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ABSTRACT 

 

Fisheries stock assessment models are used to estimate population demographics and 

dynamics such as abundance, biomass, and fishing mortality from input fishery data including 

total catch, composition of catch, and fishing effort. A goal of stock assessment is to accurately 

quantify population and fishery dynamics so stocks can be managed to achieve fishery objectives 

and long-term sustainability. Accurate and precise model estimates can be attained by using 

models and techniques that account for ecological complexity like variability in quantities across 

ages, years, or regions without overparameterization. The state-space framework is one such 

statistical technique that may allow for incorporating more stochasticity such that the model can 

better reflect reality. The state-space modeling framework assumes that unobserved “states” 

develop over time due to process error modeled as a random effect and that observed data have 

expected values based on these states but differ from expectations due to observation error.  

State-space stock assessment models (SSSAM) have experienced an outpouring of 

research and application in the past decade as computation processing power and novel software 

has facilitated the approximation of the high-level integrals necessary for SSSAM. SSSAM 

allows for several time-varying processes in recruitment, numbers at age, mortality, selectivity, 

and catchability, and has become an essential part of the contemporary fisheries modeling 

toolbox. With their swift advancement, it is important to understand best practices of applying 

state-space stock assessment models, and how data availability, the variability of process or 

observation error, and model structure may influence model results and accuracy.  

In Chapter 1 I built an age-based state-space stock assessment model that used fisheries 

dependent data, rather than fisheries independent surveys, as an index of abundance and was 

applied to Lake Michigan lake whitefish (Coregonus clupeaformis). The model predicted greater 
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abundance and lower mortality compared to the non-state-space model and domed rather than 

asymptotic selectivity. The state-space model also had reduced retrospective patterns in 

recruitment. Chapters 2 and 3 each used a simulation-estimation framework to generate catch 

and index data using a state-space stock assessment that assumed process variability in 

recruitment, expected survival (abundance), and selectivity. Simulations were based on a Gulf of 

Maine haddock (Melanogrammus aeglefinus) model and assumed different degrees of process 

and observation variance (Chapter 2) or assumed observation error likelihood distributions for 

the proportions at age (Chapter 3) to generate data. Simulated data were input into several 

estimation models with alternative assumptions about contributing sources of process variability 

and/or observation error distributions. The results show that state-space models which assume 

several sources of process variability can produce unbiased estimates even when processes are 

constant over time. The state-space models were able to estimate process variance in several 

stochastic processes under a broad range of true values. However, assuming variability in 

expected survival when it is deterministic can lead to the model not converging. Unbiased results 

are achieved when the observation likelihood is structured to account for inter-age correlation 

and overdispersion though such a framework may have difficulty allocating variance between 

process and observation sub-models. 

The concluding chapter places this work in the context of other age-based stock 

assessment models and argues for the inclusion of state-space in the modeling toolbox, as they 

can account for multiple time-varying processes and be used in a broad range of data contexts. 

This work provides a blueprint for where and how SSSAM may be best utilized in the future, 

particularly with data limited or data poor stocks and in cases where the process variance is 

unknown and should be estimated within the model. 
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INTRODUCTION 

The aphorism “all models are wrong, some are useful” (attributed to statistician George 

Box) acknowledges that describing real-world systems as a collection of neat mathematical 

equations will inherently contain inaccuracies. Fisheries stock assessment models attempt to 

estimate the unobservable - abundance, natural mortality, exploitation rate - using observed catch 

and survey data by making explicit assumptions about how those observations are 

mathematically related to life history and fishery parameters. Though the resultant output will be 

“wrong” in some way, by designing models that account for as much of the natural system as is 

statistically and mathematically possible, we can strive to make the results more “useful” 

towards achieving long term fisheries management goals.  

The history of stock assessment modeling has been typified by progressively adding 

complexity and realism to the models as technology and data availability have permitted. The 

1980s saw the development of the statistical catch at age model (SCAA), which assumed that 

observed data contained error as the result of observation variability or “observation error” 

which could be quantified with a statistical distribution. Models could then be fit by maximizing 

the likelihood of the data conditional on a set of parameter values (Fournier and Archibald, 

1982). When such integrated models, (those that use several data sources to fit the model), 

became standard, scientists had to contend with data weighting (i.e., how closely to fit some data 

at the expense of poorly fitting others). Research focused on how to specify or calculate variance 

parameters of the likelihood function that would correctly assign variability (i.e., “weight”) 

among catch, survey indices of abundance, and/or proportions at age (Deriso et al., 2007; 

Maunder and Punt, 2013). Often, data were weighted a priori through iterative reweighting 



 

 

2 

 

algorithms, as a function of sampling trips, or based on expert judgement (Francis, 2011; 

Truesdell et al., 2017).  

Another important branch of stock assessment science aimed to introduce more 

stochasticity into previously constant or deterministic parameters like recruitment, catchability, 

natural mortality, and selectivity in SCAA (Deroba and Schueller, 2013; Linton and Bence, 

2011; Maunder and Deriso, 2003; Wilberg and Bence, 2006). This was typically accomplished 

by constraining deviations from a mean or predicted value through a penalty term in a joint or 

“penalized” likelihood (in addition to the likelihood of the data). The variance of these deviations 

was usually specified using fixed ratios between the observation and process variation or 

assumed known a priori. 

The development of state-space stock assessment models (SSSAM) that use an integrated 

likelihood, rather than the penalized likelihood, have been able to address both data weighting 

and process variance concerns. Such models have been able to capitalize on advanced 

mathematical programs that can approximate complex high-level mathematical integrals of the 

marginal likelihood (Kristensen et al., 2016). This change has led to the estimability of process 

variance parameters and, under certain assumed likelihood functions for the observed catch, the 

observation variance parameters (Cadigan, 2015; Miller et al., 2016; Nielsen and Berg, 2014). 

Now the model, rather than the modeler, could determine the degree of process and observation 

error, and by doing so, reduce the risk of bias and model misspecification (de Valpine and 

Hilborn, 2005). Knowing the variability of ecological processes, especially recruitment, can 

guide model projections which is vital given that forecasting the future abundance of a stock is 

key to sustainability (Thorson et al., 2014).  
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A state-space stock assessment model (SSSAM) is a hierarchical model with two sub-

model components - a “process” model that describes the population dynamics (birth, growth, 

death of the fish) and “observation” model that describes the fishery (how harvest or other data 

are collected) (Figure 0.1). The process model quantifies how underlying unobserved “states” 

like abundance, recruitment, or mortality progress over time as a function of the state in the 

previous year and the process error (Aeberhard et al., 2018; Auger-Méthé et al., 2016). The 

observation model describes how the observed data like catch or indices of abundance are a 

function of the state in each year and observation error. In a frequentist framework, the process 

and observation error are quantified with probability distributions and the former is integrated 

from a marginal likelihood that integrates across all possible state values. 

Figure 0.1. Simplified structure of a state-space stock assessment model. 

 

SSSAMs are now employed as a supplement to traditional stock assessment methods in 

the United States, Canada, and Europe (Cadigan, 2015; Miller et al., 2016; Nielsen and Berg, 

2014). Two R modeling packages have been developed- WHAM in the Northeastern United 

States and SAM in Northern Europe- to facilitate fitting state-space stock assessment models 

(Nielsen and Berg, 2014; Stock and Miller, 2021). SSSAM have been used for multispecies 

models, multifleet models, and to flexibly estimate process variance where once it was fixed or 
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estimated with constraints (Albertsen et al., 2018; Nielsen et al., 2021; Perreault and Cadigan, 

2021; Stock et al., 2021). 

Several SSSAMs have been able to estimate observation error variance and thus self-

weight the data within the model (Berg and Nielsen, 2016; Cadigan, 2015). However, this ability 

is contingent on how the observation model is parameterized, usually by fitting catch-at-age data 

(rather than total catch and proportions at age) using a multivariate lognormal distribution. As 

research and application of SSSAM was flourishing in the past decade, so was research into 

alternative likelihood distributions for the proportion at age data, other than the conventional 

multinomial, that better reflect the procedures used to collect age information and adjust the 

information content of such data (Francis, 2011, 2014; Maunder, 2011). Alternatives such as the 

Dirichlet-multinomial, logistic normal, or multivariate Tweedie, may better quantify 

overdispersion and inter-age correlation (Fisch et al., 2021; Thorson et al., 2022, 2017). These 

two avenues of inquiry - into SSSAM and alternative likelihoods - have recently begun to 

intersect and there is considerable interest in how to parameterize both the process and 

observation sub-models to correctly apportion variability between the two and among multiple 

time-varying processes or multiple data sources within the process and observation models, 

respectively (Albertsen et al., 2017; Cronin-Fine and Punt, 2021; Xu et al., 2020).  

 As the interest in applying SSSAM and alternative age composition likelihoods continues 

to expand, it is more important than ever to understand where and how this framework is best 

applied. This can and has involved 1) applying stock assessment models to real data in novel 

contexts and comparing the output against non-state-space models (e.g., Perreault et al., 2020) or 

2) fitting state-space models with simulated data using a simulation-estimation procedure (e.g., 

Miller and Hyun, 2018) (Figure 0.2). Self- and cross- tests are especially elucidating and can 
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quantify model robustness and the illustrated consequences of model misspecification (Deroba et 

al., 2015). Simulation-estimation testing asks not only how well models perform under ideal 

(correctly specified) circumstances, but also what is the preferred model to choose when the true 

underlying dynamics are unknown. When faced with substantial uncertainty or poor data quality, 

which model configuration will “get it right” most of the time? Among many wrong models, 

which is the most useful? 

Figure 0.2. Simplified structure of a simulation-estimation experiment. 

 

 This research employs both approaches- fitting both real and simulated data- to 

understand how SSSAM can be applied when fisheries independent indices of abundance are not 

available (Chapter 1), when the underlying recruitment, expected survival, and selectivity 

processes are highly variable or constant or the data are “noisy” (Chapter 2), and when the 

observation error in proportions at age has substantial overdispersion or inter-age correlation 

(i.e., non-multinomial distribution) (Chapter 3). The findings reveal some of the current upper 

limits of model complexity for SSSAM and how these models can be designed in the future to 

accurately and precisely estimate recruitment, abundance, spawning stock biomass, and 

exploitation rate, and process or observation error variances. 
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CHAPTER 1: 

APPLYING A NOVEL STATE-SPACE STOCK ASSESSMENT FRAMEWORK USING A 

FISHERIES-DEPENDENT INDEX OF FISHING MORTALITY 

1.1 Abstract 

State-space models have a hierarchical framework that assumes the observed data are 

derived from a time series of unobserved latent states. State-space stock assessment models have 

emerged as an alternative framework to conduct stock assessment in Canada, the east coast of the 

United States of America, and in Europe though little research has investigated where and how 

they are optimally used and if they would be appropriate in other management contexts. I built a 

novel state-space stock assessment model with process variation in recruitment and time- and 

age- specific catchability. I fit the model to fisheries dependent commercial trap net and gill net 

catch and effort data of Lake Michigan lake whitefish (Coregonus clupeaformis) using a 

marginal likelihood that integrated over latent states. Compared to the previously employed 

statistical catch at age model, the state-space model estimated dome-shaped, rather than 

asymptotic selectivity for both fisheries, 15% lower average total instantaneous mortality, and 

20% higher average recruitment. To my knowledge this is the first application of a state-space 

stock assessment model fit by maximum likelihood in the Laurentian Great Lakes and the first 

such model to exclude a fisheries-independent survey. These results demonstrate the feasibility 

of employing a maximum likelihood state-space framework in fisheries that lack such fishery 

independent indices of abundance and instead use catch per unit effort as an index of abundance. 

This work presents a novel approach to applying state-space stock assessment modeling and 

offers insights and suggestions for future in the Great Lakes and in similar circumstances of data 

availability. 
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1.2 Introduction 

Fisheries stock assessment must contend with multiple sources of model variability, both 

from the process sub-model (i.e., process variation) and from the observation sub-model (i.e., 

observation error) which introduce uncertainty and obscure the relationship between underlying 

model dynamics and the observed data (Fournier and Archibald, 1982). Until recently, age-

structured fisheries stock assessment models have generally assumed the degree of process 

variation and/or observation error was known. Deriso et al. (2007) emphasized that it is possible 

to estimate the variances, even from multiple sources, when all variation is due to observation 

error. If process variation is present and deviations from the mean are treated like another source 

of data, the variance of those deviations cannot be independently estimated by maximizing the 

joint likelihood of the deviations and data, a procedure sometimes called penalized likelihood 

(see Schnute 1994). The penalized likelihood, also called “errors-in-variables” (EV) method, is 

still used in many stock assessment packages such as ASAP, MULTIFAN-CL, and stock 

synthesis (SS) (Fournier et al., 1998; Legault and Restrepo, 1998; Methot and Wetzel, 2013). 

However, because the estimates can be asymptotically biased, alternative approaches have been 

adopted in newer assessment platforms (de Valpine and Hilborn, 2005; Stock and Miller, 2021). 

State-space models (SSM) have been able to partition process variation and observation error 

and estimate both with high precision (Aeberhard et al., 2018b). SSM accomplish this by 

assuming the data are observations (with error) derived from unobserved states like population 

abundance and mortality, that are progressing through time following a stepwise Markovian 

process. The states, or their deviations from a shared mean, are specified as random effects and 

in a maximum likelihood framework are integrated over to obtain the marginal likelihood, which 

is maximized. 
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The theorized advantages of state-space stock assessment models have been realized, 

with models applied in several different geographical regions, using different model 

configurations, able to simultaneously estimate the magnitude of several different sources of 

process variation, including recruitment, survival, fishing mortality, selectivity, and natural 

mortality (Aeberhard et al., 2018; Cadigan, 2015; Stock et al., 2021; Stock and Miller, 2021; Yin 

et al., 2019). State-space stock assessment models (herein defined as those that use a marginal 

likelihood) have estimated mortality and abundance greater accuracy and precision than non-

state-space models (herein defined as those that use a penalized likelihood), and exhibit less 

retrospective patterns (Gunnlaugsson, 2012; Perreault et al., 2020; Stock et al., 2021). A state-

space modeling research track is currently exploring the feasibility of applying such models to 

NOAA-managed stocks in New England and the Mid-Atlantic and state-space stock assessment 

models are used for a large portion of stocks managed by the International Council for the 

Exploration of the Sea (ICES) (Aanes et al., 2020). Nevertheless, there remains considerable 

interest and uncertainty in what kinds of process variation can be considered, and under what 

circumstances and with what data the SSM approach can be practically implemented (Aanes et 

al., 2020).  

This work contributes to the ongoing inquiry by using a state-space modeling framework 

to fit total catch and age composition data for two fisheries (with two distinct gears) without a 

fisheries-independent index of abundance. Indices quantify trends in stock abundance over time 

and are often assumed to be proportional to abundance therefore allowing an estimation of stock 

size. In the absence of a fisheries independent survey, an index can be calculated from data 

collected during the fishing process, such as catch per unit effort (CPUE). However, CPUE is 

only a reliable index of abundance if the proportionality constant, catchability, is correctly 
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specified (Wilberg et al., 2009). Catchability is often assumed constant or varying around a 

constant mean, though can vary systematically due to density-dependent effects, gear changes, 

preferential sampling, or angler behavior (Ducharme-Barth et al., 2022; Hilborn and Walters, 

1992; Quirijns et al., 2008). In such cases, potential causes of changes in catchability might be 

unknown, but can still be partially accounted for by allowing catchability to vary through a 

stochastic process, an approach I adopt herein (Wilberg et al., 2009).  

This novel state-space model was applied to lake whitefish (Coregonus clupeaformis) in 

the northmost region of Lake Michigan. This stock experiences no recreational fishing and two 

commercial fisheries, a trap net fishery and a gill net fishery, have yielded on average 222 and 

159 thousand kilograms per year, respectively, since 1986, the first year included in the 

assessment. Fishing effort is reported in numbers of lifts of the trap nets and feet of gill net 

deployed. These effort data were used to inform fishing mortality within the model and 

catchability was a state variable estimated for each age and year that scaled effort to fishing 

mortality. This parameterization distinguishes this state-space model from previous applications 

and existing state-space platforms like SAM or WHAM where instantaneous fishing mortality is 

a state variable (Nielsen and Berg, 2014; Perreault et al., 2020).  

To my knowledge, this is the first state-space stock assessment model application in the 

Laurentian Great Lakes (fit by marginal maximum likelihood) and this work confirms the 

applicability of SSM without a fisheries independent survey, which is customary in previous 

applications (Cadigan, 2015; Nielsen et al., 2021; Perreault et al., 2020; Stock and Miller, 2021). 

My objective was to apply a novel state-space stock assessment model and to provide time- and 

age- varying estimates of recruitment and catchability and their associated variances. Ultimately, 
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I developed an assessment tool applicable in situations without fisheries independent surveys and 

from this tool I make general recommendations about the use of SSM models in such situations. 

1.3 Methods 

Table 1.1. Symbols used in the text, appendices, tables, and figures. Whether the symbol is used 

in the statistical catch at age model (SCA), the state-space model (SSM), or both, is indicated. 

The value is provided for indices and time and age invariant data. 
Symbol Description Usage Value(s) 

Index Variables    

𝑦 Year Both 1986-2017 

𝑎, �̃� Age Both 4-15+ 

𝐺 Fishery Both g- gill net, t-trap net 

    

Data and Priors    

𝐸𝑦,𝐺 Observed effort by year and fishery Both See Figure 2 

�̃�𝑦,𝐺 Observed harvest by year and fishery Both  

�̃�𝑎,𝑦,𝐺 Observed proportions by age, year, and fishery Both  

�̃� Observed natural mortality SSM 0.2 

�̂� Median of prior on natural mortality SCA 0.2 

𝜎𝑀 Standard deviation of observed or prior natural 

mortality 

Both 0.1 

𝑚𝑎,𝑦 Maturity by age and year Both  

𝑊𝑎,𝑦
(𝑠𝑝𝑎𝑤𝑛)

 Weight at the time of spawning by age and year

  

Both  

𝑒 Average number of eggs per kilogram SCA 19937 

𝑓 Average proportion of females in spawning 

population 

SCA 0.4845 

φ𝐺 Standard deviation multiplier for fishery-specific 

catchability, 𝑞𝑦,𝐺, process variability 

SCA 1.5 

φ𝑠 Standard deviation multiplier for trap net selectivity 

parameter 𝑝1,𝑦,𝑡 process variability 

SCA 1.0 

φ𝑅 Standard deviation multiplier for recruitment 

process variability 

SCA 15 

φ𝐶𝐺  Standard deviation multiplier for total catch 

observation error 

SCA 4 

𝜎𝐶𝐺  Standard deviation of likelihood of total catch SSM 0.067 

Parameters and State Variables 

𝑀 Instantaneous natural mortality Both  

𝜎𝐺 Standard deviation of process variability of fishery-

specific catchability 

SSM  

𝜌𝐺  Correlation coefficient (among ages) of process 

variability of fishery-specific catchability 

SSM  

𝜎𝑅 Standard deviation of process variability of 

recruitment 

SSM  

𝜀𝑦
(𝑅)

 Process variability of recruitment SSM  

𝜺𝑦
(𝐺)

 Vector of process variability of fishery-specific 

catchability  

SSM  

𝜀𝑦
(𝑠) Process variability of trap net selectivity parameter SCA  

𝑞𝑦,𝐺 Catchability by year and fishery SCA  
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Table 1.1 (cont’d) 

𝜎 Baseline standard deviation for process variability 

and observation error 

SCA  

𝑝1,𝑦,𝑡 Trap net selectivity inflection point parameter by 

year 

SCA  

𝑝1,𝑔 Gill net selectivity parameter SCA  

𝑝2,𝐺 Trap and gill net selectivity parameters SCA  

�̅� Average recruitment and abundance in 1986 SCA  

𝐷𝑦  Deviations by year from average recruitment SCA  

𝑑𝑎 Deviations by age from average abundance in 1986 SCA  

𝛼 Ricker stock recruitment parameter SCA  

𝛽 Ricker stock recruitment parameter SCA 

 

 

Derived Quantities    

𝑁𝑎,𝑦 Abundance by age and year Both  

�̂�4,𝑦 Predicted abundance of age 4 individuals by year 

(recruitment) 

SCA  

𝐹𝑎,𝑦,𝐺 Instantaneous fishing mortality by age, year, and 

fishery 

Both  

𝒒𝑦,𝐺 Vector of age-specific catchability by year and 

fishery 

SSM  

𝑠𝑎,𝑦,𝐺 Selectivity by age, year, and fishery SCA  

𝑍𝑎,𝑦 Instantaneous total mortality by age and year Both  

�̅�𝑎 Average instantaneous total mortality by age from 

1986-1988  

SCA  

𝐶𝑎,𝑦,𝐺 Expected harvest by age, year, and fishery Both  

𝑃𝑎,𝑦,𝐺 Expected proportions by age, year, and fishery Both  

𝐵𝑦
(𝑆𝑝𝑎𝑤𝑛)

 Spawning stock biomass by year Both  

ϵ𝑦 Spawning stock size in eggs by year SCA  

𝑇 Total objective function value Both  

𝜎𝑎 Standard deviation of multivariate normal random 

walk deviations of fishery-specific catchability 

SSM Set to single value, 

𝜎𝐺, for each fishery 

𝑛𝐺 Effective sample size of multinomial likelihood of 

observing given proportion at age of catch 

Both  

𝚺𝐺 Covariance matrix of process variability of fishery-

specific catchability 

SSM  

𝜎𝑠 Standard deviation of process variability of trap net 

selectivity parameter 

SCA  

 

1.3.1 Data and Model Inputs 

The assessment model was fit using annual fishery-specific values of fishing effort 

(𝐸𝑦,𝐺), observed fishery harvest (�̃�𝑦,𝐺), and observed age compositions in units of proportions at 

age (�̃�𝑎,𝑦,𝐺) (variables are described in Table 1.1). Annual reported yield in weight from the catch 

reporting system was converted into estimates of annual catch in numbers using the annual 
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average weight of fish harvested by each fishery and estimates of underreporting (Appendix 1A). 

In addition, the model used input values of average weight at age, average length at age, and 

maturity schedules in each year, which were collected from harvest subsampling, to calculate 

selectivity and spawning stock biomass.   

1.3.2 State-space Assessment Model 

A state-space stock assessment model (SSM) was developed in Template Model Builder 

(TMB) that assumed two state variables, recruitment and catchability at age, varied across years 

(Kristensen et al., 2016). The SSM was structurally similar to the existing statistical catch at age 

(SCA) models used to assess lake whitefish and lake trout in the Laurentian Great Lakes which 

fit data using a penalized likelihood (described in Appendix 1B). The SSM had structural 

elements that mimicked the state-space modeling software “SAM” including the state variables, 

process variance structure, and a marginal likelihood (Berg and Nielsen, 2016; Nielsen and Berg, 

2014). The SSM had two sub-models: a process or “population” model, and an observation or 

“fishery” model. The process model described how the underlying states, recruitment and 

catchability, changed over time as a function of the state in the previous year and process 

variability. The observation model described how the predicted total catch and catch 

compositions derived from those true unobserved states owing to observation error.  

Table 1.2. Equations used in the statistical catch at age model (SCA), the state-space model 

(SSM), or both. Note that though equations 3.5a and 3.5b appear identical, each contributes to a 

different part of the objective function total, which is an important distinction in the integrated 

likelihood framework. 
Index Description Equation Usage 

Process Model 

1.1 Recruitment random walk 
log 𝑁4,𝑦 = log 𝑁4,𝑦−1 + 𝜀𝑦

(𝑅)
;  𝜀𝑦

(𝑅)
~𝑁(0, 𝜎𝑅

2 ) 
SSM 

1.2 Abundance at age 4-9 in initial year 
log 𝑁𝑎,1986 = log 𝑁4,1986−(𝑎−4) − ∑ log �̅�𝑎

𝑎−1

4

, 4 < 𝑎 ≤ 9 
SSM 

1.3 Abundance at age 9+ in initial year 
log 𝑁𝑎,1986 = 0, 𝑎 > 9 

Both 
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Table 1.2 (cont’d) 

1.4 
Abundance at age exponential 

decay with plus group 

log 𝑁𝑎,𝑦 = log 𝑁𝑎−1,𝑦−1 − 𝑍𝑎−1,𝑦−1, 4 ≤ 𝑎 < 𝐴 

log 𝑁𝐴,𝑦 = log(𝑁𝐴−1,𝑦−1 𝑒−𝑍𝐴−1,𝑦−1 + 𝑁𝐴,𝑦−1𝑒−𝑍𝐴,𝑦−1) 
Both 

1.5 Total instantaneous mortality  
𝑍𝑎,𝑦 = 𝑀 + ∑ 𝐹𝑎,𝑦,𝐺

𝐺=𝑔,𝑡

 
Both 

1.6a Fishing mortality 
𝐹𝑎,𝑦,𝐺 = 𝑞𝑦,𝐺𝐸𝑦,𝐺𝑠𝑎,𝑦,𝐺 , 𝐺 = 𝑔, 𝑡 

SCA 

1.6b Fishing Mortality 𝐹𝑎,𝑦,𝐺 = 𝑞𝑎,𝑦,𝐺𝐸𝑦,𝐺 , 𝐺 = 𝑔, 𝑡 SSM 

1.7a 
Year-specific catchability random 

walk 
log 𝑞𝑦+1,𝐺 = log 𝑞𝑦,𝐺 + 𝜀𝑦

(𝐺)
;  𝜀𝑦

(𝐺)
~𝑁(0, 𝜎𝐺

2 ), 𝐺 = 𝑔, 𝑡  SCA 

1.7bi 
Year- and age- specific vector of 

catchability random walk 
log 𝒒𝑦,𝐺 = log 𝒒𝑦−1,𝐺 + 𝜺𝑦

(𝐺)
;  𝜺𝑦

(𝐺)
~𝑁(0, 𝚺𝐺  ), 𝐺 = 𝑔, 𝑡 SSM 

1.7bii 
Correlated error of catchability 

random walk 
𝚺𝑎,�̃� = 𝜌|𝑎−�̃�|𝜎𝑎𝜎�̃�, 4 < 𝑎 < 𝐴, 4 < �̃� < 𝐴 SSM 

1.8 Spawning stock biomass 𝐵𝑦
(𝑆𝑝𝑎𝑤𝑛)

= ∑ 𝑚𝑎,𝑦𝑊𝑎,𝑦
(𝑠𝑝𝑎𝑤𝑛)𝐴

𝑎=4 log 𝑁𝑎,𝑦  Both 

Observation Model 

2.1 Baranov catch equation 𝐶𝑎,𝑦,𝐺 =
𝐹𝑎,𝑦,𝐺

𝑍𝑎,𝑦

(1 − exp(−𝑍𝑎,𝑦))𝑁𝑎,𝑦 , 𝐺 = 𝑔, 𝑡 Both 

2.2 Yearly catch proportions at age 𝑃𝑎,𝑦,𝐺 =
𝐶𝑎,𝑦,𝐺

∑ 𝐶𝑎,𝑦,𝐺
𝐴
𝑎=1

, 𝐺 = 𝑔, 𝑡 Both 

Negative Log Likelihoods 

3.1 

Total objective function on the log-

scale is the sum of prior/penalty 

and data likelihood components 

𝑇 = ∑ 𝑁𝐿𝑃 + ∑ 𝑁𝐿𝐿 Both 

3.2a 

Recruitment deviations from those 

expected by Ricker curve (see 

Appendix B) 
NLP(𝑅) = ∑

1

2𝜎𝑅
2 (log

�̂�4,𝑦

𝑁4,𝑦
)

2

+ log 𝜎𝑅
2017
𝑦=1991   SCA 

3.2b 
Recruitment deviations from those 

expected around 0 
NLP(𝑅) = ∑

1

2𝜎𝑅
2 (𝜀𝑦

(𝑅)
)

2
+ log 𝜎𝑅

2017
𝑦=1981   SSM 

3.3a 

Fishery-specific deviations in 

catchability following a random 

walk 

NLP(𝐺) = ∑
1

2𝜎𝐺
2 (𝜀𝑦

(𝐺)
)

2
+ log 𝜎𝐺

2017
𝑦=1986 , 𝐺 = 𝑔, 𝑡  SCA 

3.3b 

Fishery-specific deviations in vector 

of catchability at age following a 

random walk 

NLP(𝐺) = ∑ 1
2⁄ 𝜺𝑦

(𝐺)′
Σ𝑇

−1𝜺𝑦
(𝐺)

+2017
𝑦=1986

log √|𝚺𝐺| , 𝐺 = 𝑔, 𝑡  
SSM 

3.4 
Deviations for random walk for trap 

net selectivity parameter  
NLP(𝑠) = ∑

1

2𝜎𝑠
2 (𝜀𝑦

(𝑠)
)

2
+ log 𝜎𝑠

2017
𝑦=1986   SCA 

3.5a 
Penalty on natural mortality from 

deviating from median of the prior 
NLP(𝑀) =

1

2𝜎𝑀
2 (log �̂� − log 𝑀)

2
+ log 𝜎𝑀  SCA 

3.5b 

Likelihood of observing a given 

natural mortality value based on 

assumed true value 

NLL(𝑀) =
1

2𝜎𝑀
2 (log �̃� − log 𝑀)

2
+ log 𝜎𝑀  SSM 

3.6 

Likelihood of observing the given 

total catch based on an assumed true 

value    

NLL(𝐶𝐺) = ∑
1

2𝜎𝐶𝐺
2 (log

𝐶𝑦,𝐺

𝐶𝑦,𝐺
)

2

+ log 𝜎𝐶𝐺  , 𝐺 =2017
𝑦=1986

𝑔, 𝑡  

Both 

3.7 

Likelihood of observing the given 

proportions at age of catch based on 

assumed true values   

NLL(𝑃𝐺) = − ∑ ∑ 𝑛𝑦,𝐺�̃�𝑎,𝑦,𝐺  log 𝑃𝑎,𝑦,𝐺
𝐴
𝑎=4

2017
𝑦=1986 , 𝐺 =

𝑔, 𝑡  
Both 
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Recruitment was modeled as a random walk which effectively penalizes recruitment 

estimates that change greatly from year to year with the extent of the penalty depending on the 

random walk variance. Though recruitment can differ greatly between adjacent years due to 

several abiotic and biotic processes, treating these changes as arising from random walk is a 

recommended approach in a state-space framework especially when estimating the variance of 

the process variability (Maunder and Thorson, 2018). Recruitment, 𝑁4,𝑦, was calculated on the 

log-scale by adding normally distributed error to the log-scale recruitment in the previous year, 

starting 5 years prior to the first year being modeled (Table 1.2, Eq. 1.1). Abundances of 

individuals ages 5 to 9 in the initial year, 1986, were calculated using the recruitment from years 

preceding the time series, 1981-1985, which were estimated by extending the random walk 

process backwards in time (Eq. 1.2). This method assumed that recruitment prior to 1986 came 

from the same stochastic process as recruitment throughout the time series and the initial 

abundances are a function of prior recruitment, adjusted downward using average total mortality. 

Given that there was no information on mortality rates prior to 1986, the average estimated age-

specific instantaneous mortality rates for 1986-1988, �̅�𝑎, were used as reasonable substitutes. 

The abundance of older ages in the initial year were set to 0, consistent with the very low or zero 

harvest for cohorts that were age-9 or older in 1986 (Eq. 1.3). 

Abundances in subsequent years and ages were a function of an exponential mortality 

model (Eqs. 1.4-1.5). Instantaneous fishing mortality was the product of age-, year-, and fishery- 

specific catchability, 𝑞𝑎,𝑦,𝐺 and year- and fishery- specific effort, 𝐸𝑦,𝐺  (Eq. 1.6a), a common 

approach in stock assessment models (Fournier and Archibald, 1982). Effectively, 𝑞𝑎,𝑦,𝐺 

combines what is conventionally modeled as two separate processes, year-specific catchability, 

and age-specific selectivity, into a single age- and year- specific value. Time-varying selectivity 
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is commonly used in stock assessment to account for changes in size at age or changes in gear 

technology that may preferentially target certain ages, among other reasons (Martell and Stewart, 

2014). The vector of log-scale catchability at age in a given year, for a given fishery, i.e. 𝒒𝑦,𝐺 =

(𝑞4,𝑦,𝐺 , 𝑞5,𝑦,𝐺 , … , 𝑞𝐴,𝑦,𝐺), varied over time according to a random walk with multivariate normal 

error, analogous to how SAM models age specific instantaneous fishing mortality (Eq. 1.7bi) 

(Nielsen and Berg, 2014). The covariance matrix, 𝚺, is a flexible matrix that quantifies the 

variability and correlation among ages of the year- and fishery- specific process variability 

vectors, 𝜺𝑦
(𝐺)

 (Eq. 1.7bii). Though the covariance matrix can be parameterized in many ways 

depending on assumed similarity of age-specific process variability, in this model the correlation 

structure was a first order autoregressive process (AR(1)), where the degree of correlation was a 

function of the absolute difference in ages. This correlation structure, when applied to fishing 

mortality or selectivity, has a demonstrably better fit to data in other stocks and is now the 

default structure in SAM models and a popular option in WHAM models (Berg and Nielsen, 

2016; Nielsen et al., 2021; Nielsen and Berg, 2014; Stock and Miller, 2021). The assumption of 

stronger correlation in catchability variations between adjacent ages, implicit in the AR(1) 

structure, is sensible given that many factors (such as size or depth distributions of fish) will tend 

to be more similar for fish closer in age (Nielsen and Berg, 2014). Catchability in this case is 

expressed as a proportionality between fishing effort and fishing mortality. This is also the 

proportionality between annual catch and average annual abundance (Ricker, 1975). Thus, my 

assumption that fishing mortality is proportional to fishing effort is equivalent to treating annual 

catch divided by annual effort as an abundance index. 

Fishery-specific correlation coefficients 𝜌𝐺  and standard deviation, 𝜎𝐺 , parameters were 

estimated for each fishery and were invariant among ages. The correlation coefficients were 



 

 

20 

 

estimated on the logit scale, and thus constrained between 0 and 1. These determined how the 

random walk errors of age-specific catchabilities were related among ages. I did not allow for 

negative correlations as I could not envision a mechanism that would cause age-specific 

catchability to differ most for adjacent ages. At one extreme of the allowed range, log-scale 

catchabilities would change by the same amount for every age from year to year, and their 

trajectories over time would be parallel (𝜌 = 1). At the other extreme age-specific catchabilities 

would develop over time completely independently (𝜌 = 0). The estimated value determined the 

model dynamics between these extremes. 

In the observation sub-model, the predicted age-, year-, and fishery- specific catch was 

calculated using the Baranov catch equation (Eq. 2.1). The predicted proportions at age were 

derived from those values (Eq. 2.2).  

The SSM assessment model was fit by maximizing a marginal (integrated) likelihood. 

The random effects, 𝜓, were integrated out of the likelihood, so the objective function was 

conditional only on the fixed effect parameters, 𝜆. The marginal likelihood contained two 

components, the likelihood of the data given the random effects and the parameters, 𝐿(𝜆|𝑋, 𝜓), 

and the probability density function of the random effects, 𝑓(𝜓), 

𝐿(𝜆|𝑋) = ∫ 𝐿(𝜆|𝑋, 𝜓)𝑓(𝜓)𝑑𝜓
∞

−∞
.  

The likelihood of observing the total catch and catch composition were modeled as a 

lognormal distribution and a multinomial distribution, respectively (Eqs. 3.6-3.7). Estimated age- 

and year- invariant 𝑀 was estimated using a normally distributed likelihood with mean �̃� = 0.2 

and fixed standard deviation 𝜎𝑀
2  (Eq. 3.5b). Because of this distribution’s inclusion in the 

likelihood portion of the marginal likelihood, �̃� is effectively a single observed data point which 

the model fits by predicting 𝑀. Error from the random walk of log-scale recruitment, log 𝑁4,𝑦, 
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was assumed to come from a 0-mean normal distribution (Eq. 3.2b). Error in the age- and 

fishery- specific random walk of catchability was assumed to arise from a 0-mean multivariate 

normal distribution (Eq. 3.3b). The standard deviations for the observed log-scale total catch by 

fishery, 𝜎𝐶𝐺 , were fixed at 0.067, the values used in the SCA model. These was found in the 

SCA model by following an iterative procedure during fitting that adjusted the ratios between 

process and observation error variance, until the target value of 𝜎𝐶𝐺  was achieved, as described 

by Richards et al. (1997). This effectively means variance was set based on expert judgment at a 

level that assumes that two-thirds of observed catches would be within about 6.7% of the true 

values of catch. I fixed 𝜎𝐶𝐺  at the same value in the SSM model because the model did not 

converge when I attempted to estimate it along with the other parameters. I conducted a 

sensitivity analysis that set 𝜎𝐶𝐺  at values 50% above or below 0.067. 

The point estimates of fixed effect parameters (including the standard deviation 

parameters for the random effects) were estimated by maximum likelihood. The predicted 

random effects and derived quantities (i.e., abundance, spawning stock biomass, mortality) were 

calculated using the “epsilon” method bias correction algorithm which is now standard in TMB 

(Thorson and Kristensen, 2016).  

1.3.3 Case Study- Lake Michigan Lake Whitefish 

The lake whitefish stock used as a case study for the application of the novel state-space 

stock assessment is the northmost management region of Lake Michigan, from the Straits of 

Mackinac to Seul Choix Point, WFM-03 (Figure 1.1). Lake whitefish in the Laurentian Great 

Lakes have experienced a declining recruitment since the 1990s owing to changes in ice cover 

and food web dynamics (Ebener et al., 2021). Estimated recruitment in WFM-03 has ranged 

from 1.5 million individuals during peaks in the 90s and early 00s, to less than half a million in 
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the past five years (Caroffino and Seider, 2020). Individuals recruit to the fishery at age 4, and on 

average adults are equally susceptible to environmental and biological drivers of natural 

mortality over time. Changes in environmental conditions that are not fully understood, notably 

declines in an important food source, Diporeia, have driven declines in lake whitefish growth 

and condition which are reflected in the age, length, and weight data (Fera et al., 2015).  

Figure 1.1. Lake whitefish management units of the 1836 Treaty-Ceded Waters of Lakes 

Superior, Huron, and Michigan, including the management region of interest, WFM-03, in 

northern Lake Michigan. Reproduced from Caroffino and Barton (2019). 

 

Emigration or immigration were not included in the model, because sub-populations in 

each management unit tend to reproduce in the same region in which they were born, which has 

been observed from tagging and genetic studies (Ebener et al., 2010; VanDeHey et al., 2009). 
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However, some mixing does occur during harvest, so recruitment should be interpreted as both 

the reproduction rate and the net movement from other stock areas. Two commercial fisheries 

occur on lake whitefish in WFM-03, a trap net and gill net fishery, both of which are exclusively 

fished by members of tribes represented by the Chippewa Ottawa Resource Authority (CORA) 

(Caroffino and Lenart, 2012). Licensed fishers are obligated to report daily weight of landed fish 

and the amount of gear used (length of gill net or number of trap net lifts), which are aggregated 

to a single yearly value for the management region (Ebener et al., 2005) (Figure 1.2). The 

harvest and effort data are not aggregated across both fisheries because each are reported in 

distinct units and several features make the two fisheries unique. The gears tend to exhibit 

different age-specific selectivity curves; gill nets are dome shaped whereas the trap nets are 

believed to be asymptotic- catching more older and larger fish than the gill nets (Zhao and 

Morbey, 2017). Additionally, the temporal patterns of relative effort of the two fisheries differed 

considerably over time, often due to changes in the market and management actions, including a 

gill net conversion program, wherein Michigan exchanged fishers’ gill nets for trap nets, which 

was implemented with the 2000 consent decree (United States vs. Michigan Consent Decree, 

2000). Lastly, an adjustment was necessary to define effective gill net effort because of changes 

to the average height of gill net gear over time (Ebener et al., 2005). 
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Figure 1.2. Fishery effort of the gill net and trap net fisheries on Lake Michigan lake whitefish in 

region WFM-03 from 1986-2017. 

 

For Lake Michigan lake whitefish, fisheries management is conducted through 

regulations intended to limit harvest so as to not exceed a constant annual mortality rate of 65% 

for any age, and to sustain a spawning potential ratio (SPR) of at least 20% (Ebener et al., 2005). 

SPR is the ratio between the spawning stock biomass per recruit (SSBR) obtained with the 

current age-specific fishing mortality schedule held constant over the life of a cohort and the 

spawning stock biomass per recruit given no fishing mortality (SSBRF=0). This equates, 

conditioned on life-history, to a constant fishing mortality rule because in Lake Michigan for 

lake whitefish natural mortality is assumed constant. The recommended harvest level is 

calculated by scaling age-specific fishing mortality rates (averaged over the last three years of 

the assessment) up or down to meet mortality and SPR conditions in projections. 
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I compared the estimated abundance, recruitment, spawning stock biomass, and 

instantaneous mortality, between the SCA and SSM, and determined if differences in output 

would change management metrics. Spawning stock biomass was the product of proportion 

mature, average weight at spawning, and abundance at age (Eq. 1.8). The percent difference of 

each year-specific value, and the minimum, the maximum, and average over the whole time 

series were calculated. The ranges (differences between maximum and minimum values) were 

compared between the SCA and SSM. The patterns of age- and year- specific catchability of the 

SSM was compared to the catchability and selectivity in the SCA. Because the SCA model 

estimates annual catchability and age- and year- specific selectivity, the product of these values 

was compared to the age- and year- specific catchabilities from the SSM. The annual total 

mortality in the final three years and the SPR based on those mortality rates were compared 

against the established limits. Other diagnostic values, like normalized one step ahead (OSA) 

residuals for the age composition data in both the SCA and SSM models, ordinary least squared 

(OLS) or “Pearson residuals” for the total catch in the SCA model, OSA residuals for the total 

catch in the SSM model, and retrospective patterns were examined to compare relative model fits 

(Appendix B and C) (Hurtado-Ferro et al., 2015; Trijoulet et al., 2023). OSA residuals account 

for random effects and the correlation between observations in the multinomial distribution and 

were calculated either externally (for SCA) or internally (for SSM) as described in Trijoulet et 

al., (2023). OLS residuals were used to evaluate the SCA model’s fit to total catch because these 

observations are continuous and normally distributed and this model does not have random 

effects. Mohn’s Rho statistic was used to quantify the degree of retrospective bias in recruitment 

and spawning stock biomass and compared against the standard acceptable range for short-lived 

species, -0.22 to 0.3 (Hurtado-Ferro et al., 2015; Mohn, 1999). 
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1.4 Results 

The SSM converged on a global minimum of the objective function (Eq. 3.1) and 

estimated the mean and standard error for the fixed effects: instantaneous natural mortality, 𝑀, 

the standard deviations of the process variability, 𝜎𝑅  and 𝜎𝐺 , and the degree of correlation in the 

process variability of the age-specific catchability for each fishery, 𝜌𝐺  (Table 1.3). The output of 

the SSM exhibited similar trends as that of the SCA model despite the differences in model 

configuration (Figures 1.3-1.5). A quantitative comparison among the average, minimum, 

maximum, and range of derived quantities revealed a -62 to +53% difference in some output 

values (Table 1.4). 

Table 1.3. Point estimates and asymptotic standard errors of fixed effect parameters in the State-

space model (SSM) for Lake Michigan lake whitefish in WFM-03. 

 
Parameter 

(Symbol) 
Estimate 

Standard 

Error 

𝑀 0.1896 0.0184 

𝜎𝑅 0.2474 0.0428 

𝜎𝑡 0.3652 0.0442 

𝜎𝑔 0.3905 0.0492 

𝜌𝑡 0.8438 0.0502 

𝜌𝑔 0.9142 0.0356 

 

Table 1.4. Estimates of derived quantities in the state-space model (SSM) and statistical catch at 

age (SCA) model for Lake Michigan lake whitefish in WFM-03. 

Quantity SCA Estimate SSM Estimate Percent (%) difference 

Average Abundance 2,633,377 3,001,214 13.97 

Maximum Abundance 4,431,335 4,885,740 10.25 

Minimum Abundance 953,555 1,126,510 18.14 

Abundance Range 3,477,780 3,759,230 8.10 

Average Recruitment 807,254 910,279 12.76 

Average Recruitment in 

Terminal 10 years 
492,468 650,837 

32.16 

Minimum Recruitment 252,249 385,213 52.71 

Maximum Abundance 1,545,150 1,460,345 -5.49 

Recruitment Range 1,292,901 1,075,132 -16.84 

Average Spawning Stock 

Biomass (SSB) (lbs) 
3,931,830 4,489,802 

14.19 
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Table 1.4 (cont’d) 

Gill Net Mortality Range 0.691 0.740 7.09 

Minimum SSB (lbs) 2,182,870 2,418,414 10.79 

Maximum SSB (lbs) 5,985,860 6,542,546 9.30 

SSB Range (lbs) 3,802,990 4,124,132 8.44 

Average Total Mortality 0.647 0.543 -16.07 

Maximum Total Mortality 0.303 0.268 -11.55 

Minimum Total Mortality 1.288 1.211 -5.98 

Total Mortality Range 0.985 0.942 -4.37 

Average Trap Net Mortality 0.251 0.159 -36.65 

Maximum Trap Net Mortality 0.060 0.036 -40.00 

Minimum Trap Net Mortality 0.485 0.306 -36.91 

Trap Net Mortality Range 0.424 0.270 -36.32 

Average Gill Net Mortality 0.202 0.195 -3.47 

Maximum Gill Net Mortality 0.013 0.005 -61.54 

Minimum Gill Net Mortality 0.704 0.745 5.82 

Spawning Potential Ratio (SPR) 0.53 0.63 18.87 

 

Total abundance and recruitment (abundance at age 4) followed similar trends across 

time in the two models (Figure 1.3). The average abundance in the SSM model was 3 million 

and in the SCA model it was 2.6 million. Estimates of abundance for both models peaked in 

2007 and were lowest in 1989 (Figure 1.3A). The range in abundance was smaller in the SSM 

model. In the SSM the maximum total abundance was 4.3 times larger than the minimum 

abundance, and in the SCA, the maximum was 4.6 times the minimum. Neither model estimated 

abundance consistently higher or lower across the entire time series, though the SSM estimates 

ranged from 11% lower to 64% higher than of those of the SCA model and was larger for most 

years. In the final 5 years, the SSM estimated a positive trend and the SCA model a negative 

trend. 
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Figure 1.3. Estimates of (A) total abundance and (B) recruitment of age 4 individuals of Lake 

Michigan lake whitefish in WFM-03 from 1986-2017, from the statistical catch at age (SCA) 

model (black, solid), and the state-space model (SSM) (green, dashed). 
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Estimates of recruitment differed more than abundance among the models, though both 

the SSM and SCA models estimated similar trends (Figure 1.3B). Estimated recruitment for both 

models were greatest in 1995 and lowest in 1988. The range in recruitment was smaller in the 

SSM. In the SSM the maximum estimated recruitment was 3.8 times larger than the minimum 

estimate and in the SCA model, the maximum was 6.1 times larger than the minimum. Neither 

model consistently estimated higher recruitment than the other. Recruitment estimates in the 

SSM were 14% lower to 103% higher than those of the SCA model (at the very beginning and 

penultimate point of the time series, respectively). Mean recruitment was 13% larger in the SSM 

(807,000 versus 889,000, for SCA and SSM respectively) and 32% larger in just the final 10 

years (492,000 versus 633,000, for SCA and SSM respectively).  

Both models estimated similar trends in spawning stock biomass (SSB), except for near 

the end of the time series, when the SSM estimates rose and the SCA estimates fell (Figure 1.4). 

In both models, the maximum SSB occurred in 1998 and the minimum in 1989, and in both the 

maximum value was approximately 2.7 times larger than the minimum. SSM estimates of SSB 

ranged from 10% lower to 59% higher than those of the SCA model, and the average difference 

was 15%. The mean SSB was 3.9 million lbs. for the SSM and 4.5 million lbs. for the SCA. For 

both models the trends in SSB were different from trends in abundance and recruitment due to 

temporal patterns in mortality and weight at age.   
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Figure 1.4. Estimates of spawning stock biomass of Lake Michigan lake whitefish in WFM-03 

from 1986-2017, from the statistical catch at age (SCA) model (black, solid), and the state-space 

model (SSM) (green, dashed). 

 

In both models, the total instantaneous mortality rate initially increased in the first third 

of the time series, then gradually declined (Figure 1.5). The SCA model estimated higher 

mortality than the SSM for most of the time series, reaching a maximum in 1993 at an 

instantaneous total mortality rate of 1.288 yr-1 (averaged across ages 4-15+) (Figure 1.5A). The 

SSM reached a maximum total mortality in the same year but at 1.211 yr-1 (Figure 1.5B). In only 

1990 and 1992 did the SSM estimate a larger total instantaneous mortality rate than the SCA 

model, by 3% and 6%, respectively. The average total instantaneous mortality rate was 0.54 yr-1 

in the SSM and 0.64 yr-1 in the SCA. The SSM estimated a yearly instantaneous trap net fishing 

mortality rate 15-54% lower than the SCA model. The yearly instantaneous gill net fishing 

mortality rate in the SSM ranged from 49% larger to 57% lower than the SCA model, though it 

was lower for most of the time series (24 out of 32 years). Time-invariant instantaneous natural 

mortality rate was approximately the same in both models- 0.190 ± 0.018 yr-1 and 0.184 ± 0.017 

yr-1 in the SSM and SCA, respectively.  
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Figure 1.5. Estimated instantaneous fishing mortality rate of the gill net fishery (FG), the trap net 

fishery (FT) and the natural mortality rate (M) over time for (A) the statistical catch at age model 

(SCA) and (B) the state-space model (SSM). The instantaneous fishing mortality rate was 

averaged across ages 4-15+ for each year, and instantaneous natural morality rate was age- and 

year- invariant. 

 

In the SSM the catchabilities provide estimates of the age- and year- specific 

proportionality between instantaneous fishing mortality rates and fishing effort. These fishery-

specific relationships are presented in two ways- as catchability over years for each age (Figure 

1.6B, 1.6D) and as catchability over ages for each year, but normalized so that the maximum 

value is 1, as is typical for selectivity (Figure 1.7B, 1.7D). The estimated degree of correlation in 

the AR(1) random walk for catchability (± 95% confidence intervals) was 0.843 ± 0.050 for the 

trap net fishery and 0.914 ± 0.036 for the gill net fishery (Table 1.3). For the SCA, the product of 

year-specific catchability and age- and year- specific selectivity has the same meaning as SSM 

catchabilities. I calculated these derived age- and year- specific catchabilities for the SCA and 

present them in the same way to compare how models quantify the relationship between fishing 

mortality and fishing effort (Figures 1.6A, 1.6C, 1.7A, 1.7C). 
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Figure 1.6. Estimated catchability over years for each age (on scale from red to purple from age 

4 to 15+) of the (A) gill net and (C) trap net fishery in the statistical catch at age (SCA) model, 

and the (B) gill net and (D) trap net fishery in the state-space model (SSM). 
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Figure 1.7. Estimated selectivity over ages for each year (on scale from red for early years to 

blue for later years) of the (A) gill net and (C) trap net fishery in the statistical catch at age 

(SCA) model, and of the (B) gill net and (D) trap net fishery in the state-space model (SSM). 

Selectivity was obtained by normalizing age-specific catchability such that the maximum value 

for each year was 1. 

 
 

Catchability at age was lower later in the time series than near the beginning across both 

models and both fisheries, but there were some marked differences in patterns between SSM and 

SCA (Figures 1.6). Catchability of the gill net fishery steadily declined after 1995 in the SSM but 

peaked mid-way through the time series, in 2001, in the SCA (contrast Figures 1.6A and 1.6B). 

Catchability of the trap net fishery had similar trends for both models, with peaks occurring in 

1994 and 2004-2006 for both the SCA and SSM (contrast Figures 1.6C and 1.6D). The 

selectivity for both fisheries was dome shaped in the SSM, and largely asymptotic in the SCA 

(Figure 1.7). The one notable deviation from this pattern was the gill net fishery in the SCA 
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model, where some dome-like patterns occurred in the initial 10 years of the time series with a 

modest decline in selectivity at older ages. This pattern can be explained because selectivity in 

the SCA model was a function of mean length at age, and because fish got smaller on average 

through the time series, the old fish were as small late in the time series as the young highly 

selected fish earlier in the time series. In general, selectivity peaked at younger ages earlier in the 

time series for both models and both fisheries, and the age of full selectivity became 

progressively older in later years.  

Management reference points differed between the SCA and SSM though not to the 

extent that differences in recommended harvest limits would have differentially impinged on 

fishery operations. In the last three years of the SCA and SSM assessments, the maximum (over 

ages) annual total mortality was 31% and 25%, and the SPR based on these mortality rates was 

0.53 and 0.63, respectively. Thus, mortality rates were estimated to be below 65% and SPR 

above 0.2. In short, harvest limits based on either assessment would correspond to higher than 

status quo levels of fishing mortality. 

Residuals for the fit to log scale total catch for both fisheries and both models were 

centered on zero, approximately normal, and generally did not trend through time, although the 

residuals for catch from the SSM model did exhibit more skew than the SCA model (Figures 

1B.1-1B.3, 1C.2-1C.4). Residuals for the age compositions for both fleets from the SCA model 

were patterned for several cohorts, especially in the first half of the time series (Figures 1B.4-

1B.5). In the SSM model, the model overestimated the proportion of older ages in the trap net 

fishery and underestimated the proportion of individuals in the gill net fishery at the beginning of 

the time series, but the cohort effects were generally resolved relative to the SCA model (Figures 

1C.5-1C.6). Both models exhibited retrospective patterns in recruitment, though not spawning 
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stock biomass (Figures 1B.6-1B.7, 1C.7-1C.8). The Mohn’s Rho for recruitment was 0.989 for 

the SCA and 0.448 for the SSM, which both suggest a systemic bias in recruitment, though less 

so in the SSM. The Mohn’s Rho for spawning stock biomass was marginally larger and in the 

opposite direction in the SSM model (0.092) compared to the SCA (-0.038). The retrospective 

bias on SSB was within the acceptable range of -0.22 to 0.3 suggested for short lived species. 

Sensitivity tests demonstrated that fixing the standard deviation of the lognormal 

distribution of the total catch at values 50% above or below the baseline did not change most 

estimated fixed effect parameters by more than 1.5% (Table 1.5). The estimated standard 

deviation of the trap net and gill net catchability process variability decreased by 2.5% and 8% 

respectively, when the observation error was increased, suggesting a tradeoff between these 

values. For a full description of the model diagnostics of SSM, including time series of one step 

ahead (OSA) residuals and retrospective analyses, see Appendix 1C. 

Table 1.5. Results of sensitivity analysis. The maximum likelihood estimates of fixed effect 

parameters are reported for each scenario as well as the percent (%) difference relative to the 

baseline.  

Scenario 𝑀 
% 

Dif 
𝜎𝑅 

% 

Dif 
𝜎𝑡 

% 

Dif 
𝜎𝑔 % Dif 𝜌𝑡 

% 

Dif 
𝜌𝑔 % Dif 

𝜎𝐶𝐺 =
0.067  

(Baseline) 0.1896  0.247  0.365  0.391  0.844  0.914  

𝜎𝐶𝐺 =
0.034  0.1899 0.18 0.248 0.09 0.370 1.2 0.403 3.26 0.847 0.32 0.920 0.58 

𝜎𝐶𝐺 =
0.100  0.1896 -0.17 0.247 -0.2 0.360 -2.5 0.371 -7.96 0.841 -0.7 0.905 -1.55 

 

1.5 Discussion 

This work demonstrated the feasibility of applying a state-space stock assessment model 

(SSM) with age-specific catchability as a state variable akin to year- and age- specific fishing 

mortality in previous applications (Berg and Nielsen, 2016; Nielsen and Berg, 2014). This also 

confirmed the possibility of applying SSM in cases where there are no fisheries independent 
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indices of abundance. To capitalize on state-space modeling’s capacity to estimate several 

sources of process variability, the existing SCA model had to be re-parameterized such that 

recruitment and age-specific catchability were random walk processes. Merely specifying that 

yearly variability in catchability, recruitment, or selectivity were random effects, without 

changing the parameterization of the SCA model resulted in model non-convergence.  

These necessary changes to the process model parameterization, though increasing 

realism and model flexibility, inevitably led to changes in model output that cannot be parsed 

from changes due only to converting a statistical catch at age model (SCA) to an SSM. Some 

changes in output between the SCA and SSM, like trends in abundance and fishing mortality, 

were minimal. Others, like recruitment in the latter part of the time series, and the catchability 

and selectivity patterns, substantially altered the interpretation of population and fisheries 

dynamics.  

Estimates of time-varying recruitment from the SSM exhibited less interannual variation 

and less difference between the maximum and minimum value than the SCA model, which 

reflects autocorrelation in the random walk process (Thorson et al., 2014). During much of the 

assessment, recruitment can be strongly informed by how a cohort was represented in subsequent 

years of catch data which is why estimates at the end of the assessment period are generally the 

most uncertain (Brooks and Legault, 2016). In the absence of future information, the SCA model 

was guided by the explicit relationship between recruitment and spawning stock biomass (SSB) 

in past years while SSM, lacking such a function, remained largely the same in the final 5 years 

(Figure 3B). Ideally, the Lake Michigan lake whitefish model should have enough flexibility to 

account for the relationship between recruitment and SSB while also incorporating how 

ecosystem changes like ice cover, prey availability, and habitat degradation due to dreissenid 
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invasion may create additional yearly variability (Ebener et al., 2021). The solution may lie in 

one or several alternative recruitment structures including 1) parameterizing variable parameters 

of the stock recruitment curve, 2) employing more dynamic autocorrelation processes with time 

series models that estimate how much to “remember” from previous years (e.g., AR(1)), or 3) 

utilizing a “mixture-distribution” of two distributions controlled via a Bernoulli distribution that 

accommodates occasional spikes or dips in recruitment (Johnson et al., 2016; Maunder and 

Thorson, 2018; Thorson et al., 2014).  

The SSM estimated dome-shaped selectivity for both fisheries, so it predicted older (and 

thus larger) individuals were present but less vulnerable to capture. The SCA was constrained to 

fit an asymptotic selectivity curve for the trap net fishery such that the oldest fish were catchable 

at a comparable rate to middle-aged fish. An asymptote was estimated for most years for the gill 

net fishery as well. Sensitivity tests of the SSM which forced an asymptote for the trap net 

fishery confirmed that differences in the estimated selectivity curve drove the differences in 

abundance, and by extension, spawning stock biomass. Both asymptotic and dome-shaped 

selectivity have been previously reported for trap net gear and either relationship could be 

reasonably expected for Lake Michigan lake whitefish in WFM-03 (Dunlop et al., 2018; Hansen 

et al., 2008; Jeong et al., 2000). The SSM had limited data to inform selectivity because the 

average age of lake whitefish in this region is lower than in adjacent regions and older ages were 

not strongly represented in the harvest (Caroffino and Seider, 2020). This flexibility to estimate 

time-varying selectivity without specifying an explicit and somewhat arbitrary function, is a 

hallmark of state-space stock assessment models (Nielsen et al., 2021). However, if there is good 

reason to specify or restrain it, there are several future options to do so. The functional form 

could be implemented as a “prior” about which penalties are assessed, rather than requiring an 
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exact match. This approach could be implemented with the selectivity parameters fixed, 

changing gradually over time (perhaps by an autoregressive process), or changing at discrete 

time blocks (Cronin-Fine and Punt, 2021; Martell and Stewart, 2014; Stock and Miller, 2021). 

Future lake whitefish assessments might consider a thorough model selection and review 

procedure, with dome-shaped selectivity for the trap net fishery included as a possible 

interpretation of fishery dynamics. 

The simultaneous estimation of observation and process error variances is a touted 

hallmark of state-space modeling but was not achieved in this model. This inability to estimate 

the observation error variance within the model may be caused by the estimation of variance of 

time-varying catchability. Sensitivity tests demonstrated a tradeoff between observation error 

standard deviation, 𝜎𝐶𝐺 , and catchability standard deviation, 𝜎𝐺 , because when the former was 

fixed at a higher value, the latter was estimated at a lower value. The observation error standard 

deviation may have been estimable in this model if there were greater contrast in fishing 

mortality and catch over time, or if there were informative survey data. Observation error 

standard deviation can be approximated from the observed data, so estimating the standard 

deviation of catchability, an unobservable state variable, was prioritized in this model, a practice 

also used by others (Francis, 2011). The age composition data were fit using a multinomial 

distribution for which the effective sample sizes were specified a priori. Efforts to calculate 

effective sample sizes through established iterative reweighting techniques led to data 

overweighting (i.e. the effective sample sizes were orders of magnitude larger than observed 

sample size), fitting the age proportion data precisely at the expense of high process model 

variability (Francis, 2011; Truesdell et al., 2017). Estimability of observation error variance may 

be beyond the upper limits of model flexibility for this SSM given the process model 



 

 

39 

 

parameterization and data availability.  Limitations on estimating the observation error variance 

have not been evident in other state-space models that included index data and assumed constant 

catchability (Nielsen and Berg, 2014; Perreault et al., 2020). Future research could investigate 

the reasons for this difference. In particular, it is an open question whether estimation of 

observation error variance and time-varying catchability is possible with different distributions 

of the catch data (e.g., Dirichlet multinomial for proportions at age or a multivariate lognormal 

for catch at age (Nielsen and Berg, 2014; Thorson et al., 2017) or if provision of external 

estimates of observation error variance is a fundamental requirement when allowing time-

varying catchability. If it is a fundamental property, providing external estimates of observation 

error variance in order to allow for time-varying fishery catchability seems preferable.  

Though fisheries-dependent sampling is non-random and prone to bias, its continued use 

may be justified by its extensive availability, inexpensiveness, and the capabilities of modern 

assessment models to account for violations of the typical assumption of proportionality with 

abundance. This state-space stock assessment model uses variability in the proportionality 

coefficient, catchability, to account for a stochastic relationship between CPUE and abundance 

across age and time, combatting the concerns of hyperstability or hyperdepletion that surround 

the use of effort data (Rose and Kulka, 1999). Other research has explored standardization 

methods using generalized linear models (GLM) or generalized additive models (GAM) to 

explain how factors like area, time, and gear can influence the relationship between abundance 

and CPUE in a non-linear fashion (Deroba and Bence, 2009; Ducharme-Barth et al., 2022; Grüss 

et al., 2019). Specific covariates such as season, sampling depth, or hook and bait characteristics 

can be directly included in the model to explain variation in catchability (Grüss et al., 2019; 

Johnson et al., 2019). Even with fine scale catch data and informative covariates, specifying 
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catchability as a time-varying random effect can allow for temporal variability not explained by 

the covariates, without overfitting the model. 

Use of this SSM in future cases may challenge preconceived assumptions about 

population or fishery dynamics that were assumed impossible, unrealistic, or inestimable given 

the available data and limits to parameterization. The SSM structure easily lends itself to 

estimating process variation in natural mortality, selectivity, abundance, and many other factors 

previously assumed to be invariant or fixed. This research demonstrated that a lack of fisheries 

independent indices is not a hurdle to employing SSM. Many more fisheries may consider this 

approach a viable option, maintaining that there is sufficient informative effort data to relate 

catchability to fishing mortality. Highly migratory species like tunas, billfish, and sharks, data-

poor species like elasmobranchs, deep sea fisheries, and developing fisheries are examples of 

those that have limited to no fisheries independent data, or the continued collection of such data 

may not be cost effective and may therefore benefit from this SSM approach (Costello et al., 

2012; Dennis et al., 2015; Langley et al., 2009; Lynch et al., 2018; Victorero et al., 2018). 

Several Great Lakes stocks which have been previously assessed using a penalized likelihood 

statistical catch-at-age model may also be candidates for fitting a state-space stock assessment 

model, especially one such as this which can accommodate fisheries-dependent data. For 

example, yellow perch in Lake Michigan are assessed using recreational and commercial 

fisheries effort and time-varying catchability, though these models include informative fisheries-

independent data (Wilberg et al., 2005). As another example, Chinook salmon stocks in Lakes 

Michigan and Huron lack reliable survey information and abundance is estimated entirely with 

catch and effort data (Brenden et al., 2012; Clark et al., 2016). Likewise, consideration of fishery 

dependent CPUE information has been suggested for use alongside fishery independent 
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information when stakeholder perceptions of stock status are inconsistent with a stock 

assessment, as in Gulf of Maine and Georges Bank Cod (NEFSC, 2022a). While a lack of fishery 

independent data may create new challenges, such as the inability to estimate observation error 

variance, they are not insurmountable, and many benefits of state-space modelling can still be 

achieved. 
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APPENDIX 1A: DATA COLLECTION AND PROCESSING 

Fishery and biological data of lake trout and lake whitefish have been collected in the 

1836 Treaty waters of the Great Lakes since 1985, though the time series for some regions 

begins later. Each year, the time series up to but not including that year are used to build stock 

assessments that are used to make harvest recommendations for the following year (i.e., the time 

series 1986-2017 is used in a model built in 2018 that makes recommendations for 2019). A 

catch reporting system provides monthly total harvest, 𝐻𝑦,𝐺 , in weight, and effort data, 𝐸𝑦,𝐺, in 

lifts for the trap net fishery, or length of net for the gill net fishery from 1986 to 2017, which are 

pooled from daily reports mandated for each licensed commercial fisher (Ebener et al., 2005). 

Biological data were collected opportunistically by sampling catch from commercial trap and gill 

net fisheries from 1986-2017. The number of individual fish sampled each year varied 

considerably over time and between fisheries, from 86-1261 in the trap net fishery and 0-716 in 

the gill net fishery (Figure 1A.1). 
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Figure 1A.1. Number of fish sampled and aged from the gill net and trap net fishery of Lake 

Michigan lake whitefish in region WFM-03 from 1986-2017. 

 

In general, aging was done using scale samples for smaller (and presumably younger) 

fish and otoliths for larger (and presumably older) fish. A total of 2,484 scale samples were taken 

from individuals ranging from 375-669mm (averaging 464mm), and a total of 748 otolith 

samples were collected, from individuals ranging from 430-623mm (averaging 523mm). Otoliths 

are a more accurate and precise aging tool than either fin rays or scales to age lake whitefish and 

were assumed to be unbiased measurements (Herbst and Marsden, 2011). Because scale samples 

yield similar age estimates as otoliths at younger ages but are less precise at older ages, dividing 

the aging between the two structures should minimize aging error (Herbst and Marsden, 2011). 

Weight at age, 𝑊𝑎,𝑦
(ℎ𝑎𝑟𝑣)

, and length at age, 𝐿𝑎,𝑦, for the harvest in each year was determined 

using a growth model with year- and cohort- specific parameters, using data from both fisheries 

(He and Bence, 2007). These calculations were done prior to assessment model fitting and 

provided as inputs to the assessment model. Weight at age from the sampled harvest and samples 

from a graded-mesh gill net survey were used to calculate population weight at age at the 
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beginning of the year, 𝑊𝑎,𝑦
(𝑖𝑛𝑖𝑡)

, and at the time of spawning, 𝑊𝑎,𝑦
(𝑠𝑝𝑎𝑤𝑛)

, assuming that harvest 

occurs on June 30th, spawning occurs on October 30th, and growth from one year to the next 

follows an exponential model.   

The total harvest in weight by year and fishery, 𝐻𝑦,𝐺, was converted into total harvest in 

numbers using the average weight by year and fishery, �̅�𝑦,𝐺. The observed total catch in each 

year by each fishery 𝐶𝑦,𝐺 was a function of total harvest, the mean weight, and a year- and 

fishery- specific adjustment term, 𝐴𝑦,𝐺, that corrected for under reporting of each fishery, 

𝐶𝑦,𝐺 =

𝐻𝑦,𝐺

�̅̅̅�𝑦,𝐺

𝐴𝑦,𝐺
.  

Underreporting rate was estimated as the ratio of reported whitefish harvested by the 

fishers to the reported whitefish purchased by wholesalers (Ebener et al., 2005). Observed 

proportions at age for each fishery and year, 𝑃𝑎,𝑦,𝐺 were calculated from the commercial 

sampling data, by normalizing the number sampled at age and year by the total sampled in each 

year. Only fish age 4 and older were included in the stock (younger fish were extremely rarely 

caught) and all fish age 15 and older were aggregated into a plus group. The oldest recorded age 

was 32, however, individuals aged 20 or older were exceedingly rare in this region (<0.1% of 

sampled individuals).    
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APPENDIX 1B: CURRENT STATISTICAL CATCH AT AGE MODEL (SCA) 

I refer to this model as the current assessment, despite some minor modifications that 

occurred to the model in 2021, and it is an age-based statistical catch at age model (henceforth 

“SCA”) fit to commercial trap net and gill net fishery data with additional data inputs described 

below (Caroffino and Seider, 2020; Ebener et al., 2005; Truesdell and Bence, 2016). The model 

was built using AD Model Builder (Fournier et al., 2012). The years of data used in the 

assessment were from 1986 to 2017 (i.e., y = 1986, 1989 … 2017), the age classes ranged from 4 

to 15+ (i.e., a= 4, 5, … A, where A=15+), and there were catch and effort data for each of the two 

fisheries (i.e., G=g, t). 

The model estimated the abundance of individuals ages 4-9 in 1986 and the abundance 

(i.e., recruitment) of age 4 individuals in each year. Log-scale recruitment was calculated as the 

sum of two log-scale parameters- an average recruitment, �̅�, and a vector of deviations, 𝐷𝑦,  

log 𝑁4,𝑦 = log �̅� + log 𝐷𝑦.  

The number of individuals from age 4 to 9 in the initial year were calculated in a similar 

way, using the same average recruitment and another set of deviation values 𝑑𝑎, 

log 𝑁𝑎,1986 = log �̅� + log 𝑑𝑎 where 𝑎 < 10.  

The number of individuals in the initial year from age 10 to 15 were set to 0, because few 

or no fish of these ages were detected in the catch and there were insufficient data to reliably 

inform abundance and catchability. The effects of this simplification on model output, 

particularly in later years of the time series, are likely negligible. The vectors of 𝐷𝑦 and 𝑑𝑎 were 

constrained to collectively sum to 0. All other abundances at age and year, after the initial year 

and initial age, 𝑁𝑎,𝑦, followed an exponential decay with all fish age A or older subject to the 

same year-specific instantaneous mortality (Table 1.2, Eq. 1.4). The instantaneous total mortality 
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at age and year, 𝑍𝑎,𝑦, was the sum of age-, year-, and fishery- specific instantaneous fishing 

mortality, 𝐹𝑎,𝑦,𝐺, and a single estimated instantaneous natural mortality, 𝑀 (Eq. 1.5). 

Instantaneous fishing mortality was the product of year- and fishery- specific catchability, 𝑞𝑦,𝐺 , 

year- and fishery- specific fishing effort, 𝐸𝑦,𝐺 , and age- and year- and fishery- specific 

selectivity, 𝑠𝑎,𝑦,𝐺 (Eq. 1.6a). Log-scale catchability varied over time according to a random walk 

(Eq. 1.7a). 

Selectivity at age for each fishery was a function of mean length at age and varied over 

time in the trap net fishery. The selectivity of the trap net fishery was modeled as a logistic 

function of mean length at age each year, normalized against a reference length, 455 mm (i.e., 

selectivity was 1.0 at this mean length at age): 

𝑠𝑎,𝑦,𝑡 =

1
1 + exp(−𝑝2,𝑡(𝐿𝑦,𝑎 − 𝑝1,𝑦,𝑡))

1

1 + exp (−𝑝2,𝑡(455 − 𝑝1,𝑦,𝑡))

 

log 𝑝1,𝑦+1,𝑡 = log 𝑝1,𝑦,𝑡 + 𝜀𝑦
(𝑠)

;  𝜀𝑦
(𝑠)

~𝑁(0, 𝜎𝑠
2 ); 𝑦 < 2017. 

 

The parameters, 𝑝1,𝑦,𝑡 and 𝑝2,𝑡, are the inflection point (varying over years), and the determinant 

of the slope at the inflection point (constant over years), respectively. The inflection point for the 

initial year was estimated and then varied over according to a random walk, the distribution of 

which was included in the total objective function (Eq. 3.4), 

Selectivity of the gill net fishery used a lognormal function with two estimated 

parameters, 𝑝1,𝑔 and 𝑝2,𝑔, and was normalized to equal 1.0 for a mean length at age of 

exp (𝑝2,𝑔), 
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𝑠𝑎,𝑦,𝑔 =

1

√2𝜋𝑝1,𝑔𝐿𝑦,𝑎
∗exp(

−(log 𝐿𝑦,𝑎−𝑝2,𝑔)
2

2𝑝1,𝑔
2 )

1

√2𝜋𝑝1,𝑔 exp 𝑝2,𝑔

.  

Spawning stock biomass, 𝐵𝑦
(𝑆𝑝𝑎𝑤𝑛)

, in each year was calculated by multiplying the 

weight at age during spawning (adjusted with maturity schedule), by the number of individuals at 

age in each year (Eq. 1.8). 

The predicted age-, year-, and fishery- specific catch, 𝐶𝑎,𝑦,𝐺, was calculated from the 

Baranov catch equation (Eq. 2.1). The annual proportions at age were calculated from the age- 

and year- specific total catch (Eq. 2.2). The objective function of the SCA model, T, was the sum 

of the negative log prior probability density of the parameters, NLP, and the negative log 

likelihood of the data given the parameters, NLL (Eq. 3.1). The NLP was the sum of explicit 

components explaining variability in recruitment, 𝑁4,𝑦, log-scale catchability (trap and gill net), 

and selectivity (trap net). Priors for all other parameters were from uniform distributions, 

specified via bounds for the parameters. 

Recruitment was constrained such that estimated values did not deviate substantially 

from a mean predicted by a Ricker stock recruitment function, �̂�4,𝑦 which depended on Ricker 

stock recruitment parameters, 𝛼 and 𝛽, and year-specific spawning stock size in eggs, ϵ𝑦 

log �̂�4,𝑦+5 = 𝛼ϵ𝑦

(−𝛽ϵ𝑦)
.  

The predicted value was compared to the current estimates, 𝑁𝑎,𝑦, using a likelihood 

framework during model fitting (Eq. 3.2a). Fecundity data, including age- and year- specific 

maturity, 𝑚𝑎,𝑦, the average number of eggs per kilogram, 𝑒, and the average proportion of 

females in the spawning population, 𝑓, were input into the model. The maturity matrix was a 5-

year running average that was the same across all 1836 treaty waters and calculated by applying 
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an age/length key to maturity at length data. Eggs per kilogram was also a universal value based 

on samples collected in 1983 and 1996 (Ebener et al., 2005). The proportion of females was 

calculated from samples of the commercial harvest and was a single age- and year-invariant 

value for each management unit, which was 0.4845 for WFM-03 (Ebener et al., 2005; Patriarche, 

1977). 

Spawning stock size (i.e., eggs) was calculated from maturity at age, weight at age during 

spawning, 𝑊𝑦,𝑖
(𝑠𝑝𝑎𝑤𝑛)

, eggs per kilogram, percent female, numbers at age, and total instantaneous 

mortality for the proportion of the year that occurs before spawning (0.838), 

ϵ𝑦 = ∑ 𝑚𝑦,𝑖𝑊𝑦,𝑖
(𝑠𝑝𝑎𝑤𝑛)

𝑒𝑓𝑁
𝑖,𝑦

−𝑍𝑦,𝑖∗0.838
𝐴

𝑖=4

 

The deviations from predicted mean recruitment were assumed to be lognormally 

distributed (Eq. 3.2a). Note that these terms start in 1991, which is the year class produced by the 

spawning biomass in 1986 (the first year being modeled). The errors for the log-scale trap net 

and gill net catchability random walks were assumed to come from fishery-specific normal 

distributions (Eq. 3.3a). Similarly, the errors for the random walk of the time-varying trap net 

selectivity parameter, 𝑝1,𝑦,𝑡, were assumed to come from a normal distribution (Eq. 3.4). The 

NLP also included a prior expectation on instantaneous natural mortality, that it was assumed to 

arise from a lognormal distribution with median 𝑀 = 0.2 and standard deviation, 𝜎𝑀 = 0.1 (Eq. 

3.5a).  

The NLL included four summed components, for the total catch and proportions at age of 

the trap net and gill net fisheries. The observed total catch by year, for each fishery was assumed 

to come from a lognormal distribution, with median equal to the predicted catch (Eq. 3.6). The 

observed catch proportions at age by year for each fishery were assumed to behave as though 
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they resulted from sampled numbers at age following a multinomial distribution, with fishery-

specific effective sample size, 𝑛𝐺  determined a priori using an iterative reweighting algorithm 

(Francis, 2011; Truesdell et al., 2017) (Eq. 3.7). The effective sample size in each year was the 

product of the number of fish sampled and the gear-specific scalar, 0.12 and 0.06 for the trap and 

gill net fisheries, respectively, rounded to the nearest whole number. Those effective sample 

sizes are reported in Table 1B.1. 

Table 1B.1. Year-specific effective sample size of the multinomial distribution of proportion at 

age of the trap net, 𝑛𝑡, and gill net, 𝑛𝑔, fisheries. 

 
Year 𝑛𝑡 𝑛𝑔 

1986 40 0 

1987 28 5 

1988 24 4 

1989 56 0 

1990 40 0 

1991 51 10 

1992 46 12 

1992 53 30 

1993 75 14 

1994 40 11 

1995 97 21 

1996 105 37 

1997 107 41 

1998 72 31 

1999 60 18 

2000 107 15 

2001 147 23 

2002 41 15 

2003 79 10 

2004 59 33 

2005 78 21 

2006 10 18 

2007 27 11 

2008 38 14 

2009 14 10 

2010 27 18 

2011 41 42 

2012 61 29 

2013 65 12 
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Table 1B.1 (cont’d) 

2014 52 24 

2015 25 13 

2016 41 17 

2017 40 0 

 

The standard deviations for the above distributions were calculated as the product of a 

single common standard deviation term, 𝜎, which was estimated, and a standard deviation 

specific multiplier, 𝜑, that was pre-specified. This constraint was implemented because in this 

model structure there was insufficient information to independently estimate the standard 

deviations of each process variability and observation error distribution. The model used a 

minimization algorithm to determine the point estimates for parameters that minimized the total 

objective value 𝑇. The estimated parameters and standard errors are reported in Table 1B.2. 

Table 1B.2. Parameter estimates and standard error of SCA model. 

Parameter 

(Symbol) 
Estimate 

Standard 

Error 

𝑀 0.1838 0.0171 

𝜎 0.0445 0.0026 

𝑞1986,𝑡 0.0221 0.0051 

𝑞1987,𝑡 0.0275 0.0055 

𝑞1988,𝑡 0.0287 0.0047 

𝑞1989,𝑡  0.0241 0.0040 

𝑞1990,𝑡  0.0208 0.0035 

𝑞1991,𝑡  0.0270 0.0042 

𝑞1992,𝑡  0.0278 0.0040 

𝑞1993,𝑡  0.0302 0.0044 

𝑞1994,𝑡  0.0334 0.0048 

𝑞1995,𝑡  0.0328 0.0051 

𝑞1996,𝑡  0.0317 0.0048 

𝑞1997,𝑡  0.0303 0.0047 

𝑞1998,𝑡  0.0281 0.0043 

𝑞1999,𝑡  0.0286 0.0038 

𝑞2000,𝑡 0.0254 0.0037 

𝑞2001,𝑡 0.0220 0.0029 

𝑞2002,𝑡 0.0188 0.0029 

𝑞2003,𝑡 0.0206 0.0032 
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Table 1B.2 (cont’d) 

𝑞2004,𝑡 0.0280 0.0041 

𝑞2005,𝑡 0.0258 0.0039 

𝑞2006,𝑡 0.0247 0.0036 

𝑞2007,𝑡 0.0235 0.0039 

𝑞2008,𝑡 0.0189 0.0028 

𝑞2009,𝑡 0.0164 0.0023 

𝑞2010,𝑡 0.0142 0.0022 

𝑞2011,𝑡 0.0155 0.0025 

𝑞2012,𝑡 0.0147 0.0025 

𝑞2013,𝑡 0.0116 0.0023 

𝑞2014,𝑡 0.0093 0.0022 

𝑞2015,𝑡 0.0080 0.0023 

𝑞2016,𝑡 0.0064 0.0022 

𝑞2017,𝑡 0.0067 0.0025 

𝑞1986,𝑔 0.1015 0.0147 

𝑞1987,𝑔 0.0858 0.0114 

𝑞1988,𝑔 0.0809 0.0103 

𝑞1989,𝑔 0.0811 0.0112 

𝑞1990,𝑔 0.0486 0.0059 

𝑞1991,𝑔 0.0687 0.0086 

𝑞1992,𝑔 0.0608 0.0067 

𝑞1993,𝑔 0.0682 0.0084 

𝑞1994,𝑔 0.0614 0.0081 

𝑞1995,𝑔 0.0659 0.0086 

𝑞1996,𝑔 0.0484 0.0064 

𝑞1997,𝑔 0.0525 0.0075 

𝑞1998,𝑔 0.0454 0.0063 

𝑞1999,𝑔  0.0389 0.0052 

𝑞2000,𝑔 0.0486 0.0070 

𝑞2001,𝑔 0.1061 0.0167 

𝑞2002,𝑔 0.0734 0.0113 

𝑞2003,𝑔 0.0435 0.0066 

𝑞2004,𝑔 0.0631 0.0101 

𝑞2005,𝑔 0.0656 0.0104 

𝑞2006,𝑔 0.0754 0.0120 

𝑞2007,𝑔 0.0701 0.0122 

𝑞2008,𝑔 0.0743 0.0118 

𝑞2009,𝑔 0.0532 0.0073 

𝑞2010,𝑔 0.0448 0.0060 

𝑞2011,𝑔 0.0555 0.0084 

𝑞2012,𝑔 0.0435 0.0072 

𝑞2013,𝑔 0.0329 0.0066 

𝑞2014,𝑔 0.0509 0.0125 
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 Table 1B.2 (cont’d) 

𝑞2015,𝑔 0.0257 0.0070 

𝑞2016,𝑔 0.0303 0.0088 

𝑞2017,𝑔 0.0198 0.0063 

𝑝1,1986,𝑡 475.38 9.5069 

𝑝1,1987,𝑡 483 8.735 

𝑝1,1988,𝑡 475.83 10.337 

𝑝1,1989,𝑡 471.67 7.9452 

𝑝1,1990,𝑡 479.03 10.072 

𝑝1,1991,𝑡 463.82 8.2848 

𝑝1,1992,𝑡 466.99 6.9187 

𝑝1,1993,𝑡 470.45 6.5829 

𝑝1,1994,𝑡 467.32 6.5738 

𝑝1,1995,𝑡 479.12 5.7553 

𝑝1,1996,𝑡 480.74 5.4075 

𝑝1,1997,𝑡 478.89 5.1605 

𝑝1,1998,𝑡 491.21 5.3963 

𝑝1,1999,𝑡  470.89 6.7586 

𝑝1,2000,𝑡 473.77 6.4606 

𝑝1,2001,𝑡 447.77 5.9078 

𝑝1,2002,𝑡 473.12 5.6466 

𝑝1,2003,𝑡 472.59 7.4029 

𝑝1,2004,𝑡 458.43 6.8059 

𝑝1,2005,𝑡 461 8.519 

𝑝1,2006,𝑡 437.27 7.8146 

𝑝1,2007,𝑡 435 8.3108 

𝑝1,2008,𝑡 435.06 7.9925 

𝑝1,2009,𝑡 450.69 6.734 

𝑝1,2010,𝑡 472.2 7.4435 

𝑝1,2011,𝑡 469.65 6.3439 

𝑝1,2012,𝑡 478.42 6.9458 

𝑝1,2013,𝑡 477.52 7.1065 

𝑝1,2014,𝑡 439.58 7.3909 

𝑝1,2015,𝑡 463.28 9.3819 

𝑝1,2016,𝑡 476.64 13.21 

𝑝1,2017,𝑡 478.23 11.348 

𝑝2,𝑡  0.0600 0.0040 

𝑝1,𝑔  0.0833 0.0063 

𝑝2,𝑔  6.29 0.0154 

�̅� 504140 49815 

𝐷1986 1.4627 0.2157 

𝐷1987 0.8984 0.1619 

𝐷1988 0.5004 0.1086 

𝐷1989 0.6276 0.1224 
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Table 1B.2 (cont’d) 

𝐷1990 1.624 0.2177 

𝐷1991 2.0457 0.2577 

𝐷1992 2.3842 0.2723 

𝐷1993 1.6725 0.2007 

𝐷1994 1.3842 0.1679 

𝐷1995 3.0649 0.2843 

𝐷1996 2.5721 0.2435 

𝐷1997 2.4709 0.2369 

𝐷1998 2.2904 0.2348 

𝐷1999 2.3116 0.2563 

𝐷2000 2.0771 0.2498 

𝐷2001 1.6651 0.2206 

𝐷2002 1.5444 0.2248 

𝐷2003 1.2869 0.2152 

𝐷2004 2.1706 0.3452 

𝐷2005 2.9389 0.4021 

𝐷2006 2.4684 0.3507 

𝐷2007 2.0104 0.2881 

𝐷2008 1.657 0.2356 

𝐷2009 1.4356 0.2023 

𝐷2010 1.1113 0.1674 

𝐷2011 0.9298 0.1522 

𝐷2012 0.8216 0.1522 

𝐷2013 0.8075 0.1805 

𝐷2014 0.7559 0.1974 

𝐷2015 0.9726 0.3089 

𝐷2016 0.6199 0.2238 

𝐷2017 0.6573 0.3222 

𝑑5 1.006 0.1666 

𝑑6 0.4012 0.0992 

𝑑7 0.0923 0.0462 

𝑑8 0.0242 0.0235 

𝑑9 0.0134 0.0175 

𝛼 0.0003 0.0001 

𝛽 1.17E-10 3.64E-11 

 

Several plots are included to illustrate model diagnostics. Histogram plots of ordinary 

least squared (OLS) residuals (observed-expected value) of (A) total trap net catch on the log-

scale, (B) total gill net catch on the log-scale, and one step ahead (OSA) residuals of (C) trap net 
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proportions at age, and (D) gill net proportions at age are reported in Figure 1.B1. The OLS 

residuals of the total trap net and gill net fishery catch over time are reported in Figures 1B.2-

1B.3. The OSA residuals of proportions at age are plotted as a bubble plot to highlight potential 

patterns across age and time (Figures 1B.4-1B.5). Retrospective plots for the recruitment and 

spawning stock biomass are reported in Figures 1B.6-1B.7.  

 

Figure 1B.1. Histogram plots of ordinary least squared (OLS) residuals of (A) total trap net catch 

on the log-scale and (B) total gill net catch on the log-scale, and one step ahead (OSA) residuals 

of (C) trap net proportions at age and (D) gill net proportions at age. 
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Figure 1B.2. Ordinary least squared (OLS) residuals of total log-scale catch of the trap net 

fishery over time. Observed catch was modeled as a lognormal distribution with mean equal to 

the expected catch and standard deviation 0.067. 

 
 

Figure 1B.3. Ordinary least squared (OLS) residuals of total log-scale catch of the gill net fishery 

by year. Observed catch was modeled as a lognormal distribution with mean equal to the 

expected catch and standard deviation 0.067. 
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Figure 1B.4. One step ahead (OSA) residuals of proportions at age of the trap net fishery. 

Observed proportions were modeled as a multinomial distribution with year-specific effective 

sample size. No residuals were reported for year and age combination where the expected and 

observed value was 0 (older ages in the first 6 years) or for age 15+, because the way OSA 

residuals are calculated does not allow for estimates in the oldest age. 
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Figure 1B.5. One step ahead (OSA) residuals of proportions at age of the gill net fishery. 

Observed proportions were modeled as a multinomial distribution with year-specific effective 

sample size. No residuals were reported for year and age combination where the expected and 

observed value was 0 (older ages in the first 6 years) or for age 15+, because the way OSA 

residuals are calculated does not allow for estimates in the oldest age. Note that years 1986, 

1989, and 1990 are also absent because the sample size was zero. 
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Figure 1B.6. Retrospective analysis of estimated recruitment. The SCA model was refit after 

removing sequential years of the most recent observations. Dark colors indicate more complete 

data sets and lighter colors indicate less complete data sets. 

 

Figure 1B.7. Retrospective analysis of estimated spawning stock biomass. The SCA model was 

refit after removing sequential years of the most recent observations. Dark colors indicate more 

complete data sets and lighter colors indicate less complete data sets. 
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APPENDIX 1C: MODEL DIAGNOSTICS FOR THE STATE-SPACE MODEL 

The state-space stock assessment model predicted temporally variability in age structure 

with older ages being more represented in the population in later years (Figure 1C.1). The state-

space stock assessment model (SSM) fit the catch and catch composition data well for both 

fisheries with plots of the predicted and observed total harvest over time entirely overlapping, 

with no difference distinguishable through line graphs, and therefore are not reported here. The 

histograms of one step ahead (OSA) residuals for the total catch on the log-scale, proportions at 

age, and catchability process variability are plotted in Figure 1C.2. The residuals were plotted 

over time in Figures 1C.3-1C.6. Retrospective plots for the recruitment and spawning stock 

biomass are reported in Figures 1C.7-1C.8. 

Figure 1C.1. Predicted proportions at age over time in the state-space stock assessment model 

(SSM). 
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Figure 1C.2. Histogram plots of one step ahead (OSA) residuals of (A) total trap net catch on the 

log-scale, (B) total gill net catch on the log-scale, (C) trap net proportions at age and(D) gill net 

proportions at age, and the process variability at age of the (E) trap net catchability and (F) gill 

net catchability. 
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Figure 1C.3. One step ahead (OSA) residuals of total log-scale catch of the trap net fishery by 

year. Observed catch was modeled as a lognormal distribution with mean equal to the expected 

catch and standard deviation 0.067.

 
 

Figure 1C.4. One step ahead (OSA) residuals of total log-scale catch of the gill net fishery by 

year. Observed catch was modeled as a lognormal distribution with mean equal to the expected 

catch and standard deviation 0.067. 
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Figure 1C.5. One step ahead (OSA) residuals of proportions at age of the trap net fishery. 

Observed proportions were modeled as a multinomial distribution with year-specific effective 

sample size. No residuals were reported for year and age combination where the expected and 

observed value was 0 (older ages in the first 6 years) or for age 15+, because the way OSA 

residuals are calculated does not allow for estimates in the oldest age. 
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Figure 1C.6. One step ahead (OSA) residuals of proportions at age of the gill net fishery. 

Observed proportions were modeled as a multinomial distribution with year-specific effective 

sample size. No residuals were reported for year and age combination where the expected and 

observed value was 0 (older ages in the first 6 years) or for age 15+, because the way OSA 

residuals are calculated does not allow for estimates in the oldest age. Note that years 1986, 

1989, and 1990 are also absent because the sample size was zero. 
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Figure 1C.7. Retrospective analysis of estimated recruitment in number of fish. The SSM model 

was refit after removing sequential years of the most recent observations. Dark colors indicate 

more complete data sets and lighter colors indicate less complete data sets. 

 

Figure 1C.8. Retrospective analysis of estimated spawning stock biomass. The SSM model was 

refit after removing sequential years of the most recent observations. Dark colors indicate more 

complete data sets and lighter colors indicate less complete data sets. 
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CHAPTER 2: 

THE EFFECT OF PROCESS VARIABILITY AND DATA QUALITY ON PERFORMANCE 

OF A STATE-SPACE STOCK ASSESSMENT MODEL 

2.1 Abstract 

State-space modeling is an emerging approach to age structured fisheries stock 

assessment that can accommodate multiple sources of variability in processes like recruitment, 

abundance, and selectivity. By maximizing the marginal likelihood by treating yearly deviations 

as random effects and then integrating them from the likelihood, these models can estimate 

multiple process variances. Several fisheries software packages have been developed that use a 

state-space framework with marginal likelihood, which has increased their popularity and usage 

across the U.S. Atlantic coast, Canada, and Europe. However, robust testing is still needed to 

gauge the applicability of these models and understand how they perform over a range of 

realistic variability in the process or observation error. Using an assessment model fit to Gulf of 

Maine haddock as a baseline, I used a simulation-estimation procedure to evaluate if state-space 

stock assessment models could produce unbiased and precise estimates over process variances 

that ranged from zero to well above the levels estimated in the Gulf of Maine haddock 

assessment, or when observations were noisier (i.e., more variable around their true value) than 

had been assumed in the assessment. I fit alternative estimation models that differed in which 

processes errors were included (of recruitment, expected survival, and fishery selectivity). State-

space models that specify random effects in all three processes produced relatively unbiased and 

precise estimates of biomass and exploitation under most simulation scenarios and therefore are 

recommended except when variability in expected survival is absent (or very low), in which case 

the model is unlikely to converge. A conventional statistical-catch-at-age model with recruitment 
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estimated as a fixed effect for each year, deterministic expected survival, and constant selectivity 

produced estimates that were comparable to the best performing state-space model, but did not 

provide internal estimates of process variances and did not perform well when recruitment was 

highly variable. This work will facilitate the use of state-space stock assessment models and the 

choice of parameterization that will produce the most accurate output to inform future 

predictions and management.  

2.2 Introduction 

Fisheries stock assessment modelers have long worked to parse process variation from 

observation noise (Fournier and Archibald, 1982). Process variation (often “process error”) is the 

stochasticity in underlying biological state processes like recruitment, natural mortality, 

abundance, catchability, and selectivity. Observation noise (often “observation error”) are factors 

that create differences between what is real and what is measured such as deviations from 

random sampling. Process and observation error can be quantified using probability distributions 

and in a maximum likelihood estimation framework, those probability distributions are included 

in the likelihood, either added on the log-scale in a joint likelihood or errors-in-variables 

framework or integrated from the likelihood in the marginal likelihood (de Valpine and Hilborn, 

2005). When maximizing marginal likelihood, it is at least theoretically possible to estimate 

multiple process variances and in some cases observation variances (Cadigan, 2015; Nielsen and 

Berg, 2014). Thanks to advances in fisheries stock assessment modeling software like Template 

Model Builder (TMB) that can approximate the high-level integrals, state-space stock assessment 

models that maximize the marginal likelihood and estimate many of the variances have emerged 

as a popular addition to the modeling toolbox (Aanes et al., 2020; Kristensen et al., 2016). In 

fact, state-space and the marginal likelihood have become largely synonymous in quantitative 
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fisheries discourse, though Bayesian methods still flourish, particular in state-space surplus 

production models (Han et al., 2023; Soto et al., 2022). Where once a stock assessment model 

could perhaps only account for stochasticity in one underlying process like recruitment or 

catchability, state-space modeling software like SAM or the Woods Hole Assessment Model 

(WHAM) now default to including variability in several underlying processes (Johnson et al., 

2014; Linton and Bence, 2008; Nielsen and Berg, 2014; Stock and Miller, 2021).  

State-space stock assessment models (i.e., those that use a marginal likelihood) have 

several demonstrated advantages over non-state-space assessment models. They can more 

realistically represent dynamics by including stochasticity in recruitment, abundance, selectivity, 

and natural mortality, and allowing these to vary among ages, years, and region (Perreault et al., 

2020; Thorson, 2019; Trijoulet et al., 2020). This increased realism could decrease bias caused 

by misspecification (Deroba and Schueller, 2013). Specifying variation as a random effect in a 

marginal likelihood will decrease bias even further (Thorson et al., 2019). With such a 

framework, the standard deviation of the probability distribution of these random effects can be 

estimated as a parameter in the model, rather than being fixed a priori or by calculating the 

distribution of independent fixed effect parameters after the model is fit. Accurately estimating 

the variance of recruitment is especially important because it can inform our understanding of a 

species extinction probability or guide rebuilding plans, and estimating it within a statistical 

model can propagate uncertainty (Maunder and Deriso, 2003; Thorson et al., 2014a). Since they 

account for more of the process variability that actually occurs, state-space models should exhibit 

less retrospective patterns than non-state-space models (Hurtado-Ferro et al., 2015; Perreault et 

al., 2020; Stewart and Martell, 2014; Stock et al., 2021; Szuwalski et al., 2018). The additional 
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variation may also resolve data conflicts in integrated assessments (Maunder and Piner, 2017; 

Stewart and Monnahan, 2017). 

As stock assessment practitioners move to adopt state-space methods it is important to 

understand how well these models perform at producing unbiased and precise estimates of 

quantities like spawning stock biomass, recruitment, and exploitation, if the process variances 

can be estimated under a broad range of true values, and if they reduce retrospective patterns (the 

differences in model output when the most recent years are included in the analysis).  

My objective was to evaluate the performance of state-space stock assessment models 

using a simulation-estimation procedure wherein data were generated with different levels of 

variability in recruitment, numbers at age or “expected survival” (given the fishing mortality), 

and fishery selectivity, ranging from no variability (i.e., constant over time) to variability that 

was two times the value estimated from fitting to real Gulf of Maine haddock catch and index 

data. In a separate procedure, I tested two different levels of observation error by generating data 

with higher observation error variability in total catch, the survey indices, or the proportions at 

age of the catch or indices set at higher levels than in the baseline Gulf of Maine haddock 

assessment. I fit each simulated dataset with a suite of alternative estimation models that made 

different assumptions about the existence and nature of the variability in the three processes of 

recruitment, expected survival, and selectivity. 
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2.3 Methods 

2.3.1 Overview 

My approach was to generate datasets using an operating model and fit alternative 

estimation models to each simulated dataset. I simulated 100 datasets for each scenario, which 

were defined by the variance of the process errors assumed for recruitment, expected survival, 

and selectivity, or the observation variance in total catch and index data and the “effective 

sample size” describing the observation noise in the respective proportions at age. The baseline 

estimation model was based on a state-space stock assessment model fit to Gulf of Maine 

haddock (Melanogrammus aeglefinus). In alternative estimation models I altered the treatment of 

process errors (including leaving out process errors in some or all the processes). The structure of 

the simulation model, as well as the baseline values of process error variances and the values of 

other parameters was also based on the state-space stock assessment model fit to Gulf of Maine 

haddock. 

2.3.2 Determination of Baseline Estimation Model  

The baseline estimation model was an age-based state-space stock assessment model, 

adapted from the statistical catch at age model used to assess Gulf of Maine haddock using the 

program ASAP (Legault and Restrepo, 1998). Description of symbols are provided in Table 2.1. 

The state-space stock assessment model was built using the Woods Hole Assessment Model 

(WHAM) package which is an R package dependent on Template Model Builder (TMB) 

(Kristensen et al., 2016; Stock and Miller, 2021). WHAM offers several options for 

parameterizing process error in recruitment, numbers at age (i.e., expected survival), selectivity, 

and other state variables that were not explored in the current study. The process errors can be 

specified as random effects and integrated from the joint likelihood of data and random effects 
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(i.e., the marginal likelihood). Recruitment can be parameterized as a random walk or random 

about a mean, and deviations from the previous year’s value or mean, respectively, can be 

independent and identically distributed (“iid”) or correlated among years. Age- and year- specific 

deviations in expected survival or mean selectivity can be iid, correlated across years or ages in a 

1-dimensional autoregressive process (“AR1_y” or “AR1_a”) or both ages and years 

simultaneously in a 2-dimentional autoregressive process (“2DAR1”). Refer to Stock and Miller 

(2021) for a full description of WHAM and its many parameterization options.  

Table 2.1. Symbols used in the text, tables, and figures. For indices, time and age invariant data, 

and some simple derived quantities, the value is provided.  
Symbol Description Usage 

Index Variables   

𝑦, �̃� Year 1977-2019 

𝑌  Terminal Year 2019 

𝑎, �̃� Age 1-8 

A Terminal age plus group 9+ 

𝑖  Survey Index F (Fall), S 

(Spring) 

Data and Inputs   

𝐶𝑦 Total observed catch by year  

𝑃𝑎,𝑦 Observed proportion at age by year in the catch  

𝐼𝑦,𝑖 Observed total index value by year and survey  

𝑝𝑎,𝑦,𝑖 Observed proportion at age by year and survey of the 

index 

 

𝑀 Instantaneous natural mortality 0.2 

𝑚𝑎,𝑦 Maturity at age and year  

𝑊𝑎,𝑦 Weight at age and year at time of capture  

𝑊𝑎,𝑦
(𝑆)

 Weight at age and year at time of spawning  

𝑓 Fraction of the year that passes before spawning occurs 0.25 

𝑁7:9+,1977 Numbers at age (in thousands of individuals) for the 

oldest age groups in the first year 

[5,1,20] 

𝑆4:9+,𝐹 Selectivity of ages 4-9+ in the fall survey [1,1,1,1,1,1] 

𝑆5:9+,𝑆 Selectivity of ages 5-9+ in the spring survey [0.9,1,1,1,1] 

𝜎𝐶𝑦
 Standard deviation of log-normally distributed 

observation error of total catch 

See Appendix 

2A 

𝜎𝐼𝑦,𝑖

2  Standard deviation of log-normally distributed 

observation error of index values 

See Appendix 

2A 

𝑛𝑦,𝑖
(𝐼)

 Effective sample size of multinomial distribution of 

observation error of proportions at age of the indices 

See Appendix 

2A 

States/Random Effects 

𝜀𝑦
(𝑅𝑒𝑐)

  Deviations from mean recruitment  

𝜀𝑎,𝑦
(𝑆𝑢𝑟)

  Deviations from expected abundance at age, which is 0  

𝜀𝑎,𝑦
(𝑆𝑒𝑙)

  Deviations from mean selectivity at age  
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Table 2.1 (cont’d) 

Fixed Effect Parameters  

�̅�  Mean recruitment  

𝑁1:6,1977  Numbers at age for the youngest age groups in the first 

year 

 

�̅�𝑎  Mean selectivity at age of the catch  

𝐹𝑦  Fishing morality at year  

𝜎𝑅  Standard deviation of process error around mean 

recruitment 

 

𝜎𝑆𝑢𝑟  Standard deviation of process error around survival  

𝜎𝑆𝑒𝑙   Standard deviation of process error around selectivity at 

age of catch 

 

𝜌𝑁𝐴𝐴  
Correlation coefficient of process errors around 

recruitment and survival, which is correlated among years 

 

𝜌𝑆𝑒𝑙   Correlation coefficient of process errors around 

selectivity which is correlated among years 

 

𝑞𝑖  Catchability of indices   

𝑆𝑎,𝑖   Selectivity of indices at age  

Derived Quantities   

𝑁𝑎,1978:2019  Abundance (“numbers at age”) in thousands  

𝐹𝑦  Fully selected instantaneous fishing mortality  

𝐹𝑎,𝑦  Age-specific instantaneous fishing mortality  

𝑠𝑎,𝑦  Selectivity at age and year  

�̂�𝑎,𝑦  Expected catch at age in numbers  

�̂�𝑦  Expected total catch in weight  

�̂�𝑎,𝑦  Expected proportions at age of the catch  

𝐼𝑎,𝑦,𝑖  Expected fisheries independent index value at age  

𝐼𝑦,𝑖  Expected total fisheries independent index value  

�̂�𝑎,𝑦,𝑖  Expected proportions at age of the index  

𝐵𝑦
(𝑆)

  Spawning stock biomass  

𝐸𝑦  Exploitation rate  

𝑇  Average spawning stock biomass trend  

 

To determine the structure of the baseline estimation model, the real Gulf of Maine 

haddock data were fit using several parameterizations of the WHAM model, each with different 

combinations of process error structure in recruitment, expected survival, or selectivity, from 

those options described above, as well as for several options for the age composition likelihood 

(multinomial, Dirichlet-multinomial, and logistic normal). The Gulf of Maine haddock data 

includes annual total biomass of landings (for commercial and recreational fisheries combined), 

survey indices from the spring and fall Northeast Fisheries Science Center (NEFSC) bottom 

trawl surveys, and the numerical proportion at age of those landings and surveys (from 1-9+) 
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from 1977 through 2019 (NEFSC, 2022b). Other input data included biological information like 

natural mortality, maturity at age, and weight at age at time of catch or spawning. The estimation 

model was chosen based on the minimum Akaike’s Information Criteria (AIC) value (Akaike, 

1998), and by robustness in generating and fitting simulated data.  

In all the estimation models fit using the Gulf of Maine haddock data, observation error 

variances for total annual landings and annual survey indices of total abundance were pre-

specified and treated as known. Similarly, effective sample sizes of the multinomial distribution 

for the fishery and survey proportions at age were pre-specified and not estimated. WHAM has 

optional parameters that can scale the input year-specific standard deviation of the lognormal 

distribution of total annual catch or annual survey indices. However, when I tried to estimate 

these parameters, the model failed to converge. The effective sample size of the multinomial 

distribution cannot be estimated within the model and I did not use iterative reweighting when 

fitting the haddock data or simulated data in WHAM because it is computationally costly and 

particularly challenging in state-space models (Maunder, 2011). The effective sample sizes were 

premised on an iterative reweighting procedure following Francis (2011) used during the 

haddock assessment using ASAP, but the values were not re-estimated for the WHAM model 

(NEFSC, 2022b). Alternative age composition likelihoods like the Dirichlet-multinomial or 

logistic normal do have weighting parameters, but both performed poorly at generating data that 

could be fit using the estimation model, likely owing to too much process and observation error 

variability. The values that determined observation error variance- the standard deviation of the 

lognormal distribution and the effective sample size of the multinomial, - were fixed at the 

values used in the original ASAP assessment model (NEFSC, 2022b). 
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In the selected estimation model, recruitment (i.e., the number of age 1 individuals) in 

each year, 𝑁1,𝑦 varied about the mean recruitment following a lognormal distribution and AR(1) 

process (Table 2.2, Eqs. 2.1-2.2). Under this model, deviations in a given year would tend to be 

more similar to those in years immediately prior or subsequent (Eq. 2.2). The model estimated 

the mean recruitment, �̅�, standard deviation, 𝜎𝑅, and correlation coefficient, 𝜌𝑁𝐴𝐴, as fixed 

effects, and the deviations from the mean, 𝜀𝑦
(𝑅𝑒𝑐)

, as random effects. Log-scale abundance in the 

initial year, 𝑙𝑜𝑔𝑁𝑎,1977, was estimated individually for ages 1-6 and fixed for ages 7-9+. Fixing 

the abundance for the older ages in the initial year improved model stability and parameter 

estimability when fitting to both real and simulated data. 

Table 2.2. Equations used in the estimation and simulation models. 

Index Description Equation 

Process Model 

2.1 

Yearly recruitment is a 

function of mean 

recruitment and random 

process error 

𝑙𝑜𝑔𝑁1,𝑦 = 𝑙𝑜𝑔�̅� + 𝜀𝑦
(𝑅𝑒𝑐)

, 𝑦 > 1977  

2.2 

Recruitment deviations 

are randomly distributed 

as stationary AR(1) 

𝜀𝑦
(𝑅𝑒𝑐)

~𝑁(𝜌𝑁𝐴𝐴𝜀𝑦−1
(𝑅𝑒𝑐)

−
𝜎𝑅

2

2(1−𝜌𝑁𝐴𝐴
2 )

, 𝜎𝑅
2)  

2.3 

Fishing mortality at age 

and year is the product of 

fully selected F, and age 

and year specific 

selectivity 

𝐹𝑎,𝑦 = 𝐹𝑦𝑠𝑎,𝑦 , 𝑎 < 7 

𝐹𝑎,𝑦 = 𝐹𝑦, 𝑎 ≥ 7 

2.4 

Selectivity at age and 

year are the sum of a 

mean parameter for each 

age and deviations, 

transformed on the logit 

scale 

𝑠𝑎,𝑦 =
1

1+exp (−(𝑙𝑜𝑔𝑖𝑡(�̅�𝑎)+𝜀𝑎,𝑦
(𝑆𝑒𝑙)

))
  

2.5 Selectivity at age 

deviations are 

distributed as 

stationary AR(1) 

𝜀𝑎,𝑦
(𝑆𝑒𝑙)

~𝑁 (𝜌𝑆𝑒𝑙𝜀𝑎,𝑦−1
(𝑆𝑒𝑙)

−
𝜎𝑆𝑒𝑙

2

2(1−𝜌𝑆𝑒𝑙
2 )

, 𝜎𝑠𝑒𝑙
2 ) , 𝑎 < 7  

2.6 Age- and year- 

specific abundance is 

a function of 

abundance in the 

previous age and 

year, survival, and 

random process error 

𝑙𝑜𝑔𝑁𝑎,𝑦 = log (𝑁𝑎−1,𝑦−1) + −𝐹𝑎−1,𝑦−1 − 𝑀 + 𝜀𝑎,𝑦
(𝑆𝑢𝑟)

, 1 < 𝑎 < 𝐴  

𝑙𝑜𝑔𝑁𝐴,𝑦 = log (𝑁𝐴−1,𝑦−1𝑒−𝐹𝐴−1,𝑦−1−𝑀 + 𝑁𝐴,𝑦−1𝑒−𝐹𝐴,𝑦−1−𝑀)

+ 𝜀𝐴,𝑦
(𝑆𝑢𝑟)

, 𝑎 = 𝐴 
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Table 2.2 (cont’d) 

2.7 Numbers at age 

deviations are 

distributed as 

stationary AR(1) 

𝜀𝑎,𝑦
(𝑆𝑢𝑟)

~𝑁 (𝜌𝑁𝐴𝐴𝜀𝑎,𝑦−1
(𝑆𝑢𝑟)

−
𝜎𝑆𝑢𝑟

2

2(1−𝜌𝑁𝐴𝐴
2 )

, 𝜎𝑠𝑢𝑟
2 ) , 𝑎 > 1  

Observation Model 

2.8 Expected catch at age 

is a function of 

abundance and 

mortality 

�̂�𝑎,𝑦 = 𝑁𝑎,𝑦(1 − 𝑒−𝑀−𝐹𝑎,𝑦)
𝐹𝑎,𝑦

𝐹𝑎,𝑦+𝑀
  

2.9 Expected total catch 

in weight is a 

function of catch at 

age and weight at age 

and year 

�̂�𝑦 = ∑ �̂�𝑎,𝑦𝑊𝑎,𝑦
𝐴
𝑎=1   

2.10 Expected catch 

proportion at age is a 

function of age 

specific values and 

total  

�̂�𝑎,𝑦 =
�̂�𝑎,𝑦

∑ �̂�𝑎,𝑦
𝐴
𝑎=1

 

2.11 Expected survey 

index in weight for 

each age, year, and 

index 

𝐼𝑎,𝑦,𝑖 = 𝑞𝑖𝑠𝑎,𝑖𝑁𝑎,𝑦𝑒(−𝐹𝑎,𝑦−𝑀)𝑓𝑦,𝑖   

2.12 Expected total survey 

index in weight is a 

sum of age-specific 

values 

𝐼𝑦,𝑖 = ∑ 𝐼𝑎,𝑦,𝑖
𝐴
𝑎=1   

2.13 Expected index 

proportion at age is a 

function of age 

specific values and 

total  

�̂�𝑎,𝑦,𝑖 =
𝐼𝑎,𝑦,𝑖

𝐼𝑦,𝑖
  

Likelihood Components 

2.14 Observed total catch 

is derived from the 

expected values and 

lognormal error 

log(𝐶𝑦) ~𝑁(log(�̂�𝑦) −
𝜎𝐶𝑦

2

2
, 𝜎𝐶𝑦

2 ) 

2.15 Observed catch 

proportion at age is 

derived from 

multinomial 

distribution with 

input effective sample 

size 

𝑃𝑎,𝑦~𝑀𝑁(�̂�𝑎,𝑦 , 𝑛𝑦
(𝐶)

) 

2.16 Observed total survey 

index is derived from 

expected values and 

lognormal error 

log(𝐼𝑦,𝑖) ~𝑁(log(𝐼𝑦) −
𝜎𝐼𝑦,𝑖

2

2
, 𝜎𝐼𝑦,𝑖

2 ) 
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Table 2.2 (cont’d) 

2.17 Observed index 

proportion at age is 

derived from 

multinomial 

distribution with input 

effective sample size 

𝑝𝑎,𝑦,𝑖~𝑀𝑁(�̂�𝑎,𝑦,𝑖 , 𝑛𝑦,𝑖
(𝐼)

) 

Derived Quantities and Simulation Output 

2.18 Average Recruitment 

in terminal 3 years 𝑁1,(𝑌−3:𝑌) =
∑ 𝑁1,𝑦

𝑌
𝑦=𝑌−3

3
 

2.19 Spawning stock 

biomass  𝐵𝑦
(𝑆)

= ∑ 𝑁𝑎,𝑦

𝐴

𝑎=1

𝑊𝑎,𝑦
(𝑆)

𝑚𝑎,𝑦𝑒𝑓(−𝑀−𝐹𝑎,𝑦) 

2.20 Exploitation rate of 

stock 𝐸𝑦 =
�̂�𝑦

∑ 𝑁𝑎,𝑦
𝐴
𝑎=1 𝑊𝑎,𝑦

 

2.21 Average spawning 

stock biomass trend in 

recent 10 years  

𝐷 =
𝐵𝑇

(𝑆)

𝐵𝑇−10
(𝑆)

 

2.22 Relative Error of a 

performance metric 
𝑅𝐸𝑥 =

�̂� − �̃�

�̂�
 

 

In the selected estimation model, fully selected fishing mortality in each year, 𝐹𝑦, was a 

fixed effect parameter. Fishing mortality at age and year, 𝐹𝑎,𝑦, for a<7 was the product of the 

fully selected value, 𝐹𝑦 and selectivity at age and year, 𝑠𝑎,𝑦 (Eq. 2.3). For age 7 and above 𝐹𝑎,𝑦 =

𝐹𝑦. Selectivity at age and year was a function of an age specific mean, �̅�𝑎, and age- and year- 

specific selectivity deviations, 𝜀𝑎,𝑦
(𝑆𝑒𝑙)

, and constrained to be between zero and one (Eq. 2.4). 

Deviations from the mean selectivity on the logit scale, 𝜀𝑎,𝑦
(𝑆𝑒𝑙)

 were random effects correlated 

among years but not among ages (Eq. 2.5). The standard deviation of this distribution, 𝜎𝑆𝑒𝑙, and 

the correlation coefficient, 𝜌𝑆𝑒𝑙, were fixed effects.  

After the initial year, abundance at age in the selected estimation model was a function of 

abundance at age of the previous age in the previous year, expected survival, itself a function of 

instantaneous fishing mortality, 𝐹𝑎,𝑦, and natural mortality, 𝑀, and process error on expected 

survival, 𝜀𝑎,𝑦
(𝑆𝑢𝑟)

 (Eq. 2.6). Abundance in the 9+ group also included the number of 9+ individuals 
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that survived since the previous year. This parameterization mimics how process errors in 

numbers at age were incorporated in the “full state-space model” described previously in Nielsen 

and Berg, (2014) and Miller et al. (2016). The expected survival process errors had an AR(1) 

structure with correlation among years but not ages. The standard deviation for the expected 

survival process error 𝜎𝑆𝑢𝑟 , was estimated as a fixed effect, and the correlation coefficient was 

the same as that for the recruitment process error, 𝜌𝑁𝐴𝐴 (Eq. 2.7).  

The predicted catch at age in numbers, �̂�𝑎,𝑦, followed the Baranov catch equation (Eq. 

2.8). The predicted total catch in weight (i.e., yield), �̂�𝑦, was a sum of the products of catch at 

age and weight at age, 𝑊𝑎,𝑦, across ages (Eq. 2.9) The predicted proportions at age, �̂�𝑎,𝑦, were 

derived from the total catch in numbers and catch at age (Eq. 2.10). The predicted survey index 

at age and year and survey was the product of abundance at age, survey-specific catchability, 𝑞𝑖, 

age- and survey- specific selectivity, 𝑠𝑎,𝑖, and expected survival (adjusted for the fraction of the 

year that has elapsed at the time of the survey, 𝑓𝑦,𝑖) (Eq. 2.11). Ages 4-9 were assumed to be 

fully susceptible to survey gear in the fall and ages 5-9 were assumed to be fully susceptible to 

survey gear in the spring; hence survey selectivity was fixed at 1, apart from survey selectivity 

for age 5 individuals in the spring which was fixed at 0.9. Unlike for the fishery, age-specific 

selectivity for the surveys was time-invariant. The predicted total survey index value, 𝐼𝑦,𝑖, and 

predicted survey proportions at age, �̂�𝑎,𝑦,𝑖, were calculated from the age-specific indices in the 

same way as the fishery total catch and proportions were from the age-specific values (Eqs. 2.12-

2.13).  

The observed total catch in each year, 𝐶𝑎,𝑦, was assumed to have a lognormal distribution 

with mean equal to the predicted catch and the year-specific standard deviation that was input as 

data, 𝜎𝐶𝑦
 (Eq. 2.14, Appendix 2A). The observed proportions were assumed to have a 



 

 

84 

 

multinomial distribution with year specific effective sample sizes 𝑛𝑦
(𝐶)

, which were also input 

(Eq. 2.15, Appendix 2A). The observed total index values and proportions at age of the indices 

followed the same distributions (lognormal and multinomial) as total catch and catch proportions 

at age but had unique standard deviations and effective sample sizes, respectively that 

determined the degree of variation (Eq. 2.16-2.17, Appendix 2A).  

The estimation model was fit by maximizing the marginal likelihood in which the 

random effects on recruitment, expected survival, and selectivity were integrated from the joint 

distribution of random effects and data. Therefore, the objective function was minimized by 

varying the fixed effects. Mean recruitment, numbers at age in the first age, fishing mortality, 

and process variance parameters were estimated on the log-scale and survey catchability and 

selectivity and AR(1) process error correlation coefficients were estimated on the logit scale. The 

predicted values for the random effects and derived quantities were those that maximized the 

joint likelihood of data and process variability, conditioned on the estimates of the fixed effects, 

using the epsilon method for bias correction (Thorson and Kristensen, 2016).  

2.2.3 Simulation/Operating Model Scenarios 

 Data were simulated using the fitted WHAM model described above. The simulated data 

had the same number of age groups and years, the same natural mortality, maturity, weight at age 

at capture and spawning, numbers at age in the oldest age group in the first year, and observation 

error variance of the fall and spring surveys as estimated or assumed for the Gulf of Maine 

haddock assessment. In all simulation scenarios, data were simulated using most of the same 

fixed effect parameter estimates, including the same mean recruitment, yearly fully selected 

fishing mortality, mean selectivity at age, numbers at age for ages 1-6 in the first year, 

catchability and selectivity of the index data, and correlation coefficients of the process errors in 
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numbers at age or selectivity. The difference among simulation scenarios was the process or 

observation error variance or the effective sample size used in the simulation model. In the 

baseline simulation scenario, random effects on recruitment, 𝜀𝑦
(𝑅𝑒𝑐)

, expected survival, 𝜀𝑎,𝑦
(𝑆𝑢𝑟)

, and 

selectivity, 𝜀𝑎,𝑦
(𝑆𝑒𝑙)

, were drawn from their respective distributions using the mean (for recruitment 

and selectivity), correlation coefficients, and standard deviations estimated in the model fit to 

Gulf of Maine haddock. The randomly generated values of deviations in yearly recruitment, 

survival, and selectivity then informed the realized catch and index values, �̃�𝑦, �̃�𝑎,𝑦, 𝐼𝑦, and 𝑝𝑎,𝑦 

(i.e., Eqs. 2.8-2.13 but �̃� rather than �̂�) and the simulated catch and index values were a function 

of these realized values and observation error (i.e., Eqs. 2.14-2.17, but �̃� rather than �̂�).  

Each alternative simulation scenario assumed that one of the process or observation error 

variance values differed from the baseline (Table 2.3), while the others were kept at their 

baseline values. The first set of simulation scenarios addressed how increases or decreases in the 

variance of process error in recruitment, expected survival, or selectivity affected model 

performance (Table 2.3A). The four alternative variances used for each source of process 

variability are categorized as “very low,” “low,” “high,” and “very high.” The “very low” 

simulation scenario meant the variance was set to 0. For the recruitment or age-specific 

selectivity processes, this meant that the year-specific values equaled the mean, R̅ or s̅a, 

respectively. For the expected survival process, this meant that the survival was deterministic 

and abundance at age did not deviate from what was expected given F𝑎,𝑦 and M and abundance 

at age in the previous year. The “low” simulation scenario meant the standard deviation of each 

process error distribution was half of the baseline value. “High” and “very high” scenarios for 

expected survival or selectivity meant the standard deviation was double or three times the 

baseline value. However, because the estimated standard deviation of recruitment process was 
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already quite high (1.17) the “high” and “very high” treatments were constrained to 1.5 and 2, 

which are 1.28 and 1.7 times the baseline value, respectively. Because there were four different 

levels of process error standard deviation for each of the three types of process errors, plus 

baseline levels, there were 13 total simulation scenarios for the process error (including the 

baseline). 

Table 2.3. Process error standard deviations in simulation scenarios (A) and multiplier for year- 

and index- specific observation error standard deviation (total catch and index value) and 

effective sample sizes (proportions at age) (B). Only increases in observation error variance were 

tested as these reflected increased “noisiness” in the simulated data and the consequences of 

having poor data. 

 

(A) 
Process Error Base Very Low Low High Very High 

𝜎𝑅 1.17 0.00 0.58 1.50 2.00 

𝜎𝑆𝑢𝑟 0.19 0.00 0.10 0.40 0.60 

𝜎𝑆𝑒𝑙  0.30 0.00 0.15 0.60 0.90 

 

(B) 

Observation Error Base High Very High 

𝜎𝐶𝑦
 x1.0 x1.1 x1.5 

𝜎𝐼𝑦,𝑖
 x1.0 x1.1 x1.5 

𝑛𝑦
(𝐶)

 x1.0 x0.9 x0.5 

𝑛𝑦,𝑖
(𝐼)

 x1.0 x0.9 x0.5 

 

The second set of simulation scenarios involved decreasing the “quality” (i.e., increasing 

the “noisiness”) of the simulated data by either increasing the observation error standard 

deviation of the total catch or total index, or decreasing the effective sample size of the 

proportions at age of the catch or index, both of which assume that the observed data can deviate 

more from the predicted values than is assumed in the baseline model (Table 2.3B). Observation 

error variance or effective sample size was adjusted accordingly in the estimation models, so the 

data quality was poorer but correctly specified. The process error standard deviations were kept 

at the baseline values. The standard deviation of the lognormal error around total catch or total 
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index value (for both the spring and fall surveys), which were year-specific values, were 

increased by a factor of 1.1 or 1.5 for “high” or “very high” treatments, respectively. The 

effective sample size of the multinomial distribution for the catch proportions at age or index 

proportions at age (for both the spring and fall surveys), which were also year-specific values, 

were decreased by a factor of 0.9 or 0.5 for a “high” or “very high” treatment, respectively. As in 

the process error simulation scenarios, each component was tested individually, so in total there 

were nine simulation scenarios for observation error (including the baseline).  

2.3.4 Alternative Estimation Model Scenarios 

The estimation model described in section 2.3.2 was fit to simulated data. The estimation 

model specified yearly deviations in recruitment, expected survival, and selectivity as correlated 

random effects. Seven other estimation models were also used to fit the data, each which 

specified one or more of these processes as a fixed effect or constant over time, rather than a 

random effect. Each of the eight versions of the estimation model were designated by a three-

letter code that indicate whether the recruitment, expected survival, and selectivity processes 

were modeled as a random effect (R), fixed effect (F) or constant (C), in that order. For example, 

the estimation model described in section 2.3.2 was designated “RRR” and the model that 

assumed recruitment and expected survival were random effects but selectivity was constant was 

“RRC”. When recruitment was a fixed effect (F), the year-specific deviations were estimated 

parameters and their distribution was not constrained with a probability function. When a value 

was constant, the year-specific deviations were fixed at zero. When applied to expected survival, 

“constant” means no variation in the survival process, so survival is deterministic and abundance 

is only a function of abundance in the previous year and total mortality. Not every combination 

of random effect, fixed effect, or constant parameterization could be tested because of the 
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structure of WHAM. The intent with fitting these additional alternative versions of the estimation 

model was to examine the consequences of ignoring process error when it is present (in most 

cases) or trying to estimate it when it is absent (in the “very low” scenarios). The “FCC” model, 

which specifies yearly recruitment as a fixed effect parameter, expected survival as deterministic, 

and selectivity as constant, mimics the statistical catch-at-age model (SCAA) currently employed 

to assess many fisheries in the northwest Atlantic using program ASAP. Within each simulation 

scenario of process error variability or data quality, 100 data sets were simulated and fit using the 

eight estimation models. If the model did not converge, and/or did not result in an invertible 

Hessian matrix, the model was considered a failure and excluded from the analysis. Model 

performance was also evaluated by retrospective analysis where retrospective patterns were 

quantified by Mohn’s Rho calculated for spawning stock biomass, fishing mortality, and 

recruitment (Hurtado-Ferro et al., 2015).  

2.4.5 Performance of Assessment Models 

 Several metrics were used to evaluate model performance in fitting to simulated data, 

each of which reflected values of interest in fisheries management. Mean recruitment in the 

terminal three years, �̅�1,(𝑌−3:𝑌), spawning stock biomass in the terminal year, 𝐵𝑌
(𝑆)

, exploitation 

rate in the terminal year, 𝐸𝑌, and depletion in spawning stock biomass in the terminal 10 years, 

𝐷, were compared against the true values used to simulate the data (Eqs. 2.18-2.21). Depletion 

was defined as the ratio between spawning stock biomass in the terminal year and spawning 

stock biomass 10 years prior to the terminal year (Eq. 2.21). Relative error of a given model 

performance metric 𝑥 was the difference between the estimated, �̂�,  and realized, �̃�, values 

relative to the realized value (Eq. 2.22).  
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For estimation models that assumed one or more process was a random effect the 

distributions of the estimated standard deviation and correlation coefficient of the AR(1) process 

of the random effect were compared against the true value used to generate the data. 

Convergence rate, the bias (systemic over- or under- estimation of a quantity), and precision 

(spread of relative error) were compared across treatments. For each of the thirteen simulation 

scenarios for process error variability, and nine simulation scenarios for observation error 

variability, simulated data were fit using eight estimation models. Thus, there were 104 

simulation/estimation combinations for the process variability scenarios and 72 such 

combinations for the observation error scenarios. 

2.4 Results 

The median convergence rate across the 104 simulation/estimation combinations for 

process error scenarios was 90% and ranged from 7-100% (Table 2.4A). Among process 

variability scenarios, average convergence rate was highest when the recruitment variability was 

very low (94%) or low (95%) and lowest when the recruitment variability was high (73%) or 

expected survival variability was very low (74%) or very high (76%). Models converged most 

frequently when recruitment included a random effect, expected survival was deterministic, and 

selectivity was constant (RCC) (98%), and least frequently when recruitment was constant, 

survival was deterministic, and selectivity included a random effect (CCR) (76%). The 

convergence rate was approximately the same across observation error simulation scenarios, as 

were the relative convergence rates for the different estimation models (Table 2.4B).
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Table 2.4. Convergence rate in process variability simulation scenarios (A) and observation error simulation scenarios (B) across 100 

simulated data sets. The criteria for convergence were that the model had to complete the optimization without error and all the 

parameters and standard error values had to be estimated (i.e., the Hessian matrix was invertible). 

 

(A)     SIMULATION SCENARIO ESTIMATION MODELS     

Recruitment Survival Selectivity RRR RRC RCR RCC FCR FCC CCR CCC Average Median Min Max 

Baseline Baseline Baseline 94 100 93 96 81 88 82 84 89.75 90.5 81 100 

Very High Baseline Baseline 90 100 94 97 38 46 61 65 73.88 77.5 38 100 

High Baseline Baseline 91 100 94 98 71 77 65 77 84.13 84 65 100 

Low Baseline Baseline 94 100 99 98 94 99 84 97 95.63 97.5 84 100 

Very Low Baseline Baseline 91 93 94 98 90 98 97 98 94.88 95.5 90 98 

Baseline Very High Baseline 87 98 90 90 54 59 59 73 76.25 80 54 98 

Baseline High Baseline 86 98 89 98 74 87 77 81 86.25 86.5 74 98 

Baseline Low Baseline 54 84 95 99 85 94 81 89 85.13 87 54 99 

Baseline Very Low Baseline 7 48 98 99 82 96 79 86 74.38 84 7 99 

Baseline Baseline Very High 97 98 95 95 92 90 77 85 91.13 93.5 77 98 

Baseline Baseline High 92 100 96 100 88 92 73 82 90.38 92 73 100 

Baseline Baseline Low 84 98 94 100 77 93 80 84 88.75 88.5 77 100 

Baseline Baseline Very Low 85 98 86 100 64 91 72 82 84.75 85.5 64 100 

Average 80.92 93.46 93.62 97.54 76.15 85.38 75.92 83.31     
Median 90 98 94 98 81 91 77 84     
Min 7 48 86 90 38 46 59 65     
Max 97 100 99 100 94 99 97 98     
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Table 2.4 (cont’d) 

 

(B)                SIMULATION SCENARIO ESTIMATION MODELS     
Total 

Catch 

Catch 

Proportions 

Total 

Index 

Index 

Proportions RRR RRC RCR RCC FCR FCC CCR CCC Average Median Min Max 

Baseline Baseline Baseline Baseline 94 100 93 96 81 88 82 84 89.75 90.5 81 100 

Very High Baseline Baseline Baseline 97 100 94 98 84 93 87 93 93.25 93.5 84 100 

High Baseline Baseline Baseline 90 100 93 97 83 88 80 86 89.63 89 80 100 

Baseline Very High Baseline Baseline 94 99 91 98 77 88 80 86 89.13 89.5 77 99 

Baseline High Baseline Baseline 90 97 93 97 76 84 77 81 86.88 87 76 97 

Baseline Baseline Very Low Baseline 84 95 84 100 63 86 56 84 81.5 84 56 100 

Baseline Baseline Low Baseline 91 98 90 97 86 90 75 82 88.63 90 75 98 

Baseline Baseline Baseline Very Low 82 97 93 98 75 82 77 80 85.5 82 75 98 

Baseline Baseline Baseline Low 93 98 99 98 77 89 71 88 89.13 91 71 99 

Average 90.56 98.22 92.22 97.67 78 87.56 76.11 84.89     
Median 91 98 93 98 77 88 77 84     
Min 82 95 84 96 63 82 56 80     
Max 97 100 99 100 86 93 87 93     
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Spawning stock biomass in the terminal year was relatively unbiased across all estimation 

models in all process variance simulation scenarios (Figure 2.1). Precision was lower in 

estimation models that assumed recruitment was constant (C--), except when the true recruitment 

variance was zero (left column, bottom row). Spawning stock biomass was estimated with low 

precision when the variation in expected survival was high or very high (middle column, top two 

rows), except when expected survival was included as a random effect. 

Average recruitment in the terminal three years was relatively unbiased across all 

estimation models in all process variance simulation scenarios but precision was lower in 

estimation models that assumed constant recruitment (Figure 2.2). When variability in selectivity 

was very high (right column, top row) and the estimation model incorrectly assumed it was 

constant and treated recruitment and expected survival as random effects (RRC), average 

recruitment was positively biased. The most precise and relatively unbiased estimates of average 

recruitment in the terminal three years were in cases where the true recruitment variance was 

zero (left column, bottom row). 

Exploitation rate in the terminal year was relatively unbiased except when the model 

incorrectly assumed recruitment was constant in which case it was underestimated (Figure 2.3). 

Exploitation rate was underestimated when selectivity variability was very high (right column, 

top row) and the model assumed it was constant and recruitment and expected survival were 

random effects (RRC), suggesting a tradeoff between exploitation rate and recruitment estimates. 

Precision in estimated exploitation rate was low when expected survival process variance was 

high or very high (middle column, top two rows) and the model assumed the expected survival 

was deterministic. Depletion was estimated without bias across all estimation models and 

process variance scenarios (Figure 2.4). Depletion had low precision when recruitment was 
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assumed to be constant and high precision when the variance in expected survival was zero 

(middle column, bottom row).  

Recruitment process error standard deviation was estimated without substantial bias in 

most estimation models and process variance simulation scenarios (Figure 2.5). When the true 

recruitment variance was zero or very low (left column, bottom two rows), the standard deviation 

was unbiased, as long as the estimation model assumed process error in expected survival, 

otherwise the variance was overestimated. The recruitment standard deviation was also 

overestimated when the true variation in expected survival was high or very high (middle 

column, top two rows) and the estimation model assumed the expected survival was 

deterministic. The survival process error standard deviation was underestimated in almost all 

scenarios, and only substantially overestimated when the true expected survival variance was 

zero and the model assumed expected survival process variation was present (Figure 2.6). The 

recruitment and expected survival process error correlation coefficient, which quantifies inter-

year correlations was unbiased in most simulation scenarios, except when selectivity variation 

was very high, and the estimation model assumed selectivity was constant (Figure 2B.1). 

The selectivity process error standard deviation was underestimated in estimation models 

that assumed all processes were random effects (RRR) but was relatively unbiased or 

overestimated in other estimation models across other process error simulation scenarios (Figure 

2.7). In particular, the standard deviation was substantially overestimated, sometimes by a factor 

of 2 or 3 when selectivity was the only source of process variability in the model (CCR), and the 

bias became more extreme as either recruitment, expected survival, or selectivity variability 

increased. The selectivity process error correlation coefficient was underestimated in all 
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scenarios, and the bias was greater when selectivity was the only source of process variability 

(Figure 2B.2). 

 The Mohn’s Rho statistics showed low retrospective bias and high precision in spawning 

stock biomass or average fishing mortality, except in estimation models where recruitment was 

incorrectly specified as constant (Figures 2B.4-2B.5). When recruitment was specified as a 

random effect, there were positive retrospective patterns in recruitment, and when specified as a 

fixed effect, the retrospective patterns were less (Figure 2B.6).  

 Increasing the variability in total catch or index data or the proportions at age did not 

noticeably change the precision or accuracy in model output, though the precision was lower in 

estimation models that assumed recruitment was constant across all observation error operating 

model scenarios (Figures 2B.7-2B.9). The retrospective patterns in spawning stock biomass, 

average fishing mortality, and recruitment was also equivalent across observation error scenarios 

(Figures 2B.10-2B.12). Recruitment and selectivity process error standard deviation, and both 

correlation coefficients were estimated about as well across observation error operating model 

scenarios (Figures 2B.13-2B.17).
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Figure 2.1. Relative error in spawning stock biomass in the terminal year across process variability operating model scenarios. The 

black lines indicated zero relative error. Results presented in each column are for when process error variance was set at a range of 

values (left-recruitment, middle-survival, right-selectivity) with the standard deviations for the other processes at baseline values. 

Individual boxplots represent the eight estimation models that treat recruitment, expected survival, or selectivity as a random effect 

(R), fixed effect (F), or constant (C). The number above each boxplot indicates the number of models that converged and produced 

positive definite hessians, out of 100 simulated data sets. The black dot is the median and the red dot is the average relative error 

across the converged models. 
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Figure 2.2. Relative error in average recruitment in the terminal 3 years across process variability operating model scenarios. 

Individual boxplots represent the eight estimation models that treat recruitment, expected survival, or selectivity as a random effect 

(R), fixed effect (F), or constant (C), in that order. See caption of Figure 2.1 for description of plot elements.
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Figure 2.3. Relative error in average exploitation (predicted catch biomass/total biomass) in the terminal year across process 

variability operating model scenarios. Individual boxplots represent the eight estimation models that treat recruitment, expected 

survival, or selectivity as a random effect (R), fixed effect (F), or constant (C), in that order. See caption of Figure 2.1 for description 

of plot elements. 
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Figure 2.4. Relative error in depletion in the terminal 10 years across process variability operating model scenarios. Individual 

boxplots represent the eight estimation models that treat recruitment, expected survival, or selectivity as a random effect (R), fixed 

effect (F), or constant (C), in that order. See caption of Figure 2.1 for description of plot elements. 

  



 

 

99 

 

Figure 2.5. Estimated recruitment process error standard deviation across process variability operating model scenarios. Black lines 

indicate the true recruitment standard deviation. Results presented in each column are for when process error standard deviation was 

set at a range of values (left-recruitment, middle-survival, right-selectivity) with the standard deviations for the other processes at 

baseline values. Note that results in all three columns are for recruitment process variation. When the survival (middle column) or 

selectivity (right column) standard deviations are changed from their baseline value, the true recruitment standard deviation remains 

constant at its baseline value of 1.176 as indicated by the horizontal lines. Individual boxplots represent the eight estimation models 

that treat recruitment, expected survival, or selectivity as a random effect (R), fixed effect (F), or constant (C). Only estimation models 

that specify recruitment as a random effect (R--) are represented. See caption of Figure 2.1 for description of plot elements. Note slight 

differences in the y-axis. 
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Figure 2.6.  Estimated expected survival process error standard deviation across process variability operating model scenarios. Black 

lines indicate the true expected survival standard deviation. Results presented in each column are for when process error standard 

deviation was set at a range of values (left-recruitment, middle-survival, right-selectivity) with the standard deviations for the other 

processes at baseline values. Note that results in all three columns are for survival process variation. When the recruitment (left 

column) or selectivity (right column) standard deviations are changed from their baseline value, the true expected survival standard 

deviation remains constant at its baseline value of 0.19 as indicated by the horizontal lines. Individual boxplots represent the eight 

estimation models that treat recruitment, expected survival, or selectivity as a random effect (R), fixed effect (F), or constant (C). Only 

estimation models that specify survival as a random effect (-R-) are represented. See caption of Figure 2.1 for description of plot 

elements. Note slight differences in the y-axis. 
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Figure 2.7.  Estimated expected selectivity process error standard deviation across process variability operating model scenarios. 

Black lines indicate the true selectivity standard deviation. Results presented in each column are for when process error standard 

deviation was set at a range of values (left-recruitment, middle-survival, right-selectivity) with the standard deviations for the other 

processes at baseline values. Note that results in all three columns are for selectivity process variation. When the recruitment (left 

column) or expected survival (middle column) standard deviations are changed from their baseline value, the true selectivity standard 

deviation remains constant at its baseline value of 0.3 as indicated by the horizontal lines. Individual boxplots represent the eight 

estimation models that treat recruitment, expected survival, or selectivity as a random effect (R), fixed effect (F), or constant (C). Only 

estimation models that specify selectivity as a random effect (--R) are represented. See caption of Figure 2.1 for description of plot 

elements. Note slight differences in the y-axis. 
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2.5 Discussion 

 Even under a wide range of true variability in recruitment, survival, and selectivity, 

estimation models that assumed recruitment varied and treated them as either random or fixed 

effects estimated spawning stock biomass, recruitment, exploitation, and depletion without 

substantial bias. Estimation models that assumed constant recruitment performed poorly under 

most circumstances, but recruitment is rarely, if ever, assumed constant in an integrated age-

based stock assessment model because many biotic and abiotic factors will influence the 

production of eggs and their survival to recruitment from year to year (Maunder and Thorson, 

2018b). Though several estimation models were used in this study to provide contrast and 

elucidate the influence of assuming random effects in each process individually or in 

combination, only a few resemble those that are conventionally employed in stock assessment. 

The FCC resembles the architecture of a program like ASAP and a traditional statistical-catch-at-

age model (Legault and Restrepo, 1998). When to apply a state-space model that includes 

process error on everything (RRR), b) a “reduced” version of RRR that specifies only one or two 

of the processes as random effects, or c) a statistical-catch-at-age model for a particular system 

will depend on the assumed degree of process and observation error variance and whether the 

model converges. Ultimately, the decision to employ a state-space model depends strongly on 

what quantities of interest need to be estimated with high accuracy and if modelers want 

estimates of process variance that are estimated within the model. Internal estimates of process 

variance may be preferable in fisheries management because they may better reflect the range of 

future recruitment, abundance, and spawning stock biomass. 

If the recruitment or expected survival process variation is suspected to be very high, then 

it is better to employ an estimation model that specifies that both processes are random effects. 
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Such models tended to have higher convergence rates and less biased model estimates compared 

to models that specify recruitment as a fixed effect and survival as deterministic. Similar 

research that tested the estimability of recruitment and recruitment standard deviation in a 

deterministic, fixed effect, penalized likelihood, or marginal likelihood framework found similar 

results, i.e., that having a constraint on recruitment deviations leads to less bias in estimated 

recruitment and biomass (Maunder and Deriso, 2003; Thorson et al., 2019). If there is reason to 

believe the survival is deterministic (i.e., that the abundance at age can be fully explained by the 

previous abundance at age and mortality), the estimation model should not include survival as a 

random effect, because the convergence rate of such models under these conditions was very 

low. When recruitment or survival process variability is low RR- models are likely trying to 

estimate phantom variability and misallocating variance in recruitment or selectivity to expected 

survival (more on this discussed below). In the present case, there is little disadvantage to 

assuming recruitment or selectivity process error is present when it is absent. This aligns with 

similar work that found that specifying process error in selectivity when there is none did not 

create bias, as long as data were weighted correctly (Cronin-Fine and Punt, 2021; Martell and 

Stewart, 2014; Stewart and Monnahan, 2017). However, this conclusion is contingent upon the 

parameterization of selectivity, as other work has found that sometimes estimating time-varying 

selectivity when it varies minimally can introduce substantial bias (Linton and Bence, 2011).     

Modelers can anticipate the degree of variability in recruitment or expected survival 

before choosing among estimation models using information outside of the assessment model 

and/or by understanding what influences interannual variability. Recruitment variability has been 

weakly linked to fecundity, length of spawning season, and other life history characteristics, and 

to environmental conditions, though such relationships tend to become unstable over time 
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(Brosset et al., 2020; Cushing, 1990; Mertz and Myers, 1996; Rose et al., 2001). Thorson et al., 

(2014) developed a hierarchical stock-recruitment model that estimated the standard deviation 

and inter-annual correlation coefficient of recruitment for 154 marine species summarized across 

taxa, which could serve as a reference, though this work quantified variation in addition to that 

explained by a stock-recruitment relationship. Variation in expected survival includes any 

change in the numbers-at-age that is not accounted for in the exponential total mortality function. 

Expected survival variability can reflect immigration/emigration from the system, unaccounted 

for process variability in natural mortality or selectivity, or catch misreporting, which may be 

detected from process error residuals (Stock and Miller, 2021). Therefore, if movement is not 

occurring and other process variability is correctly specified, such as on natural mortality, 

expected survival can reasonably be excluded from the random effects in the estimation model. 

If substantial movement or stock mixing is occurring, models can account for this though 

auxiliary information like tagging data, and/or restructuring management units to reflect closed 

populations (Berger et al., 2021; Bosley et al., 2022; Goethel et al., 2021). Therefore state-space 

stock assessment models may perform best when such auxiliary information about the stock 

movement is routinely collected. 

The estimation model that specified random effects in recruitment, expected survival, and 

selectivity (RRR) did not reliably partition variability across the three processes in all 

circumstances. When all three processes varied, the standard deviation in recruitment was 

accurately estimated but expected survival and selectivity variability were underestimated, a 

phenomenon noted between recruitment and survival in Trijoulet et al., (2020). This 

underestimation may be because the survival and selectivity processes are confounded, 

regardless of the degree of process variation, or that the AR(1) process constrains the simulated 
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values to be closer to the mean and the full extent of variation is not realized with only 42 years 

of data (Linton and Bence, 2008). When recruitment and selectivity are at their baseline 

variability but expected survival variation is high, some will be allocated to recruitment. The 

problem of variance not being apportioned correctly was exacerbated when one or more 

processes were incorrectly specified. There is an apparent tradeoff between expected survival 

and selectivity process variance, because when one was assumed fixed (RCR and RRC), the 

standard deviation of the other process is overestimated. When only one source of variability is 

specified, either the recruitment or selectivity, in the RCC and CCR models, respectively, that 

process must absorb all model variance, so the standard deviation is substantially overestimated.  

The decision to employ a state-space model should not depend on perceived quality of 

the index or catch data. Other work has investigated the estimability of observation and process 

error variance more closely and noted trade-offs between data weighting or data availability 

(increased number of surveys and auxiliary data) and correctly specifying the process model 

(Dickey-Collas et al., 2015; Stewart and Monnahan, 2017). Within the scope of this work, 

having quality catch proportion at age data slightly increased the accuracy of expected survival 

standard deviation estimates. Age composition likelihoods like the Dirichlet-multinomial that 

include data-weighting parameters have been explored as an alternative to the multinomial 

distribution when there is time-varying selectivity (Albertsen et al., 2017; Cronin-Fine and Punt, 

2021; Xu et al., 2020). The use of such alternative likelihoods may allow for estimation of 

observation error variance, which was not realized in my model. However, it may exacerbate the 

issue of correctly apportioning variability and is a topic of future investigation.  

Intriguingly, I saw little decline in the precision of biomass or exploitation estimates 

when data quality was low or process error in recruitment was substantial. This suggests that 
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assessments of comparable quality might be achieved with alternative data collection schemes 

involving fewer trips or sampled fish. Gulf of Maine haddock is a data rich case with multiple 

survey indices, so increasing the variance by no more than 50% and limiting the investigation to 

one data source at a time may not have been extensive enough to investigate how noisy data can 

still lead to unbiased and precise estimates. Future work may consider reductions of data quality 

in several data sources simultaneously, or removal of whole surveys or years of data. As research 

in data-limited or data-poor methods in fisheries becomes increasingly necessary to support more 

global fisheries, state-space models may be an important avenue of investigation (Cope et al., 

2023). I did not use AIC or DIC as a model selection criterion but rather based model 

performance on bias and precision of relative error and retrospective patterns. Comparing the 

likelihood between state-space and non-state-space models can sometimes lead to choosing over-

fitted models with poor predictive abilities (Trijoulet et al., 2020). Contemporary model selection 

is not based solely on AIC or DIC, but rather also using retrospective patterns, consistency, 

prediction skill, and (of particular importance in state-space models) one step ahead residuals 

(Carvalho et al., 2021; Trijoulet et al., 2023). Using retrospective patterns to select among 

models with different selectivity parameterization can lead to better performing models than if 

selection was done based on DIC (Linton and Bence, 2011).  

A state-space model is categorically recommended instead of a SCAA model for its 

ability to incorporate more stochasticity and estimate process error standard deviations. Correctly 

quantifying the process error variability in recruitment, expected survival, and selectivity can 

lead to model projections that are more likely to reflect reality. Accurate estimates of recruitment 

process variance in particular are vital to predicting the future trajectory of a stock because it can 

be used to approximate extinction probability and inform recovery plans (Maunder and Deriso, 
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2003). Using anything except the state-space model that assumes random effects on recruitment, 

expected survival, and selectivity is only recommended under a few circumstances explored in 

this study, which the modeler may be able to determine a priori. Though this work offers 

guidelines, its findings are rooted in a particular stock and a model with the variance of 

observation error distributions specified a priori. The observation error variance was fixed at the 

same value used in the SCAA model which may have been too large because observation error in 

SCAA tends to account for process variability which the state-space model explicitly specifies. 

Future work should expand this simulation approach to include even greater observation error 

bias, greater combinations of low/high variance in processes like recruitment, expected survival, 

selectivity, and with alternative observation error likelihoods that allow for self-weighting and 

variance estimation like the Dirichlet-multinomial, logistic normal, or multivariate Tweedie. 
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APPENDIX 2A: INPUT OBSERVATION VARIANCE VALUES 

Table 2A.1. Input standard deviation of lognormal distribution for total catch and total index, and 

effective sample size of multinomial distribution for catch and index proportions at age used to 

fit Gulf of Maine haddock. 

 

Year 𝜎𝐶𝑦
 𝜎𝐼𝑦,𝑆

2  𝜎𝐼𝑦,𝐹
2  𝑛𝑦

(𝐶)
 𝑛𝑦,𝑆

(𝐼)
 𝑛𝑦,𝐹

(𝐼)
 

1977 0.2 0.6142 0.5225 60 15 25 

1978 0.2 0.7069 0.3756 60 15 25 

1979 0.2 0.5174 0.402 60 15 25 

1980 0.2 0.6821 0.5415 60 15 25 

1981 0.2 0.5442 0.3841 60 15 25 

1982 0.2 0.6061 0.5385 60 15 25 

1983 0.2 0.6917 0.4717 60 15 25 

1984 0.2 0.7048 0.467 60 15 7 

1985 0.2 0.6785 0.5869 60 15 7 

1986 0.2 0.7443 0.6136 60 15 7 

1987 0.2 0.6549 0.5188 60 5 7 

1988 0.2 0.8185 0.8237 20 5 7 

1989 0.15 1.0139 0.5951 20 5 7 

1990 0.15 0.8431 0.5812 20 5 7 

1991 0.15 0.8238 0.771 20 5 7 

1992 0.15 0.915 0.7289 20 5 7 

1993 0.15 0.7611 0.9208 60 10 7 

1994 0.15 0.635 0.6189 60 10 7 

1995 0.15 0.7618 0.7218 60 10 7 

1996 0.15 0.6179 0.5799 60 10 7 

1997 0.15 0.698 0.5582 60 10 7 

1998 0.15 0.709 0.6899 60 10 30 

1999 0.15 0.6945 0.4931 60 10 30 

2000 0.15 0.69 0.6627 60 10 30 

2001 0.1 0.8868 0.4699 60 10 30 

2002 0.1 0.8074 0.5369 60 10 30 

2003 0.1 0.543 0.4162 140 10 30 

2004 0.1 0.6241 0.4569 140 10 30 

2005 0.1 0.6961 0.3908 140 25 30 

2006 0.1 0.744 0.4546 140 25 30 

2007 0.1 0.6686 0.4973 140 25 30 

2008 0.1 0.7815 0.5064 140 25 30 

2009 0.1 0.666 0.5245 140 25 12 

2010 0.1 0.6778 0.6653 140 25 12 

2011 0.1 0.6538 0.6523 140 25 12 

2012 0.1 0.6848 0.7937 140 25 12 
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Table 2A.1 (cont’d) 

 

2013 0.1 0.73 0.4409 140 25 12 

2014 0.1 0.492 0.5957 140 25 12 

2015 0.1 0.8862 0.409 140 25 12 

2016 0.1 0.5058 0.3803 140 25 12 

2017 0.1 0.5909 0.3692 140 25 12 

2018 0.1 0.4801 0.3968 140 25 12 

2019 0.1 0.4973 0.4331 140 25 12 
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APPENDIX 2B: SUPPLEMENTARY FIGURES 

Figure 2B.1. Estimated recruitment and expected survival process error correlation coefficient. Black lines indicate the true correlation 

coefficient. Results presented in each column are for when process error standard deviation was set at a range of values (left-

recruitment, middle-survival, right-selectivity) with the standard deviations for the other processes at baseline values. Individual 

boxplots represent the eight estimation models that treat recruitment, expected survival, or selectivity as a random effect (R), fixed 

effect (F), or constant (C). Only estimation models that specify recruitment as a random effect (R--) are represented. The number 

above each boxplot indicates the number of models that converged and produced positive definite hessians, out of 100 simulated data 

sets. The black dot is the median and the red dot is the average relative error across the converged models. Note slight differences in 

the y-axis. 
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Figure 2B.2. Estimated selectivity process error correlation coefficient. Black lines indicate the true correlation coefficient. Results 

presented in each column are for when process error standard deviation was set at a range of values (left-recruitment, middle-survival, 

right-selectivity) with the standard deviations for the other processes at baseline values. Individual boxplots represent the eight 

estimation models that treat recruitment, expected survival, or selectivity as a random effect (R), fixed effect (F), or constant (C). Only 

estimation models that specify selectivity as a random effect (--R) are represented. See caption of Figure 2B.1 for description of plot 

elements. Note slight differences in the y-axis. 
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Figure 2B.3. Mohn’s Rho of spawning stock biomass across process variability operating model scenarios. Black lines indicate zero 

retrospective bias. Results presented in each column are for when process error standard deviation was set at a range of values (left-

recruitment, middle-survival, right-selectivity) with the standard deviations for the other processes at baseline values. Individual 

boxplots represent the eight estimation models that treat recruitment, expected survival, or selectivity as a random effect (R), fixed 

effect (F), or constant (C). See caption of Figure 2B.1 for description of plot elements. 
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Figure 2B.4. Mohn’s Rho of average fishing mortality across process variability operating model scenarios. Black lines indicate zero 

retrospective bias. Results presented in each column are for when process error standard deviation was set at a range of values (left-

recruitment, middle-survival, right-selectivity) with the standard deviations for the other processes at baseline values. Individual 

boxplots represent the eight estimation models that treat recruitment, expected survival, or selectivity as a random effect (R), fixed 

effect (F), or constant (C). See caption of Figure 2B.1 for description of plot elements. 
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Figure 2B.5. Mohn’s Rho of recruitment across process variability operating model scenarios. Black lines indicate zero retrospective 

bias. Results presented in each column are for when process error standard deviation was set at a range of values (left-recruitment, 

middle-survival, right-selectivity) with the standard deviations for the other processes at baseline values. Individual boxplots represent 

the eight estimation models that treat recruitment, expected survival, or selectivity as a random effect (R), fixed effect (F), or constant 

(C). See caption of Figure 2B.1 for description of plot elements. 
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Figure 2B.6. Relative error in spawning stock biomass in the terminal year across observation error operating models scenarios where 

the standard deviation of the lognormal error of total catch or total indices (columns 1-2) or the effective sample size of the 

multinomial catch or index proportions (columns 3-4) are adjusted to make the data noisier. The black lines indicated zero relative 

error. Results presented in each column are for when process error variance was set at a range of values (left-recruitment, middle-

survival, right-selectivity) with the standard deviations for the other processes at baseline values. Individual boxplots represent the 

eight estimation models that treat recruitment, expected survival, or selectivity as a random effect (R), fixed effect (F), or constant (C). 

The number above each boxplot indicates the number of models that converged and produced positive definite hessians, out of 100 

simulated data sets. The black dot is the median and the red dot is the average relative error across the converged models. 
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Figure 2B.7. Relative error in average recruitment in the terminal 3 years across observation error operating models scenarios. 

Individual boxplots represent the eight estimation models that treat recruitment, expected survival, or selectivity as a random effect 

(R), fixed effect (F), or constant (C), in that order. See caption of Figure 2B.6 for description of plot elements. 
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Figure 2B.8. Relative error in exploitation (predicted catch biomass/total biomass) in the terminal year across observation error 

operating models scenarios. Individual boxplots represent the eight estimation models that treat recruitment, expected survival, or 

selectivity as a random effect (R), fixed effect (F), or constant (C), in that order. See caption of Figure 2B.6 for description of plot 

elements. 
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Figure 2B.9. Relative error in depletion in the terminal 10 years across observation error operating models scenarios. Individual 

boxplots represent the eight estimation models that treat recruitment, expected survival, or selectivity as a random effect (R), fixed 

effect (F), or constant (C), in that order. See caption of Figure 2B.6 for description of plot elements. 

 
  



 

 

124 

 

Figure 2B.10. Mohn’s Rho of spawning stock biomass across observation error operating models scenarios. Black lines indicate zero 

retrospective bias. Individual boxplots represent the eight estimation models that treat recruitment, expected survival, or selectivity as 

a random effect (R), fixed effect (F), or constant (C). See caption of Figure 2B.6 for description of plot elements. 
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Figure 2B.11. Mohn’s Rho of average fishing mortality across observation error operating models scenarios. Black lines indicate zero 

retrospective bias. Individual boxplots represent the eight estimation models that treat recruitment, expected survival, or selectivity as 

a random effect (R), fixed effect (F), or constant (C). See caption of Figure 2B.6 for description of plot elements. 
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Figure 2B.12. Mohn’s Rho of recruitment across observation error operating models scenarios. Black lines indicate zero retrospective 

bias. Individual boxplots represent the eight estimation models that treat recruitment, expected survival, or selectivity as a random 

effect (R), fixed effect (F), or constant (C). See caption of Figure 2B.6 for description of plot elements. 
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Figure 2B.13. Estimated recruitment process error standard deviation across observation error operating model scenarios. Black lines 

indicate the true recruitment standard deviation. Individual boxplots represent the eight estimation models that treat recruitment, 

expected survival, or selectivity as a random effect (R), fixed effect (F), or constant (C). Only estimation models that specify 

recruitment as a random effect (R--) are represented. See caption of Figure 2B.6 for description of plot elements. 
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Figure 2B.14. Estimated expected survival process error standard deviation across observation error operating model scenarios. Black 

lines indicate the true expected survival standard deviation. Individual boxplots represent the eight estimation models that treat 

recruitment, expected survival, or selectivity as a random effect (R), fixed effect (F), or constant (C). Only estimation models that 

specify survival as a random effect (-R-) are represented. See caption of Figure 2B.6 for description of plot elements. 
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Figure 2B.15. Estimated selectivity process error standard deviation across observation error operating model scenarios. Black lines 

indicate the true selectivity standard deviation. Individual boxplots represent the eight estimation models that treat recruitment, 

expected survival, or selectivity as a random effect (R), fixed effect (F), or constant (C). Only estimation models that specify 

selectivity as a random effect (R--) are represented. See caption of Figure 2B.6 for description of plot elements. 
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Figure 2B.16. Estimated recruitment and expected survival process error correlation coefficient across observation error operating 

model scenarios. Black lines indicate the true correlation coefficient. Individual boxplots represent the eight estimation models that 

treat recruitment, expected survival, or selectivity as a random effect (R), fixed effect (F), or constant (C). Only estimation models that 

specify recruitment as a random effect (R--) are represented. See caption of Figure 2B.6 for description of plot elements. 
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Figure 2B.17. Estimated selectivity process error correlation coefficient across observation error operating model scenarios. Black 

lines indicate the true correlation coefficient. Individual boxplots represent the eight estimation models that treat recruitment, expected 

survival, or selectivity as a random effect (R), fixed effect (F), or constant (C). Only estimation models that specify selectivity as a 

random effect (R--) are represented. See caption of Figure 2B.6 for description of plot elements. 
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CHAPTER 3: 

THE PERFORMANCE OF ALTERNATIVE AGE COMPOSITION LIKELIHOODS IN 

STATE-SPACE MODELS WITH MULTIPLE SOURCES OF PROCESS VARIATION 

3.1 Abstract 

Integrated stock assessment models incorporate multiple sources of data like catch, 

indices of abundance, and proportions at age, each with different degrees of quality in either 

fishery or survey catch. In a maximum likelihood estimation framework, integrated models 

explicitly apportion observation variability through values supplied to the assumed likelihood, 

such as the standard deviation of a lognormal distribution (for catch) or the effective sample size 

of a multinomial distribution (for proportions at age), and these terms are typically supplied by 

the user. Several alternatives to the multinomial (MN) distribution, such as the Dirichlet-

multinomial (DM), logistic normal (LG), and multivariate Tweedie (MVTW) distributions, can 

allow observation variance to be approximated within the model by estimating parameters that 

scale or replace the input effective sample size. These distributions can better account for the 

intra-haul correlation and overdispersion of sampled ages. However, these distributions have yet 

to be extensively tested in a state-space stock assessment model with estimated process error 

variance, which has the added challenge of apportioning total model variability between the 

observation and process sub-models. I used a simulation-estimation framework to generate data 

with process variability in recruitment, expected survival (i.e., abundance), and selectivity at age, 

and with observation variability in the catch proportions at age derived from one of several 

distributions. Simulated data were fit using several estimation models that differed in which 

processes (recruitment, expected survival, or selectivity) were incorporated and in the assumed 

distribution for observation error influencing age composition data. Estimation models had 
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difficulty apportioning variability among processes, especially when the observation model for 

age compositions did not account for realized inter-age correlation and overdispersion. 

Estimation models that assumed the survival processes were stochastic produced biased model 

output, but only models that assumed an intermediate amount of process variability (either 

stochastic survival or constant selectivity at age) were able to accurately estimate the parameters 

determining the characteristics of observation error in age composition data. It is recommended 

that the logistic normal or multivariate Tweedie distributions be employed in fitting state-space 

stock assessment models, especially in the face of several time-varying processes. 

3.2 Introduction 

Statistical estimation models fit data using a likelihood function, which quantifies the 

probability of observing the data conditional on the model and the values of the parameters. 

Choices are made about observation error (e.g., how it is structured, the magnitude relative to the 

process error, and how much is distributed across multiple data sources) through specification of 

the likelihood function. Through the variance parameters, such as the standard deviation of the 

normal distribution or the effective sample size of the multinomial distribution, the model can be 

“weighted” such that some data are fit more closely (with less observation error such that the 

predicted and observed values are more similar) than others. Correctly weighting among multiple 

data sources in integrated stock assessment models is an ongoing challenge especially when data 

have conflicting trends (Maunder and Piner, 2017; Maunder and Punt, 2013; Punt et al., 2013). 

Changing the data weighting or the likelihood function as a whole can cause substantial changes 

in model output and model evaluation tools like AIC as the model fits certain data points more 

accurately (Francis, 2014, 2011). It is therefore imperative to specify an observation error 



 

 

134 

 

structure that accurately reflects the data collection process and correctly weights among, for 

example, catch, discards, indices of abundance, and tagging data.  

Age composition, or the fraction of each age represented in the catch or index, is 

recorded by sub-sampling individuals from the catch or survey and aging from otoliths, scales, or 

other bony structures. In standard statistical-catch-at-age models, the proportions at age are often 

assumed to have observation error that has a multinomial distribution (MN) (Fournier and 

Archibald, 1982; Legault and Restrepo, 1998; Methot and Wetzel, 2013). However, such a 

distribution assumes that individuals are sampled independently, when in reality factors like 

schooling or targeted fishing may lead to overdispersion (more variability than expected) and 

“intra-haul correlation” among age groups (Pennington and Vølstad, 1994). Therefore, 

alternative composition distributions with more desirable properties that can account for 

overdispersion and inter-age correlation have been explored instead of the multinomial (Francis, 

2014; Maunder, 2011). In a state-space modeling framework, which include one or more time-

varying random effects which are integrated from the marginal likelihood, the process variation 

is self-weighting and the applicability of alternative proportions at age likelihoods may be 

contingent on how well they can parse variance among data sources and between the process and 

observation sub-models (Besbeas and Morgan, 2017; Francis, 2017; Linton and Bence, 2008). 

The multinomial is still recommended over some of the alternative proportions at age 

distributions (listed below) when the model accounts for time-varying selectivity (Cronin-Fine 

and Punt, 2021). 

The Dirichlet-multinomial (DM) is a hierarchical distribution that assumes that the 

effective sample size of a multinomial distribution follows a Dirichlet distribution (Francis, 

2017; Thorson et al., 2017). The DM outperforms other data weighting schemes like iteratively 
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reweighting the multinomial effective sample size or estimating effective sample sizes with a 

strong prior (Thorson et al., 2017; Xu et al., 2020). The logistic normal (LG) is another 

hierarchical distribution, but unlike DM can account for substantial correlation among age 

classes. LG is a transformed multivariate-normal distribution that can be parameterized to be 

linear, or an autoregressive first order AR(1) or second order AR(2) process, or moving average 

ARMA (Fisch et al., 2021; Francis, 2014). Its flexibility and ability to self-weight has led the LG 

distribution, and others that can account for correlations, to outperform the DM especially when 

there’s moderate process error in selectivity and the composition sample size is large (Albertsen 

et al., 2017; Fisch et al., 2021). The LG distribution is a recommended option when employing 

state-space stock assessment software WHAM and when there is variance in numbers at age, 

natural mortality, selectivity, or environmental covariates (Stock et al., 2021; Stock and Miller, 

2021). The multivariate Tweedie distribution (MVTW) has recently been adapted for application 

in fisheries stock assessment. The MVTW is an attractive alternative to the multinomial that 

assumes that the proportions at age are derived from a transformed gamma and arises naturally 

from the process of subsampling age and length information (Thorson et al., 2022). Though 

previous research and application are limited for MVTW, it has outperformed the DM and 

performed comparably to the LG in a state-space model with time-varying selectivity and is 

already included in the state-space modeling software WHAM (Stock and Miller, 2021; Thorson 

et al., 2022). The MVTW can upweight the data (produce effective sample sizes larger than the 

input sample size, which combats the risk of setting the input sample size too low) and estimate 

heteroscedasticity unlike the DM, and account for zeros in the data, unlike the LG, so it exhibits 

many of the stated important qualities for an catch proportions at age distribution (Francis, 2014; 

Thorson et al., 2022). 
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Models may perform differently and produce biased model output when they do not 

account for overdispersion or inter-age correlation when these factors are present or when they 

do try to account for these processes when they are absent, particularly when the model is also 

accounting for several other stochastic processes. To address this question, catch data were 

simulated using alternative age composition scenarios that assumed several observation error 

distributions for the proportions at age (of those described above), then the simulated data were 

fit using estimation models that assumed different likelihoods for the proportions at age, and 

different sources of process variability in recruitment, expected survival, and selectivity. The 

additional process variability scenarios were intended to test how well the model can apportion 

variability when there are one or several time-varying processes. 

3.3 Methods 

3.3.1 Overview 

Catch data were simulated using a state-space stock assessment operating model that was 

based on a model fit with Gulf of Maine haddock data. The operating model generated total 

catch and catch proportions at age using four scenarios that assumed the observation error in 

total catch had a lognormal distribution and the observation errors in catch proportions at age had 

a multinomial, Dirichlet-multinomial, logistic-normal with AR(1) correlations, or multivariate 

Tweedie distribution. A fifth simulation scenario modeled observation error in catch-at-age, 

rather than the total catch and proportions separately, using a multivariate lognormal distribution 

with AR(1) error (MVN). The MVN distribution for catch-at-age is the default assumption in the 

state-space modeling software SAM and a common observation error distribution used to fit 

Canadian stocks (Berg and Nielsen, 2016; Nielsen and Berg, 2014; Perreault et al., 2020). The 

operating model included intra-annual process variance in recruitment, expected survival, and 
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selectivity, with an autocorrelated AR(1) distribution. Yearly deviations in these processes were 

not simulated from their respective distributions, but rather fixed at the estimated values, such 

that the realized abundance, spawning stock biomass, and fishing mortality was the same for 

every generated data set. The simulated data were fit using several estimation models that 

differed in the assumed likelihood of the proportions at age, either MN, DM, LG or MVTW, but 

not MVN because no such option exists in the modeling package used for fitting. Several 

versions of the estimation models were also used which differed in which processes (of 

recruitment, expected survival or selectivity) had process errors. Model output from fitting 

simulated data were compared to the realized values used to generate that data to assess model 

performance.  

3.3.2 Simulation/Operating Model Scenarios 

Each simulation model generated total catch, total index, and catch and index age 

composition data (for ages 1-9+) in each year using the predicted values from an state-space 

stock assessment model fit with Gulf of Maine haddock catch and index data from 1977-2019 

using the WHAM state-space assessment package (Stock and Miller, 2021). The process and 

observation sub-model were identical to that described in Table 2.1 and summarized below. The 

process sub-model assumed time-varying random effects in recruitment, expected survival at 

age, and selectivity at age, and the yearly deviations were assumed to have an autoregressive 

AR(1) process with inter-annual correlation. In the observation sub-model, catch at age was 

predicted each year from a Baranov catch equation and the predicted total catch and proportions 

at age were derived from these age-specific values. Indices of abundance from a spring and fall 

bottom trawl survey were predicted from the abundance at age, index catchability, and index 

selectivity, and similarly decomposed into total index and index age compositions. The model 
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estimated fixed effect parameters of mean recruitment, mean selectivity at age, numbers at age 

for ages 1-6 in the first year, index catchability and selectivity, and the variance and correlation 

parameters of the random effects. The model integrated the random effects from the marginal 

likelihood and predicted values of the random effects and derived quantities were calculated 

using the epsilon method for bias correction (Thorson and Kristensen, 2016). For a full 

description of the process and observation sub-models see section 2.3.2.  

The operating model generated catch and index data using the same estimated fixed 

effect and random effect values from the model fitted to real data, i.e., the recruitment, expected 

survival, and selectivity deviations were kept the same and not re-drawn from their respective 

distributions. Therefore, the process variance was the same across simulation scenarios. The total 

index and index proportions at age were not simulated, but rather matched that of the Gulf of 

Maine Haddock data. What distinguished the five simulation scenarios was the assumed 

probability distribution of the observation error in total catch and catch proportions at age (Table 

3.1).  
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Table 3.1. Simulation distributions of total catch, proportion at age, or catch-at-age used in 

likelihood simulation scenarios and likelihood equations used in likelihood estimation scenarios. 

LN() denotes lognormal distribution with mean and standard deviation. N() is a normal 

distribution with mean and standard deviation. MN() is a multinomial distribution with effective 

sample size and predicted proportions. Gam() denotes gamma distribution with shape and scale 

parameters. Pois() is a Poisson distribution with mean/variance parameter. Γ() is the gamma 

function and det() is the determinant of a matrix. Predicted values of total catch �̂�𝑦 in weight, 

proportions at age �̂�𝑎,𝑦, catch-at-age in numbers, �̂�𝑎,𝑦, and average weight at age at time of 

capture, 𝑊𝑎,𝑦, are in Appendix 3A. 

Index  Equation 
Variance and Parameter 

Values 

Simulation Model 

Total Catch 

Sim 

Lognormal 

 𝐶𝑦~𝐿𝑁(�̂�𝑦 , 𝜎𝐶𝑦
) 

𝜎𝐶𝑦
= 0.2,  

1977 ≤ 𝑦 ≤ 1988 

𝜎𝐶𝑦
= 0.15,  

1989 ≤ 𝑦 ≤ 2000 

𝜎𝐶𝑦
= 0.1,  

2001 ≤ 𝑦 ≤ 2019 

Catch Proportions at Age 

SimMulti 

 𝑃𝑎,𝑦~𝑀𝑁(𝑛𝑦
(𝐶)

, �̂�𝑎,𝑦) 

𝑛𝑦
(𝐶)

= 60,  

1977 ≤ 𝑦 ≤ 1987 

𝑛𝑦
(𝐶)

= 20, 

 1988 ≤ 𝑦 ≤ 1992 

𝑛𝑦
(𝐶)

= 60, 

 1993 ≤ 𝑦 ≤ 2002 

𝑛𝑦
(𝐶)

= 140,  

2003 ≤ 𝑦 ≤ 2019 

SimDirMult 

 

𝑃𝑎,𝑦~𝑀𝑁(𝑛𝑦
(𝐶)

, �̂�𝑎,𝑦
∗ ) 

�̂�𝑎,𝑦
∗ =

𝑋𝑎,𝑦

∑ 𝑋𝑎,𝑦
𝐴
𝑎=1

 

𝑋𝑎,𝑦~𝐺𝑎𝑚(𝑘𝑎,𝑦 , 1) 

𝑘𝑎,𝑦 = �̂�𝑎,𝑦 ∗ 𝛽 

𝑛𝑦
(𝐶)

 see SimMulti 

𝛽 = 18.504 

SimLogi 

 

𝑃𝐴,𝑦 = 1 − ∑ 𝑃𝑎,𝑦

𝐴−1

𝑎=1

 

𝑃𝑎,𝑦 =
𝑃𝑎,𝑦

∗

1 + ∑ 𝑃𝑎,𝑦
∗𝐴−1

𝑎=1

, 𝑎 < 𝐴 

𝑃𝑎,𝑦
∗ ~𝑁(𝜇𝑎,𝑦, 𝚺𝑦), 𝑎 < 𝐴 

𝚺𝑦,𝑎,�̃� = 𝜌|𝑎−�̃�|𝜎𝑦
2, 𝑎 < 𝐴, �̃� < 𝐴 

𝜇𝑎,𝑦 = log(�̂�𝑎,𝑦) − log(�̂�𝐴,𝑦) , 𝑎 < 𝐴 

𝑛𝑦
(𝐶)

 see SimMulti 

𝜎 = 1.95  

𝜎𝑦 = exp (𝜎 +
1

2
log(𝑛𝑦

(𝐶)
))  

𝜌 = 0.648  
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Table 3.1 (cont’d) 

SimTwe 

 

𝑃𝑎,𝑦 =
𝑃𝑎,𝑦

∗

∑ 𝑃𝑎,𝑦
∗𝐴

𝑎=1

 

𝑃𝑎,𝑦
∗ ~𝐺𝑎𝑚(𝑘𝑎,𝑦 , 𝛾𝑎,𝑦) 

𝑘𝑎,𝑦 = −𝑃𝑜𝑖𝑠(𝜆𝑎,𝑦)𝛼 

𝛾𝑎,𝑦 =  𝜙(𝜓 − 1)𝜇𝑎,𝑦
𝜓−1 

𝛼 =
2 − 𝜓

1 − 𝜓
 

𝜆𝑎,𝑦 =
𝜇𝑎,𝑦

2−𝜓

𝜙(2 − 𝜓)
 

𝜇𝑎,𝑦 = �̂�𝑎,𝑦𝑛𝑦
(𝐶)

 

𝑛𝑦
(𝐶)

 see SimMulti 

𝜓 = 1.294  

𝜙 = 0.296  

Catch at Age  

SimMultiV 

 

𝐶𝑎,𝑦~𝑁(�̂�𝑎,𝑦 , 𝚺𝑦) 

𝚺𝑎,�̃� = 𝜌|𝑎−�̃�|𝜎𝑎𝜎�̃� , 1 < 𝑎 < 𝐴, 1 < �̃� < 𝐴 

 

𝜌 = 0.024 

𝜎1 = 0.599 

𝜎2 = 0.478 

𝜎3 = 0.424 

𝜎4 = 0.389 

𝜎5 = 0.412 

𝜎6 = 0.430 

𝜎7 = 0.444 

𝜎8 = 0.490 

𝜎9+ = 0.448 

 
 𝐶𝑦 = ∑ 𝐶𝑎,𝑦𝑊𝑎,𝑦

𝐴

𝑎=1

 

 

 
 𝑃𝑎,𝑦 =

𝐶𝑎,𝑦

∑ 𝐶𝑎,𝑦
𝐴
𝑎=1

 
 

Estimation Model Negative Log Likelihood   

Total Catch 

Est 

Lognormal  ∑
1

2𝜎𝐶𝑦

2 (log
𝐶𝑦

�̂�𝑦

)2 +

𝑌

𝑦=1977

log 𝜎𝐶𝑦
 

𝜎𝐶𝑦
 is same as 

SimLognormal 

 

Catch Proportions at Age 

EstMult 

 − ∑ ∑ 𝑛𝑦
(𝐶)

𝐴

𝑎=1

𝑌

𝑦=1977

�̂�𝑎,𝑦 log 𝑃𝑎,𝑦 
𝑛𝑦

(𝐶)
 see SimMulti 

 

EstDirMult 

 

− ∑ log (Γ(𝑛𝑦
(𝐶)

+ 1) +  log (Γ(𝜑𝑦) − log (Γ(𝑛𝑦
(𝐶)

+ 𝜑𝑦)

𝑌

𝑦=1977

+ ∑(−log (Γ(𝑛𝑦
(𝐶)

𝑃𝑎,𝑦 + 1)

𝐴

𝑎=1

+ log (Γ(𝑛𝑦
(𝐶)

𝑃𝑎,𝑦 + �̂�𝑎,𝑦 ∗ 𝛽)

− log (Γ(�̂�𝑎,𝑦 ∗ 𝛽))] 

𝜑𝑦 = ∑ 𝑘𝑎,𝑦

𝐴

𝑎=1

 

𝑘𝑎,𝑦 = �̂�𝑎,𝑦 ∗ 𝛽 

𝑛𝑦
(𝐶)

 see SimMulti 

𝛽 estimated on the log 

scale 
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Table 3.1 (cont’d) 

EstLogi 

 

− ∑ (log
1

√(2𝜋)
𝐴−1

2 det (𝚺)

)

𝑌

𝑦=1977

−
1

2
((𝑿𝑦 − 𝝁𝑦)

𝑇
𝚺−𝟏(𝑿𝑦 − 𝝁𝑦))

+ ∑ log (

𝐴−1

𝑎=1

𝑃𝑎,𝑦)) 

𝚺𝑦,𝑎,�̃� = 𝜌|𝑎−�̃�|𝜎2, 𝑎 < 𝐴, �̃� < 𝐴 

𝜇𝑎,𝑦 = log(�̂�𝑎,𝑦) − log(�̂�𝐴,𝑦) , 𝑎 < 𝐴 

𝑋𝑎,𝑦 = log(𝑃𝑎,𝑦) − log(𝑃𝐴,𝑦) , 𝑎 < 𝐴 

𝜎 estimated on the log 

scale, one value for all 

years 

𝜌 estimated on the logit 

scale 

𝑿𝑦  and 𝝁𝑦 are vector 

notation and contain all 

ages for a given year 

EstTwe 

 ∑ −log (∏ 𝑑𝑡𝑤𝑒𝑒𝑑𝑖𝑒(

𝐴

𝑎=1

𝑌

𝑦=1977

𝑃𝑎,𝑦|�̂�𝑎,𝑦 , 𝑛𝑦
(𝐶)

, 𝜓, 𝜙) 

𝑛𝑦
(𝐶)

 see SimMulti 

(𝜓 -1) estimated on logit 

scale (to constrain between 

1 and 2) 

𝜙 estimated on log scale 

 

Note- there is no closed 

form version of the 

multivariate Tweedie 

distribution. See Thorson 

et al. (2022) 

 

 

The first scenario mimicked the structure of the model fit to real Gulf of Maine haddock 

data such that total catch was lognormally distributed with the mean equal to the predicted value 

in each year, and the catch proportions at age had a multinomial distribution (“SimMulti”) with 

the probability equal to the predicted values (for predicted values, see Appendix 3A). The 

standard deviation and effective sample size of these distributions, respectively, were the same as 

in the Gulf of Maine haddock data (see table 2A.1). Other simulation scenarios assumed the total 

catch was drawn from a lognormal distribution, like the first model, but the proportions at age 

were generated using either a Dirichlet-multinomial (“SimDirMult”), logistic-normal distribution 

with AR(1) correlations (“SimLogi”), or multivariate Tweedie distribution (“SimTwe”). A final 

simulation scenario assumed that the catch-at-age, rather than total catch and proportions at age, 

was simulated from a multivariate lognormal distribution (“SimMultiV”) but decomposed into 
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total catch and proportions at age before being supplied to the estimation models. The data were 

simulated in R rather than using the simulation options built into the package WHAM, and the 

package MASS was used for multivariate lognormal distributions (a component of “SimLogi” 

and “SimMultiV”), and the package tweedie was used for “SimTwe” (Venables and Ripley, 

2002; Dunn, 2022). 

The Dirichlet-multinomial, logistic-normal, and multivariate Tweedie distributions all 

contain additional “age composition parameters” that determine the variance and/or correlation 

of the observation error distribution. To ensure that the observation error variance was 

approximately the same across scenarios, appropriate age composition parameters were found by 

fitting the Gulf of Maine haddock data assuming a DM, LG, or MVTW distribution for the 

proportions at age while fixing all the parameters at their estimated values except the age 

composition parameter. All the data inputs were kept the same as well, such that the alternative 

proportion at age models were fit using the same input sample size as the model fit using the 

multinomial distribution. Because there was no option to fit the catch at age data to a 

multivariate lognormal distribution in WHAM, an alternative approach was used to find 

appropriate standard deviation and correlation values for the multivariate log normal distribution 

that approximated the variance of the lognormal catch and multinomial proportions at age. 

100,000 data sets of total catch and proportion at age were generated from the lognormal and 

multinomial distributions, converted into catch-at-age, and the average standard deviation at age 

and correlation of the residuals between the observed and predicted values were estimated. Each 

simulation scenario also necessitated an input sample size, which was assumed to equal the 

effective sample size in the Gulf of Maine haddock data. In total, 100 data sets were generated 

for each of the five simulation scenarios. 
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3.3.3 Estimation Model Scenarios 

 Simulated data were fit by different estimation models that included four different 

assumptions about the distribution for the observed age-compositions (observation scenarios) 

and five different assumptions about process variability (process scenarios) estimation scenarios 

and five process variance scenarios. The observation scenarios assumed the catch proportions at 

age followed a multinomial “EstMulti,” Dirichlet-multinomial “EstDirMult,” logistic normal 

“EstLogi,” or multivariate Tweedie “EstTwe” distribution, each corresponding to one of the 

simulation scenarios (Table 3.1). The logistic normal distribution “EstLogi” cannot account for 

zeros in the proportions at age data and therefore zeros were pooled with adjacent age bins 

automatically in WHAM. Each observation scenario was crossed with process scenarios that 

assumed random effects in recruitment, expected survival, and selectivity which were integrated 

from the marginal likelihood (which matches the operating model), or that one or more process 

was constant or a fixed effect (which does not match the operating model). The process scenarios 

were designated by a three-letter code which indicated if the recruitment, expected survival, or 

selectivity was specified as a random effect (R), a fixed effect (F), or constant (C). See section 

2.3.4 for a complete description of the process variation estimation scenarios. The intent was to 

investigate trade-offs in weighing total model variability between the observation and process 

variance. In total there were 100 combinations of simulation and estimation model. 

3.3.4 Performance of Assessment Models 

The estimation models were assessed by how precisely and accurately they estimated 

spawning stock biomass in the terminal year, average recruitment in the terminal 3 years, 

exploitation rate in the terminal year, and the depletion, defined as the ratio of the predicted 

spawning stock biomass in the terminal year to that 10 years prior to the terminal year. Metrics in 
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the terminal year are often the basis for management reference points and management decisions, 

so evaluating their accuracy is of primary interest. A retrospective analysis was performed, 

which involved refitting the model after sequentially removing the ultimate seven years of data 

to investigate how recent observations influenced the estimates, and retrospective patterns were 

quantified by Mohn’s Rho statistic for spawning stock biomass, average fishing mortality, and 

recruitment (Hurtado-Ferro et al., 2015; Mohn, 1999). See section 2.4.5 and Table 2.2 “Derived 

Quantities and Simulation Output” for a complete description of these metrics and how relative 

error was calculated. 

Additional performance metrics were evaluated if the estimation model correctly 

specified the likelihood of the proportions at age i.e., a “self-test.” When the simulation and 

estimation models matched in the assumed distributions for proportions at age the estimated age 

composition parameters, which quantify the observation error variance, were compared against 

the true value used to generate the data. The bias in estimated process error variance and 

correlation coefficients in recruitment, expected survival, and selectivity cannot be determined 

because these processes were not simulated with a known variance value, however these 

estimates were compared against that estimated from fitting to the real Gulf of Maine Haddock. 

“Biased” and “unbiased” were used to explain how closely the estimates from simulated data 

matched those from the original estimation model on which the simulations are based.  

3.4 Results 

 The estimation models successfully converged and produced an invertible Hessian matrix 

for most replicates in most combinations of simulation and estimation scenario (Table 3.2). 

However, when the likelihood simulation scenario was multinomial and the estimation scenario 

was multivariate Tweedie (“SimMulti” + “EstTwe”), no replicates ran successfully for any 
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assumed process variance model. Similarly, when the data were generated from a multivariate 

Tweedie and fit assuming a Dirichlet-multinomial (“SimTwe” + “EstDirMult”), only 19 out of 

500 simulated data sets successfully converged. Convergence rate was zero for several cases 

where the estimation model assumed that age compositions followed a -multinomial, 

(“EstDirMult”), especially for the (“RRR”) process scenario. Convergence rate was lowest when 

the simulated data had a multinomial distribution (64.7%), and highest when the simulated data 

had a Dirichlet-multinomial distribution (95.75%). Convergence rate was lowest when the model 

assumed process variance in all three processes (72.85%) and highest when the survival was 

deterministic and selectivity was constant (90.8% for RCC and 90.05% for FCC). 

Table 3.2. Convergence rate across likelihood simulation scenarios, likelihood estimation 

scenarios, and process variance estimation scenarios. Convergence criteria included a successful 

model run without errors and production of an invertible Hessian matrix. 

 
Likelihood 

Simulation 

Scenario 

Likelihood 

Estimation 

Scenario 

Process Variance Scenarios     

RRR RRC RCR RCC FCC Average Median Min Max 

SimMulti EstMulti 100 100 100 100 100 100 100 100 100 

SimMulti EstDirMult 2 15 91 100 100 61.6 91 2 100 

SimMulti EstLogi 93 100 93 100 100 97.2 100 93 100 

SimMulti EstTwe 0 0 0 0 0 0 0 0 0 

SimDirMult EstMulti 96 100 99 100 100 99 100 96 100 

SimDirMult EstDirMult 96 100 94 100 100 98 100 94 100 

SimDirMult EstLogi 83 100 59 100 100 88.4 100 59 100 

SimDirMult EstTwe 98 100 90 100 100 97.6 100 90 100 

SimLogi EstMulti 100 100 100 100 100 100 100 100 100 

SimLogi EstDirMult 0 62 96 100 100 71.6 96 0 100 

SimLogi EstLogi 96 100 95 100 100 98.2 100 95 100 

SimLogi EstTwe 100 100 100 100 100 100 100 100 100 

SimTwe EstMulti 100 100 100 100 100 100 100 100 100 

SimTwe EstDirMult 0 0 0 17 2 3.8 0 0 17 

SimTwe EstLogi 98 100 100 100 99 99.4 100 98 100 

SimTwe EstTwe 100 100 100 100 100 100 100 100 100 

SimMultiV EstMulti 100 100 100 100 100 100 100 100 100 

SimMultiV EstDirMult 0 6 92 100 100 59.6 92 0 100 

SimMultiV EstLogi 99 100 100 99 100 99.6 100 99 100 

SimMultiV EstTwe 96 100 99 100 100 99 100 96 100 

 



 

 

146 

 

Table 3.2 (cont’d) 

Average 72.85 79.15 85.4 90.8 90.05    
Median 96 100 97.5 100 100    
Min 0 0 0 0 0    
Max 100 100 100 100 100    

 

Estimation models that assumed no random effects (“FCC”), only process variance in 

recruitment (“RCC”), or only process variance in recruitment and selectivity (“RCR”) had 

similar distributions of relative errors (i.e., similar precision and bias) across all model evaluation 

criteria. Collectively, these estimation models can be referred to as the “deterministic survival” 

scenarios because they all assume that the expected numbers at age do not deviate from that 

predicted by the abundance in the previous year and the instantaneous mortality, and the other 

scenarios assume a random effect on survival. 

 Spawning stock biomass (SSB) in the terminal year was underestimated when the 

estimation model assumed deterministic survival (Figure 3.1). Conversely, SSB was 

overestimated when the estimation model assumed process variance in only recruitment and 

expected survival (“RRC”), except when the Dirichlet-multinomial or logistic normal was 

correctly specified (“SimDirMult” + “EstDirMult” or “SimLogi” + “EstLogi”). When the 

process scenario “RRR” was correctly specified in the estimation model, the model over-, under- 

or accurately estimated SSB, depending upon the simulated and assumed distribution for the age 

composition data and was least biased when the simulated data were logistic-normal 

(“SimLogi”).  

Average recruitment in the terminal three years was underestimated when the estimation 

model assumed deterministic survival (Figure 3.2). When the expected survival was a random 

effect, the average recruitment could be over-, under- or accurately estimated depending on the 
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scenario. The average recruitment was most precise and bias was lowest when the estimation 

model assumed a logistic normal distribution (“EstLogi”).  

 Exploitation rate in the terminal year was overestimated when the estimation model 

assumed deterministic survival, except when the catch at age data were simulated from a 

multivariate lognormal distribution (“MultiV”) (Figure 3.3). Estimation models that assumed 

process variability in recruitment and expected survival (“RRC”) underestimated or accurately 

estimated exploitation rate and was the least biased when the Dirichlet-multinomial or logistic 

normal distributions were correctly specified. When the process model correctly assumed 

variability in all three processes, the exploitation rate was not substantially biased, especially 

when the estimation model assumed a Logistic normal or multivariate Tweedie distribution.  

Depletion was underestimated when the estimation model assumed deterministic survival 

(Figure 3.4). Depletion was slightly negatively biased even when the model did assume process 

variability in expected survival and the bias was often less when the selectivity was assumed to 

be constant.  

The retrospective patterns in spawning stock biomass (SSB) was negative and 

progressively larger in magnitude in estimation models that specified more of the processes as 

constant or fixed effects rather than as random effects (Figure 3.5). The same pattern was seen 

for the magnitude of retrospective patterns in average fishing mortality, though in this case the 

retrospective bias was positive (Figure 3.6). The retrospective patterns in recruitment was also 

consistently negative across all simulation and estimation scenarios (like SSB) but estimation 

models that assumed constant selectivity exhibited less retrospective patterns than models that 

specified selectivity was a random effect (Figure 3.7). 
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Recruitment process error variance was estimated with high precision and low bias, 

except when age composition data were simulated from a Dirichlet-multinomial in which case it 

was overestimated (Figure 3.8). The expected survival process variance tended to be 

overestimated, and the bias was greater when the simulated data were Dirichlet-multinomial 

(Figure 3.9). The selectivity process was underestimated or greatly overestimated, though the 

bias was less when the simulated data were multivariate lognormal (Figure 3.10). The correlation 

coefficient for the AR(1) process error in recruitment and expected survival was estimated with 

the least bias when the model assumed constant selectivity (--C) and overestimated when the 

expected survival was deterministic (-C-) (Figure 3.11). The correlation coefficient for the AR(1) 

process error in selectivity was strongly underestimated or slightly overestimated, and the bias 

was worse when the simulated data were logistic normal (Figure 3.12). 

When the simulation and estimation model both assumed a Dirichlet-multinomial 

distribution for the age compositions, the scaling parameter, 𝛽 was estimated with low bias when 

the estimation model assumed two of the processes were varying and one was constant (RRC or 

RCR), but not when all three were varying (Figure 3.13A). 𝛽 was overestimated (so the effective 

sample size was higher and the variance was lower) when the process variance scenario was 

RRR and was underestimated (corresponding to higher estimated variance) when the survival 

was deterministic and selectivity was constant (-CC). A similar pattern of bias was present in the 

logistic normal distribution which estimated variance parameter, 𝜎. The observation error 

variance was accurately estimated when only two processes were assumed to be random effects 

but predicted lower variance when all processes are varying and higher variance when survival 

was deterministic and selectivity was constant. (Figure 3.13B). The inter-age correlation of the 

age compositions, 𝜌, was estimated with little bias and high precision when selectivity was a 
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random effect but overestimated when selectivity was constant. The pattern was also present in 

the estimation of multivariate Tweedie parameters 𝜙 and 𝜓 (Figure 3.13C). Larger 𝜙 or 𝜓 

parameters correspond to a smaller effective sample size and therefore greater observation 

variance. Like the Dirichlet-multinomial or the logistic-normal distributions, the multivariate 

Tweedie distribution predicted more observation variability when the process model assumed 

less process variability and less observation variability with the process model assumed 

substantial process variability.
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Figure 3.1. Relative error of spawning stock biomass in the terminal year across alternative age composition simulation (rows) and 

estimation (columns) scenarios and process variance estimation scenarios (individual boxes). The number above each box indicates 

the number of the 100 generated data sets that were successfully fit. The catch proportions at age were either simulated (Sim) or 

estimated (Est) as a multinomial distribution (Mult), Dirichlet-multinomial distribution (DirMult), logistic normal distribution (Logi), 

multivariate Tweedie distribution (Twe), or multivariate normal distribution (MultiV) (catch at age rather than proportions). Individual 

boxplots represent the five estimation models that assume recruitment, expected survival, or selectivity as a random effect (R), fixed 

effect (F), or constant (C). Black lines are drawn through zero, red dots indicate the mean, and black dots indicate the median. When 

no plot is present, no replicates converged for that combination of simulation and estimation scenarios. 
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Figure 3.2. Relative error of average recruitment in the terminal three years across alternative age composition simulation (rows) and 

estimation (columns) scenarios and process variance estimation scenarios (individual boxes). The number above each box indicates 

the number of the 100 generated data sets that were successfully fit. The catch proportions at age were either simulated (Sim) or 

estimated (Est) as a multinomial distribution (Mult), Dirichlet-multinomial distribution (DirMult), logistic normal distribution (Logi), 

multivariate Tweedie distribution (Twe), or multivariate normal distribution (MultiV) (catch at age rather than proportions). Individual 

boxplots represent the five estimation models that assume recruitment, expected survival, or selectivity as a random effect (R), fixed 

effect (F), or constant (C). Black lines are drawn through zero, red dots indicate the mean, and black dots indicate the median. When 

no plot is present, no replicates converged for that combination of simulation and estimation scenarios. 
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Figure 3.3. Relative error of exploitation rate in the terminal year across alternative age composition simulation (rows) and estimation 

(columns) scenarios and process variance estimation scenarios (individual boxes). The number above each box indicates the number 

of the 100 generated data sets that were successfully fit. The catch proportions at age were either simulated (Sim) or estimated (Est) as 

a multinomial distribution (Mult), Dirichlet-multinomial distribution (DirMult), logistic normal distribution (Logi), multivariate 

Tweedie distribution (Twe), or multivariate normal distribution (MultiV) (catch at age rather than proportions). Individual boxplots 

represent the five estimation models that assume recruitment, expected survival, or selectivity as a random effect (R), fixed effect (F), 

or constant (C). Black lines are drawn through zero, red dots indicate the mean, and black dots indicate the median. When no plot is 

present, no replicates converged for that combination of simulation and estimation scenarios. 
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Figure 3.4. Relative error of depletion across alternative age composition simulation (rows) and estimation (columns) scenarios and 

process variance estimation scenarios (individual boxes). The number above each box indicates the number of the 100 generated data 

sets that were successfully fit. The catch proportions at age were either simulated (Sim) or estimated (Est) as a multinomial 

distribution (Mult), Dirichlet-multinomial distribution (DirMult), logistic normal distribution (Logi), multivariate Tweedie distribution 

(Twe), or multivariate normal distribution (MultiV) (catch at age rather than proportions). Individual boxplots represent the five 

estimation models that assume recruitment, expected survival, or selectivity as a random effect (R), fixed effect (F), or constant (C). 

Black lines are drawn through zero, red dots indicate the mean, and black dots indicate the median. When no plot is present, no 

replicates converged for that combination of simulation and estimation scenarios. 
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Figure 3.5. Mohn’s Rho in spawning stock biomass across alternative age composition simulation (rows) and estimation (columns) 

scenarios and process variance estimation scenarios (individual boxes). The number above each box indicates the number of the 100 

generated data sets that were successfully fit. The catch proportions at age were either simulated (Sim) or estimated (Est) as a 

multinomial distribution (Mult), Dirichlet-multinomial distribution (DirMult), logistic normal distribution (Logi), multivariate 

Tweedie distribution (Twe), or multivariate normal distribution (MultiV) (catch at age rather than proportions). Individual boxplots 

represent the five estimation models that assume recruitment, expected survival, or selectivity as a random effect (R), fixed effect (F), 

or constant (C). Black lines are drawn through zero, red dots indicate the mean, and black dots indicate the median. When no plot is 

present, no replicates converged for that combination of simulation and estimation scenarios. 
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Figure 3.6. Mohn’s Rho in average fishing mortality across alternative age composition simulation (rows) and estimation (columns) 

scenarios and process variance estimation scenarios (individual boxes). The number above each box indicates the number of the 100 

generated data sets that were successfully fit. The catch proportions at age were either simulated (Sim) or estimated (Est) as a 

multinomial distribution (Mult), Dirichlet-multinomial distribution (DirMult), logistic normal distribution (Logi), multivariate 

Tweedie distribution (Twe), or multivariate normal distribution (MultiV) (catch at age rather than proportions). Individual boxplots 

represent the five estimation models that assume recruitment, expected survival, or selectivity as a random effect (R), fixed effect (F), 

or constant (C). Black lines are drawn through zero, red dots indicate the mean, and black dots indicate the median. When no plot is 

present, no replicates converged for that combination of simulation and estimation scenarios. 

   



 

 

156 

 

Figure 3.7. Mohn’s Rho in recruitment across alternative age composition simulation (rows) and estimation (columns) scenarios and 

process variance estimation scenarios (individual boxes). The number above each box indicates the number of the 100 generated data 

sets that were successfully fit. The catch proportions at age were either simulated (Sim) or estimated (Est) as a multinomial 

distribution (Mult), Dirichlet-multinomial distribution (DirMult), logistic normal distribution (Logi), multivariate Tweedie distribution 

(Twe), or multivariate normal distribution (MultiV) (catch at age rather than proportions). Individual boxplots represent the five 

estimation models that assume recruitment, expected survival, or selectivity as a random effect (R), fixed effect (F), or constant (C). 

Black lines are drawn through zero, red dots indicate the mean, and black dots indicate the median. When no plot is present, no 

replicates converged for that combination of simulation and estimation scenarios. 
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Figure 3.8. Estimated recruitment process error variance across alternative age composition simulation (rows) and estimation 

(columns) scenarios and process variance estimation scenarios (individual boxes). The number above each box indicates the number 

of the 100 generated data sets that were successfully fit. The catch proportions at age were either simulated (Sim) or estimated (Est) as 

a multinomial distribution (Mult), Dirichlet-multinomial distribution (DirMult), logistic normal distribution (Logi), multivariate 

Tweedie distribution (Twe), or multivariate normal distribution (MultiV) (catch at age rather than proportions). Individual boxplots 

represent the five estimation models that assume recruitment, expected survival, or selectivity as a random effect (R), fixed effect (F), 

or constant (C). Black lines indicate the original estimate of the variance from the model on which the simulations are based, red dots 

indicate the mean, and black dots indicate the median. When no plot is present, no replicates converged for that combination of 

simulation and estimation scenarios. 
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Figure 3.9. Estimated expected survival process error variance across alternative age composition simulation (rows) and estimation 

(columns) scenarios and process variance estimation scenarios (individual boxes). The number above each box indicates the number 

of the 100 generated data sets that were successfully fit. The catch proportions at age were either simulated (Sim) or estimated (Est) as 

a multinomial distribution (Mult), Dirichlet-multinomial distribution (DirMult), logistic normal distribution (Logi), multivariate 

Tweedie distribution (Twe), or multivariate normal distribution (MultiV) (catch at age rather than proportions). Individual boxplots 

represent the five estimation models that assume recruitment, expected survival, or selectivity as a random effect (R), fixed effect (F), 

or constant (C). Black lines indicate the original estimate of the variance from the model on which the simulations are based, red dots 

indicate the mean, and black dots indicate the median. Two plots are removed because no models converged for those estimation 

models. 
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Figure 3.10. Estimated selectivity process error variance across alternative age composition simulation (rows) and estimation 

(columns) scenarios and process variance estimation scenarios (individual boxes). The number above each box indicates the number 

of the 100 generated data sets that were successfully fit. The catch proportions at age were either simulated (Sim) or estimated (Est) as 

a multinomial distribution (Mult), Dirichlet-multinomial distribution (DirMult), logistic normal distribution (Logi), multivariate 

Tweedie distribution (Twe), or multivariate normal distribution (MultiV) (catch at age rather than proportions). Individual boxplots 

represent the five estimation models that assume recruitment, expected survival, or selectivity as a random effect (R), fixed effect (F), 

or constant (C). Black lines are drawn through the predicted selectivity variance, red dots indicate the mean, and black dots indicate 

the median. Two plots are removed because no models converged for those estimation models. 
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Figure 3.11. Estimated recruitment and expected survival AR(1) correlation coefficient across alternative age composition simulation 

(rows) and estimation (columns) scenarios and process variance estimation scenarios (individual boxes). The number above each box 

indicates the number of the 100 generated data sets that were successfully fit. The catch proportions at age were either simulated (Sim) 

or estimated (Est) as a multinomial distribution (Mult), Dirichlet-multinomial distribution (DirMult), logistic normal distribution 

(Logi), multivariate Tweedie distribution (Twe), or multivariate normal distribution (MultiV) (catch at age rather than proportions). 

Individual boxplots represent the five estimation models that assume recruitment, expected survival, or selectivity as a random effect 

(R), fixed effect (F), or constant (C). Black lines indicate the original estimate of the correlation coefficient from the model on which 

the simulations are based, red dots indicate the mean, and black dots indicate the median. Plots are removed if no model converged. 

 



 

 

161 

 

Figure 3.12. Estimated selectivity correlation coefficient across alternative age composition simulation (rows) and estimation 

(columns) scenarios and process variance estimation scenarios (individual boxes). The number above each box indicates the number 

of the 100 generated data sets that were successfully fit. The catch proportions at age were either simulated (Sim) or estimated (Est) as 

a multinomial distribution (Mult), Dirichlet-multinomial distribution (DirMult), logistic normal distribution (Logi), multivariate 

Tweedie distribution (Twe), or multivariate normal distribution (MultiV) (catch at age rather than proportions). Individual boxplots 

represent the five estimation models that assume recruitment, expected survival, or selectivity as a random effect (R), fixed effect (F), 

or constant (C). Black lines indicate the original estimate of the correlation coefficient from the model on which the simulations are 

based, red dots indicate the mean, and black dots indicate the median. Two plots are removed because no models converged for those 

estimation models. 
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Figure 3.13. Estimated observation error parameters in self-tests that generate and estimate age 

compositions assuming a (A) Dirichlet-multinomial, (B) logistic normal, and (C) multivariate 

Tweedie distribution. The number above each box indicates the number of the 100 generated 

data sets that were successfully fit. Individual boxplots represent the five estimation models that 

assume recruitment, expected survival, or selectivity as a random effect (R), fixed effect (F), or 

constant (C). Black lines are drawn through the predicted value, red dots indicate the mean, and 

black dots indicate the median. 
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Figure 3.13 (cont’d) 
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3.5 Discussion 

The estimation models that specified random effects in recruitment, expected survival, 

and selectivity, were able to produce relatively unbiased and precise estimates of spawning stock 

biomass, recruitment, exploitation, and depletion under a wide range of real observation error 

distributions for catch proportions at age, with the important exception of when the Dirichlet-

multinomial was assumed in the estimation model. In such cases, the model rarely converged 

unless the proportion at age data was actually from a Dirichlet-multinomial. This shortcoming 

was likely because the Dirichlet-multinomial could not account for inter-age correlation, only 

overdispersion. Likewise, using the multivariate Tweedie distribution should be avoided if the 

catch proportions at age contain observation error from a multinomial distribution. However 

there is substantial evidence that real age composition data is not sampled randomly and has 

inter-age correlation and overdispersion, so the data generated using the multinomial distribution 

is unlikely to resemble real conditions (Francis, 2014; Pennington and Vølstad, 1994). The 

logistic normal and the multivariate Tweedie distribution outperformed other estimation models 

when the process variation was correctly specified. This aligns with previous work that has 

recommended the logistic normal distribution or the multivariate Tweedie over the Dirichlet-

multinomial in simulated cases when process error was substantial (Fisch et al., 2021) and when 

applied to real catch data (Albertsen et al., 2017; Francis, 2014; Thorson et al., 2022). If deciding 

between the logistic normal and multivariate Tweedie, the latter might be preferred for two 

reasons: its ability to accommodate zeros in the data and its flexibility to predict an effective 

sample size greater than the input sample size, which can correct for an input sample size set too 

low (Thorson et al., 2022).  
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In cases where the RRR model did produce biased outputs, model performance could not 

be reliably improved by assuming one or more processes was constant or a fixed effect rather 

than random effect. In some cases, specifying selectivity as constant, rather than time-varying, 

could increase the convergence rate and reduce bias, however, assuming survival was 

deterministic consistently led to under- or over- estimation of model outputs. Care should be 

taken to correctly specify the variability in recruitment and expected survival, regardless of 

whether the likelihood for the proportions at age includes weighting parameters. It is 

recommended to include selectivity as a random effect because there is little consequence to 

trying to estimate it even when it is constant (Cronin-Fine and Punt, 2021; Martell and Stewart, 

2014; Stewart and Monnahan, 2017). And if the Dirichlet-multinomial is employed, the number 

of assumed processes will likely need to be reduced for the model to successfully run. A similar 

upper limit on the complexity of the process model was noted in Stock et al., (2021) who found 

that a model that assumed 2D autoregressive AR(1) process in expected survival and natural 

mortality and a logistic normal distribution for the catch proportions at age failed to converge. 

  The RRR model had difficulty correctly allocating variability among the three processes 

across all age composition scenarios and had additional trouble when age composition quality 

was estimated (i.e., the Dirichlet-multinomial, logistic normal, or multivariate Tweedie). On 

average, the recruitment and expected survival process error variance tended to be overestimated 

and the selectivity process error variance was underestimated. When the data generating and 

estimation model both assume a multinomial distribution, the expected survival variance is 

usually underestimated under a wide arrange of true expected survival variances (see Chapter 2, 

Figure 2.6). In the current study, when the age composition likelihood is incorrectly specified, 

expected survival, more than recruitment and selectivity, may be absorbing the error that results 
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from model misspecification. The model could be accounting for differences between the 

expected and observed proportions at age by deviating the numbers at age much more than 

would be expected by the previous numbers at age and instantaneous mortality alone. This could 

also explain why models that assume that survival is deterministic will routinely underestimate 

recruitment, spawning stock biomass, and depletion and overestimate fishing mortality, and why 

those that assume variability are more likely to be unbiased. 

The principal disadvantage to assuming process error in recruitment, expected survival, 

and selectivity is that if the assumed observation error in the proportions at age is not 

multinomial, the observation error parameters- 𝛽 for the Dirichlet-multinomial, 𝜎 and 𝜌 for the 

logistic normal and 𝜙 and 𝜓 for the multivariate Tweedie, could be biased. Even when the 

observation model is correctly specified, the process model estimated variance in recruitment, 

expected survival, and selectivity at higher or lower values than the fit to real data. The logistic 

normal distribution produces estimates of process variance most similar to the fit to real data, 

though still underestimates the observation variance. Getting accurate estimates of the 

observation error variance may depend on reducing the amount of assumed variability in the 

process model. A two-step approach may be appropriate wherein the model is first fit assuming 

the survival is deterministic, then a second time assuming random effects on expected survival 

but the observation error parameter is fixed at its estimated value from the first step.  

  Previous work has generated catch proportions at age data with overdispersion and inter-

age correlation, either 1) by simulating from a distribution other than the multinomial as in 

Cronin-Fine and Punt (2021) or 2) by designing an operating model that accounts for 

clustering/schooling, aging error and targeted fishing, all factors that can lead to overdispersion 

and inter-age correlation as in Maunder (2011) or Fisch et al. (2021). My approach was the 
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former which is computationally simpler and allows for explicit self- tests that match the 

simulation and estimation models. However, I did not allow for different degrees of 

overdispersion and inter-age correlation to be evaluated and future work may focus on 

generating catch data with low, medium, or high inter-haul correlation to test what effect these 

have on the performance of age composition likelihoods. Additionally, it would be prudent to 

expand this work to several more parameterizations and options of the Dirichlet-multinomial and 

logistic normal including the “linear parameterization” of the former and other correlation 

structures of the variance-covariance like a second order autoregressive AR(2) or autoregressive 

moving average (ARMA) parameterization of the latter, either of which may be more flexible in 

its ability to adjust observation error variance (Fisch et al., 2021; Thorson et al., 2017). Because 

state-space stock assessment models with time-varying random effects have been shown to 

perform differently when the variability is large or small, this work could be further expanded to 

include cases where, for example, selectivity is not time-varying but the model assumes it is (see 

chapter 2). Future work should also consider generating new time series of recruitment, expected 

survival, and selectivity rather than limiting to those predicted from fitting the model to Gulf of 

Maine haddock. However, this may require use of new information or approaches, given that in 

Chapter 2 I found that when data were generated from a new set of states this often led to 

convergence failure for the self-weighting approaches, which is why I used the multinomial 

distribution for all simulations in Chapter 2. 

 This study uniquely contends with the question of how to parameterize process and 

observation stochasticity using a simulation-estimation framework. My recommendations to use 

a likelihood function other than the multinomial to fit catch proportions at age data is consistent 

with research that used simulation-estimation methods with fewer varying processes (Cronin-



 

 

168 

 

Fine and Punt, 2021; Fisch et al., 2021; Thorson et al., 2022; Xu et al., 2020) or applied models 

to real data with several time-varying processes (Albertsen et al., 2017). This work contributes to 

the ongoing inquiry in how to parameterize state-space stock assessment models in the face of 

substantial stochasticity and uncertainty. 
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APPENDIX 3A: PREDICTED VALUES AND SUPPLEMENTARY DATA 

Note that the catch at age is not the product of total catch and proportions because total catch is 

in weight and catch at age is in numbers of fish. 

Table 3A.1. Predicted total catch in weight, �̂�𝑦, in metric tons (mt) and proportions at age, �̂�𝑎,𝑦, 

for ages 1-9+. 

 
Year �̂�1,𝑦 �̂�2,𝑦 �̂�3,𝑦 �̂�4,𝑦 �̂�5,𝑦 �̂�6,𝑦 �̂�7,𝑦 �̂�8,𝑦 �̂�9+,𝑦 �̂�𝑦 

1977 0.02485 0.58862 0.07487 0.17968 0.08162 0.04801 0.00045 9.00E-05 0.00181 3306.993 

1978 0.00279 0.1628 0.61264 0.05695 0.10153 0.04222 0.01996 0.00021 0.00091 5039.263 

1979 0.01114 0.03139 0.24924 0.55267 0.04931 0.06854 0.02471 0.0123 0.00072 4667.412 

1980 0.03503 0.16492 0.06502 0.23823 0.38412 0.03931 0.04692 0.01731 0.00915 6827.306 

1981 0.01573 0.28606 0.25863 0.05399 0.13209 0.19393 0.0206 0.02567 0.01329 6078.218 

1982 0.00286 0.13785 0.36099 0.21853 0.04023 0.08418 0.11801 0.01373 0.02362 6887.568 

1983 0.00899 0.02676 0.26407 0.28601 0.20623 0.03496 0.06158 0.08651 0.0249 7162.477 

1984 0.0028 0.10825 0.06465 0.30634 0.20092 0.18593 0.02612 0.03962 0.06538 4209.778 

1985 0.00092 0.04324 0.30163 0.08128 0.23333 0.14017 0.13471 0.01534 0.04938 3309.395 

1986 0.00189 0.02002 0.17546 0.36877 0.07214 0.16318 0.09312 0.07656 0.02886 2268.542 

1987 0.00156 0.0418 0.08844 0.28995 0.26971 0.06605 0.12712 0.06071 0.05465 960.6168 

1988 0.00714 0.02627 0.13866 0.13345 0.28472 0.2206 0.04714 0.0829 0.05912 493.2147 

1989 0.00461 0.12793 0.08612 0.19807 0.13259 0.2184 0.13636 0.02739 0.06855 320.0106 

1990 0.0076 0.06396 0.37221 0.09601 0.15385 0.08441 0.11544 0.0651 0.04141 481.9544 

1991 0.01105 0.1002 0.19423 0.38361 0.07487 0.09713 0.04293 0.05112 0.04486 443.6066 

1992 0.031 0.12773 0.28023 0.20016 0.22649 0.041 0.04201 0.01609 0.03529 311.7735 

1993 0.03811 0.24328 0.25114 0.19286 0.10479 0.11576 0.01846 0.01602 0.01958 203.4478 

1994 0.03622 0.24449 0.37519 0.14535 0.07797 0.05061 0.0499 0.00672 0.01354 186.6776 

1995 0.01662 0.26103 0.35847 0.22601 0.05739 0.03433 0.02085 0.01792 0.00737 448.9902 

1996 0.00417 0.11105 0.46693 0.26256 0.09567 0.02672 0.01519 0.00818 0.00955 340.4701 

1997 0.00818 0.03312 0.24951 0.45465 0.16408 0.05755 0.01588 0.00796 0.00906 1058.044 

1998 0.00531 0.06458 0.07915 0.31495 0.35244 0.12178 0.04109 0.01012 0.01057 975.1465 

1999 0.02128 0.04706 0.14231 0.12113 0.28738 0.25265 0.08948 0.02566 0.01304 601.3936 

2000 0.00305 0.17644 0.10578 0.17526 0.10612 0.21514 0.14825 0.04831 0.02163 1113.83 

2001 0.00076 0.02783 0.35275 0.1401 0.15285 0.08534 0.12652 0.07679 0.03706 1206.591 

2002 0.0009 0.0069 0.0546 0.47061 0.13761 0.13102 0.05239 0.07688 0.0691 1281.283 

2003 0.00012 0.00907 0.01786 0.07707 0.60629 0.11505 0.07319 0.02612 0.07522 1385.141 

2004 0.00171 0.00173 0.02746 0.0349 0.10919 0.65622 0.0712 0.04121 0.05637 1426.343 

2005 0.00026 0.04256 0.00753 0.05709 0.06636 0.15168 0.54991 0.05463 0.06998 1755.596 

2006 0.00114 0.00437 0.1818 0.01276 0.07291 0.07543 0.11914 0.4486 0.08385 1125.342 

2007 0.00229 0.02097 0.01711 0.35806 0.01561 0.07277 0.05865 0.08623 0.36831 1885.741 

2008 0.00041 0.03435 0.06598 0.02628 0.4774 0.01343 0.05577 0.03854 0.28785 1537.247 

2009 0.0006 0.0063 0.0905 0.0909 0.03233 0.49476 0.01071 0.03986 0.23404 1341.602 

2010 0.00202 0.01013 0.01803 0.11091 0.10726 0.03464 0.48652 0.00771 0.2228 1294.561 

2011 0.01612 0.04239 0.03068 0.02508 0.13736 0.11964 0.03343 0.39921 0.19609 931.1966 
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Table 3A.1 (cont’d) 

2012 0.00745 0.29621 0.09671 0.03835 0.02228 0.11626 0.07804 0.02063 0.32407 1066.45 

2013 0.02434 0.07007 0.54144 0.08655 0.02602 0.01334 0.06311 0.03717 0.13796 1274.27 

2014 0.04052 0.16908 0.11163 0.53616 0.0448 0.01266 0.00535 0.02362 0.05617 1413.875 

2015 0.00178 0.3748 0.23443 0.07934 0.26332 0.01868 0.0043 0.00166 0.02169 1520.039 

2016 0.001 0.0129 0.62262 0.1553 0.0422 0.14815 0.00786 0.00168 0.00832 3417.433 

2017 0.00098 0.00984 0.02767 0.7187 0.11606 0.02976 0.08788 0.0041 0.005 4919.816 

2018 0.00032 0.01227 0.02628 0.0379 0.77052 0.08417 0.01764 0.04601 0.0049 3735.021 

2019 0.00019 0.00442 0.03543 0.04084 0.04193 0.77665 0.05632 0.01176 0.03247 4572.009 

 

Table 3A.2. Predicted catch at age, �̂�𝑎,𝑦, in thousands of fish, for ages 1-9+. 

Year Ĉ1,y Ĉ2,y Ĉ3,y Ĉ4,y Ĉ5,y Ĉ6,y Ĉ7,y Ĉ8,y Ĉ9+,y 

1977 64.36553 1524.642 193.9273 465.4 211.4082 124.3626 1.170178 0.234036 4.68071 

1978 9.647603 563.2727 2119.684 197.0473 351.2694 146.074 69.06422 0.719318 3.132671 

1979 30.11564 84.88222 674.0665 1494.711 133.3532 185.3607 66.8179 33.27062 1.947584 

1980 119.8756 564.4389 222.5368 815.3669 1314.654 134.5246 160.574 59.23828 31.33018 

1981 51.02478 927.7554 838.7944 175.1043 428.3966 628.936 66.7942 83.26101 43.11055 

1982 10.54797 508.4561 1331.498 806.0282 148.3758 310.5089 435.2775 50.62773 87.10347 

1983 31.29291 93.09956 918.8288 995.1624 717.5684 121.6312 214.2858 301.0209 86.62564 

1984 5.073111 196.3108 117.2492 555.5566 364.3804 337.2003 47.36384 71.85188 118.5626 

1985 1.400902 65.49444 456.8645 123.1039 353.4084 212.3017 204.0388 23.2416 74.80125 

1986 2.119151 22.43891 196.6509 413.3133 80.85484 182.8851 104.364 85.81045 32.3497 

1987 0.590107 15.80274 33.43479 109.6133 101.9615 24.97019 48.05652 22.95174 20.66113 

1988 1.375507 5.062218 26.71892 25.71581 54.8635 42.50886 9.083762 15.97367 11.39138 

1989 0.5895 16.37471 11.02297 25.35299 16.97125 27.95547 17.45419 3.505387 8.774151 

1990 1.512147 12.71739 74.01403 19.09191 30.5929 16.78417 22.95563 12.94558 8.234291 

1991 1.889746 17.14003 33.22292 65.61805 12.80715 16.61451 7.343159 8.743497 7.673595 

1992 4.711277 19.41443 42.59333 30.42376 34.42487 6.231598 6.386077 2.445837 5.364227 

1993 4.263278 27.21651 28.09623 21.57666 11.7232 12.95011 2.065694 1.79212 2.190663 

1994 3.860754 26.06329 39.99627 15.49485 8.311407 5.395068 5.319272 0.716742 1.443894 

1995 4.926308 77.36357 106.2421 66.98581 17.01032 10.17556 6.178856 5.311216 2.185125 

1996 0.99144 26.38946 110.9612 62.39491 22.73529 6.348823 3.608618 1.943576 2.268914 

1997 4.603832 18.64612 140.4697 255.9595 92.37351 32.3997 8.942162 4.482889 5.099105 

1998 2.487198 30.23084 37.05621 147.4437 164.9968 57.00897 19.23646 4.738927 4.950635 

1999 7.380731 16.32361 49.36437 42.01725 99.68484 87.63504 31.0393 8.900266 4.52376 

2000 2.058675 118.9442 71.31067 118.146 71.54197 145.0352 99.94023 32.56987 14.5832 

2001 0.535843 19.55248 247.8588 98.4428 107.4029 59.96165 88.89631 53.95432 26.04177 

2002 0.684518 5.233093 41.39876 356.8458 104.3426 99.34635 39.72212 58.29197 52.39453 

2003 0.105072 7.780729 15.31173 66.07663 519.8392 98.64247 62.75669 22.39426 64.49716 

2004 1.487501 1.498638 23.85292 30.30837 94.83503 569.9329 61.83989 35.79431 48.95461 

2005 0.289912 46.86504 8.292384 62.86154 73.06885 167.0184 605.5313 60.15509 77.05889 
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 Table 3A.2 (cont’d) 

2006 0.859622 3.296312 137.0759 9.620302 54.97207 56.87209 89.82911 338.2413 63.22189 

2007 3.031117 27.77332 22.65559 474.1867 20.6707 96.37616 77.6682 114.2025 487.7589 

2008 0.438864 37.03156 71.14057 28.32969 514.7272 14.4844 60.12627 41.55791 310.3514 

2009 0.52068 5.456948 78.32872 78.67509 27.98236 428.2262 9.271401 34.49954 202.5658 

2010 1.594541 8.000589 14.24218 87.63078 84.74826 27.36814 384.4188 6.091257 176.0378 

2011 8.851628 23.28364 16.85143 13.7746 75.44232 65.70769 18.35991 219.2538 107.6999 

2012 6.12203 243.4982 79.50022 31.52638 18.31593 95.5677 64.15483 16.95681 266.4025 

2013 27.57266 79.38815 613.4074 98.05162 29.48127 15.11717 71.4959 42.10628 156.3008 

2014 54.39156 226.9524 149.8382 719.6802 60.13748 16.99709 7.186617 31.70809 75.39438 

2015 3.161245 663.892 415.255 140.5441 466.4308 33.08125 7.615274 2.934991 38.41228 

2016 4.130328 53.50235 2582.956 644.2627 175.06 614.5949 32.59656 6.951739 34.50351 

2017 5.118253 51.4821 144.7045 3758.474 606.9205 155.6328 459.5756 21.46536 26.13838 

2018 1.190751 46.1663 98.88559 142.5834 2899.036 316.6825 66.37148 173.0962 18.44742 

2019 0.868842 20.23003 162.1355 186.9135 191.9033 3554.357 257.7378 53.81914 148.5856 

 

Table 3A.3. Weight at age at time of harvest, 𝑊𝑎,𝑦, in kilograms (kg). 

Year 𝑊1,y 𝑊2,y 𝑊3,y 𝑊4,y 𝑊5,y 𝑊6,y 𝑊7,y 𝑊8,y 𝑊9+,y 

1977 0.113 0.757 1.163 2.008 2.558 3.358 3.709 3.587 4.686 

1978 0.113 0.777 1.234 1.684 2.438 3.108 4.642 4.075 6.088 

1979 0.56 0.774 1.155 1.805 2.261 2.659 2.775 3.587 4.725 

1980 0.468 0.76 1.168 1.852 2.389 3.354 3.602 4.562 4.204 

1981 0.56 0.685 1.515 1.978 2.641 3.027 3.658 4.185 3.921 

1982 0.376 0.62 0.995 2.138 2.598 3.107 3.646 4.129 4.293 

1983 0.181 0.667 1.2 1.727 2.376 2.969 3.373 3.719 4.215 

1984 0.313 0.803 1.23 1.801 2.324 3.166 3.917 4.498 4.071 

1985 0.315 0.981 1.068 1.86 2.34 2.652 3.588 4.09 4.153 

1986 0.503 0.507 1.193 1.457 2.264 2.494 3.063 3.636 4.589 

1987 0.349 0.856 1.592 2.008 2.402 2.609 3.272 4.236 5.277 

1988 0.331 0.412 1.116 1.626 2.562 2.583 3.872 4.664 5.18 

1989 0.247 1.146 1.818 1.827 2.375 2.863 3.537 4.4 4.244 

1990 0.296 0.831 1.541 3.331 2.454 3.043 3.738 3.618 4.189 

1991 0.347 1.46 1.882 2.657 3.027 2.958 3.35 4.433 3.881 

1992 0.448 1.192 1.764 1.973 2.654 3.067 2.079 3.721 3.45 

1993 0.364 0.885 1.593 2.041 2.436 3.035 3.393 3.422 3.657 

1994 0.361 0.776 1.589 2.187 3.065 2.788 3.623 3.41 3.73 

1995 0.278 0.821 1.16 1.747 2.515 3.512 4.091 5.209 5.665 

1996 0.336 0.674 1.074 1.803 2.197 3.149 2.472 2.388 3.163 

1997 0.353 0.835 1.766 1.65 2.329 2.975 2.991 3.073 3.608 

1998 0.25 0.976 1.447 1.828 2.213 2.843 3.375 3.152 2.989 

1999 0.265 0.609 1.311 1.609 1.764 1.926 2.279 3.025 3.29 

2000 0.261 0.607 1.005 1.54 1.782 2.009 2.369 2.669 3.081 
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Table 3A.3 (cont’d) 

 

2001 0.242 0.899 1.271 1.495 1.813 2.213 2.245 2.481 2.528 

2002 0.121 0.475 1.022 1.34 1.631 2.141 2.596 2.299 2.638 

2003 0.318 0.583 0.89 1.228 1.466 1.766 2.13 2.418 2.507 

2004 0.189 0.582 0.782 1.382 1.341 1.659 1.813 2.01 2.204 

2005 0.173 0.55 0.752 1.134 1.458 1.436 1.674 1.946 2.273 

2006 0.255 0.426 0.841 0.798 1.345 1.649 1.508 1.682 2.035 

2007 0.243 0.589 0.799 1.138 1.216 1.512 1.635 1.576 1.708 

2008 0.289 0.55 0.986 1.188 1.322 1.302 1.658 1.734 1.746 

2009 0.304 0.714 0.781 1.118 1.277 1.608 1.533 1.849 1.906 

2010 0.37 0.591 0.776 1.086 1.396 1.533 1.705 2.099 2.014 

2011 0.365 0.593 1.03 1.177 1.371 1.57 1.773 1.896 2.096 

2012 0.247 0.54 0.903 1.056 1.41 1.444 1.736 1.798 1.962 

2013 0.292 0.572 0.842 1.207 1.341 1.566 1.657 1.851 2.088 

2014 0.301 0.59 0.759 1.096 1.556 1.656 1.961 1.924 2.179 

2015 0.187 0.441 0.799 0.976 1.285 1.672 1.575 1.991 2.218 

2016 0.185 0.366 0.603 1.012 1.175 1.372 1.706 2.004 2.003 

2017 0.182 0.399 0.598 0.832 1.137 1.29 1.503 1.608 2.627 

2018 0.174 0.408 0.564 0.747 0.943 1.298 1.37 1.644 1.808 

2019 0.234 0.391 0.575 0.719 0.851 0.984 1.279 1.495 1.786 
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CONCLUSIONS AND RECOMMENDATIONS 

The overarching intent of this work was to answer one central question – how can state-

space stock assessment models (SSSAM) be designed and employed most effectively across a 

range of modeling contexts now that computing software has eased their use? In what contexts 

and with what data can this modeling framework be used to minimize bias in crucial 

management estimates like spawning stock biomass, exploitation, and recruitment, or the process 

and observation error variances. I sought to test the limits of SSSAM’s purported abilities to 

estimate process and observation variance, reduce retrospective patterns, and allow for more 

stochasticity to be included in the population model than was previously possible in age based 

statistical catch at age models. 

Chapter 1 demonstrated that existing SSSAM structures can be adapted to accommodate 

fisheries dependent data such as catch per unit effort in the absence of a fisheries independent 

index. Several fisheries across the world rely on fisheries dependent data either exclusively or 

alongside fisheries independent surveys. I recommend that such fisheries at least consider the use 

of a state-space stock assessment model in their management practices, alongside conventional 

approaches. This chapter also demonstrated that yearly recruitment, catchability-at-age, and their 

associated variances could be predicted in a stock assessment model without additional functions 

(a stock-recruitment curve or a selectivity curve, respectively) to inform them, though the 

observation error variance would need to be specified. This added flexibility contributed to 

observed differences between the state-space model and the non-state-space model in output 

recruitment and spawning stock biomass. There is some evidence that the estimated recruitment 

in the SSSAM may have been positively biased - the model had negative residuals in the 

proportions at age for the youngest age classes and there was positive bias in the recruitment 
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retrospective analysis. I recommend that careful consideration be taken when parameterizing and 

interpreting recruitment in SSSAMs. Without enough structure or data to inform it, the model 

may estimate constant recruitment or very little yearly variability. However, with a specific and 

restrictive structure such as a stock-recruitment curve, which constricts the expected recruitment 

to be a function of predicted stock size in a previous year, or a random walk, which constricts the 

recruitment to be similar to recruitment in previous and subsequent years, the model may be 

biased. I recommend further research, particularly simulation-estimation models or model 

evaluation by likelihood or AIC, to investigate the performance of SSSAM under several 

parameterizations of the recruitment.  

Chapter 2 demonstrated how well SSSAM can achieve unbiased estimates of recruitment, 

spawning stock biomass, exploitation, and depletion when the recruitment, abundance (or 

“expected survival”) and selectivity are highly varying, slightly variable, or constant. By using 

SSSAM, I was able to include more process variance than was previously possible for Gulf of 

Maine haddock. I used a simulation-estimation experiment to generate data with known 

underlying states like abundance and selectivity, such that I could compare the estimated values 

to the true values and thus quantify bias and precision. I found that a SSSAM that assumes a 

process is varying when it is constant is preferable to assuming a process is constant when it is 

varying, with one exception. If the survival is deterministic (i.e., the numbers at age are a 

function of numbers at age in the previous year and age and instantaneous mortality without an 

additional random error), the estimation model should be specified as such, or else the model is 

unlikely to converge. I recommend that process errors be added to natural mortality, rather than 

survival, if variability is expected in numbers at age due to stochasticity in natural mortality, and 

that models explicitly account for movement if the variability in numbers at age are due to 
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immigration or emigration. Using these approaches, the model may better reflect the true 

population dynamics and the output is likely to be more accurate. This work also revealed that 

when SSSAMs incorporate error in several different processes and estimate their variances, there 

is risk of misapportioning the variability across those sources. I would recommend that the 

expected survival and selectivity process variances especially be interpreted with caution, 

particularly if there is AR(1) autoregression in the process errors, as it might lead to 

underestimation of the variance.  

Chapter 3 compared the performance of several existing age composition likelihood 

options in a popular state-space stock assessment software, WHAM, to determine which of these 

choices may be preferable under the widest array of circumstances, and when the data have 

overdispersion, inter-age correlation, and zeros. If catch proportion at age data is to be used in 

SSSAM, alternatives to the multinomial must be employed in order to estimate the observation 

variance. When the estimation model accounts for several time-varying processes, age 

composition likelihoods that can account for overdispersion and inter-age correlation 

outperformed those that could not. I recommend employing a logistic normal or multivariate 

Tweedie distribution to fit catch proportions at age data in SSSAM, especially when the model 

accounts for two or more time-varying processes. Though this resulted in the least biased 

outputs, I caution that the estimated observation error variance may be underestimated and the 

process error variance biased in such cases. The findings from this work support my previous 

recommendation to account for multiple sources of process variation in the process model, as 

such models reduced relative error and retrospective patterns compared to those that assumed 

fixed effects and constant parameters regardless of how the observation model was specified. 

Data weighting and alternative likelihoods in SSSAM are ongoing areas of investigation, and I 
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recommend continued research into the logistic normal and multivariate Tweedie distributions 

using more simulation-estimation experiments to understand how much overdispersion and/or 

inter-age correlation can be accounted for by their parameters. 

This work encountered several reoccurring issues, none more omnipresent than 

difficulties surrounding model fitting and convergence. Model failure, more than anything, 

revealed the limits of SSSAM, such as trying to estimate standard deviation parameters of the 

total catch for Lake Michigan lake whitefish (Chapter 1), trying to estimate survival process 

variance when it was absent (Chapter 2), or trying to scale the effective sample size while failing 

to account for overdispersion and correlation (Chapter 3). When George Box revisited his 

famous aphorism, he included the clause: “the practical question is how wrong do [models] have 

to be to not be useful.” There is no more useless model than a failed model, and no stronger sign 

throughout this work that a model was inappropriate in a given context, either because processes 

were specified incorrectly, or the model tried to estimate too many processes with not enough 

data. A continued challenge in quantitative fishery science in general and SSSAM in particular is 

to find synergy among system complexity, data availability, and model structure. 

Another consistent theme throughout this work was questioning how to collect catch and 

index data. If there are fisheries dependent indices of abundance like catch per unit effort, a 

survey is not required to fit a SSSAM. And if a survey is used, fewer samples may be required 

than was previously assumed to achieve the same level of model performance. When the 

standard deviation of the realized total index values was increased (by 10% or 50%) or the 

effective sample size of the proportions at age were lowered (also by 10 or 50%) the model did 

just as well in estimating performance metrics like recruitment and spawning stock biomass or 

the process error variances, suggesting fewer sampling trips may be taken or fewer individuals 
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might be aged to achieve the same accuracy and precision. The multivariate Tweedie distribution 

can increase or decrease the effective sample size relative to the input sample size, suggesting 

that even if the total number of sampled individuals in the catch is low, the model may be able to 

right-weight the information internally. In the future, models may be able to do more with less, 

and resources can be allocated towards collecting as much informative data as possible without 

being redundant. 

My intent was to investigate and offer a supplement, rather than a replacement, to the 

quantitative fisheries modeling toolbox. SSSAMs present an exciting avenue to introduce 

additional stochasticity and estimate more varying processes but they are not without their 

limitations. It should never be assumed that one model or class of models will always be right for 

every fishery or circumstance, and it is wise to consider a suite of model parameterizations and 

structures, if nothing else to determine how models are sensitive to particular assumptions. I 

hope that the findings of this research will lend confidence to the continued inclusion of SSSAM 

in management plans of several fisheries stocks across the globe. 

 


