.  

Equation 5 relates the expected number of siblings in a given habitat patch to a 

recruitment event. For wild fish populations, abundance estimation methods are applied to 

estimate habitat patch abundance because the number of individuals in a habitat patch is not 

directly observed. Two commonly used methods of abundance estimation are 1) convert the 

number of individuals captured within a targeted sampling area to a density estimate by 

accounting for imperfect detection probability; and 2) use area expansion methods to extrapolate 

habitat patch abundance from localized density. Imperfect detection probability can be accounted 

for by estimating capture probabilities directly (e.g., mark-recapture methods, multi-pass 

depletion sampling) or applying standardized single-pass survey methods with prior information 

on the expected capture efficiency. Additionally, given that the expected detection probability 

pint is an estimated quantity it will deviate from the true value by an unknown amount pdev (Eq. 

6). We modeled pdev explicitly to account for how the expected deviation from the out-of-model 

estimate of detection probability for a given sample is expected to influence the capture 

probability of each sibling group present in the sampled habitat patch in the same fashion. 

𝑝𝑖 = 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑛𝑡 + 𝑝𝑑𝑒𝑣,𝑖)
−1  (6.1) 

𝑝𝑑𝑒𝑣~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑝)            (6.2) 

Area expansion methods rely on the assumption of a well-mixed population within each 

habitat patch. A simple approach to estimating habitat patch abundance nh using area expansion 

is to divide the localized abundance estimate for the sampled area ns by the proportion of the 

habitat patch that was sampled vs (Eq. 7). 

𝑛ℎ =
𝑛𝑠
𝑣𝑠
    (7) 

An observation model (Eq. 8) for the expected number of individuals from a given 

sibling group captured in a given sample ties together the metapopulation dynamics model Eq.5 

and the abundance estimation methodologies adopted to relate catch survey data to habitat patch 

abundance. 

𝑛𝑡,𝑔,ℎ,𝑖̂ ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑛𝑡,𝑔,ℎ ∙ 𝑝𝑖 ∙ 𝑣𝑠)  (8) 
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Catch of age t individuals from family group g in habitat patch h in sample i is a Poisson 

distributed random variable with λ equal to the product of the expected number of individuals in 

the habitat patch (nt,g,h), the detection probability of sample i (pi), and the proportion of the 

habitat patch h sampled by sample i (vs). 

A derived parameter of interest is the expected probability of observing a sibling group 

(pg). This derived parameter estimate can be used to approximate the total number of sibling 

groups present in the metapopulation. The probability of observing a sibling group pg is equal to 

the inverse of the probability of observing a zero catch in every sample targeting the sibling 

group, given the expected catch rate (Eq. 9). 

𝑝𝑔 = 1 −∏𝑑𝑝𝑜𝑖𝑠(0|𝑛𝑡,𝑔,ℎ ∙ 𝑝𝑖 ∙ 𝑣𝑠)   (9) 

An observation of an individual sibling group can be adjusted to an estimate of available sibling 

groups as 
1

𝑝𝑔
 and the total number of sibling groups in the metapopulation 𝑁�̃� can be estimated as 

𝑁�̃� = ∑
1

𝑝𝑔
𝑁𝑜𝑏𝑠

   (10) 

We expect the proposed modeling framework to provide accurate estimates of the total 

number of sibling groups in the metapopulation when 1) the recruitment model and transition 

probability matrix are well estimated such that Eq. 9 provides an accurate estimate of the 

detectability of each observed sibling group, 2) discrepancies between estimated and actual 

sibling group detectability caused by differences in the observed and actual spawning density are 

negligible, and 3) average spatial spawning distribution of the observed sibling groups is 

representative of the unobserved sibling groups.   

Parameter Estimation 

Parameter estimation in a Bayesian framework consists of capture data (observed catch 

by sibling group and associated indices for sample, habitat, patch, and age) and environmental 

covariates hypothesized to influence metapopulation dynamics or sampling processes (static or 

time varying, measured at the habitat patch scale), the model likelihood (Eq. 8), prior 

distributions on metapopulation dynamics and observation process parameters, and a Markov 

Chain Monte Carlo (MCMC) sampler. Capture data can be formatted as a table with columns for 

sample identification, age, sibling group identification, and the number of individuals captured, 

with rows corresponding to the aggregated catch of a sibling group in a given sample. Sample 
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metadata can be formatted as a table with columns for sample identification, habitat patch 

identification, date of sample, proportion of habitat patch sampled, and estimated detection 

probability. A data processing step is required to add zero-catch rows to the capture data table to 

reflect no catch of a sibling group in a survey (for analyses tracking multiple cohorts, zero 

catches for a given family group are only added for samples that occur after the family group 

reaches recruitment age). 

Simulations to Evaluate Accuracy and Precision 

We simulated recruitment dynamics for a hypothetical metapopulation with ten habitat 

patches arranged in a circular pattern with bidirectional dispersal between adjacent habitat 

patches (Figure 2.2, Panel A). Heterogeneous environmental conditions were included by 

randomly assigning an environmental covariate to each habitat patch. For each simulation, 

environmental covariates were sampled from a uniform distribution then scaled and centered to 

maintain a similar environmental gradient among simulations. Sibling group abundances (on a 

loge scale) were randomly sampled from a normal distribution ag~Normal(a, asd). We note that 

by simulating from a lognormal distribution centered on a with standard deviation asd the 

expected mean sibling group size on the natural scale becomes exp(a - 0.5asd
2). Spawning habitat 

patch locations were simulated as a multinoulli random draw with uniform spawning probability 

across all habitat patches (biologically representing a scenario where each sibling group spawns 

in a single habitat patch). The simulated number of sibling groups spawning in a given habitat 

patch was used to calculate Dh. Realized sibling group abundance for sibling group g spawning 

in habitat patch h ag,h was simulated by adding density-dependent and environmental effects 

associated with Xh and Dh to ag. The transition intensity matrix Q was parameterized with a 

single movement rate for movement among habitat patches (q=0.3) and exponential mortality 

(M=0.2). Dispersal from spawning patch locations was simulated as random draws from a 

multinomial probability distribution (n = ag) consisting of the transition probabilities away from 

the spawning habitat patch (Eq. 5).  

We simulated datasets where only sibling groups detected at age-1 were included in the 

analysis (sibling groups first detected at age-2 or age-3 were omitted from simulated datasets). 

This mimics a scenario that uses length-based ageing to assign age at age-1, but the method 

becomes unreliable for older age classes. Age-1 sibling groups captured at t1 were monitored 

during sampling events t1, t2 and t3; age-1 sibling groups detected at t2 were monitored during 
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t2 and t3; and age-1 sibling groups captured at t3 were only monitored once at t3. Dispersal and 

mortality after t1 were modeled by recursively applying Eq. 5 and iterating through each habitat 

patch and family group. For each year of sampling, sampling processes (Figure 2.2, Panel B) 

included randomly selecting H habitat patches to sample, subsampling within habitat patches, 

and modeling error in the out-of-model estimate of capture probability pint. The capture 

probability for sample i was simulated as a random deviation from pint.  

 

Figure 2.2. Flowchart of the simulation-estimation study. Biological processes simulated include 

sibling group abundance and dispersal (panel A). Sibling-group-level variation in abundance is 

simulated by random draws from Normal(ag, asd). Realized sibling group abundance also 

depends upon environmental characteristics Xh and the sibling group density of the spawning 

habitat patch Dh. Dispersal during the time between hatch and sampling is modeled as a 
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Figure 2.2 (cont’d) 

multinomial with probabilities taken from the corresponding row of P1 (the to-from matrix). 

Sampling processes simulated include random selection of habitat patches to sample, 

subsampling within habitat patches (with the proportion of the habitat patch sampled = ps), and 

error in the out-of-model estimate of capture probability pint (B). The capture probability for 

sample i was simulated as a random deviation from pint. Simulated datasets are processed by 

adding zero catch rows to reflect that every observed sibling group could have been captured in 

each sample. Bayesian inference proceeds using the simulated data input, the model likelihood 

derived in the Data Generating Processes section and summarized by Equation 5, the NUTS 

sampler implemented in Stan, and prior distributions specified in Table 2.1. 
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Table 2.1. Symbols and descriptions of simulation-estimation study simulation specifications and 

model parameters. Prior distributions are provided for estimation model parameters. Multiple 

model values are included for the sampling processes (number of samples, capture probability 

estimation error, and proportion of habitat sampled) and biological processes (mean recruitment 

rate) that were evaluated at multiple values in the simulation-estimation study. 

Symbol Description Simulation model values Estimation model priors/fixed 

values 

 Simulation Specifications   

- The number of habitat patches in the 
metapopulation 

10 - 

- Number of years sampled 3  

Ng The number of sibling groups present in the 

metapopulation during sample years 

120 (40 per year) - 

H The number of habitat patches randomly sampled 

(without replacement). 

5, 10 - 

A Habitat patch area (all patches set to the same value) 1 - 

 Metapopulation Processes   

sg,h The probability of sibling group g spawning in 

habitat patch h. The set of spawning probability 
parameters for each sibling group is transformed to 

a multinomial by dividing each value of sg,h by 

∑ 𝑠𝑔,𝑖
𝑛𝑝𝑎𝑡𝑐ℎ
𝑖=1

. The number of estimated parameters 

equals ng*(1-nh) 

0.1 loge(sh,g)~Normal(0, 10) 

q Annual instantaneous among-patch dispersal rate. 0.3 q~Uniform(0,10) 

a Average number of age-t1 individuals produced per 
sibling group. 

100 
500 

loge(a)~Normal(loge(100), 5) 
loge(a)~Normal(loge(500), 5) 

ea Deviation from the average recruitment rate for 
family group g 

ea ~Normal(0, σa) ea~Normal(0, 𝜎�̂�) 

σa Variance term for the distribution of ea 0.5 σa~Half-Normal(0.5, 2) 

aenv Effect of habitat covariate Xh on a 0.5 aenv~Normal(0.5,2) 

add Effect of sibling group spawning density (number of 

sibling-groups spawning per habitat patch, Dh) on a 

-0.3 add~Normal(-0.3,2) 

M Annual instantaneous mortality rate 0.2 M~Uniform(0,5) 

 Sampling Processes   

pint Estimated capture probability from out-of-model 

estimate 

0.3 Fixed at the true value 

pdev Deviation from pint on the logit scale logit(pdev)~Normal(0, σp) logit(pdev)~Normal(0,  𝜎�̂�)) 

σp Variance term for the distribution of pdev 0.1 

0.5 

σp~Half-Normal(0.1, 1.0) 

σp~Half-Normal(0.5, 1.0) 
v Percentage of habitat patch area sampled 0.50,1.0 Fixed at the true value 

Nobs Detected number of sibling groups in the 

metapopulation 

Outcome of sampling 

process simulation 

- 

Ñg Estimated number of sibling groups in the 

metapopulation 

Derived parameter - 

We were interested in determining how sampling processes influenced estimation of 

recruitment dynamics and if the relationship depended upon the average sibling group size of the 

sampled fish metapopulation. For this objective, we evaluated 12 scenarios with varying levels 

of sampling intensity (H=5 or H=10), proportion of habitat patch sampled (v=0.50 or v=1.0), 

level of out-of-model capture probability estimation error (psd=0.1 or psd=0.5), and average 

sibling group size (a=100 or a=500). Additionally, we investigated the performance of the 

estimator for Ñg (Eq. 10). We simulated single-year datasets with low sampling effort (5 habitat 

patches and v=0.5) at a range of mean sibling group sizes (ag=50, 100, 150, 200, 250, 300). 
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Lower sampling effort and sibling group sizes were simulated because we were interested in 

measuring the relative error in Ñg as the proportion of family groups observed Nobs declined. All 

other parameters were kept the same as in the main simulation-estimation study. 

We used a low information prior for spawning probability location sg,h, representing a 

scenario with no prior information on spawning location. In practice, informative priors could be 

placed on sg,h if the spawning requirements of the modeled species were well-understood (e.g., 

need for pea sized gravel for redd construction) and relevant habitat data were available. We 

applied a uniform prior on dispersal rate q and mortality rate M with a lower bound of 0 (because 

the exponential distribution does not support negative numbers) and an upper bound where 

further increases would lead to negligible changes in detectable outcomes. At q=10 the 

metapopulation is panmictic with uniform distribution among habitat patches expected after each 

time step and at M=5 annual mortality approaches 100%. All other parameters were assigned 

normal priors with means centered on the true simulated value and a large variance (Table 2.1). 

Bayesian parameter estimation was undertaken with the MCMC sampler implemented in 

Stan and accessed through the rstan package (Stan Development Team, 2023) for R (R Core 

Team, 2023). Each model was run with four MCMC chains, 3000 warmup iterations, 2000 

sampling iterations, adapt-delta set to 0.99, and max tree depth set to 13. We used diagnostics 

reported by rstan to designate MCMC model runs that were sampling from the posterior and had 

sufficient iterations to reliably characterize parameter mean and variance. We flagged MCMC 

estimation implementations with model parameter �̂�>1.02, effective sample sizes less than 100 

per chain, and any divergent transitions or transitions in which the maximum tree depth was 

exceeded. MCMC implementation that passed all of these checks were considered successful 

model runs. Posterior distributions from the successful model runs were summarized to evaluate 

parameter estimation statistics. 

Estimation results were evaluated based on measures of accuracy (relative error) and 

precision (relative 80% credible interval width). 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =
100[�̂� − 𝛳]

𝛳
 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 80% 𝐶𝐼 𝑤𝑖𝑑𝑡ℎ = 100 [√(
�̂�90 − �̂�10

�̂�
)

2

] 

where �̂� is the mean of the posterior distribution, �̂�10 and �̂�90 are the 10th and 90th percentiles of 
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the posterior distribution, and 𝛳 is the true simulation parameter value used in the simulation 

study. We calculated metrics for each model run and graphically examined the summary 

statistics (mean, 10th, 25th, 50th, 75th, and 90th percentiles) to gauge the reliability of our model 

and characterize how the accuracy and precision of parameter estimates varied among simulation 

scenarios.  

Results 

We repeated simulations until at least 50 iterations for each evaluated scenario passed all 

convergence checks. Overall, 72% of the iterations passed convergence checks. Models failed 

checks due to �̂� values greater than 1.02 and/or effective sample size (ESS) less than 400. In our 

simulated datasets, the average number of siblings detected per family group varied at different 

levels of mean sibling group size and as sampling intensity increased (either sampling more 

habitat patches or moving from 0.5 to 1.0 proportion of habitat patches sampled) (Figure 2.3). 

Increased variance in capture probability (σp) had little effect on the average number of 

individuals captured per sibling group. 
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Figure 2.3. Mean number of siblings captured per family group in each simulation scenario. 

Simulation-estimation scenarios varied according to the number of habitat patches sampled (H=5 

or H=10; x-axis), mean sibling group size (ag=100 or ag=500; x-axis), among-sample variability 

in capture probability (σp=0.1 or σp=0.5; plot legend), and proportion of habitat patch sampled 

(v=0.5 or v=1.0; plot legend). Boxplots show the 10th, 25th, 50th, 75th, and 90th quantiles of ≥50 

simulation-estimation iterations per scenario. 

Simulation results indicated the modeling framework reliably estimated recruitment, 

mortality, and dispersal parameters, though some parameters were well estimated across all 

scenarios tested and others were only estimated with high accuracy in scenarios with high 

sampling effort and/or large sibling group size (Figure 2.4). Mean relative error of mean sibling 

group size (a), environmental effects on sibling group size (aenv), and dispersal rate (q) were 

estimated with high accuracy across all scenarios (mean relative error less than 6%). The 

strength of density-dependence was underestimated in all scenarios but not by a large degree 

(positive relative error ranging from 6% to 13%). While increased sampling effort and larger 

sibling group size reduced the spread of simulation results, there was not a strong effect of these 

variables on mean density-dependence estimate relative error. Recruitment process error σa 

tended to be estimated as smaller than the true value (negative relative error) but scenarios with 
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increased sampling effort tended to have a relative error closer to zero. Sibling group size also 

influenced the reliability of σa; accuracy for low sibling group size scenarios (ag=100) was highly 

dependent upon sampling effort (mean relative error of -40% with v=0.5 and H=5 versus mean 

relative error of -7% with v=1.0 and H=10). Accuracy was high across all scenarios with ag=500 

(largest mean relative error for all ag scenarios was -8%). Accuracy of exponential mortality (M) 

estimates also varied substantially among scenarios. Estimates were reasonably unbiased (mean 

relative error range of 8% to -9%) in all scenarios except for the two scenarios with low 

sampling effort (H=5 and v=0.50) and ag=100. Mean relative error for these two scenarios was 

>30%. Finally, increasing the among-sample variability in detection probability from σa=0.1 to 

σa=0.5 had negligible effects on parameter estimation accuracy. Each scenario with σa=0.5 had 

similar mean relative error as its corresponding scenario with lower observation error. 
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Figure 2.4. Relative error for recruitment parameters (a=mean sibling group size, 

aenv=environmental effects on sibling group size, add=density-dependent effects on sibling group 

size, σa=process error for among sibling group size variability), exponential mortality rate (M), 

and dispersal rate (q). Simulation-estimation scenarios varied according to the number of habitat 

patches sampled (H=5 or H=10; x-axis), mean sibling group size (ag=100 or ag=500; x-axis), 

among-sample variability in capture probability variability (σp=0.1 or σp=0.5; plot legend), and 

proportion of habitat patch sampled (v=0.5 or v=1.0; plot legend). Points show the mean of ≥50 

simulation-estimation iterations and boxplots show the 10th, 25th, 50th, 75th, and 90th quantiles. 

Across all scenarios, mean sibling group size and dispersal rate tended to be estimated 

with higher precision than the other recruitment parameters and exponential mortality, but 

precision was influenced by each of the sampling variables we investigated and sibling group 

size (Figure 2.5). Increased sibling group size, number of habitat patches sampled, and 

proportion of habitat patches sampled resulted in increased precision (narrower 80% credible 

intervals). Increasing sampling error σp caused precision to decline, but this effect was negligible 

for some parameters (a, σa, and q) and most pronounced for aenv and M. Reduction in the 
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precision for M was most pronounced for the large sibling group simulation (ag=500) with H=10; 

increasing σp from 0.1 to 0.5 resulted in a more than a doubling of the mean 80% credible 

interval width.  

 

Figure 2.5. Relative 80% credible interval (CI) width for recruitment parameters (a=mean sibling 

group size, aenv=environmental effects on sibling group size, add=density-dependent effects on 

sibling group size, σa=process error for among sibling group size variability), exponential 

mortality rate (M), and dispersal rate (q). Simulation-estimation scenarios varied according to the 

number of habitat patches sampled (H=5 or H=10; x-axis), mean sibling group size (ag=100 or 

ag=500; x-axis), among-sample variability in capture probability variability (σp=0.1 or σp=0.5; 

plot legend), and proportion of habitat patch sampled (v=0.5 or v=1.0; plot legend). Points show 

the mean of ≥50 simulation-estimation iterations and boxplots show the 10th, 25th, 50th, 75th, and 

90th quantiles. 

Mean estimated number of sibling groups Ñg in the simulated metapopulation reached an 

asymptote at the true value (40 sibling groups) as mean sibling group size increased beyond 100, 

but the estimator tended to underestimate the true value at low sibling group sizes (ag=50 and 
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100) (Figure 2.6). Observed number of sibling groups in simulated datasets increased as sibling 

group size increased but was an underestimate of the true value at all values of ag. 

 

Figure 2.6. Number of sibling groups observed in simulated datasets (Nobs) and estimated (Ñg) for 

simulation scenarios with variable mean sibling group size (ag). The true number of sibling 

groups in each simulation was 40 (horizontal line). Points show the mean of ≥50 simulation-

estimation iterations and boxplots show the 10th, 25th, 50th, 75th, and 90th quantiles. 

Discussion 

We demonstrated a novel modeling framework for quantifying recruitment dynamics at 

the sibling-group scale. The framework is based on metapopulation theory and formulated using 

continuous-time multistate modeling. Using this framework, spatial recruitment models and 

transition probability matrices can be developed from empirical sibship data to suit a wide range 

of fisheries science and management predictive modeling applications. Results of our simulation 

study provide some initial insight on the data requirements for reliable parameter estimation. 

Intuitively, parameter estimation accuracy and precision tended to increase as sampling intensity 

increased. However, we found that relatively accurate parameter estimates could be obtained 

with sampling intensity constraints (not sampling all habitat patches in a metapopulation and/or 

subsampling available habitat within each patch) and accurate but imprecise estimates of capture 
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probability. This finding suggests that with well-conceived sampling design, reliable population-

level inferences related to dispersal among habitat patches, size of sibling groups, and 

environmental and density-dependent effects on sibling group size are possible from sibship 

data.  

Sampling effort and sibling group size had a strong influence on the accuracy of mortality 

and recruitment rate processes error estimates, but were less influential on mean recruitment rate, 

estimates of environmental and density-dependent effect size, and dispersal rate. Estimates of 

mortality were relatively unbiased for all but the most challenging simulation scenarios 

considered (i.e., low sampling effort and low mean sibling group size). Unreliable estimates may 

be due to increased noise caused by demographic stochasticity at lower sampling effort and low 

sibling group size; inferences about sibling group size at older age classes tended to be made 

from observations of only a few individuals. Further investigations into the constraints of reliably 

estimating mortality using this model framework are needed. We observed that recruitment rate 

process error σa tended to be underestimated and the degree of underestimation was higher when 

simulated datasets were less informative. This occurred because of the shrinkage effect of using 

hierarchical modeling to estimate processes error; estimated deviations from the average 

recruitment rate were expected to be pulled towards zero (compared to a model that estimated 

these deviations as a fixed effect) and the amount of shrinkage towards zero for a particular 

random deviate is expected in increase as information available to resolve it decreases (Gelman 

et al., 2013). Recruitment deviations with substantial shrinkage towards zero then result in 

underestimation of recruitment deviation process error σa. However, we expect that the shrinkage 

effect of the hierarchical approach will often be desirable for empirical datasets that contain 

asymmetrical amounts of data on individual sibling groups (some sibling group sizes that can be 

well estimated by the data and others that cannot). Notwithstanding, an alternative modeling 

approach (for scenarios in which a and σa are not directly of interest but a means to an end of 

estimating sibling group size ag) would be to estimate sibling group size as a fixed effect. For 

empirical applications where the fixed effect model is considered, model selection approaches 

that compare expected log predictive density, such as the hold-one-out cross validation methods 

implemented in the loo package (Vehtari et al., 2017), could be used to assess the relative 

performance of hierarchical and non-hierarchal model approaches to estimating among sibling 

group variation. 
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Future research is needed to assess the effects of sibling group mis-assignment or 

omission on spatial recruitment dynamics inferences. We assumed that sibling groups were 

assigned without error and that every captured individual could be genotyped and assigned to a 

sibling group, but in practice these conditions may not be met. The reliability of sibship 

assignment depends upon the information content of the suite of genetic markers used to assign 

sibship (Baetscher et al., 2018; Sard et al., 2020). Pedigree reconstruction methods using full-

pedigree likelihood methods (Jones and Wang, 2010) and likelihood ratio tests on putative pairs 

of related individuals require analysts to make decisions about reliability thresholds that balance 

the risk of including possibly unreliable sibship assignments versus the costs of omitting good 

data. Simulation studies that follow the pipeline of sibship-abundance estimation dataset 

construction– sampling processes used to capture individuals, expected levels of sibship 

assignment error given a set of genetic markers, pedigree reconstruction methods, reliability 

filtering thresholds, and statistical estimation of population dynamics parameters from the 

reliable subset of sibship data and the associated sampling metadata – would clarify downstream 

effects of sibship assignment error and reliability threshold decisions on inferences about spatial 

recruitment processes. 

Review of empirical sibship data could inform simulation testing of our proposed 

modeling framework tailored to specific decision contexts and targeted fish populations. For 

example, we found that average sibling group size was an important population characteristic for 

predicting the quality of parameter estimation. Number of siblings captured, which can be 

directly observed and is reported in most applications of sibship analysis to fish populations, is 

related to this quantity through sampling processes. Consideration of the spatial extent of habitat 

expected to be accessible to observed sibling groups, the proportion of this habitat surveyed, and 

the detection probability of the survey gear provides a roadmap for back-of-the-napkin 

calculations of sibling group size based on observed number of siblings. Dispersal needs to be 

considered in these calculations and is another key demographic process to consider. Average 

dispersal rate, spatially variable dispersal associated with heterogenous environment, and 

density-dependent mechanisms all may influence dispersal and, collectively, predict which 

habitat patches are expected to be accessible for a given sibling group by way of distance-limited 

dispersal, spatially heterogenous physical processes such as oceanic currents, discrete barriers to 

dispersal in river network systems, and/or behavioral habitat selection preferences. 
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Application of this framework requires discrete-space representation of habitat. Both the 

decision context and dispersal characteristics may be informative for deciding upon the 

appropriate scale and zoning procedure for delineating habitat patches and thereby represent 

dispersal processes. For example, interpreting the effects of a culvert remediation could be 

influenced by the scale of habitat patch delineation relative to the scale of distance-limited 

dispersal. While the process of interest here is the discrete effect of the culvert on movement 

before and after remediation, distance-limited dispersal may be important to consider when 

interpreting cross-barrier transition probabilities. If distance-limited dispersal is not accounted 

for and sibling groups are sampled at locations where they have a reduced probability to 

encounter the barrier, inferences from a simple two habitat patch model (above barrier and below 

barrier) may conclude that the remediation had limited success at removing barriers to migration, 

even if passage was returned to stream-like conditions. A higher resolution model with multiple 

spatial states above and below the barrier could capture spatial patterning due to distance-limited 

dispersal and the presence of a discrete barrier to migration. This second version is analogous to 

the concept of isolating fishway entrance and passage probabilities from attraction probability 

when evaluating overall fish passage at barriers (Castro-Santos et al., 2009). In general, the 

ability to consider both discrete and distance-limited mechanisms of spatial structuring in the 

same analytical model is a strength of applying the metapopulation concept to ecological 

dispersal questions. 

Empirical support for developing predictive metapopulation models is often limited 

(Botsford et al., 2009; Kritzer and Sale, 2004). We posit that combined sibship-abundance 

estimation datasets could further advance empirical support for predictive metapopulation 

models because the methodology has different strengths and constraints compared to methods 

using individual tagging and telemetry methods. Individual tagging and telemetry methods 

provide a wide range of approaches for quantifying movement and survival (Lucas and Baras, 

2000; Pine et al., 2003; Thorstad et al., 2013), and international collaborations (Iverson et al., 

2018) and innovations in technoscience (Cooke et al., 2022) are continuously advancing the 

potential of these methods. However, making inferences from tagged individuals requires both a 

statistically robust sample from the population of interest and careful management of tagging and 

handling effects. These requirements limit the usefulness of this method for studying fish species 

and/or life stages sensitive to tagging and handling. Previous applications of sibship analysis 
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applications demonstrate the usefulness of the method for studying the movement of fishes at 

early life stages (e.g., Hessenauer et al., 2012), where individual tagging approaches would have 

had limited efficacy. We demonstrated that sibship analysis data can be used to estimate survival 

in a similar fashion as individual tagging datasets when the sampling processes and/or prior 

information facilitate abundance estimation. Finally, longitudinally sampling sibling groups may 

be particularly useful for applications where ageing approaches based on counting annuli on hard 

parts are costly or unreliable. Initial age of a sibling group can be assigned during an early life 

stage (when length can be used as a reliable indicator of age) and this age assignment can be 

caried on to individuals captured thereafter (when length-based age assessment would not be 

feasible). 

The sibling group scale is an information rich and biologically realistic lens to study 

recruitment. As the power and feasibility of reconstructing pedigrees of wild populations from 

genetic markers continues to increase (Anderson and Garza, 2006; Baetscher et al., 2018), 

quantitative population dynamics models are needed to translate this information rich data source 

into empirical predictive models useful to policy makers, resource managers, and scientists. The 

metapopulation concept and continuous-time multistate modeling methods provide a theoretical 

and mathematical foundation for analysis of sibship data that encompasses both the dispersal and 

sibling group abundance aspects of sibship data. The utility of empirical quantitative models 

developed from combined sibship-abundance estimation datasets will be context specific. 

Simulation-based power analysis approaches (e.g., Perkins et al., 2021) may provide key insight 

into the expected efficacy of the method and could provide insight into best sampling practices 

for building integrated sibship-abundance estimation long term monitoring datasets that are well 

poised to reduce key uncertainties in spatial recruitment mechanisms of fish populations.  
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 CHAPTER 3. A COLLABORATIVE ADAPTIVE MANAGEMENT FRAMEWORK 

FOR SELECTION AND USE OF INVASIVE SPECIES CONTROL TACTICS 

Abstract 

A major aim of invasive species management is to enact Integrated Pest Management 

(IPM) principles. However, operationalizing IPM can be challenging due to ecological and 

values-driven uncertainties. We applied decision analysis to develop a collaborative adaptive 

management framework that enables effective consideration of the societal and environmental 

consequences of control tactic selection and use decisions for invasive sea lamprey (Petromyzon 

marinus) in North America’s Laurentian Great Lakes. We developed a multi-level objective 

hierarchy that included both localized management and multi-stream coordination fundamental 

objectives, conducted a feasibility analysis that constrained alternatives to those with high 

probability of social acceptance and technical success, and quantified expected outcomes of 

alternatives in terms of multi-stream coordination objectives (minimize costs and maximize 

learning about efficacy of novel sea lamprey control strategies). Optimal deployment 

configurations for scenarios that favored maximize learning over minimize costs consisted of a 

more diverse portfolio of control tactics compared to scenarios that favored cost effectiveness, 

which demonstrates the sensitivity of sea lamprey control tactic selection and use decisions to 

values-driven uncertainty. Additionally, sensitivity analyses revealed that optimal deployment 

recommendations depended upon assumptions about social and technical feasibility. Iterative 

application of our collaborative adaptive management framework could support social learning 

and cross-scale linkages if ideas about multi-stream coordination and internal validity of invasive 

sea lamprey management practices can be exchanged in a trusting environment. Collaborative 

adaptive management frameworks capable of enabling such social learning may be broadly 

useful for operationalizing IPM in heterogeneous social-ecological landscapes. 

Introduction 

Adapting natural resource management practices to non-stationary, social-ecological 

system dynamics depends upon learning processes. Adaptive management with a plan for 

learning (active adaptive management) enables iterative updating of social-ecological system 

models through the synergistic integration of monitoring, collaboration, and deliberate 

management experimentation (Lee, 1993; Parma, 1998; Walters, 1986). However, implementing 

a deliberate management experiment is a complex, interdisciplinary endeavor (Endter-Wada et 
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al., 1998). Adaptive management learning plans consist of experimental replicates enacted 

sequentially in a particular experimental management unit (temporal replication) and/or multiple 

replicates enacted simultaneously (spatial replication) (Williams, 2011). Learning aims can span 

biological conservation, ecosystem management, and natural resource governance practices 

(Fabricius and Cundill, 2014), and the epistemology and values of those involved in decision 

processes influence learning objective development and evaluation of management practice 

suitability (McLain and Lee, 1996). Furthermore, dynamic tension may exist between adaptive 

management objectives focused on improving management practices through collaboration and 

social learning and those focused on enacting particular experimental designs to improve 

learning about system dynamics (Jacobson et al., 2009). Collaborative adaptive management 

frameworks can assist in navigating these complexities and tradeoffs (Scarlett, 2013). 

Collaborative decision-support frameworks additionally help practitioners move among decision 

analysis steps, decompose problems into key components, account for multiple objectives, foster 

group deliberation, and identify desirable action alternatives (Hemming et al., 2022). Application 

of collaborative adaptive management decision support frameworks may build capacity to 

confront complex natural resource management challenges and opportunities situated within 

social-ecological systems characterized by multiple, possibly conflicting, value systems and non-

stationary dynamics. 

Management decisions for invasive species often have high degrees of uncertainty, 

require consideration of conflicting values systems, and necessitate tradeoffs among multiple 

objectives. Integrated Pest Management (IPM), which is defined as “… a decision support 

system for the selection and use of pest control tactics, singly or harmoniously coordinated into a 

management strategy, based on cost/benefit analyses that take into account the interests of and 

impacts on producers, society, and the environment” (Kogan, 1998), provides conceptual clarity 

on how invasive and/or pest species management can operate despite these challenges and 

uncertainties. However, applying IPM in practice can be challenging. Basic understanding of the 

target populations’ life history and ecology is a prerequisite to implementing IPM. Even when 

equipped with this understanding, however, institutional and communication constraints can 

limit effective consideration of the societal and environmental consequences of control tactic 

selection and use decisions (Arora and Dhawan, 2012). 

Adaptive management has been suggested as a viable approach to overcoming barriers to 
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IPM implementation. Learning about how control tactic effectiveness interacts with the target 

species’ life history dynamics and ecology can be advanced with successful execution of an 

adaptive management learning plan (Shea et al., 2002). Adaptive management can also build 

linkages among practitioners, decision makers, and resource users and enable informational 

feedback loops necessary for effective consideration of multi-faceted societal and environmental 

consequences of invasive species management decisions (Chaffin et al., 2016; DiTomaso et al., 

2017). Collaborative adaptive management frameworks that mobilize Indigenous knowledge, 

mainstream Western science, and operational logistics may be particularly well-suited to 

invasive species management applications (Mason et al., 2021). Collaborative processes that 

allow for multiple ways of knowing to coexist and knowledge coproduction can enrich 

understanding of complex resource management problems or concerns (Reid et al., 2021; Tengö 

et al., 2014), such as how to manage invasive species (Nonkes et al., 2023). 

The sea lamprey (Petromyzon marinus) is an invasive fish to the Laurentian Great Lakes 

of North America. Sea lamprey spread and establishment was facilitated by the construction of 

navigable canals in the late 1900s that bypassed natural barriers between the Atlantic Ocean and 

the Great Lakes basin (Docker et al., 2021). As larvae, sea lamprey live primarily burrowed in 

sediment for 2 or more years; individuals subsequently metamorphose and outmigrate to the 

Great Lakes where they reside as parasitic juveniles for 12 to 18 months (Applegate, 1950; 

Bergstedt and Swink, 1995). Semelparous adults return to tributaries to spawn but, lacking natal 

philopatry, redistribute widely among Great Lakes tributaries. These life history traits led to 

widespread production of parasitic juvenile sea lamprey in the mid 20th century, each capable of 

damaging valuable fishes by consuming approximately a kilogram of host-fish blood (Jorgensen 

and Kitchell, 2005; Madenjian et al., 2003). Prior to efforts to control their densities in the Great 

Lakes, sea lamprey parasitism contributed to significant abundance declines of native lake trout 

(Salvelinus namaycush) and Coregonus spp. populations and limited efficacy of fish stocking for 

native fish conservation and development of recreational salmonid fisheries (Dann and 

Schroeder, 2003; Muir et al., 2012). 

A major aim of invasive sea lamprey management has been to enact IPM principles as 

part of the control program (Christie and Goddard, 2003; Sawyer, 1980). Supplementing existing 

sea lamprey control tactics (lampricide control and maintenance of barriers to block spawning 

migrations) with novel sea lamprey control tactics, including enhanced trapping, co-option or 
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disruption of the sea lamprey’s chemosensory system, deployment of electric weirs and traps, 

and sterile male release technique, could increase capacity to do this (Siefkes et al., 2021). 

However, the effectiveness of these novel control tactics is uncertain and feedback loops linking 

learning about effectiveness of novel sea lamprey control tactics to management practice are not 

well developed. Adaptive management decision support frameworks could assist with 

overcoming these barriers.  

We re-examined the prospects for implementing IPM principles in invasive sea lamprey 

management through the lens of adaptive management. Despite operationalizing IPM principles 

being a longstanding goal in the Great Lakes basin for sea lamprey control, existing ecological 

knowledge and management practices may be insufficient for effective consideration of the 

societal and environmental consequences of sea lamprey control tactic selection and use 

decisions. Notwithstanding this uncertainty, adaptive management decision support frameworks 

can offer a blueprint for decision making while progressing towards operationalization of IPM 

principles. Furthermore, adaptive management frameworks that consider both multi-system 

coordination and localized management objectives may be instrumental to learning about 

societal and environmental consequences of sea lamprey management actions throughout the 

Great Lakes basin, a heterogenous ecological and social landscape poorly suited to general-

purpose management strategies. The multi-system coordination focal scale works to make sea 

lamprey control agents and partners, stakeholders, rightsholders, and decision makers aware of 

the possible benefits of coordinated collective action. The single-stream focal scale offers greater 

opportunity for mobilizing place-based and operational knowledge bases, but at the cost of 

supporting coordination among experimental units. Both of these functions are expected to 

enhance success of invasive species management; collective responses to invasive species 

management are enhanced when the benefits of coordinated actions are evident (Graham et al., 

2019), and integrating operational knowledge systems with decision-making processes enables 

development of actionable invasive species management plans (Mason et al., 2021). 

Our objective was to develop a collaborative adaptive management decision support 

framework for the selection and use of novel invasive sea lamprey control tactics. Decision 

analysis tools and theory were used to achieve this objective. We conclude by discussing how 

conceptual and practical outcomes of our decision analysis case study relates to the theory and 

practice of operationalizing IPM. 
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Methods 

We applied decision analysis towards development of a collaborative adaptive 

management decision support framework. This decision analytic approach to adaptive 

management has been applied to natural resource management and conservation challenges 

(McFadden et al., 2011; Williams and Brown, 2016). Decision analysis breaks down complex 

decisions into key components (commonly represented with the PrOACT acronym): 1) 

collaboratively define the problem, 2) identify objectives and ways to measure to what degree 

they have been met, 3) identify possible alternative actions, 4) predict the consequences of each 

alternative action in terms of the objectives, and 5) make tradeoffs among objectives (Hammond 

et al., 2015). Our decision analysis consisted of convening multiple, collaborative workshops, 

developing models and quantitative tools, and synthesizing lessons learned from iterative 

facilitated discussions anchored around the PrOACT framework. Here, we describe key aspects 

of the decision context, provide detail on the methods we used to address each step in the 

PrOACT framework, provide the problem statement and objective hierarchy (Methods), and 

report on the outcomes of predicted consequences and evaluation of tradeoffs (Results). 

Decision Context  

A working group consisting of sea lamprey control agents and decision makers (hereafter 

the Core Group) was formed in 2019 to guide planning and implementation of an invasive sea 

lamprey management experiment. The motivation for conducting the management experiment 

was based in a renewed philosophy about supplemental sea lamprey control, which makes the 

case for integrating sea lamprey control tactics targeting adult and outmigrating juveniles with 

established control tools (lampricides and barriers) to build capacity for operationalizing IPM 

principles in sea lamprey management (Siefkes et al., 2021). 

The first major decision was to select the streams in which to deploy and evaluate 

experimental sea lamprey management strategies. Decision theory was not explicitly referenced 

during the collaborative decision-making process that the Core Group used, but we apply 

terminology post hoc for clarity. Stream selection was treated as a classification problem; 

candidate experimental streams could be classified as green (definitely include), yellow (maybe 

include), or red (do not include). Stream characteristics were identified that would increase the 

chances of experimental sea lamprey management out-performing status quo lampricide 

management and limit chances of logistical challenges derailing effective monitoring and 
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experiment implementation. The identified stream characteristic objectives were 1) maximize 

consistency of larval sea lamprey production, 2) minimize lampricide treatment effectiveness, 3) 

minimize adult run size relative to larval habitat, 4) minimize distance from a sea lamprey 

control field station, 5) maximize opportunities for collaboration with local partners, and 6) 

maximize ability to effectively quantify larval densities with backpack electrofishing 

(Lewandoski et al., 2021). Considering these multiple objectives but without making explicit 

tradeoffs among them, a direct classification method was used to classify candidate streams. 

Candidate streams were selected for experimental deployments and evaluation (n=9) and the 

scope of the management experiment comprised these streams along with streams with existing 

experimental management deployments (n=4) (Figure 3.1). 

 

Figure 3.1. Candidate streams to deploy and evaluate experimental sea lamprey control strategies 

(dark shaded points) and existing experimental deployments (light shaded points). 

After selection of experimental streams, a monitoring plan was developed and 

implemented in 2020 that consisted of monitoring multiple sea lamprey life stages before (during 

status quo lampricide only management) and during experimental management deployments 
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(experimental management tactics targeting the adult life stage combined with lampricide). After 

collection of baseline data during status quo sea lamprey management, the management 

experiment design called for deployment of experimental supplemental sea lamprey control 

strategies. The Core Group identified the need to develop a decision-support framework to guide 

experimental deployment decisions. Which experimental sea lamprey management strategy 

should be tested where and why? Decision analysis was applied to contend with these questions. 

The scope of the experimental sea lamprey management deployment decision was 

initially limited to a single experimental unit located in the Keweenaw Peninsula of Michigan, 

the Traverse River. A workgroup including members of the Core Group, sea lamprey 

management partners from the Keweenaw Bay Indian Community Natural Resources 

Department, decision analysis subject matter experts, and sea lamprey management researchers 

convened for an in-person workshop in Houghton, MI, and multiple online workshops. These 

workshops along with asynchronous efforts led to a decision-support framework prototype that 

provided a means to explicitly assess tradeoffs among sea lamprey management outcomes, 

learning, cost of deployment, and collateral damage when considering experimental sea lamprey 

deployments. However, development of this decision-support framework did not culminate in a 

deployment decision. Lack of robust accounting for uncertainty in sea lamprey control tactic 

effectiveness (both in terms of sea lamprey control outcomes and consideration of environmental 

and societal outcomes of management actions) and lack of a satisfactory measurable attribute for 

objectives associated with learning outcomes limited the usefulness of the decision-support 

framework prototype. Ultimately, learning from the prototype effort on the Traverse River 

supported development of an adaptive management framework that integrated learning across 

multiple streams and accommodated iterative sea lamprey control tactic selection and use 

decisions. 

Problem Framing 

The decision problem was a need to identify effective sea lamprey management strategies 

well-suited to the social, physical, and ecological context of targeted streams while 

simultaneously optimizing the benefits of coordinating experimental deployments of novel 

control tactics among multiple candidate experimental streams. Linked cross-scale decisions 

regarding the selection and use of sea lamprey control tactics underlay this decision problem. Sea 

lamprey control tactic selection and use decisions can be framed along localized experimental 
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unit focal-scale pathways and widespread management application focal-scale pathways. 

Multiple knowledge systems and evidence-based approaches (Reid et al., 2021; Tengö et al., 

2014) can be applied along both pathways (Figure 3.2). 

A multi-scale perspective adds complexity to decision making but may benefit sea lamprey 

management experiment planning and implementation. From a learning standpoint, construing 

large-scale invasive species management applications as spatial subsets increases learning power 

and allows for examination of relationships between the experimental treatment and spatial 

habitat variables (Shea et al., 2002). Implementing experimental designs intended to increase 

learning power improves capacity to make inferences to other sea lamprey producing systems in 

the Great Lakes. However, fully realizing the increased learning power gained from spatial sub-

setting also requires giving traction to large-scale management perspective to ensure proper 

coordination and sharing of learning outcomes among localized management units (Watts et al., 

2020). Secondly, consideration of scale is needed to describe the type of collective action 

underpinning current invasive species management practices (externally led, community led, co-

managed, and organizational coalitions sensu Graham et al., 2019) and the opportunities, risks, 

and feasibility of cultivating a type of collective action different from the status quo through 

implementation of the planned management experiment. Finally, invasive species management 

arrangements that have overlapping levels of authority occurring at multiple scales are expected 

to enable adaptive management learning feedback loops driven by management-scale 

experimentation (Chaffin et al., 2016; Folke et al., 2005). As a corollary, we expect that enabling 

access to the decision-making process through both the widespread management perspective and 

the localized experimental unit perspective is beneficial to the process of planning and 

implementing invasive species management experiments.
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Figure 3.2. Conceptual model for framing decisions associated with invasive sea lamprey 

management experiments. The inner loop illustrates iteration among decision elements (define 

problem (Pr) and objectives (O) and measurable attributes, identify alternatives (A), evaluate 

consequences (C), make tradeoffs (T) among objectives, make a decision (D) and implement, 

and monitor (M) outcomes) (adopted from (Hemming et al., 2022) and the outer loop illustrates 

how framing of the decision problem can occur along multiple focal-scale pathways and that 

expected learning and management outcomes of the management experiment inform the values 

and constraints that frame the experiment and the resources mobilized for implementing it. 

Intersecting circles represent multiple knowledge systems and evidence-based approaches 

framing the decision problem along each focal-scale pathway. 

Objectives 

We developed a multi-level objective hierarchy that included both multi-stream 

coordination objectives and localized objectives to accommodate the linked cross-scale decisions 

that underlay our decision problem (Fig. 3). The levels were linked through a feedback loop 

between feasibility analyses conducted at the multi-stream coordination level and application of 

multi-objective decision analytic tools at the localized level. Learning objectives were present at 

both levels of the objective hierarchy. At the multi-stream coordination level, learning objectives 

support external validity; at the localized level, learning objectives support internal validity. In 
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the context of adaptive management, external validity is the extent to which inferences drawn 

about the effectiveness of a management application can be generalized to other social-

ecological systems, while internal validity describes the suitability of management practices for 

the system within which they are operating (Lee, 1993). 

In developing the multi-level objective hierarchy, we applied the multi-criteria decision-

making principle of ensuring objectives are non-redundant (Keeney, 2007) based on our 

expectation that if decision-making processes at both focal scales are expected to work well in 

concert (rather than provide redundant functionality) then this principle should be applied to the 

collective multi-level objective hierarchy. Practically, non-redundant objectives clarify the roles 

of multi-stream coordination and localized decision processes in the overall design and 

implementation of sea lamprey management experiments. Fundamental objectives at the multi-

stream coordination level were to maximize learning for external validity and minimize costs to 

resources mobilized for the management experiment. At the localized level, fundamental 

objectives included minimize production of juvenile sea lamprey, maximize learning for internal 

validity, minimize collateral damage, and minimize costs mobilized for localized objectives. 

Means objectives for minimize juvenile sea lamprey production included minimize spawner 

recruitment and maximize larval mortality. Means objectives for minimize collateral damage 

were grouped as non-target effects of management actions (minimize lampricide application rate 

and minimize km of river seasonally blocked) and maximize social license for implementing sea 

lamprey management (minimize loss of river access by resource users and minimize aesthetic 

impact of management actions on the resource). 

Measurable attributes were developed for the fundamental objectives at the multi-system 

coordination level. The measurable attribute for minimize cost was the expected annual cost of 

the experimental deployment and the measurable attribute for maximize learning was an index of 

increased predictive power. 
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Figure 3.3. Multi-level objective hierarchy for sea lamprey management experiment decisions. 

The block arrow indicates a vertical linkage between multi-objective decision analyses 

conducted at the experimental unit (stream) scale and feasibility assessments conducted to aid 

with multi-stream coordination. Achievement of means objectives (unshaded boxes) enable 

achievement of the supported fundamental objective (shaded boxes). Measurable attributes 

(dotted line boxes) were developed for quantifying expected outcomes of multi-stream 

coordination fundamental objectives. (Min=minimize, Max=maximize, SL=sea lamprey, TFM = 

primary chemical control tool). 

Alternatives  

The set of possible experimental control tactics for adult sea lamprey comprised 

combinations of remove (remove adults prior to spawning), divert (divert adults away from 

spawning habitat), and disrupt (disrupt the spawning process to lower production of viable 

embryos) tactics. The removal category included traps and passage-friendly traps. The divert 

category consisted of a single control tactic (seasonal electric weir). The disrupt category 

consisted of the sterile-male-release-technique and application of pheromone antagonists (Table 

3.1; see Siefkes et al., 2021 for a review of these methods). Experimental sea lamprey 

management strategies were combinations of these tactics (Table 3.2). The set of strategies 

considered included all combinations of at most one tactic from each of the remove, divert, and 

disrupt categories, excluding combinations that included both passage-friendly trap and diverting 
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tactics. Alternatives consisted of a control strategy deployment at each of the 9 candidate 

experimental streams. The scope of possible alternatives was constrained by conducting a 

feasibility analysis. Stream-strategy scenario pairings with a failed feasibility analysis were 

excluded from consideration. The alternative list was based on all permutations of feasible 

stream-strategy pairings, with an additional constraint for deployments in Crystal Creek and the 

Root River mainstem. We limited alternatives to those with the same strategy deployed in both 

tributaries to simplify communication of the deployment recommendation for the Root River 

system as a whole and streamline development of an operational-scale deployment plan. Finally, 

the alterative list was filtered by removing alternatives that called for releasing more sterile 

males than were expected to be available for the management experiment in total. 

Table 3.1. Descriptions of experimental sea lamprey control tactics and key references/ rationale 

listed by category and type.  

Tactic 

category 

Tactic Type Description References/Rationale 

Remove Trap 

 

Deploy one or more capture 

devices to remove adult sea 

lamprey prior to spawning 

(Hume et al., 2020; 

Johnson et al., 2016; 

Miehls et al., 2020) 

 Passage-

friendly trap 

Deploy one or more capture 

devices to remove adult sea 

lamprey prior to spawning while 

minimizing possible disruption of 

wading and boating recreation 

and fish passage 

Passage-friendly features 

can be implemented 

through some combination 

of chemosensory 

behavioral manipulation, 

trap operation 

modifications, and 

restrictions on the stream-

width coverage of trap 

leads 

Divert Electric weir Deploy a seasonal electric weir (Johnson et al., 2021b) 

Disrupt Sterile-male-

release-

technique 

Release sterilized males, 

targeting a 40:1 sterile male to 

non-sterile male ratio 

(Bravener and Twohey, 

2016; Johnson et al., 2021a; 

Twohey et al., 2003) 

 Pheromone 

antagonist 

Inundate sea lamprey spawning 

habitat with pheromone 

antagonist during the 3-4 week 

peak spawning window 

(Buchinger et al., 2020) 
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Table 3.2. Experimental sea lamprey control strategy scenarios. Control strategies consist of one 

or more control tactics, with a maximum of one tactic in each of the remove, divert, and disrupt 

categories. SMRT = sterile male release technique, antagonist = pheromone antagonist. 

Strategy scenario Remove Divert Disrupt 

1 (Trap) Trap No No 

2 (Passage-friendly trap) Passage-friendly 

trap 

No No 

3 (Block) No Electric weir No 

4 (SMRT) No No SMRT 

5 (Antagonist) No No Antagonist 

6 (Trap + Block) Trap Electric weir No 

7 (Trap + SMRT) Trap No SMRT 

8 (Trap + Antagonist) Trap No Antagonist 

9 (Trap + Block + 

SMRT) 

Trap Electric weir SMRT 

10 (Trap + Block + 

Antagonist) 

Trap Electric weir Antagonist 

11 (Passage-friendly trap 

+ SMRT) 

Passage-friendly 

trap 

No SMRT 

12 (Passage-friendly trap 

+ Antagonist) 

Passage-friendly 

trap 

No Antagonist 

13 (Block + SMRT) No Electric weir SMRT 

14 (Block + Antagonist) No Electric weir Antagonist 

Feasibility Analysis 

Feasibility of the possible control tactics was assessed qualitatively (assigning either a 

High or Low feasibility) in terms of whether or not a deployment would be socially accepted and 

technically possible. A qualitative approach to conducting these feasibility assessments appeared 

sensible for our application based on perceived limitations in satisfactorily accounting for 

uncertainty in how control tactic efficacy would vary among possible deployment locations and 

uncertainty in quantifying collateral damage outcomes and objective weights across all 

experimental units. Alternatively, a probabilistic, quantitative approach could be considered for 

the feasibility assessment as applied in Priority Threat Management (Carwardine et al., 2019). 

Social feasibility of a stream-strategy pairing was assessed through consultations with natural 

resource managers with jurisdictional authority for the stream in question and expert judgement 

of the co-authors for this work. A constructed scale and score threshold was created to assist with 

social feasibility assessments (Supplement A). Scores were assigned based on the degree to 

which collateral damage from a deployment was expected to erode trust between the Sea 
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Lamprey Control Program and partners, stakeholders, and rightsholders. 

Technical feasibility was informed in part by whether a tactic was expected to reduce 

spawning potential of adult sea lamprey by 90%. This high expected efficacy benchmark was 

chosen to minimize the risk of experimental deployments increasing larval sea lamprey 

recruitment due to release from density-dependent overcompensation. We developed a simple 

deterministic probability tree representing the probability of migratory adults evading control in 

each of the remove, divert, and disrupt aspects of a given control strategy (Supplement A). 

Probabilities and initial spawning potential were informed by expert judgment and monitoring 

data, respectively. Other aspects of technical feasibility included that deployment would not 

exceed the number of sterilized males expected to be available and the expected annual 

deployment cost would not exceed $150,000 USD. Finally, all strategy-stream pairings 

containing pheromone antagonist were considered to have low technical feasibility except for 

those conducted in Silver Creek (Tawas). The rationale for this was that Silver Creek has a 

relatively stable stream flow, which is needed for a pheromone antagonist strategy to be 

effective, and is the closest stream to the pheromone antagonist experts’ laboratories (Michigan 

State University campus, East Lansing, MI). 

Consequences 

We developed methods for predicting the expected outcome of each potential deployment 

alternative in terms of measurable attributes associated with the minimize cost and maximize 

learning fundamental objectives. The measurable attribute for minimize cost was the expected 

annual cost of the experimental deployment whereas the measurable attribute for maximize 

learning was an index of increased predictive power. Expected annual cost was measured as both 

staffing costs and annualized infrastructure/equipment costs (Figure 3.4; Supplement A). Costs 

were estimated through discussions with subject matter experts (sea lamprey control agents and 

researchers that use or develop experimental sea lamprey management tactics). The expected 

annual cost of each strategy was calculated as the sum of the cost of each tactic included in the 

strategy. The cost of disruption tactics depended on the expected number of wild males in a 

stream and the expected percentage that would evade remove and divert tactics. The target 

sterile-male to wild-male ratio was 40:1 and the target pheromone ratio was 100 3sPZS:100 

PZS:1 3kPZS. 3kPZS is a naturally occurring sea lamprey pheromone that influences migratory 

and spawning behaviors via chemosensory communication and 3sPZS and PZS are synthesized 
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antagonists capable of disrupting this communication. We estimated a conversion factor for 

converting expected wild male abundance to expected 3kPZS concentration based on an analysis 

of lab measurements with a known number of males and field trials where 3kPZS concentrations 

were measured and number of males present in the stream estimated from trap catch data. 

Estimated annual costs obtained through our simple cost model were converted to relative cost to 

reduce possible misrepresentation of the realized cost of the experimental deployment if these 

deployments are implemented. 

 

Figure 3.4. Expected relative annual cost of each control tactic broken down by annualized 

relative equipment and gear costs (light grey) and annual staffing costs (dark grey). The depicted 

relative cost of disruption tactics (antagonist and SMRT) is for disrupting 1 wild male. The total 

expected number of wild males to disrupt depends upon the expected starting number of wild 

males in a stream and the expected percentage of these that evade removal and diversion. 

The measurable attribute for the objective of maximize learning was expected gain in 

predictive power. We developed a simulation-based method for calculating this gain in 

predictive power. The prediction of interest was the percent decrease in age-1 larval recruitment 

rate attributed to an experimental management strategy. Learning about this relationship is made 

difficult by imperfect estimation of larval and adult abundances (observation error) and un-

modeled year-to-year variability in the efficacy of control effort (process error). This was 
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simulated as  

log(𝑅𝑦) = log(𝑛𝑦) + 𝑟 + 𝑋𝐼𝑛𝑑𝑦 ∙ log (𝑐𝑦) 

where R is the abundance of age-1 larvae produced in year y, n is the pre-control spawning 

potential (i.e., number of females capable of producing viable larvae) in year y, r is the per 

female recruitment rate, XInd is a dummy variable indicating if the experimental management 

strategy was deployed in year y, and c is the change in recruitment rate caused by the 

experimental management strategy. Process error was simulated by modeling control efficacy as 

𝑐𝑦~𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 𝑁𝑜𝑟𝑚𝑎𝑙(𝑐, [𝑐 ∙ 0.1],𝑚𝑖𝑛 = 0,𝑚𝑎𝑥 = 1) 

where cy is the realized control efficacy for year y and c is the long-term average control efficacy. 

We adopted 90% reduction for c to match the technical success age-1 recruitment reduction 

target applied in our feasibility analysis. Observation error was added by applying a CV of 15% 

to observations of adult abundance and a CV of 20% to log larval abundance. Datasets were 

simulated (n=1500 per scenario) corresponding to a given experimental strategy being replicated 

between 1 and 7 times. Each replicate consisted of three years of data without added 

experimental control and five years of data with experimental control. Simulated datasets were 

analyzed with the linear model  

log (𝑅𝑦)̂ = 𝛽0 + 𝑋𝐼𝑛𝑑𝑦 ∙ 𝛽𝑐 + 𝑜𝑓𝑓𝑠𝑒𝑡(log (𝑛𝑦))̂ 

A predictive power test was applied to the linear model output that consisted of comparing the 

lower bound of the 80% confidence interval for βc to an efficacy cutoff. If the lower bound of the 

80% confidence interval for βc did not overlap with the efficacy cutoff (70% reduction in 

recruitment), the model estimate passed the prediction test and if it did overlap, the model 

estimate failed the test. A predictive power curve was developed by calculating the probability of 

passing the prediction test (number of passed prediction tests/number of simulated datasets) as 

the number of experimental units (i.e., streams) in the simulated dataset increased (Figure 3.5). 
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Figure 3.5. Predictive power curve showing the expected probability of passing the prediction 

test against the number of experimental units in which a given strategy scenario is tested. This 

curve was developed using simulation methods with assumed levels of process and observation 

error. The prediction test was passed for a simulated dataset if the estimated 80% confidence 

interval for larval recruitment reduction efficacy did not overlap with the efficacy cutoff (true 

efficacy= 90% reduction, efficacy cutoff= 70% reduction). 

The expected gain in predictive power index was calculated from this predictive power 

curve and the experimental design for a given alternative (the number of experimental units 

assigned to each control strategy). The change in predictive power for control strategy m 

(Δpowerm) can be written as 

𝛥𝑝𝑜𝑤𝑒𝑟𝑚 = 𝑝𝑝𝑎𝑠𝑠𝑚,𝑒𝑓𝑓𝑜𝑟𝑡𝑃𝑜𝑠𝑡 − 𝑝𝑝𝑎𝑠𝑠𝑚,𝑒𝑓𝑓𝑜𝑟𝑡𝑃𝑟𝑒 

where the gain in predictive power was equal to predictive power after the management 

experiment (𝑝𝑝𝑎𝑠𝑠𝑚,𝑒𝑓𝑓𝑜𝑟𝑡𝑃𝑜𝑠𝑡) less the expected predictive power before the experiment 

(𝑝𝑝𝑎𝑠𝑠𝑚 𝑒𝑓𝑓𝑜𝑟𝑡𝑃𝑟𝑒). All strategy scenarios started with 0 experimental units of effort prior to 

deployment of the alternative except for 4 (SMRT) (starting effort of 3 experimental units) and 9 

(Trap + Block + SMRT) (starting effort of 1 experimental unit) based on preexisting 

experimental management deployments in the Upper Cheboygan watershed and Black Mallard 

Creek (Johnson et al., 2021a, 2021b). Using these metrics, the expected gain in predictive power 

index for alternative i (ΔPi) is the sum of Δpowerm across all control strategies.  
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𝛥𝑃𝑖 = ∑ 𝛥𝑝𝑜𝑤𝑒𝑟𝑚

14

𝑚=1

 

Tradeoffs 

We identified the complete set of non-dominated alternatives to simplify the tradeoffs 

scenario. A non-dominated alternative performs as good as or better than all other alternatives on 

at least one objective while performing at least as good as all other alternatives across all other 

objectives (Hammond et al., 2015). Additionally, we calculated expected utility for scenarios 

with learning objective weight wlearning ranging from 0.01 to 0.99 by 0.01 increments, with the 

associated expected cost objective weight wcost equal to 1- wlearning. Expected utility was 

calculated as  

𝐸(𝑈𝑖) = (𝑤𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 ∙ 𝑢𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔,𝑖) + (𝑤𝑐𝑜𝑠𝑡 ∙ 𝑢𝑐𝑜𝑠𝑡,𝑖) 

Partial utilities (ulearning and ucost) for alternative i were derived from the expected learning and 

expected annual cost measurable attributes standardized to a 0 to 1 scale [(outcomei - worst 

outcome)/(best outcome - worst outcome)]. Finally, we identified the optimal alternative (the 

alternative with highest expected utility) for each objective weighting scenario. 

Sensitivity Analysis 

We evaluated decision sensitivity to assumptions about social and technical feasibility, 

expected cost, and expected learning outcomes (Table 3.3). Each test (n=7) consisted of 

calculating expected utility with learning objective weight wlearning ranging from 0.01 to 0.99. We 

examined if and how expected utility and the optimal alternative changed relative to the optimal 

decision calculated from our baseline assumptions. Comparisons included percent of stream-

strategy pairings that matched, percent change in the number of strategy deployments containing 

electric weirs, percent change in the number of deployments containing traps, and percent 

change in the number of unique control strategies tested. 
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Table 3.3. Description of the alternate assumptions investigated with sensitivity analyses, which 

consisted of reevaluating expected outcomes of either feasibility, expected cost, or expected 

learning (depending on which prediction the assumption modified). Sensitivity was evaluated by 

comparing the recommended deployment configurations developed with each alternate 

assumption (Test ID 1 through 7) to the recommended deployment configurations with baseline 

assumptions (best guess scenario). 

Category Test 

ID 

Alternate assumption Specific test 

Best guess  0 NA - 

Social feasibility 1 Electric weirs have high social 

feasibility in the Traverse River and 

Bills Creek 

Adjust strategies containing 

electric weir deployments 

from LOW to HIGH social 

feasibility for the Traverse 

River and Bills Creek 

Technical feasibility 2 SMRT alone is not a viable strategy for 

reliably reducing recruitment by 90%  

Adjust technical feasibility for 

SMRT only strategy to LOW 

across all streams 

 3 All streams are possible test sites for 

pheromone antagonist 

Remove the technical 

constraint limiting pheromone 

antagonist deployment to 

Silver Creek (Tawas) 

Expected cost 4 Staff day costs were underestimated Increase staff day costs by 

50% 

 5 Staff day costs were overestimated Decrease staff day costs by 

50% 

Expected learning 

outcomes 

6 age-1 larval recruitment is measured 

with less observation error 

Prediction power simulations 

conducted with lower larval 

recruitment observation error 

(CV=10) 

 7 age-1 larval recruitment is measured 

with more observation error  

Prediction power simulations 

conducted with higher larval 

recruitment observation error 

(CV=30) 

Results 

Feasibility Analysis 

Experimental control strategies that included deployment of a seasonal electric barrier 

were considered a risk to sensitive fish populations and/or a challenge to river access in 5 of 9 

streams. These strategy-stream pairings were assigned low social feasibility and excluded from 

the suite of possible deployment alternatives. Strategies that solely relied on either trapping or 

blocking were assigned low technical feasibility because they were not expected to reliably 

reduce reproduction by 90%. Overall, the feasibility analysis substantially constrained the range 
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of deployment options available for consideration (Figure 3.6). The Traverse River, Bills Creek, 

Root River, and Crystal Creek had 3 feasible options; the Cranberry River had 4 feasible options; 

the Potato River and Silver Creek had 5 feasible options; and Furlong Creek and Long Lake 

Outlet had 6 feasible options.  

 

Figure 3.6. Results of the social and technical feasibility assessment. Strategy scenario / stream 

combinations that are “low social” were expected to have low probability of social acceptance; 

combinations that are “low technical” were not expected to achieve the 90% reduction in 

spawning potential benchmark. Strategy scenario / stream combinations that are “available” were 

considered in the consequences and tradeoffs analysis. PF Trap= passage friendly trap, PA= 

pheromone antagonist. 

Tradeoffs 

There were 6 non-dominated alternatives in the suite of 6,432 feasible alternatives 

(Figure 3.7). The optimal deployment alternative depended upon wlearning and included 4 of the 

non-dominated alternatives (Figure 3.8). At the lowest learning objective weight (wlearning = 0.01) 

the optimal alternative included 2 SMRT deployments, 4 SMRT + Trap deployments, and 3 

SMRT + electric weir deployments. At low-moderate learning objective weights (wlearning = 0.02-

0.26) the optimal alternative included 2 SMRT deployments, 3 SMRT + Trap deployments, 1 

SMRT + Passage-friendly Trap deployment, and 3 SMRT + electric weir deployments. At 

moderate learning objective weights (wlearning = 0.27-0.59) the optimal alternative included 2 
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SMRT deployments, 1 SMRT + Trap deployment, 2 SMRT + Passage-friendly Trap 

deployments, 3 SMRT + electric weir deployments, and 1 Trap + electric weir deployment. At 

high learning objective weights (wlearning = 0.60-0.99) the optimal alternative included 2 SMRT 

deployments, 1 SMRT + Trap deployment, 2 SMRT + Passage-friendly Trap deployments, 2 

SMRT + electric weir deployments, 1 Trap + electric weir deployment, and 1 Antagonist + Trap 

deployment. 

 

Figure 3.7. Distribution of feasible deployment alternatives with respect to measurable attributes 

associated with fundamental objectives minimize cost (expected relative annual cost) and 

maximize learning for external validity (expected predictive power increase). Alternatives that 

performed as good as or better than all other alternatives on at least one objective while 

performing at least as good as all other alternatives across all other objectives are identified 

(black points). 
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Figure 3.8. Sea lamprey deployment alternatives with the highest expected utility for learning 

objective weights 0.01-0.99 (the cost objective weight is equal to 1- learning objective weight). 

All alternatives comprise strategy scenario / stream pairings expected to have both high 

probability of social acceptance and technical success at reducing spawning potential by 90%. 

Sensitivity Analysis 

The decision was sensitive to the feasibility and evaluation assumptions we tested, but 

overall the decision was more sensitive to tests that modified technical or social feasibility 

compared to tests that modified expected staff day costs or changed the slope of expected 

learning power by assuming different amounts of larval recruitment observation error (Figure 

3.9). However, sensitivity depended upon objective weights and the sensitivity metrics we 

calculated varied in magnitude and direction. The test removing technical constraints limiting 

pheromone antagonist deployments to a single stream did not alter the decision for wlearning<0.52, 

but at higher values of wlearning the less constrained decisions resulted in a greater number of 

unique deployment strategy scenarios and more strategies that included trapping. The test 

applying further technical constraints on strategies that rely solely on SMRT resulted in a 

modified decision across all wlearning objective weights, reduced the number of unique strategies 

across all wlearning objective weights, and increased the number of strategies that included traps 

and barriers. Finally, the test removing social constraints to deploying electric weirs in 2 streams 
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resulted in a modified decision across all wlearning objective weights, substantially increased the 

number of unique strategies tested at low-moderate wlearning objective weights, increased the 

percentage of strategies with barriers at wlearning<0.53, and substantially reduced the percentage 

of strategies with traps at wlearning<0.32. 
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Figure 3.9. Sensitivity of the decision to assumptions about expected outcomes and feasibility. 

Decision sensitivity is measured by comparing the optimal decision obtained with the modified 

assumption to the optimal decision obtained with baseline assumptions. Sensitivity metrics 

include percent reduction in the number of matching stream-scenario pairings (panel A), percent 

change in the number of unique strategy scenarios deployed (panel B), percent change in the 

number of strategy scenarios deployed that contain electric weirs (panel C), and percent change 

in the number of strategy scenarios deployed that contain a trap (panel D). (TF=technical 

feasibility, SF=social feasibility, obs=observation). 
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Discussion 

We developed an adaptive management framework for selection and use of novel sea 

lamprey control tactics that constrained experimental deployment options to those with high 

expected social and technical feasibility and allowed decision makers to evaluate tradeoffs 

among cost effectiveness and learning outcomes. This framework can be used to investigate how 

the optimal deployment decision changes as management priorities shift between minimizing 

costs and maximizing learning. Furthermore, explicit consideration of both maximize learning 

and minimize cost as management objectives allowed for acknowledgement of what was left on 

the table in terms of cost effectiveness to advance learning (and vice versa). Successful, long-

term implementation of sea lamprey management experimental designs may depend on 

transparent and collaborative decision-making processes. For example, effective communication 

among decision-makers, practitioners, stakeholders, and rightsholders regarding the relative 

importance of multiple sea lamprey management objectives during the deployment, operation, 

and decommissioning of an electric weir and fishway on the Pere Marquette River of Lake 

Michigan could have improved the sea lamprey management and learning outcomes of the 

experiment. As it happened, lack of effort directed towards developing and communicating 

objectives and measures of success may have led to the decision to decommission the project, in 

place of gaining understanding on how to navigate complex sea lamprey management objective 

tradeoffs through an adaptive management plan (Tews et al., 2020). Effective consideration and 

communication of multiple sea lamprey management objectives may be necessary to enact long-

term, iterative improvement of sea lamprey management outcomes in systems where status quo 

management is ineffective or jeopardized due to localized environmental and/or social conditions 

(Lewandoski et al., 2021; Siefkes et al., 2021). 

Our adaptive management framework was developed to advance operationalization of 

IPM principles in invasive sea lamprey management in the Great Lakes. The framework supports 

iterative refinement of societal and non-target environmental considerations of sea lamprey 

control tactic selection and use decisions and development of novel sea lamprey control 

strategies that seek to integrate multiple, compatible control tactics. Spatial and temporal 

replication of novel control strategy deployments provides power to learn about how sea lamprey 

ecology interacts with control tactic efficacy, while cross-scale linkages connecting multiple 

societal and environmental objectives to experimental deployment decisions allows for improved 
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consideration of societal and environmental consequences of sea lamprey management. 

Specifically, feedback loops between localized multi-objective decision analysis applications and 

feasibility assessments conducted at the multi-system level support cross-scale linkages between 

sea lamprey management decision problems with either multi-system coordination or localized 

focus. 

Future applications of decision analysis that contend with localized invasive/pest species 

control tactic selection and use decision problems may benefit from this adaptive management 

framework. Our framework could assist with navigation of cross-scale linkages among multi-

system coordination and localized management objectives, a challenge that proved difficult 

during our decision analysis prototyping efforts focused on sea lamprey control tactic selection 

and use in a single stream. Localized decision analysis outcomes either support or refute multi-

stream feasibility assessments. The localized decision analysis refutes the multi-stream 

feasibility assessment if operational-scale deployment alternatives (specific control tactics paired 

with a deployment location on a stream) within the bounds of feasible strategic-level alternatives 

(combinations of remove, divert, disrupt tactics without reference to deployment locations) do 

not rank among the preferred alternatives or if operational-scale deployments not within the 

bounds of feasible strategic-level alternatives do rank. If neither of these incongruences occur, 

the feasibility assessment conducted within the multi-stream framework is supported by the 

single-stream framework. Iterative updating of refuted feasibility assessments could support 

social learning and cross-scale linkages if ideas can be exchanged in a trusting environment 

(Cundill and Rodela, 2012). Based on our sensitivity analysis, social learning of this nature 

regarding expected loss of utility due to electric weir deployment disrupting recreational river 

access, negatively affecting aesthetics, and seasonally blocking non-target fishes may 

substantially alter expected optimal novel sea lamprey control tactics selection and use decisions, 

particularly when cost effectiveness is prioritized at the multi-system coordination level. 

Quantitative models of sea lamprey population and control dynamics at spatial resolution 

compatible with operational knowledge bases of sea lamprey management practice could build 

capacity for future localized decision analysis efforts. At the operational scale, sea lamprey 

population and control dynamics are represented as one or more specific control tactics deployed 

to georeferenced deployment locations within a river system, and population dynamics are 

modeled with enough resolution to capture how expected control outcomes may vary among 
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alternative deployment locations. Quantitative models of sea lamprey production with coarse 

spatial resolution have been developed that make use of sea lamprey control agent and sea 

lamprey biology and ecology subject matter experts’ knowledge (Dawson et al., 2016; Haeseker 

et al., 2007; Jones et al., 2009; Jubar et al., 2021; Miehls et al., 2021). While these efforts have 

yielded useful decision-support tools for sea lamprey management decision makers and control 

agents, the participatory methods used to construct the models may require refinement to elicit 

knowledge at the operational scale. During our initial localized objectives-scale prototyping, we 

were unable to develop an agreed-upon operational-scale quantitative model of sea lamprey 

populations dynamics and control from expert knowledge that was elicited without explicit 

reference to within-stream spatial heterogeneity. An expert elicitation methodology that allows 

for experts to provide input on how control efficacy and population dynamics may vary among 

locations within a river and why (i.e., what key spatial habitat variables are driving the spatial 

heterogeneity) may be necessary to construct quantitative models that are useful for guiding 

operational-scale deployment decisions. Furthermore, participatory modeling processes 

conducted at the operational scale would constitute a rich environment for mobilizing multiple 

evidence bases and developing enriched understanding of sea lamprey management practices 

(Tengö et al., 2014). We hypothesize that such modeling approaches would yield more realistic a 

priori predictions of sea lamprey management deployment alternative outcomes compared to 

similar participatory modeling efforts conducted at coarse spatial scale. Finally, participatory, 

operational-scale modeling processes may be particularly useful for integrating information 

collected from monitoring efforts associated with experimental deployments back into the 

decision framework for iterative decision making (i.e., completing active adaptive management 

feedback loops), which is imperative for implementation of adaptive management (Williams et 

al., 2009). 

The usefulness of applying adaptive management to advance learning for internal or 

external validity can be explored by assigning value to what is or could be learned through the 

application of adaptive management. During our decision analysis application, we found it 

challenging to compare the value of learning against other objectives of the management 

experiment and make predictions about learning outcomes. We ultimately developed a learning 

outcome measurable attribute based on the degree to which uncertainty was expected to be 

reduced in the relationship between a given experimental sea lamprey management strategy and 
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reduction in age-1 recruitment rate. However, we applied the simplifying assumption that 

learning about any experimental sea lamprey management strategy was equally valuable. Value 

of information (VOI) methods for quantifying the relative value of reducing different 

uncertainties (Li et al., 2021; Runge et al., 2023, 2011) could improve our decision support 

frameworks by providing an objective approach to weighting the relative value of learning about 

a given experimental sea lamprey management strategy. Achievement of experimental sea 

lamprey management learning objectives related to developing a predictive model of invasive 

sea lamprey population and control dynamics that incorporates spatial habitat variables and 

density-dependent factors (Lewandoski et al., 2021) will be influenced by decisions about 

when/if to apply lampricide management in an experimental sea lamprey management stream, 

what streams to include in the management experiment, and the monitoring plan. Application of 

decision analysis to these decision problems would similarly benefit from VOI methods to focus 

effort towards resolving the most impactful uncertainties and navigate tradeoffs between learning 

and other management objectives. 

In addition to developing quantitative tools capable of assisting with valuing learning 

objectives, a participatory process that allows access to sea lamprey adaptive management from 

both multi-system coordination and localized points of view would need to be developed to 

allow for robust consideration of learning objectives related to both internal and external 

validation. This would require building connections among localized sea lamprey management 

practices, multi-system coordination, and resources mobilized to support widespread 

management of invasive sea lamprey in the Great Lakes Basin. This endeavor appears daunting 

given the scale of invasive sea lamprey management; roughly 100 streams and hundreds of 

hectares of lentic habitat are treated with lampricides annually (Sullivan et al., 2021), while 

partnerships and empirical datasets are developed to maintain over 400 lowermost barriers 

considered important to management of invasive sea lamprey (Hrodey et al., 2021). However, 

despite the scale of sea lamprey management in total, sea lamprey control agents routinely 

develop and rely on social networks and forums to meet localized objectives of minimizing 

production of juvenile sea lamprey while minimizing collateral damage. Expanding the utility of 

existing social networks and forums to include implementing adaptive management, which may 

be perceived as more uncertain and risky than status quo management practices and have 

learning objectives that are challenging to articulate and measure, could benefit from application 
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of multi-objective decision analytic concepts and tools that explicitly examine decision making 

under uncertainty, offer tools for making tradeoffs among objectives, and provide collaborative 

and transparent approaches to decision making (Robinson et al., 2021). However, decision 

analytic tools and theoretical frameworks are not comprehensive. There are few examples of 

multi-criteria decision analysis applications documented in the literature that fully embrace 

Indigenous knowledge (Converse, 2020) and decision analytic practice and theory alone may not 

be well suited to developing pathways that connect Indigenous knowledge to sea lamprey 

management experiment planning and implementation. Operationalizing Two-Eyed Seeing at 

both the multi-system coordination and localized levels could address this deficit and further 

develop pathways for Indigenous knowledge and ways of knowing to coexist with mainstream 

Western knowledge in support of adaptive management of sea lamprey in the Great Lakes 

(Nonkes et al., 2023; Reid et al., 2021). 

Adaptive management may be broadly useful for operationalizing IPM. Previous 

theoretical developments and institutional reviews support this conclusion. Leveraging adaptive 

management learning plans with temporal and spatial replication provides power to resolve 

critical ecological uncertainties limiting effective control of target invasive species or pest 

populations (Shea et al., 2002). However, uncertainty in how society values multiple objectives 

associated with management of invasive or pest populations makes it difficult to assess how 

societal and non-target environmental effects should be considered in the design and 

implementation of an IPM program. Overlapping adaptive management feedback loops between 

learning and decision making at both local and regional scales may allow for iterative refinement 

of these considerations (Chaffin et al., 2016; DiTomaso et al., 2017; Scarlett, 2013). We further 

developed these premises for operationalizing IPM by applying decision theory to a multi-level 

control tactic selection and use decision problem. 

The adaptive management framework we developed enables overlapping decision-

making processes occurring at the localized and multi-system coordination levels. A key 

precondition for this functionality was the recognition that multi-system coordination and 

localized management each have distinct objective sets that must work well in concert. Cross-

scale linkages are strengthened by identifying synergies and making transparent tradeoffs 

between enacting experimental design intended to resolve generalizable social-ecological system 

uncertainties and improving management practices through collaboration and social learning. 
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While these features were developed for the decision problem at hand (selection and use of novel 

sea lamprey control tactics), they may prove useful to other decision problems centered in 

operationalizing IPM in heterogenous social-ecological landscapes. 
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CONCLUSION 

• Adult sea lamprey long-term monitoring data are currently analyzed and collected to develop 

an index of sea lamprey abundance that is then used to gauge the past success or failure of 

the control program to meet suppression targets in each Great Lake. Using adult sea lamprey 

capture data to develop a population dynamics model capable of forecasting future control 

outcomes represents a novel application of these long-term monitoring data. While the 

research conducted herein hopefully demonstrates the potential benefits of this novel 

application, further research is needed to rigorously gauge how/if this application represents 

a useful tool for sea lamprey control policy makers and practitioners. Additional technical 

work could examine the sensitivity of forecasts to model assumptions, both the prior 

distributions assigned to demographic rates and model structure used to represent sea 

lamprey life history and control dynamics. Further application of stakeholder engagement 

and participatory modeling techniques could be applied to develop agreed-upon standards for 

acceptable model behavior and diagnostic checks for determining the reliability of the model 

as a decision-support tool. 

• Simulation testing a novel modeling framework for quantifying recruitment, dispersal, and 

survival rates using sibship and abundance estimation data revealed that this can be a 

powerful method for learning about spatial population dynamics of fishes. Additional work 

that builds on this initial proof-of-concept research will be required to understand the utility 

of this method for learning about the cryptic life history of invasive sea lamprey in the Great 

Lakes. The next steps will be to apply the model to empirical sibship-abundance datasets 

collected by the SupCon adaptive monitoring program, develop simulation models intended 

to represent the biological and sampling processes underlying ongoing field collections, and 

conduct simulation-based power analyses with status quo sampling effort and alternate 

possible configurations to guide future monitoring efforts. The vision for this quantitative 

framework is to provide a method for incorporating learning about sea lamprey population 

dynamics and control into decision-making processes associated with implementing 

integrated sea lamprey management with spatial subsetting at the localized tributary scale. 

• We developed an adaptive management framework and applied it to a sea lamprey control 

tactic selection and use decision problem. Adaptive management frameworks that facilitate 

deliberation of tradeoffs among the multiple objectives of invasive sea lamprey control may 
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provide a method for effectively engaging with values-based uncertainties associated with 

integrated sea lamprey management. Integrating adaptive management with sea lamprey 

control management practices would require considerable advances in research and practice 

along multiple fronts, including 1) modifying the adaptive management framework to 

account for linked decisions outside of experimental control tactic selection and use (e.g., 

lampricide selection and use; barrier construction, modification, and removal; monitoring), 2) 

broadening the measurable attribute(s) for learning to accommodate multiple possible 

learning goals and conducting value of information analyses, and 3) applying decision 

analysis to multiple localized sea lamprey control decision problems throughout the Great 

Lakes basin. Thoughtful identification of which localized sea lamprey control decisions are 

best addressed with status quo sea lamprey control practices and those that may be improved 

through iterative application of decision analytic tools will be crucial for effective expansion 

of the use of adaptive management within the invasive sea lamprey control programs. 
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APPENDIX A: LAKE SUPERIOR SEA LAMPREY POPULATION DYNAMICS 

MODEL DETAIL 

Recruitment and control-induced reduction of Lake Superior sea lamprey recruitment 

were modeled as  

𝑢′ = 𝑛𝑡
𝑎𝑑𝑢𝑙𝑡𝑒𝑥𝑝(𝑎 − 𝑏⸱𝑛𝑡

𝑎𝑑𝑢𝑙𝑡 − 𝛽𝑠𝑚𝑟𝑡⸱𝑋𝑆𝑀𝑅𝑇 − 𝛽𝑤𝑒𝑖𝑟⸱𝑋𝑤𝑒𝑖𝑟 + 𝜀𝑡) 

where u’ is the number of age-1 recruits produced at time t+1, 𝑛𝑡
𝑎𝑑𝑢𝑙𝑡 is the abundance index of 

adult sea lamprey at time t, a is mean recruitment rate as population size approaches zero, b is a 

parameter measuring the strength of density-dependence, βSMRT is the effect of SMRT on 

recruitment rate, XSMRT is an indicator variable indicating which years SMRT was applied, βweir is 

the effect of electric weir operation on recruitment rate, Xweir indicates annual electric weir 

operation effort (proportion of maximum number of barriers operated), and 𝜀t is stochastic 

deviation from mean recruitment rate at year t. Stochastic deviations from the mean recruitment 

rate were assumed to be a normally distributed white-noise series 𝜀𝑡~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑎), where 𝜎𝑎 

represents annual variability in mean recruitment rate. 

 Annual larval survival was modeled as 

𝑆𝑙,𝑙𝑜𝑡𝑖𝑐 = 𝑆𝑙⸱𝑒𝑥𝑝(−𝑋𝑡𝑓𝑚⸱[𝛽𝑡𝑓𝑚 + 𝛽𝑏𝑙𝑜𝑐𝑘⸱𝑋𝑡𝑓𝑚])  

𝑆𝑙,𝑙𝑒𝑛𝑡𝑖𝑐 = 𝑆𝑙⸱𝑒𝑥𝑝(−𝑋𝑔𝐵⸱𝛽𝑔𝑏)  

where 𝑆𝑙 is annual larval survival in the absence of lampricide application and βtfm, βgB, and βblock 

are parameters relating lampricide control effort (XgB= kg of active ingredient; Xtfm= km of 

stream treated; Xblock= km of stream blocked by permanent weirs) to lampricide-induced larval 

mortality. Kilometers of stream blocked was included in the model for 𝑆𝑙,𝑙𝑜𝑡𝑖𝑐 because 

construction of permanent weirs reduces available habitat for sea lamprey, which concentrates 

larvae in smaller areas and, at least in theory, increases the mortality level associated with per 

unit application of TFM. 

 We used a combination of high-information and low-information priors for fitting our 

model of sea lamprey population dynamics and control (a table of prior and posterior 

distributions for all model parameters is provided in S2). Larval metamorphosis probabilities 

were assigned low-information priors (on the probabilistic scale) but were constrained such that 

the probability increased with age. We used high-information priors for the probability that 

juveniles transitioned to the spawning adult life stage in one year, natural mortality of larvae, and 

natural mortality of juveniles and adults. We chose to use high-information priors for these vital 
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rates because empirical estimates are available from large-scale mark recapture estimates of 

Great Lakes sea lamprey populations (Johnson et al., 2016, 2014). Prior distributions for age-1 

recruitment parameters (i.e., a and b) were developed based on the long-term population growth 

rate λ of our sea lamprey stage-age population model evaluated at mean prior distribution values 

(Caswell, 2000). We assigned a normal prior for a such that 95% of the probability density of λ 

fell within 1.02 and 1.84. These λ values correspond to the minimum and maximum intrinsic 

population growth rates estimated for common taxonomic orders of fishes reported by Thorson 

(2020). We developed a prior for b by considering the population size at which long-term 

population growth would approach zero with a fixed at the prior distribution mean and a 

reference population size equal to the mean log catch from the unscaled time series dataset 

(assessment unit with s fixed at 0, see Observation model). Specifically, we used a mean value 

for our prior on b corresponding to long-term population growth approaching zero at 15 times 

the reference population size and assumed a CV of 50 to derive a prior variance estimate. 

Information on the localized effectiveness of lampricide application is available, but there 

is limited information on the proportion of larvae inhabiting lampricide-vulnerable habitat. As 

such, we set priors for the probability of recruiting to lentic and lotic habitat that resulted in a 

wide spread of distribution probabilities for each habitat. Priors for parameters relating 

lampricide control effort to lampricide mortality rates were set based on data from localized 

trials, but we assigned a high CV as these rates have not been rigorously studied. 
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APPENDIX B: LAKE SUPERIOR SEA LAMPREY POPULATION DYNAMICS 

MODEL PARAMETERS 

Table S1. Process model parameters in the Lake Superior population dynamics and control 

model. Posterior distribution columns provide the mean, standard error of the mean (sd_mean), 

quantiles of the distribution, and model diagnostics associated with each parameter. 

 

 
  

symbol description family scale shape min mean se_mean sd 2.50% 25% 50% 75% 97.50% n_eff Rhat

x3_0 starting  abundence index for adult lifestage (log scale) truc-normal 5.13 2 1 6.2928 0.0237 1.1065 4.5205 5.6574 6.2263 6.784 8.3651 2188.183 1.003

x2a2_0 starting abundence index for age-2 juvenile lifestage truc-normal 1 100 1 216.7137 0.3066 59.3541 106.947 175.5987 214.4681 255.0463 339.7933 37471.43 1.0001

x2a1_0 starting abundence index for age-1 juvenile lifestage truc-normal 1 100 1 107.6814 0.2757 69.5425 7.2086 52.8056 98.0143 151.9605 264.9337 63630.87 1

x1a7_0lentic starting abundence index for age-7+  lentic larval  lifestage truc-normal 1 10000 1 391.1084 1.3394 374.4709 11.6162 119.8424 283.2536 546.4324 1375.044 78166.68 1

x1a6_0lentic starting abundence index for age-6  lentic larval  lifestage truc-normal 1 10000 1 418.8177 1.4306 399.9382 12.4148 128.822 303.0008 588.4209 1461.559 78155.43 1

x1a5_0lentic starting abundence index for age-5  lentic larval  lifestage truc-normal 1 10000 1 1231.443 3.9948 1123.509 37.058 395.3966 918.9416 1740.519 4140.356 79098.86 1

x1a4_0lentic starting abundence index for age-4  lentic larval  lifestage truc-normal 1 10000 1 5902.954 15.392 4282.317 267.0931 2473.286 5136.971 8484.047 15891.83 77404.28 1

x1a3_0lentic starting abundence index for age-3  lentic larval  lifestage truc-normal 1 10000 1 8297.749 24.0568 6034.744 363.6528 3510.472 7171.687 11872.73 22554.84 62927.73 1

x1a2_0lentic starting abundence index for age-2  lentic larval  lifestage truc-normal 1 10000 1 9719.341 22.5303 6557.78 496.1824 4534.474 8722.167 13814.62 24684.81 84718.72 1

x1a1_0lentic starting abundence index for age-1  lentic larval  lifestage truc-normal 1 10000 1 9861.977 25.411 6885.574 473.2915 4331.455 8693.249 14185.97 25790.43 73423.54 1

x1a7_0lotic starting abundence index for age-7+  lentic larval  lifestage truc-normal 1 10000 1 391.1444 1.3703 376.923 12.0018 118.3933 280.9277 547.3033 1369.017 75658.02 1

x1a6_0lotic starting abundence index for age-6 lotic larval  lifestage truc-normal 1 10000 1 419.9808 1.4307 407.8695 12.1151 126.5351 301.1947 584.6015 1489.465 81277.9 1

x1a5_0lotic starting abundence index for age-5  lotic larval  lifestage truc-normal 1 10000 1 1232.347 4.0484 1136.365 35.7519 391.6652 913.5703 1748.82 4163.661 78787.63 1

x1a4_0lotic starting abundence index for age-4  lotic  larval  lifestage truc-normal 1 10000 1 5893.402 15.7683 4278.429 248.1053 2504.224 5113.96 8428.729 15905.76 73620.82 1

x1a3_0lotic starting abundence index for age-3  lotic  larval  lifestage truc-normal 1 10000 1 8250.006 23.2835 6012.847 356.9254 3478.111 7106.309 11797.89 22548.23 66690.41 1

x1a2_0lotic starting abundence index for age-2  lotic larval  lifestage truc-normal 1 10000 1 9737.917 22.5614 6584.154 508.4082 4502.846 8737.159 13902.39 24730.03 85166.19 1

x1a1_0lotic starting abundence index for age-1  lotic larval  lifestage truc-normal 1 10000 1 9826.407 24.8093 6831.232 470.9679 4379.474 8676.6 14114.11 25596.84 75817.65 1

x1a7_0inv starting abundence index for age-7+  invulnerable larval  lifestage truc-normal 1 10000 1 390.1426 1.3246 375.1656 11.4186 120.4215 280.9922 541.8687 1367.32 80223.95 1

x1a6_0inv starting abundence index for age-6 invulnerable larval  lifestage truc-normal 1 10000 1 418.9509 1.3674 400.7417 12.2503 128.5532 302.7888 585.8244 1474.976 85885.49 1

x1a5_0inv starting abundence index for age-5  invulnerable larval  lifestage truc-normal 1 10000 1 1237.925 4.0005 1135.139 36.3616 397.1753 927.5606 1743.481 4166.566 80512.91 1

x1a4_0inv starting abundence index for age-4  invulnerable  larval  lifestage truc-normal 1 10000 1 5873.901 15.0988 4278.111 242.9355 2465.788 5090.903 8449.982 15948.07 80281.76 1

x1a3_0inv starting abundence index for age-3  invulnerable  larval  lifestage truc-normal 1 10000 1 8273.831 23.1403 5987.095 372.6728 3530.053 7164.051 11849.1 22441.17 66941.61 1

x1a2_0inv starting abundence index for age-2 invulnerable larval  lifestage truc-normal 1 10000 1 9743.206 22.7221 6618.14 500.9195 4499.387 8716.563 13880.93 24926.18 84835.28 1

x1a1_0inv starting abundence index for age-1 invulnerable larval  lifestage truc-normal 1 10000 1 9889.667 25.0666 6893.044 475.626 4396.888 8717.52 14211.41 25691.46 75618.84 1

parameter prior distribution posterior distribution model diagnostics

symbol description family scale shape mean se_mean sd 2.50% 25% 50% 75% 97.50% n_eff Rhat

u age-1 recruitment rate Normal 7.1 1.25 6.0378 0.0056 0.7188 4.8354 5.5392 5.9651 6.4588 7.6625 16248.52 1.0006

b density-dependent effect on age-1 recruitment Normal 0.00038 0.00019 3.00E-04 0 1.00E-04 1.00E-04 3.00E-04 3.00E-04 4.00E-04 6.00E-04 20312.35 1.0001

surv_river_logit annual survival of larvae (logit scale) Normal 0.282 0.25 0.1121 0.001 0.162 -0.1897 -7.00E-04 0.1067 0.218 0.4441 28870.28 1.0001

surv_lake_logit annual survival of adults and juveniles (logit scale) Normal 0.405 0.5 0.3349 0.0022 0.3948 -0.3928 0.0631 0.3199 0.5916 1.1522 32574.13 1.0002

sd_q year-to-year sd of age-1 recruitment rate Half-normal 0 1 0.8567 0.0012 0.1713 0.5633 0.7372 0.8415 0.9602 1.2334 20407 1.0003

juv_a2_logit probablity of age-1 juvenile staying in lake for second year Normal 0 0.2 0.2569 8.00E-04 0.1846 -0.111 0.1345 0.2579 0.3823 0.6142 59666.07 1

p_lentic probability of age-1 larvae recruiting to lentic habitat (logit scale) Normal 0 1.4 -0.609 0.0049 1.2112 -3.0184 -1.3978 -0.5972 0.1829 1.7801 60434.3 1

p_lotic probability of age-1 larvae recruiting to lotic habitat (logit scale) Normal 0 1.4 1.2422 0.0083 1.3999 -1.8507 0.3853 1.3934 2.2191 3.6521 28545.07 1.0001

b_weir change in age-1 recruitment rate from electric weir opperation Normal 0.69 0.4 1.054 0.0015 0.3471 0.3647 0.8227 1.0572 1.2873 1.7301 52471.05 1

b_smrt change in age-1 recruitment rate from sterile-male-release-techniqueNormal 0.35 0.25 0.1428 9.00E-04 0.2215 -0.287 -0.0061 0.1406 0.2895 0.5873 66597.51 1

c_log rate of increase in larval mortality from TFM application Normal -2.3 1 -1.2977 0.0073 1.0578 -3.6187 -1.9581 -1.1721 -0.5724 0.5804 21057.22 1.0002

c_barrier effect of km of river blocked by permanent weris on c_log Exponential 2 NA 0.3211 0.0013 0.3374 0.0079 0.0903 0.2159 0.4356 1.2397 70712.11 1

balu_log rate of increase in larval mortality from Baylucide application Normal -0.38 1 -0.6321 0.0034 0.9812 -2.4856 -1.3054 -0.6619 0.019 1.3518 83906.93 1

diagnositicsposterior distributionprior distributionparameter
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Table S2. Observation model parameters in the Lake Superior population dynamics and control 

model. Posterior distribution columns provide the mean, standard error of the mean (sd_mean), 

quantiles of the distribution, and model diagnostics associated with each parameter. 

 

symbol description family scale shape mean se_mean sd 2.50% 25% 50% 75% 97.50% n_eff Rhat

a[1] scale adjustment for assessment unit 1 Normal 0 2 -2.035 0.0026 0.4096 -2.8222 -2.3127 -2.0395 -1.7648 -1.2152 24936.34 1.0003

a[2] scale adjustment for assessment unit 2 Normal 0 2 -0.2165 0.0028 0.3918 -0.9833 -0.4792 -0.2178 0.0449 0.5567 19567.19 1.0003

a[3] scale adjustment for assessment unit 3 Normal 0 2 -1.3487 0.0031 0.5246 -2.342 -1.7094 -1.3601 -0.9988 -0.3008 28726.65 1.0001

a[4] scale adjustment for assessment unit 4 Normal 0 2 0.2817 0.0021 0.3015 -0.3189 0.0814 0.2838 0.4827 0.8719 21337.42 1.0001

a[5] scale adjustment for assessment unit 5 Normal 0 2 0.6544 0.0025 0.3096 0.0589 0.446 0.6523 0.8581 1.2774 15866.75 1.0003

a[6] scale adjustment for assessment unit 6 Normal 0 2 -2.8977 0.0032 0.5771 -3.9884 -3.2721 -2.9201 -2.5457 -1.6764 32602.82 1.0002

a[7] scale adjustment for assessment unit 7 Normal 0 2 -0.0258 0.0028 0.5198 -1.0735 -0.3604 -0.019 0.3195 0.9776 33491.18 1.0001

a[8] scale adjustment for assessment unit 8 Normal 0 2 -3.2875 0.0027 0.4564 -4.1747 -3.5934 -3.2902 -2.9871 -2.3799 27630.26 1.0002

a[9] scale adjustment for assessment unit 9 Normal 0 2 -3.3297 0.004 0.8268 -4.8432 -3.8929 -3.3708 -2.8083 -1.5754 41679.38 1

a[10] scale adjustment for assessment unit 10 Normal 0 2 -2.2414 0.0025 0.5002 -3.2343 -2.5702 -2.2404 -1.9072 -1.2651 40549.23 1

a[11] scale adjustment for assessment unit 11 Normal 0 2 -3.2534 0.0029 0.4789 -4.113 -3.5916 -3.2827 -2.9385 -2.2613 27198.89 1.0001

a[12] scale adjustment for assessment unit 12 Normal 0 2 -3.7765 0.0022 0.4211 -4.5967 -4.0586 -3.7787 -3.5006 -2.9378 37744.19 1

a[13] scale adjustment for assessment unit 13 Normal 0 2 -0.7255 0.0027 0.4647 -1.6485 -1.0347 -0.7225 -0.4127 0.1777 29637.93 1.0001

a[14] scale adjustment for assessment unit 14 Normal 0 2 -3.4961 0.0025 0.4122 -4.2787 -3.7687 -3.5066 -3.2358 -2.6507 26349.76 1.0002

a[15] scale adjustment for assessment unit 15 Normal 0 2 -3.0002 0.0029 0.5724 -4.1333 -3.3733 -2.9993 -2.6268 -1.8682 38702.1 1

a[16] scale adjustment for assessment unit 16 Normal 0 2 -0.6102 0.0031 0.5761 -1.7464 -0.991 -0.6099 -0.2345 0.5305 34682.28 1.0001

a[17] scale adjustment for assessment unit 17 Normal 0 2 -2.9756 0.0019 0.2923 -3.5363 -3.1726 -2.9813 -2.7847 -2.3843 24063.21 1.0003

a[18] scale adjustment for assessment unit 18 Normal 0 2 0.5748 0.0022 0.2791 0.034 0.3858 0.571 0.7583 1.1373 15407.54 1.0005

a[19] scale adjustment for assessment unit 19 Normal 0 2 -1.0885 0.0035 0.7061 -2.4345 -1.5655 -1.103 -0.6302 0.3445 41060.75 1

a[20] scale adjustment for assessment unit 21 Normal 0 2 -0.8486 0.0019 0.2402 -1.2981 -1.0124 -0.856 -0.6921 -0.353 16227.75 1.0004

a[21] scale adjustment for assessment unit 22 Normal 0 2 0.1194 0.0023 0.2512 -0.3619 -0.0518 0.1147 0.2856 0.6227 11743.67 1.0008

a[22] scale adjustment for assessment unit 23 Normal 0 2 -0.9242 0.0024 0.4202 -1.7561 -1.2028 -0.92 -0.642 -0.1064 31695.02 1.0001

a[23] scale adjustment for assessment unit 24 Normal 0 2 -1.3955 0.0028 0.5003 -2.3806 -1.7265 -1.3944 -1.0634 -0.4155 31458.71 1.0001

a[24] scale adjustment for assessment unit 25 Normal 0 2 -2.6289 0.002 0.3181 -3.2507 -2.8413 -2.6298 -2.4187 -1.9963 25653.54 1.0003

a[25] scale adjustment for assessment unit 26 Normal 0 2 -1.2109 0.0027 0.4604 -2.1225 -1.5169 -1.2082 -0.9051 -0.3053 28938.13 1.0002

a[26] scale adjustment for assessment unit 27 Normal 0 2 -2.4286 0.0027 0.3831 -3.1725 -2.6791 -2.4328 -2.1864 -1.6507 19991.33 1.0004

a[27] scale adjustment for assessment unit 28 Normal 0 2 1.6533 0.0023 0.2827 1.1144 1.4622 1.6472 1.8393 2.2262 14594.25 1.0004

a[28] scale adjustment for assessment unit 29 Normal 0 2 0.3284 0.0019 0.2596 -0.1625 0.1523 0.3214 0.4984 0.8579 18227.12 1.0005

a[29] scale adjustment for assessment unit 30 Normal 0 2 -0.9347 0.0023 0.3691 -1.6647 -1.1752 -0.9325 -0.692 -0.2106 26859.9 1.0002

a[30] scale adjustment for assessment unit 31 Normal 0 2 -2.3712 0.0023 0.5237 -3.3769 -2.717 -2.383 -2.0416 -1.3016 51052.85 1

a[31] scale adjustment for assessment unit 32 Normal 0 2 0.9742 0.0022 0.2217 0.5462 0.8249 0.9712 1.1207 1.4187 10384.85 1.0007

a[32] scale adjustment for assessment unit 33 Normal 0 2 -3.2963 0.0029 0.5999 -4.4284 -3.7009 -3.3154 -2.9113 -2.0598 43962.59 1.0001

a[33] scale adjustment for assessment unit 34 Normal 0 2 -0.2031 0.0021 0.3573 -0.8922 -0.445 -0.2088 0.0341 0.5128 30339.26 1.0002

a[34] scale adjustment for assessment unit 35 Normal 0 2 1.2216 0.0024 0.3258 0.5919 1.001 1.2177 1.4372 1.8685 18532.52 1.0002

a[35] scale adjustment for assessment unit 36 Normal 0 2 -1.8975 0.0035 0.6336 -3.1884 -2.3177 -1.8754 -1.4555 -0.7178 33113.91 1

a[36] scale adjustment for assessment unit 37 Normal 0 2 -1.1962 0.0041 0.7529 -2.7055 -1.7003 -1.181 -0.6774 0.2276 33778.64 1

a[37] scale adjustment for assessment unit 38 Normal 0 2 -2.7641 0.0023 0.4141 -3.5662 -3.0385 -2.7684 -2.4935 -1.941 33730.67 1.0001

a[38] scale adjustment for assessment unit 39 Normal 0 2 -0.0334 0.0025 0.3478 -0.6841 -0.2713 -0.045 0.1921 0.6804 19524.17 1.0003

a[39] scale adjustment for assessment unit 40 Normal 0 2 -2.5216 0.0024 0.3169 -3.1346 -2.7316 -2.526 -2.3167 -1.8873 17420.69 1.0004

a[40] scale adjustment for assessment unit 41 Normal 0 2 -2.2049 0.0021 0.3202 -2.8198 -2.4211 -2.211 -1.9957 -1.559 23656.6 1.0001

a[41] scale adjustment for assessment unit 42 Normal 0 2 -0.901 0.0026 0.3463 -1.5501 -1.1383 -0.9117 -0.6752 -0.1928 17790.93 1.0001

a[42] scale adjustment for assessment unit 43 Normal 0 2 -4.1194 0.0027 0.4238 -4.9475 -4.3989 -4.1222 -3.8429 -3.272 24892.43 1.0003

a[43] scale adjustment for assessment unit 44 Normal 0 2 -3.8977 0.0031 0.5363 -4.8841 -4.2605 -3.9254 -3.563 -2.7634 29409.49 1.0002

a[44] scale adjustment for assessment unit 45 Normal 0 2 -0.272 0.0024 0.2863 -0.8299 -0.4633 -0.2751 -0.0839 0.303 14486.63 1.0003

a[45] scale adjustment for assessment unit 46 Normal 0 2 -0.1797 0.0023 0.2491 -0.6608 -0.3474 -0.1827 -0.0147 0.3162 12133.66 1.0007

a[46] scale adjustment for assessment unit 47 Normal 0 2 -2.4087 0.0024 0.3058 -3.0004 -2.613 -2.4121 -2.2103 -1.7915 16532.92 1.0002

a[47] scale adjustment for assessment unit 48 Normal 0 2 -0.061 0.0022 0.2539 -0.556 -0.2303 -0.0624 0.1066 0.4451 12744.29 1.0006

a[48] scale adjustment for assessment unit 49 Normal 0 2 -4.0582 0.0031 0.5059 -5.0086 -4.3895 -4.0775 -3.7454 -3.0029 27484.66 1.0003

a[49] scale adjustment for assessment unit 50 Normal 0 2 -1.0375 0.0031 0.5984 -2.2074 -1.4293 -1.0441 -0.6504 0.1637 38380.25 1.0001

sd_r[1] obsevation variance for assessment unit 1 Half-Normal 0 2 0.5373 7.00E-04 0.1764 0.2928 0.4163 0.5045 0.621 0.9695 57164.81 1

sd_r[2] obsevation variance for assessment unit 2 Half-Normal 0 2 0.8943 7.00E-04 0.1784 0.6191 0.768 0.8702 0.9922 1.3137 69590.75 1.0002

sd_r[3] obsevation variance for assessment unit 3 Half-Normal 0 2 0.8015 0.001 0.2276 0.4789 0.6413 0.7616 0.918 1.3569 52971.34 1

sd_r[4] obsevation variance for assessment unit 4 Half-Normal 0 2 0.8168 4.00E-04 0.1092 0.6268 0.7401 0.8081 0.8842 1.0562 64251.65 1.0001

sd_r[5] obsevation variance for assessment unit 5 Half-Normal 0 2 0.5854 5.00E-04 0.1329 0.3842 0.4914 0.5659 0.657 0.8986 61273.31 1

sd_r[6] obsevation variance for assessment unit 6 Half-Normal 0 2 0.9396 0.0011 0.2662 0.5724 0.7542 0.8894 1.0704 1.5979 61936.89 1

sd_r[7] obsevation variance for assessment unit 7 Half-Normal 0 2 1.7416 9.00E-04 0.2579 1.3161 1.5589 1.7144 1.8937 2.3255 84898.68 1

sd_r[8] obsevation variance for assessment unit 8 Half-Normal 0 2 0.6889 9.00E-04 0.1959 0.4107 0.5517 0.6552 0.7882 1.1633 52510.92 1

sd_r[9] obsevation variance for assessment unit 9 Half-Normal 0 2 2.0648 0.0018 0.4833 1.3423 1.7212 1.9881 2.3286 3.2217 73846.15 1

sd_r[10] obsevation variance for assessment unit 10 Half-Normal 0 2 1.9926 0.0014 0.3597 1.4144 1.7372 1.9503 2.1989 2.8101 63617.48 1

sd_r[11] obsevation variance for assessment unit 11 Half-Normal 0 2 0.9412 0.0014 0.258 0.5646 0.7527 0.8982 1.0844 1.5517 36265.33 1

sd_r[12] obsevation variance for assessment unit 12 Half-Normal 0 2 1.4428 9.00E-04 0.2631 1.0285 1.2572 1.4085 1.5898 2.0541 78886.51 1

sd_r[13] obsevation variance for assessment unit 13 Half-Normal 0 2 1.591 8.00E-04 0.2394 1.1984 1.4202 1.5648 1.7331 2.1297 80439.93 1

sd_r[14] obsevation variance for assessment unit 14 Half-Normal 0 2 1.174 0.0012 0.3013 0.7478 0.9643 1.1208 1.325 1.9073 62011.3 1

sd_r[15] obsevation variance for assessment unit 15 Half-Normal 0 2 1.3192 0.0014 0.3568 0.8172 1.0688 1.2553 1.4976 2.1956 65426.59 1

sd_r[16] obsevation variance for assessment unit 16 Half-Normal 0 2 1.7935 0.0013 0.3455 1.253 1.5495 1.748 1.986 2.6034 71762.02 1

sd_r[17] obsevation variance for assessment unit 17 Half-Normal 0 2 1.3621 6.00E-04 0.1759 1.0663 1.2371 1.3459 1.4679 1.7537 89480.73 1

sd_r[18] obsevation variance for assessment unit 18 Half-Normal 0 2 0.7127 4.00E-04 0.1178 0.5219 0.6296 0.6986 0.7811 0.9807 70422.36 1

sd_r[19] obsevation variance for assessment unit 19 Half-Normal 0 2 2.2655 0.0014 0.4068 1.6192 1.9764 2.2139 2.4995 3.1975 81590.82 1

sd_r[20] obsevation variance for assessment unit 20 Half-Normal 0 2 0.5801 6.00E-04 0.09 0.4291 0.5162 0.5715 0.6342 0.7802 25780.2 1.0002

sd_r[21] obsevation variance for assessment unit 21 Half-Normal 0 2 0.7237 4.00E-04 0.0966 0.5574 0.6556 0.7154 0.7829 0.9353 60416.63 1

sd_r[22] obsevation variance for assessment unit 22 Half-Normal 0 2 0.5337 3.00E-04 0.0897 0.3877 0.47 0.524 0.5863 0.7365 71067.68 1

sd_r[23] obsevation variance for assessment unit 23 Half-Normal 0 2 1.5907 7.00E-04 0.21 1.2381 1.4414 1.5708 1.717 2.0566 83635.84 1

sd_r[24] obsevation variance for assessment unit 24 Half-Normal 0 2 1.4166 0.001 0.2794 0.986 1.2187 1.3775 1.5699 2.0801 76864.76 1.0001

sd_r[25] obsevation variance for assessment unit 25 Half-Normal 0 2 1.0661 5.00E-04 0.1569 0.8076 0.9552 1.0495 1.1583 1.4207 82726.05 1

sd_r[26] obsevation variance for assessment unit 26 Half-Normal 0 2 1.3434 9.00E-04 0.2581 0.9436 1.1603 1.3085 1.4864 1.9502 78218.65 1

sd_r[27] obsevation variance for assessment unit 27 Half-Normal 0 2 0.4751 6.00E-04 0.1404 0.28 0.3778 0.4499 0.5434 0.8143 49694.22 1

sd_r[28] obsevation variance for assessment unit 28 Half-Normal 0 2 0.6272 4.00E-04 0.1014 0.4621 0.5552 0.6157 0.6867 0.8581 70973.77 1

sd_r[29] obsevation variance for assessment unit 29 Half-Normal 0 2 0.7791 4.00E-04 0.1123 0.5911 0.6997 0.7676 0.8466 1.03 76656.16 1

sd_r[30] obsevation variance for assessment unit 30 Half-Normal 0 2 0.7934 6.00E-04 0.1593 0.544 0.6808 0.7728 0.8831 1.1618 72319.68 1

sd_r[31] obsevation variance for assessment unit 31 Half-Normal 0 2 1.7997 0.0015 0.3916 1.2062 1.5205 1.741 2.0134 2.7286 71532.42 1

sd_r[32] obsevation variance for assessment unit 32 Half-Normal 0 2 0.3525 3.00E-04 0.0641 0.2474 0.3072 0.3456 0.39 0.4979 58231.45 1

sd_r[33] obsevation variance for assessment unit 33 Half-Normal 0 2 1.7569 0.0013 0.359 1.2058 1.5031 1.7059 1.955 2.6028 73028.51 1

sd_r[34] obsevation variance for assessment unit 34 Half-Normal 0 2 1.4777 7.00E-04 0.192 1.1559 1.3422 1.459 1.5931 1.9057 86453.86 1

sd_r[35] obsevation variance for assessment unit 35 Half-Normal 0 2 0.8068 5.00E-04 0.135 0.5917 0.712 0.7901 0.8828 1.1167 78044.94 1

sd_r[36] obsevation variance for assessment unit 36 Half-Normal 0 2 2.0586 9.00E-04 0.2623 1.615 1.8737 2.0332 2.2157 2.6417 76387.46 1.0001

sd_r[37] obsevation variance for assessment unit 37 Half-Normal 0 2 1.8264 0.0014 0.3756 1.2531 1.5591 1.7728 2.0353 2.7089 76549.37 1

sd_r[38] obsevation variance for assessment unit 38 Half-Normal 0 2 1.4411 9.00E-04 0.2563 1.0373 1.2598 1.4086 1.5849 2.0332 76210.79 1

sd_r[39] obsevation variance for assessment unit 39 Half-Normal 0 2 0.8306 7.00E-04 0.1552 0.5893 0.7209 0.8093 0.9163 1.1956 56810.04 1

sd_r[40] obsevation variance for assessment unit 40 Half-Normal 0 2 0.793 9.00E-04 0.2155 0.4922 0.6425 0.7545 0.8992 1.3172 60796.19 1

sd_r[41] obsevation variance for assessment unit 41 Half-Normal 0 2 1.214 6.00E-04 0.1596 0.946 1.1008 1.1985 1.3107 1.5704 79947.21 1

sd_r[42] obsevation variance for assessment unit 42 Half-Normal 0 2 0.6488 5.00E-04 0.13 0.4477 0.5571 0.6308 0.7202 0.9518 69911.03 1

sd_r[43] obsevation variance for assessment unit 43 Half-Normal 0 2 0.8205 9.00E-04 0.2071 0.5214 0.6753 0.7854 0.9246 1.3278 58308.7 1

sd_r[44] obsevation variance for assessment unit 44 Half-Normal 0 2 1.0514 0.001 0.2488 0.6885 0.8771 1.0103 1.1791 1.6544 61848.31 1

sd_r[45] obsevation variance for assessment unit 45 Half-Normal 0 2 0.522 5.00E-04 0.1337 0.3278 0.4285 0.5 0.5891 0.8469 61885.49 1

sd_r[46] obsevation variance for assessment unit 46 Half-Normal 0 2 0.3934 4.00E-04 0.1047 0.2414 0.3202 0.3764 0.4465 0.6461 63137.47 1

sd_r[47] obsevation variance for assessment unit 47 Half-Normal 0 2 0.6786 7.00E-04 0.1678 0.4359 0.5614 0.6505 0.7635 1.0879 58629.54 1

sd_r[48] obsevation variance for assessment unit 48 Half-Normal 0 2 0.3116 4.00E-04 0.0899 0.1771 0.2486 0.2978 0.3591 0.526 62951.24 1

sd_r[49] obsevation variance for assessment unit 49 Half-Normal 0 2 1.0496 0.0011 0.2642 0.6738 0.8654 1.0025 1.181 1.695 61770.15 1

sd_r[50] obsevation variance for assessment unit 50 Half-Normal 0 2 1.6069 0.0014 0.3642 1.0641 1.348 1.5511 1.8034 2.483 72737.86 1

sd_obsCov standard deviation of year-after-treatment effects Half-Normal 0 2 0.2805 0.0004 0.0682 0.1691 0.2324 0.273 0.3203 0.4356 33311.78 1

ObsBetas[1] Year-after-treatment effect for assessment for tributary 1 Dbl Exponential 0 sd_obsCov -0.3674 9.00E-04 0.1834 -0.7322 -0.491 -0.3668 -0.2424 -0.0136 39494.63 1.0001

ObsBetas[2] Year-after-treatment effect for assessment for tributary 2 Dbl Exponential 0 sd_obsCov 0.4461 0.0014 0.2923 -0.0849 0.2329 0.4499 0.6515 1.0113 43946.11 1.0001

ObsBetas[3] Year-after-treatment effect for assessment for tributary 3 Dbl Exponential 0 sd_obsCov 0.096 6.00E-04 0.1269 -0.145 0.0096 0.0896 0.1793 0.3565 43755.72 1

ObsBetas[4] Year-after-treatment effect for assessment for tributary 4 Dbl Exponential 0 sd_obsCov -0.0469 0.0012 0.2567 -0.6168 -0.1831 -0.0291 0.0995 0.4537 47171.06 1

ObsBetas[5] Year-after-treatment effect for assessment for tributary 5 Dbl Exponential 0 sd_obsCov 0.1035 0.0011 0.2534 -0.3698 -0.0506 0.0765 0.2462 0.6653 53764.88 1

ObsBetas[6] Year-after-treatment effect for assessment for tributary 6 Dbl Exponential 0 sd_obsCov 0.2502 0.001 0.2276 -0.169 0.0879 0.2436 0.4045 0.709 49607.78 1

ObsBetas[7] Year-after-treatment effect for assessment for tributary 7 Dbl Exponential 0 sd_obsCov -0.3179 0.002 0.405 -1.2852 -0.5406 -0.239 -0.0313 0.2984 42526.37 1

ObsBetas[8] Year-after-treatment effect for assessment for tributary 8 Dbl Exponential 0 sd_obsCov 0.535 0.0018 0.3191 -0.0686 0.3022 0.5546 0.7737 1.1058 31368.4 1

ObsBetas[9] Year-after-treatment effect for assessment for tributary 9 Dbl Exponential 0 sd_obsCov 0.2208 0.001 0.2194 -0.1559 0.0606 0.2023 0.3626 0.686 51570.95 1

ObsBetas[10] Year-after-treatment effect for assessment for tributary 10 Dbl Exponential 0 sd_obsCov 0.2102 0.0013 0.261 -0.2331 0.0259 0.1781 0.3704 0.7874 42788.97 1

ObsBetas[11] Year-after-treatment effect for assessment for tributary 11 Dbl Exponential 0 sd_obsCov 0.2947 6.00E-04 0.1503 0.0028 0.1923 0.296 0.3963 0.5875 65883.65 1

ObsBetas[12] Year-after-treatment effect for assessment for tributary 12 Dbl Exponential 0 sd_obsCov -0.3017 0.0017 0.3708 -1.1699 -0.5174 -0.2346 -0.0359 0.2775 46251.48 1.0001

ObsBetas[13] Year-after-treatment effect for assessment for tributary 13 Dbl Exponential 0 sd_obsCov 0.182 9.00E-04 0.1099 -0.0129 0.1046 0.1759 0.2522 0.4152 14164.28 1.0006

ObsBetas[14] Year-after-treatment effect for assessment for tributary 14 Dbl Exponential 0 sd_obsCov -0.0399 4.00E-04 0.0869 -0.2195 -0.0951 -0.036 0.017 0.1267 56506.56 1.0001

ObsBetas[15] Year-after-treatment effect for assessment for tributary 15 Dbl Exponential 0 sd_obsCov 0.1987 0.001 0.2078 -0.165 0.0489 0.1807 0.3325 0.6429 47163.19 1

ObsBetas[16] Year-after-treatment effect for assessment for tributary 16 Dbl Exponential 0 sd_obsCov 0.0942 7.00E-04 0.165 -0.212 -0.0131 0.0818 0.1952 0.4452 55224.22 1

ObsBetas[17] Year-after-treatment effect for assessment for tributary 17 Dbl Exponential 0 sd_obsCov 0.0398 8.00E-04 0.1708 -0.3074 -0.0589 0.0339 0.1415 0.3887 50512.07 1

ObsBetas[18] Year-after-treatment effect for assessment for tributary 18 Dbl Exponential 0 sd_obsCov -0.0481 5.00E-04 0.1242 -0.3075 -0.1246 -0.0424 0.03 0.1941 63892.99 1

ObsBetas[19] Year-after-treatment effect for assessment for tributary 19 Dbl Exponential 0 sd_obsCov -0.0617 5.00E-04 0.1397 -0.3547 -0.1485 -0.0538 0.027 0.2066 70715.79 1.0001

ObsBetas[20] Year-after-treatment effect for assessment for tributary 20 Dbl Exponential 0 sd_obsCov 0.1805 4.00E-04 0.0915 0.0028 0.1189 0.1799 0.2413 0.3612 66469.32 1

ObsBetas[21] Year-after-treatment effect for assessment for tributary 21 Dbl Exponential 0 sd_obsCov -0.2336 0.0014 0.3285 -0.9912 -0.4209 -0.1801 -0.0094 0.3047 51990.45 1

ObsBetas[22] Year-after-treatment effect for assessment for tributary 22 Dbl Exponential 0 sd_obsCov 0.788 7.00E-04 0.1702 0.4446 0.6769 0.7904 0.9018 1.1166 54173.66 1

ObsBetas[23] Year-after-treatment effect for assessment for tributary 23 Dbl Exponential 0 sd_obsCov 0.4158 0.0018 0.3297 -0.1196 0.1639 0.3886 0.636 1.1199 35488.76 1

ObsBetas[24] Year-after-treatment effect for assessment for tributary 24 Dbl Exponential 0 sd_obsCov 0.977 0.001 0.2023 0.5484 0.8505 0.987 1.1155 1.3473 43524.52 1

ObsBetas[25] Year-after-treatment effect for assessment for tributary 25 Dbl Exponential 0 sd_obsCov -0.1234 7.00E-04 0.1438 -0.4288 -0.2158 -0.1126 -0.022 0.134 47297.07 1

ObsBetas[26] Year-after-treatment effect for assessment for tributary 26 Dbl Exponential 0 sd_obsCov -0.0326 0.001 0.2341 -0.5384 -0.1602 -0.0203 0.1025 0.4253 51273.94 1

ObsBetas[27] Year-after-treatment effect for assessment for tributary 27 Dbl Exponential 0 sd_obsCov -0.0217 0.0011 0.2649 -0.5903 -0.1645 -0.0135 0.1248 0.5125 60447.63 1

ObsBetas[28] Year-after-treatment effect for assessment for tributary 28 Dbl Exponential 0 sd_obsCov -0.2106 0.0012 0.2671 -0.8088 -0.371 -0.1753 -0.0242 0.2373 49076.64 1

ObsBetas[29] Year-after-treatment effect for assessment for tributary 29 Dbl Exponential 0 sd_obsCov -0.0888 5.00E-04 0.1299 -0.3583 -0.1704 -0.0825 -0.0037 0.1587 64550.04 1

ObsBetas[30] Year-after-treatment effect for assessment for tributary 30 Dbl Exponential 0 sd_obsCov 0.1667 9.00E-04 0.214 -0.2279 0.0198 0.1513 0.304 0.6127 54714.79 1

ObsBetas[31] Year-after-treatment effect for assessment for tributary 31 Dbl Exponential 0 sd_obsCov -0.1253 4.00E-04 0.1147 -0.3607 -0.1991 -0.1217 -0.0475 0.0887 68510.32 1

ObsBetas[32] Year-after-treatment effect for assessment for tributary 32 Dbl Exponential 0 sd_obsCov 0.0087 6.00E-04 0.1542 -0.3059 -0.0818 0.0073 0.0995 0.3246 69190.67 1.0001

ObsBetas[33] Year-after-treatment effect for assessment for tributary 33 Dbl Exponential 0 sd_obsCov 0.0529 4.00E-04 0.1007 -0.142 -0.0107 0.0488 0.1152 0.2634 59655.24 1

ObsBetas[34] Year-after-treatment effect for assessment for tributary 34 Dbl Exponential 0 sd_obsCov 0.1039 7.00E-04 0.1748 -0.2244 -0.009 0.0903 0.211 0.478 62482.69 1

model diagnositicsparameter prior distribution posterior distribution
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Table S3. Recruitment deviation model parameters in the Lake Superior population dynamics 

and control model. Posterior distribution columns provide the mean, standard error of the mean 

(sd_mean), quantiles of the distribution, and model diagnostics associated with each parameter. 

 
  

symbol description family scale shape multiplier mean se_mean sd 2.50% 25% 50% 75% 97.50% n_eff Rhat

pro_dev[1] annual recruitment deviation for 1953 Normal 0 1 sd_q 1.5646 0.0044 0.5788 0.3819 1.1911 1.597 1.9488 2.6476 17193.34 1.0002

pro_dev[2] annual recruitment deviation for 1954 Normal 0 1 sd_q -0.8234 0.0028 0.6824 -2.2989 -1.2428 -0.7789 -0.3522 0.3828 60883 1.0001

pro_dev[3] annual recruitment deviation for 1955 Normal 0 1 sd_q -1.0367 0.0029 0.6458 -2.472 -1.4214 -0.9814 -0.5882 0.071 50799.4 1.0001

pro_dev[4] annual recruitment deviation for 1956 Normal 0 1 sd_q 0.7933 0.0024 0.3903 0.0123 0.5482 0.8021 1.054 1.5278 25994.36 1.0003

pro_dev[5] annual recruitment deviation for 1957 Normal 0 1 sd_q -0.1674 0.0029 0.6381 -1.5789 -0.5421 -0.1151 0.2633 0.9447 49574.67 1.0001

pro_dev[6] annual recruitment deviation for 1958 Normal 0 1 sd_q -0.3746 0.0026 0.5029 -1.4589 -0.6735 -0.3479 -0.0396 0.533 37253.67 1.0001

pro_dev[7] annual recruitment deviation for 1959 Normal 0 1 sd_q -1.0489 0.0024 0.5453 -2.2643 -1.3696 -1.0041 -0.6739 -0.1074 52419.71 1.0001

pro_dev[8] annual recruitment deviation for 1960 Normal 0 1 sd_q -0.8315 0.003 0.5815 -2.1317 -1.1702 -0.7751 -0.4304 0.1505 37219.86 1.0002

pro_dev[9] annual recruitment deviation for 1961 Normal 0 1 sd_q 0.5181 0.0031 0.5367 -0.5416 0.1683 0.5161 0.8716 1.5804 29849.8 1.0001

pro_dev[10] annual recruitment deviation for 1962 Normal 0 1 sd_q -0.3104 0.0028 0.6054 -1.6629 -0.6621 -0.2611 0.0993 0.7427 45739.09 1.0001

pro_dev[11] annual recruitment deviation for 1963 Normal 0 1 sd_q -0.3088 0.0027 0.5943 -1.6717 -0.6489 -0.245 0.1067 0.6678 50148.17 1

pro_dev[12] annual recruitment deviation for 1964 Normal 0 1 sd_q -0.2006 0.0026 0.5902 -1.5573 -0.5379 -0.1393 0.2052 0.7835 53139.65 1

pro_dev[13] annual recruitment deviation for 1965 Normal 0 1 sd_q 0.5011 0.0019 0.4157 -0.4182 0.2619 0.5315 0.7797 1.2266 45580.38 1.0001

pro_dev[14] annual recruitment deviation for 1966 Normal 0 1 sd_q -0.3983 0.0026 0.6318 -1.8165 -0.7665 -0.3359 0.0394 0.6634 57365.8 1

pro_dev[15] annual recruitment deviation for 1967 Normal 0 1 sd_q -0.5124 0.0026 0.6514 -1.9702 -0.8992 -0.4521 -0.0562 0.5893 62094.62 1

pro_dev[16] annual recruitment deviation for 1968 Normal 0 1 sd_q 0.321 0.0027 0.5417 -0.9116 0.0197 0.3765 0.6885 1.2294 41786.22 1

pro_dev[17] annual recruitment deviation for 1969 Normal 0 1 sd_q 0.0119 0.0027 0.5515 -1.2529 -0.298 0.0702 0.3889 0.9301 40965.79 1

pro_dev[18] annual recruitment deviation for 1970 Normal 0 1 sd_q -0.262 0.0027 0.5838 -1.6126 -0.5879 -0.1928 0.1421 0.6893 47708.15 1

pro_dev[19] annual recruitment deviation for 1971 Normal 0 1 sd_q -0.117 0.0025 0.5505 -1.3613 -0.4318 -0.0625 0.2574 0.814 50348.52 1

pro_dev[20] annual recruitment deviation for 1972 Normal 0 1 sd_q -0.6477 0.0026 0.6283 -2.0483 -1.0235 -0.5897 -0.2113 0.4215 60119.85 1

pro_dev[21] annual recruitment deviation for 1973 Normal 0 1 sd_q 0.2018 0.0035 0.6719 -1.3399 -0.186 0.2756 0.671 1.3149 36306.81 1

pro_dev[22] annual recruitment deviation for 1974 Normal 0 1 sd_q 0.9377 0.0039 0.6164 -0.4371 0.5776 0.9903 1.3575 1.9979 25275.73 1.0002

pro_dev[23] annual recruitment deviation for 1975 Normal 0 1 sd_q -0.0796 0.0028 0.7638 -1.7288 -0.5517 -0.0284 0.4486 1.2766 74571.34 1

pro_dev[24] annual recruitment deviation for 1976 Normal 0 1 sd_q -0.0331 0.0027 0.6725 -1.5453 -0.4287 0.0288 0.4308 1.1206 62041.21 1.0001

pro_dev[25] annual recruitment deviation for 1977 Normal 0 1 sd_q 0.1807 0.0029 0.6553 -1.2999 -0.1972 0.2415 0.6294 1.2957 51572.19 1

pro_dev[26] annual recruitment deviation for 1978 Normal 0 1 sd_q 0.2173 0.0028 0.6431 -1.233 -0.1542 0.2754 0.658 1.3209 54257.62 1

pro_dev[27] annual recruitment deviation for 1979 Normal 0 1 sd_q -0.0713 0.0027 0.6573 -1.5131 -0.4631 -0.0155 0.3833 1.0726 58058.02 1

pro_dev[28] annual recruitment deviation for 1980 Normal 0 1 sd_q -0.3289 0.0025 0.6383 -1.7472 -0.7099 -0.2765 0.1099 0.7807 65389.21 1

pro_dev[29] annual recruitment deviation for 1981 Normal 0 1 sd_q -0.2329 0.0025 0.6164 -1.621 -0.5882 -0.1718 0.1892 0.8088 59313.69 1

pro_dev[30] annual recruitment deviation for 1982 Normal 0 1 sd_q 0.2809 0.0023 0.5022 -0.8545 -0.0023 0.3274 0.6199 1.1361 48736.18 1

pro_dev[31] annual recruitment deviation for 1983 Normal 0 1 sd_q -0.2371 0.0026 0.6605 -1.7133 -0.6292 -0.1706 0.2238 0.8687 62564.35 1

pro_dev[32] annual recruitment deviation for 1984 Normal 0 1 sd_q 0.1948 0.0029 0.6431 -1.2724 -0.1671 0.2639 0.6349 1.2678 50726.22 1

pro_dev[33] annual recruitment deviation for 1985 Normal 0 1 sd_q 0.3297 0.0024 0.4956 -0.7639 0.0386 0.3653 0.6659 1.1996 42149.57 1.0002

pro_dev[34] annual recruitment deviation for 1986 Normal 0 1 sd_q -1.104 0.0024 0.6051 -2.4488 -1.462 -1.0535 -0.6845 -0.066 62801.38 1

pro_dev[35] annual recruitment deviation for 1987 Normal 0 1 sd_q -1.2185 0.0024 0.5938 -2.5262 -1.5746 -1.1699 -0.8062 -0.188 63555.02 1

pro_dev[36] annual recruitment deviation for 1988 Normal 0 1 sd_q -0.3029 0.0028 0.6136 -1.683 -0.6594 -0.2417 0.1186 0.7391 47879.29 1

pro_dev[37] annual recruitment deviation for 1989 Normal 0 1 sd_q 0.2523 0.0026 0.5367 -0.9298 -0.0631 0.2963 0.6164 1.1876 44190.96 1.0001

pro_dev[38] annual recruitment deviation for 1990 Normal 0 1 sd_q -0.1626 0.0026 0.6351 -1.5622 -0.5374 -0.1046 0.2706 0.9332 60362.95 1

pro_dev[39] annual recruitment deviation for 1991 Normal 0 1 sd_q -0.3288 0.0027 0.6954 -1.8293 -0.7524 -0.2812 0.1462 0.9117 67763.16 1

pro_dev[40] annual recruitment deviation for 1992 Normal 0 1 sd_q 0.9099 0.0032 0.6074 -0.469 0.5667 0.9611 1.3167 1.9584 37081.98 1

pro_dev[41] annual recruitment deviation for 1993 Normal 0 1 sd_q 0.628 0.0039 0.7391 -1.0307 0.1962 0.6932 1.1374 1.8914 36138.88 1

pro_dev[42] annual recruitment deviation for 1994 Normal 0 1 sd_q 0.6427 0.0037 0.7646 -1.1074 0.2059 0.7298 1.1744 1.9121 41791.93 1

pro_dev[43] annual recruitment deviation for 1995 Normal 0 1 sd_q 0.6243 0.0038 0.8026 -1.1492 0.1366 0.6945 1.1847 2.0117 43537.64 1

pro_dev[44] annual recruitment deviation for 1996 Normal 0 1 sd_q 0.0474 0.0031 0.7035 -1.5412 -0.3662 0.119 0.5359 1.2382 50582.63 1

pro_dev[45] annual recruitment deviation for 1997 Normal 0 1 sd_q 0.4312 0.0028 0.5531 -0.8569 0.1322 0.496 0.8084 1.3271 39107.28 1

pro_dev[46] annual recruitment deviation for 1998 Normal 0 1 sd_q 0.081 0.0032 0.7015 -1.4891 -0.3348 0.1466 0.5724 1.2659 48723.31 1

pro_dev[47] annual recruitment deviation for 1999 Normal 0 1 sd_q 0.4873 0.0034 0.6946 -1.1196 0.0905 0.5706 0.9744 1.6144 42694.51 1

pro_dev[48] annual recruitment deviation for 2000 Normal 0 1 sd_q 0.6491 0.0035 0.6549 -0.8289 0.2717 0.7136 1.0992 1.7564 34826.22 1

pro_dev[49] annual recruitment deviation for 2001 Normal 0 1 sd_q 0.0985 0.0032 0.7337 -1.5196 -0.3428 0.1663 0.608 1.356 51388.94 1.0001

pro_dev[50] annual recruitment deviation for 2002 Normal 0 1 sd_q 0.3482 0.003 0.6361 -1.1219 -0.0029 0.4194 0.783 1.3995 45254.69 1

pro_dev[51] annual recruitment deviation for 2003 Normal 0 1 sd_q 0.3218 0.0032 0.6694 -1.1999 -0.0663 0.3902 0.7846 1.4512 43875.52 1.0001

pro_dev[52] annual recruitment deviation for 2004 Normal 0 1 sd_q 0.1308 0.0028 0.6453 -1.3601 -0.2353 0.203 0.5771 1.1966 51637.43 1

pro_dev[53] annual recruitment deviation for 2005 Normal 0 1 sd_q -0.2648 0.0028 0.6867 -1.7855 -0.6753 -0.2008 0.2112 0.9115 61396.71 1

pro_dev[54] annual recruitment deviation for 2006 Normal 0 1 sd_q 0.8042 0.0024 0.4505 -0.1611 0.5383 0.8302 1.1011 1.6206 34238.9 1

pro_dev[55] annual recruitment deviation for 2007 Normal 0 1 sd_q -0.5644 0.0027 0.6504 -1.9821 -0.9593 -0.5176 -0.1175 0.5853 60137.71 1

pro_dev[56] annual recruitment deviation for 2008 Normal 0 1 sd_q -0.9395 0.0023 0.6251 -2.2973 -1.3198 -0.8945 -0.5086 0.1572 72573.62 1.0001

pro_dev[57] annual recruitment deviation for 2009 Normal 0 1 sd_q -0.2479 0.0037 0.7268 -1.8283 -0.694 -0.1924 0.2582 1.0161 38147.44 1.0001

pro_dev[58] annual recruitment deviation for 2010 Normal 0 1 sd_q 1.5125 0.0024 0.4357 0.6029 1.2414 1.5297 1.8027 2.3268 31929.17 1.0001

pro_dev[59] annual recruitment deviation for 2011 Normal 0 1 sd_q -0.3744 0.0026 0.6955 -1.8966 -0.7938 -0.3182 0.1052 0.8394 71882.49 1.0001

pro_dev[60] annual recruitment deviation for 2012 Normal 0 1 sd_q -0.5684 0.0024 0.6529 -2.0074 -0.9614 -0.5169 -0.1173 0.5628 75649.73 1

pro_dev[61] annual recruitment deviation for 2013 Normal 0 1 sd_q -0.2247 0.0026 0.7714 -1.839 -0.7095 -0.1952 0.3012 1.1967 91004.76 1

pro_dev[62] annual recruitment deviation for 2014 fixed at 0 NA NA NA NA NA NA NA NA NA NA NA NA NA

pro_dev[63] annual recruitment deviation for 2015 fixed at 0 NA NA NA NA NA NA NA NA NA NA NA NA NA

pro_dev[64] annual recruitment deviation for 2016 fixed at 0 NA NA NA NA NA NA NA NA NA NA NA NA NA

pro_dev[65] annual recruitment deviation for 2017 fixed at 0 NA NA NA NA NA NA NA NA NA NA NA NA NA

pro_dev[66] annual recruitment deviation for 2018 fixed at 0 NA NA NA NA NA NA NA NA NA NA NA NA NA

pro_dev[67] annual recruitment deviation for 2019 fixed at 0 NA NA NA NA NA NA NA NA NA NA NA NA NA

parameter prior distribution (transformed parameter) posterior distribution model diagnostics
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Table S4. Adult abundance index model parameters in the Lake Superior population dynamics 

and control model. Posterior distribution columns provide the mean, standard error of the mean 

(sd_mean), quantiles of the distribution, and model diagnostics associated with each parameter. 

 

symbol description mean se_mean sd 2.50% 25% 50% 75% 97.50% n_eff Rhat

x3[1] adult abundence index for 1953 4.9932 0.0017 0.2375 4.5083 4.8373 4.9997 5.1566 5.4401 19253.84 1.0005

x3[2] adult abundence index for 1954 5.7455 0.0021 0.2472 5.2507 5.5811 5.7483 5.9135 6.2199 14170.12 1.0005

x3[3] adult abundence index for 1955 6.3076 0.0022 0.2311 5.8441 6.1545 6.3119 6.4647 6.7505 11552.09 1.0007

x3[4] adult abundence index for 1956 6.6784 0.0021 0.2227 6.2294 6.5314 6.6823 6.8296 7.1043 11051.99 1.0007

x3[5] adult abundence index for 1957 6.7307 0.0021 0.2193 6.2884 6.586 6.7344 6.8793 7.1513 10682.51 1.0007

x3[6] adult abundence index for 1958 6.3775 0.0022 0.2363 5.9041 6.2204 6.3804 6.5382 6.8292 11212.36 1.0006

x3[7] adult abundence index for 1959 6.5324 0.0021 0.2252 6.0795 6.3827 6.5354 6.6854 6.9637 11109.71 1.0007

x3[8] adult abundence index for 1960 7.1849 0.0021 0.2164 6.7481 7.042 7.1887 7.3317 7.5987 10663.23 1.0007

x3[9] adult abundence index for 1961 6.7671 0.0023 0.2318 6.2982 6.614 6.7715 6.9242 7.211 10062.55 1.0008

x3[10] adult abundence index for 1962 5.4272 0.0021 0.2314 4.9662 5.2741 5.428 5.5821 5.8794 11765.11 1.0008

x3[11] adult abundence index for 1963 5.6315 0.0022 0.2274 5.1721 5.4814 5.636 5.7868 6.0677 10308.43 1.0008

x3[12] adult abundence index for 1964 5.46 0.0023 0.2307 4.9997 5.3075 5.4624 5.6172 5.9032 10346.89 1.0009

x3[13] adult abundence index for 1965 4.9716 0.0022 0.2332 4.5053 4.8171 4.9739 5.1294 5.421 11646.74 1.0006

x3[14] adult abundence index for 1966 4.6588 0.0023 0.2415 4.1741 4.4994 4.6618 4.8216 5.122 11239.42 1.0007

x3[15] adult abundence index for 1967 4.7202 0.0023 0.2392 4.2421 4.5609 4.7231 4.882 5.1801 11226.68 1.0007

x3[16] adult abundence index for 1968 5.2401 0.0022 0.247 4.7469 5.0747 5.2431 5.4078 5.7175 12805.68 1.0004

x3[17] adult abundence index for 1969 5.2149 0.0022 0.2455 4.7261 5.0514 5.2163 5.3806 5.6911 12807.29 1.0005

x3[18] adult abundence index for 1970 4.9469 0.0022 0.2528 4.4426 4.7782 4.9492 5.1192 5.4359 13183.54 1.0005

x3[19] adult abundence index for 1971 5.1689 0.0022 0.268 4.6411 4.99 5.1703 5.3495 5.6924 14217.24 1.0005

x3[20] adult abundence index for 1972 5.4799 0.0022 0.2564 4.9635 5.31 5.4839 5.6535 5.9713 13646.19 1.0006

x3[21] adult abundence index for 1973 5.1954 0.0022 0.2556 4.6819 5.0253 5.1987 5.3683 5.686 13600.51 1.0007

x3[22] adult abundence index for 1974 4.6792 0.0022 0.2679 4.1413 4.5023 4.6814 4.8608 5.1967 14734.51 1.0006

x3[23] adult abundence index for 1975 4.981 0.0023 0.2724 4.4365 4.7998 4.9849 5.167 5.5029 14551.9 1.0006

x3[24] adult abundence index for 1976 5.1794 0.002 0.2432 4.6858 5.0176 5.1842 5.345 5.6424 14375.55 1.0006

x3[25] adult abundence index for 1977 5.081 0.0019 0.2293 4.616 4.9294 5.0852 5.2369 5.5179 14973.28 1.0005

x3[26] adult abundence index for 1978 4.9547 0.002 0.235 4.4771 4.8004 4.9598 5.1158 5.4018 14327.79 1.0006

x3[27] adult abundence index for 1979 4.939 0.0022 0.2534 4.4268 4.7726 4.9434 5.1141 5.4165 13494.59 1.0006

x3[28] adult abundence index for 1980 5.546 0.0019 0.2846 4.9824 5.3564 5.5467 5.7365 6.1064 21683.18 1.0002

x3[29] adult abundence index for 1981 5.927 0.0016 0.283 5.3567 5.7403 5.9324 6.1201 6.4676 32346.58 1.0002

x3[30] adult abundence index for 1982 5.604 0.0016 0.2946 5.009 5.4095 5.6112 5.8073 6.1607 34488.91 1.0003

x3[31] adult abundence index for 1983 5.2337 0.0016 0.2911 4.6573 5.0393 5.2347 5.4305 5.7994 31844.03 1.0002

x3[32] adult abundence index for 1984 5.3895 0.0015 0.2786 4.8341 5.2043 5.3935 5.5766 5.9278 35640.79 1.0001

x3[33] adult abundence index for 1985 5.4357 0.0016 0.2828 4.8666 5.2489 5.4408 5.6281 5.9753 31386.69 1.0002

x3[34] adult abundence index for 1986 5.2556 0.0018 0.2857 4.6812 5.0648 5.261 5.4509 5.8031 26481.83 1.0002

x3[35] adult abundence index for 1987 5.1267 0.0017 0.2741 4.576 4.9445 5.1312 5.3127 5.6515 26292.81 1.0002

x3[36] adult abundence index for 1988 5.4618 0.0016 0.263 4.9286 5.2881 5.4678 5.6403 5.9636 26284.46 1.0002

x3[37] adult abundence index for 1989 5.8296 0.0016 0.2583 5.3075 5.659 5.834 6.0062 6.3184 25079.82 1.0003

x3[38] adult abundence index for 1990 5.7893 0.0017 0.2636 5.2557 5.6164 5.7956 5.9675 6.2919 23691.8 1.0003

x3[39] adult abundence index for 1991 5.7339 0.0019 0.2778 5.1711 5.5503 5.7392 5.9229 6.2634 22003.66 1.0002

x3[40] adult abundence index for 1992 5.7543 0.0018 0.2634 5.2164 5.5821 5.7612 5.9338 6.2521 20566.51 1.0003

x3[41] adult abundence index for 1993 5.3015 0.0019 0.2757 4.7435 5.1201 5.3069 5.4901 5.8257 22146.95 1.0004

x3[42] adult abundence index for 1994 4.739 0.002 0.2933 4.1462 4.5451 4.7447 4.9401 5.297 22134.27 1.0002

x3[43] adult abundence index for 1995 5.2079 0.002 0.2817 4.6375 5.0217 5.2142 5.4004 5.7462 19623.16 1.0003

x3[44] adult abundence index for 1996 5.737 0.002 0.2872 5.1492 5.5478 5.744 5.9339 6.2805 21010.29 1.0004

x3[45] adult abundence index for 1997 5.7817 0.0017 0.2576 5.2578 5.6128 5.788 5.9565 6.2692 23541.25 1.0003

x3[46] adult abundence index for 1998 5.8505 0.0015 0.2559 5.3338 5.6811 5.8554 6.0243 6.3386 27947.29 1.0002

x3[47] adult abundence index for 1999 6.4051 0.0017 0.2603 5.8797 6.2332 6.4117 6.5831 6.8975 22364.8 1.0003

x3[48] adult abundence index for 2000 6.5607 0.0017 0.2521 6.0514 6.394 6.5653 6.7322 7.0429 21094.48 1.0003

x3[49] adult abundence index for 2001 6.3471 0.0017 0.2639 5.8147 6.1725 6.3517 6.5269 6.8499 23280.31 1.0003

x3[50] adult abundence index for 2002 6.0489 0.0017 0.2542 5.5267 5.8829 6.0564 6.2231 6.5231 21758.96 1.0002

x3[51] adult abundence index for 2003 5.8669 0.0016 0.2528 5.3529 5.7019 5.8738 6.0394 6.3449 24952.14 1.0002

x3[52] adult abundence index for 2004 6.0865 0.0017 0.2559 5.564 5.9193 6.0948 6.2626 6.5658 21754.37 1.0003

x3[53] adult abundence index for 2005 6.1839 0.0018 0.2645 5.6491 6.0099 6.1906 6.3637 6.6875 20920.61 1.0003

x3[54] adult abundence index for 2006 6.2987 0.0019 0.2925 5.7118 6.1053 6.3054 6.4984 6.8592 22580.94 1.0003

x3[55] adult abundence index for 2007 6.4184 0.002 0.2838 5.8346 6.2324 6.4282 6.6143 6.9492 21061.72 1.0003

x3[56] adult abundence index for 2008 6.2744 0.0019 0.2788 5.705 6.0899 6.2834 6.468 6.7921 21781.46 1.0004

x3[57] adult abundence index for 2009 6.1625 0.0019 0.2731 5.6075 5.9824 6.1702 6.3492 6.68 20240.94 1.0003

x3[58] adult abundence index for 2010 6.0849 0.0021 0.2924 5.487 5.894 6.0935 6.2868 6.634 19759.51 1.0003

x3[59] adult abundence index for 2011 5.8852 0.002 0.2812 5.3074 5.7016 5.8943 6.0796 6.409 19616.22 1.0003

x3[60] adult abundence index for 2012 5.7817 0.0019 0.2734 5.2259 5.6024 5.7881 5.969 6.2971 20836.14 1.0003

x3[61] adult abundence index for 2013 6.0329 0.002 0.2721 5.4672 5.8576 6.0434 6.2211 6.5375 18871 1.0002

x3[62] adult abundence index for 2014 5.7648 0.0019 0.2617 5.2304 5.5925 5.7721 5.9449 6.2596 19533.21 1.0002

x3[63] adult abundence index for 2015 5.1119 0.0018 0.2982 4.5097 4.9162 5.1173 5.3149 5.6805 27162.8 1.0003

x3[64] adult abundence index for 2016 5.7837 0.002 0.2912 5.1921 5.5937 5.7917 5.9832 6.3352 21835.75 1.0003

x3[65] adult abundence index for 2017 6.5008 0.0022 0.3058 5.8641 6.3026 6.5126 6.7139 7.0657 19300.91 1.0004

x3[66] adult abundence index for 2018 6.2117 0.0022 0.2934 5.6049 6.0206 6.2203 6.4134 6.7606 18608.37 1.0004

x3[67] adult abundence index for 2019 5.3346 0.0019 0.3064 4.7169 5.1311 5.3402 5.5443 5.9196 26513.23 1.0002

parameter posterior distribution model diagnostics
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APPENDIX C: LAKE SUPERIOR POPULATION DYNAMICS MODEL POST-

POSTERIOR CHECKING METHODS AND RESULTS 

 We simulated a dataset from each MCMC iteration using the generated quantities code 

block in our stan model. Simulated datasets were graphed (mean and 95% credibility intervals) 

with observed data and examined visually. We noted that residuals for some assessment units 

appeared to show strong autocorrelation, but, overall, most observations fell within 95% 

confidence intervals (Figure S1). We were interested in average temporal trends in 

autocorrelation to see if there tended to be over or under prediction of adult abundance during 

any given time period. We examined this by scaling residuals for each assessment unit by their 

mean, calculating annual mean residual from the scaled assessment-unit specific residuals, and 

plotting the results (Figure S2). We did not observe strong autocorrelation in the mean annual 

residuals from visual examination of the plot. We ran a Durbin-Watson test for lag-1 

autocorrelation to examine this further. Based on this test, there was weak evidence supporting 

autocorrelation of the mean annual residuals (DW-stat= 1.76; p-value=0.24). 
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Figure S1. Plot of post-posterior checking results for each assessment unit. Dark-grey points 

show the model predicted value and blue points show observed values. Grey band is the 95% 

credibility interval. 
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Figure S2. Mean average annual residual (model predicted – observed). Error bars are +/- one sd, 

light grey points show individual assessment unit residuals. 
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APPENDIX D: SEA LAMPREY CONTROL TACTIC FEASIBLITY ASSESSMENT 

AND COST MODEL DETAIL 

Social Feasibility 

 Social feasibility was assessed by assigning a score to each control tactic-candidate 

experimental stream pairing. The score (yes=2, maybe=1, no=0) was a guess as to whether 

collateral damage from the deployment would decrease trust between the Sea Lamprey Control 

Program and partners, stakeholders, rightsholders, and resource users. The specific collateral 

damage dimensions considered were aesthetic impact, recreational opportunity/river access, and 

blocking and/or mortality of non-target fishes. The sum of these responses constituted an 

expected negative societal effect score (NSES) for a given stream-tactic pairing. Resulting NSES 

ranged from 0 to 5. NSES >0 were assigned for some trap and electric weir tactic-stream 

combinations, while passage-friendly trap and distribution tactics (pheromone antagonist and 

SMRT) all were assigned NSES of 0. The maximum social impact score of the control tactics 

included in a given control strategy was used to assess the social feasibility of control strategy-

stream pairings. Strategy-stream pairings with NSES ≤ 2 were deemed socially feasibility and 

those with NSES > 2 were deemed not social feasibility. 

Table S5. Table of negative societal effect scores (NSES) for each control tactic-stream pairing. 

Each cell contains the sub scores for aesthetic impact, recreational opportunity/river access, and 

blocking and/or mortality of non-target fishes and the sum (bold). 

Stream/Tactic Trap Passage-

friendly trap 

Electric weir SMRT Pheromone 

antagonist 

Cranberry River 0+0+0=0  0+0+0=0 0+0+0=0 0+0+0=0 0+0+0=0 

Potato River 0+0+0=0 0+0+0=0 0+0+0=0 0+0+0=0 0+0+0=0 

Traverse River 0+1+1=2 0+0+0=0 1+2+1=4 0+0+0=0 0+0+0=0 

Bills Creek 0+0+1=1 0+0+0=0 0+1+2=3 0+0+0=0 0+0+0=0 

Furlong Creek 0+0+0=0 0+0+0=0 0+1+0=1 0+0+0=0 0+0+0=0 

Long Lake Outlet 0+0+0=0 0+0+0=0 0+1+0=1 0+0+0=0 0+0+0=0 

Silver Creek 0+1+1=2 0+0+0=0 1+2+2=5 0+0+0=0 0+0+0=0 

Root River 0+1+0=1 0+0+0=0 1+2+2=5 0+0+0=0 0+0+0=0 

Crystal Creek 0+0+0=0 0+0+0=0 1+1+2=4 0+0+0=0 0+0+0=0 

Expected Percent Reduction in Sea Lamprey Spawning Potential 

 A deterministic probability tree (Figure S1) was developed for predicting expected 

percent reduction in sea lamprey spawning potential associated with each control strategy-stream 

pairing. The conditional probability of being trapped, blocked, or disrupted represents the 
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expected reduction in spawning potential associated with a given control strategy-stream 

combination. Starting spawning potential (i.e., the size of the migratory spawning run) was 

assigned based on adult sea lamprey assessment data for each stream. Control tactics were 

assumed to be applied sequentially in the remove, divert, disrupt order. Probabilities in the 

probability tree include the probability of being available to be targeted by a given control tactic 

(max capture and max block) and control tactic effectiveness probabilities (capture prob, block 

prob, disrupt prob) (Figure S3, Table S6). Probability of being available to removal tactics was 

assigned a base value of 0.9 because we don’t expect traps to be operated for 100% of the run 

(on average), with a few adult lamprey migrating into streams either very late or very early in the 

spawning migration. Additionally, traps are expected to be ineffective under flood conditions, 

when they become inundated. In these conditions, existing trap operations are typically 

suspended and gear removed from the stream to prevent equipment loss and damage. Especially 

flashy streams, prone to flooding (Cranberry River and Potato River) and moderately prone to 

flooding (Furlong Creek) were assigned a further reduced probability of being available to traps 

to account for reduced expected effectiveness under more frequently occurring flood conditions. 

Probability of being available to diverting tactics was set to 0.75 across all streams and is 

interpreted as the percentage of the run unavailable to traps that are available to diversion tactics. 

This value is greater than zero because we expect electric weir operations to be more feasible to 

operate for a greater portion of the spawning run and be more resilient to flood conditions, 

compared to traps. 

 Typical adult sea lamprey assessment traps recapture 20-40% of marked individuals. We 

assumed that removal tactics would constitute enhanced trap deployments that make use of 

available technologies expected to increase capture efficacy (e.g., electric leads and 

chemosensory push-pull methods) and/or novel trap designs to boost capture probability to 55%. 

Finally, we assumed deployment of two enhanced traps and calculated the final probability as 1-

(1-0.55)2=0.80 (the probability of being captured in one of the 2 traps). We estimated passage-

friendly trap probability by reducing the expected capture probability of each trap from 0.55 to 

0.40, based on the assumption that accommodating passage-friendly needs would somewhat 

reduce the effectiveness of the trap. The final capture probability for passage-friendly traps was 

1-(1-0.40)2=0.64. 

 Electric weirs are expected to have high blocking capabilities, when deployed in optimal 
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locations. For example, no adult sea lamprey have been captured above an electric weir deployed 

in such a location on the Black Mallard River in 8 years of operation. We assigned a blocking 

probability of 0.90, lower than what we expect for electric weir deployments in optimal 

conditions, to account for anticipated challenges optimizing deployment location and operations 

for new deployments. 

 SMRT disruption probability at a 40:1 sterile to wild male ratio was assigned 0.90 across 

all streams. Theoretically, if males and females are randomly paired for mating, this ratio should 

cause successful reproduction rates to approach zero. However, we assumed lower efficacy to 

account for limitations in matching timing of sterile male releases and maturation schedules to 

the wild male population, which could reduce the effectiveness of SMRT applications (compared 

to the theoretical maximum). 

 Pheromone antagonist applications at a 100 3sPZS:100 PZS:1 3kPZS ratio are expected 

to cause reproduction rates to approach zero, based on experimental trials conducted in the Carp 

Lake Outlet. We assigned a base probability of 0.90 because the deployment of this tactic would 

be targeted to a 3–4-week peak spawning window, and we expect that misidentification of peak 

spawning and/or a prolonged spawning period would result in some mature adult lamprey not 

being inundated with pheromone antagonists while they are sexually mature. 

 Using the probability tree, expected availability and control efficacy probabilities, and 

starting spawning potentials, the expected proportional reduction in spawning potential was 

calculated for each control strategy-stream combination (Table S6). Combinations with an 

expected reduction less that 0.90 were considered low technical feasibility and those with 

expected reduction of 0.90 or greater passed this portion of the technical feasibility assessment 

(and were assigned high feasibility if they met maximum cost and sterile male availability 

requirements). 
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Figure S3. Probability tree for estimating the expected reduction in spawning potential for a 

given control strategy possibility containing remove, divert, and disrupt control tactics. 
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Table S6. Values included in the probability tree used to estimate expected reduction in sea 

lamprey spawning potential. Rows correspond to candidate streams for experimental sea lamprey 

control deployments. Mean spawning run size was assigned based on monitoring data while 

control efficacy probabilities (max capture=expected probability of availability to capture tactics, 

capture prob=expected probability of capturing capture-available adults, max block=expected 

probability of adults not available to capture tactics being available to blocking tactics, block 

prob=expected probability of blocking adults available to capture or blocking tactics, disrupt 

prob= expected probability of disrupting reproduction) were assigned based on expert judgement 

of the authors of this manuscript. (SMRT=sterile male release technique; PF Trap=passage-

friendly trap). 

Parameter Mean 

spawning 

run size 

max 

capture 

capture prob max 

block 

block 

prob 

disrupt prob 

Tactic/stream  Trap/PF 

Trap 

Trap PF 

Trap 

Block Block SMRT Antagonist 

Potato 10 0.6 0.8 0.64 0.75 0.90 0.90 0.70 

Cranberry 235 0.6 0.8 0.64 0.75 0.90 0.90 0.70 

Traverse 125 0.9 0.8 0.64 0.75 0.90 0.90 0.90 

Bills Creek 32 0.9 0.8 0.64 0.75 0.90 0.90 0.90 

Furlong 

Creek 

32 0.8 0.8 0.64 0.75 0.90 0.90 0.90 

Root River 37 0.9 0.8 0.64 0.75 0.90 0.90 0.90 

Crystal 

Creek 

17 0.9 0.8 0.64 0.75 0.90 0.90 0.90 

Long Lake 

Outlet 

147 0.9 0.8 0.64 0.75 0.90 0.90 0.90 

Silver Creek 8 0.9 0.8 0.64 0.75 0.90 0.90 0.90 

Expected Cost Model 

 Expected annual cost was estimated for each control tactic and was broken down into 

staff day and gear/equipment costs. Expected number of staff days was highest for a removal 

tactic deployment (n=28), followed by an electric weir deployment, (n=10), application of 

pheromone antagonist (n=6), and release of sterile males (n=5 per release of 1000 sterile males). 

One staff day was estimated to cost $1,409, which includes transportation and administrative 

support costs. Expected annualized equipment and gear costs were estimated by considering one-

time equipment expenses annualized by the expected lifespan of the gear plus annual gear costs.  

Annualized expected cost (USD) was $7,000 for a removal deployment, $6,000 for an electric 
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weir deployment, $1,000 for release of 1000 sterile males, and $46,000 for synthetizing enough 

pheromone antagonist to neutralize 1 wild male. Total expected annual cost for each control 

strategy-stream pairing was calculated by summing all of the individual costs associated with the 

deployment (Table S8). Disruption costs that depend on the number of wild males to neutralize 

(either by achieving a 40:1 sterile to wild ratio or 100:100:1 pheromone ratio) were scaled to the 

expected number of wild males to neutralize. This was calculated as the starting run size * 50% 

expected male * (1- proportion trapped) * (1-proportion blocked). 

 The expected cost of synthesizing enough pheromone to neutralize one wild male was 

calculated from pheromone synthesis costs (per mg) and estimated 3kPZS production rate of a 

sea lamprey male in a natural setting. We estimated that a sea lamprey male produces 27 mg of 

3kPZS per day in a natural setting, based on a Bayesian statistical analysis that included an 

informative prior for this rate based on lab-based measurements (known number of lamprey in a 

small tank) and field-based 3kPZS measurements with highly uncertain number of sea lamprey 

present in the system and uncertain amounts of background 3kPZS production from larval life-

stage lamprey. The field data contained high levels of observation error and the informative prior 

(based off of lab measurements) largely informed our estimate. 

Table S7. Estimated proportion of starting spawning potential controlled for each control 

strategy-stream pairing.  

 Antagonist SMRT PF 

Trap 
Antagonist + 

PF Trap 
SMRT + 

PF Trap 
Trap Antagonist 

+ Trap 
SMRT 

+ Trap 
Barrier Antagonist 

+ Barrier 
SMRT + 

Barrier 
Trap + 

Barrier 
Antagonist + 

Trap + 

Barrier 

SMRT + 

Trap + 

Barrier 
Cranberry 

River 
NA 0.90 0.38 NA 0.94 0.48 NA 0.95 0.81 NA 0.98 0.86 NA 0.99 

Potato 

River 
NA 0.90 0.38 NA 0.94 0.48 NA 0.95 0.81 NA 0.98 0.86 NA 0.99 

Traverse 

River 
NA 0.90 0.58 NA 0.96 0.72 NA 0.97 0.88 NA 0.99 0.95 NA 0.99 

Bills Creek NA 0.90 0.58 NA 0.96 0.72 NA 0.97 0.88 NA 0.99 0.95 NA 0.99 
Furlong 

Creek 
NA 0.90 0.51 NA 0.95 0.64 NA 0.96 0.86 NA 0.99 0.92 NA 0.99 

Long Lake 

Outlet 
NA 0.90 0.58 NA 0.96 0.72 NA 0.97 0.88 NA 0.99 0.95 NA 0.99 

Silver 

Creek 

(Tawas) 

0.90 0.90 0.58 0.96 0.96 0.72 0.97 0.97 0.88 0.99 0.99 0.95 0.99 0.99 

Root River NA 0.90 0.58 NA 0.96 0.72 NA 0.97 0.88 NA 0.99 0.95 NA 0.99 
Crystal 

Creek 
NA 0.90 0.58 NA 0.96 0.72 NA 0.97 0.88 NA 0.99 0.95 NA 0.99 

1
Highlighted cells indicate deployments expected to achieve the 0.90 control target. 
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Table S8. Estimated annual cost (USD) for each control strategy-stream pairing.  

 Antagonist SMRT PF 

Trap 
Antagonist 

+ PF Trap 
SMRT 

+ PF 

Trap 

Trap Antagonist 

+ Trap 
SMRT 

+ Trap 
Barrier Antagonist 

+ Barrier 
SMRT 

+ 

Barrier 

Trap + 

Barrier 
Antagonist + 

Trap + 

Barrier 

SMRT + 

Trap + 

Barrier 
Cranberry 

River 
NA 38,000 46,000 NA 70,000 46,000 NA 66,000 20,000 NA 27,000 67,000 NA 72,000 

Potato 

River 
NA 2,000 46,000 NA 47,000 46,000 NA 47,000 20,000 NA 20,000 67,000 NA 67,000 

Traverse 

River 
NA 20,000 46,000 NA 55,000 46,000 NA 52,000 20,000 NA 23,000 67,000 NA 68,000 

Bills Creek NA 5,000 46,000 NA 49,000 46,000 NA 48,000 20,000 NA 21,000 67,000 NA 67,000 
Furlong 

Creek 
NA 5,000 46,000 NA 49,000 46,000 NA 48,000 20,000 NA 21,000 67,000 NA 67,000 

Long Lake 

Outlet 
NA 24,000 46,000 NA 56,000 46,000 NA 53,000 20,000 NA 23,000 67,000 NA 68,000 

Silver 

Creek 

(Tawas) 

192,000 1,000 46,000 133,000 47,000 46,000 107,000 47,000 20,000 51,000 20,000 67,000 84,000 67,000 

Root River NA 6,000 46,000 NA 49,000 46,000 NA 48,000 20,000 NA 21,000 67,000 NA 67,000 
Crystal 

Creek 
NA 3,000 46,000 NA 48,000 46,000 NA 47,000 20,000 NA 20,000 67,000 NA 67,000 

1
Highlighted cells indicate deployments requiring less than $150,000 USD annual expected cost. 

 


