
Welcome to our second (advanced)
course on using AD Model Builder

• Instructors Jim Bence and Brian Linton
• Special thanks to Travis Brenden,

Kendra Porath, Mike Wilberg, and
Weihai Liu

• And to MSU, GLFC, MDNR and CLC
Agency Partners

Preliminary Issues
• Please wear your name tags (have pity on my

poor memory…)
• Coffee etc in room 153
• Change in schedule: Tonight we plan to meet

from 6:30-9:00 and offer to organize a Pizza
Dinner in room 153 during the break

• Course materials (revised based on workshop)
will be available within two weeks at an ftp site.

• Possibility of group purchase of admb software.
• Do you have a parking pass on your vehicle?

Course Overview
• Session 1 (this morning): Course introductory

material, using the computing system, assessing
uncertainty using admb

• Session 2 (this afternoon): Using functions and
doing simulations

• Session 3 (tonight): Hands on development of
simulation code

• Session 4 (tomorrow morning): Random effects
in admb

• Session 5 (tomorrow afternoon): Misc. topics
and catchup

E-macs:
editing and
menu system

tpl (template)

Admb software

Cpp (C++
code)

Exe file

GNU C++
Compiler

Results (par, std, rep, etc)

Welcome to Emacs

• Von Bertalanffy growth model
• Navigating and editing in Emacs
• ADMB in Emacs

– Growth model example

Von Bertalanffy Growth Model

()()

()2,0~

1~
0

ε

ε

σε N

eeLL

a

taK
a

a−−
∞ −=

Brody growth coefficient

Asymptotic length Age of length 0

Concentrated Negative Log
Likelihood

() () ()[]
2

1
log~loglog

2
log ∑

=

−=−
n

a
aa LLnlconc

Now to learn about Emacs
growth.tpl

ADMB Methods of Assessing
Uncertainty

• Asymptotic standard errors
– Of parameters (produced by default)
– Of derived quantities

• Likelihood profile method
• MCMC (Bayesian posterior distribution)
• All admb methods require minimizing the

negative log-likelihood (or something
related to it)

Review on probability distributions

• Likelihood depends on assumed probability distribution
for the data summarized by f(x)

• f(x) represents either a probability density function (pdf
continuous distributions) or probability mass functions
(pmf) for discrete distributions

• Joint pdf/pmf for multiple independent observations

0.1)(0.1)(== ∑∫
+∞

∞−

xfdxxf or

∏

=

==

k

i

k

k

xf

xfxfxfxf
xxxxfxf

1

321

,321

)(

)()()()(
),,()(

L

K

More probability distribution stuff

• Previous slide presumed that joint pdf/pmf
was for multiple independent observations
from the same probability distribution.

• Similar result when observations come from
different distributions.

)()()()(

)(),(),()()()(

),,,,(),(

11

1321

11

yfxfyfxf

yfyfxfxfxfxf

yyxxfyxf

YY

m

iY

k

iX

mYYkXXXX

mk

⋅=

=

==

∏∏

KL

KK

Example PDF/PMFs

xs

sm
m

sm
s

xs
sxsmxf ⎟

⎠
⎞

⎜
⎝
⎛

+
⎟
⎠
⎞

⎜
⎝
⎛

+Γ
+Γ

=
!)(
)(),|(

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−= 2

2
2

2
)(exp

2
1),|(

σ
µ

σπ
σµ xxf

⎟
⎠
⎞

⎜
⎝
⎛ −−= 2

2
2)(ln

2
1exp

2
11),|(µ

σσπ
σµ x

x
xf

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

5 7 9 11 13 15

x value

Pr
ob

ab
ili

ty
 d

en
si

ty

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

x value

Pr
ob

ab
ili

ty
 d

en
si

ty

!
)(

x
exf

xλλ−=

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6 7

X-value

Pr
ob

ab
ili

ty

Poisson Neg Binomial

Poisson

Negative Binomial

Normal

Lognormal

Mathematically, likelihood function is same as
pdf/pmf – But expressed as function of parameters

• Implicitly (and sometimes explicitly) pdf/pmf
is conditional on parameter values

• Sometimes likelihood function is expressed
as conditional on data

)|()(θxfxf =

)|()|()(θθθ xfxLL ==

The negative log-likelihood

• Log transform the likelihood (joint pdf) and
remember that log(a*b)=log(a)+log(b)

)(log)(log)(log)(log

)(log)(log),(log)(log

21 kXXXXX

YXYX

xfxfxfxfL

LLyfxfyxfL

+++==

−−=−−=−=−

K

θ

-log Likelihood functions

⎟
⎠
⎞

⎜
⎝
⎛

+
−⎟

⎠
⎞

⎜
⎝
⎛

+
−

+Γ++Γ−=−

sm
mx

sm
ss

xssxsmL

loglog

)!log())(log())(log(),(log

∑∑ +−=− !ln)(log ii xxnL λλλ

ICxnL i +−+=− ∑ 2
2

22)(
2

1ln
2

),(log µ
σ

σσµ

∑ −

+++∑=−

2
2

2

)(ln
2

1

ln2ln
2

)ln(),(log

µ
σ

σπσµ

i

i

x

nnxL

∑ −++=− 2
2

2)(
2

1ln2ln
2

),(log µ
σ

σπσµ ixnnL
Negative Binomial

Poisson

Normal

Lognormal

Another form of Normal

Parameter value

N
eg

at
iv

e
lo

g
lik

el
ih

oo
d

ii
i

L

θθ
θ ˆ

2

2 log

=
∂

∂
−

measures how likelihood
falls off away from best
estimate

Asymptotic results
• Done automatically for parameters

ADMB or for any calculating quantity of
type sdreport_* or likeprof_number

• Results are in *.std and *.cor
• These are based on:

ji
ij

Lh

H

θθ
θ

∂∂
∂

=

−=Σ −

)(log2

1

• The variance-covariance matrix:

Diagonal elements are variances of
parameter estimates, off-diagonals are
covariances among parameter estimates.

Σ=
⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

σ σ σ σ

σ σ σ σ

σ σ σ σ

σ σ σ σ

2
11

2
12

2
1

2
1

2
21

2
22

2
2

2
2

2
1

2
2

2 2

2
1

2
2

2 2

... ...

... ...
...

... ...
...

... ...

j p

j p

i i ij ip

p p pj pp

Elements of variance-covariance matrix

• The variances describe uncertainty in the
parameter estimates. I.e., how variable are
these estimates about their true values?

• The square-root of the variances gives the
standard errors

• The covariances describe how the estimation
errors for two parameters are related. When
parameter “a” is over-estimated does
parameter “b” also tend to be over-estimated
(+ cov), tend to be under-estimated (- cov) or
is there no relationship (0 cov)?

Correlation matrix

• Diagonals are 1.0
• Off diagonals are correlations among

parameter estimates:

ρ
σ

σ σij
ij

ii jj

=
2

2 2

Parameter value

N
eg

at
iv

e
lo

g
lik

el
ih

oo
d

ii
i

L

θθ
θ ˆ

2

2 log

=
∂

∂
−

measures how likelihood
falls off away from best
estimate

Asymptotic standard errors can
produce misleading inferences

• When sample sizes are small
• and the curvature of the likelihood surface

changes substantially within the range of
plausible estimates – i.e., “near to the maximum
likelihood estimates

• We will now explore alternative approaches to
assessing uncertainty using a surplus production
model fit to arrowtooth flounder data

• First we review the model and data

Overview of model and data
• There are 14 years of data consisting of yield

(mass) and a biomass index.
• The biomass index is based on swept area trawl

and catchability (q) is assumed known=1
• Dynamics are assumed to follow logistic model

in absence of fishing and observed yield is
assumed to equal true yield

• Observed biomass indices are assumed to have
a lognormal distribution.

Surplus Production Model
(one simple variant)

),(1 ttBtt YBBB ∆+=+

tt
t

B YB
B
B

B
m

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=∆

∞∞

14

Observation Stochasticity
with lognormal errors

)ln()ln()ln()ln(

ˆ

ttt

ttttt

BqBobs
qBobsBqBBobs

ε
ε

++=
==

So our objective function will be to minimize the neg log likelihood
with additive constants dropped:

∑ −+=− 2
2

2)(ln
2

1ln),(log µ
σ

σσµ ixnL

OK – enough already!
Lets look at the code, make sure it runs, and

then move on to implementing alternative
approaches to assessing uncertainty!

Find flounder folder and open up founder.dat
and flounder.tpl in buffers

Things to do

• Create tpl, compile and link
• Look at results (rep file, cor file)
• Change lnblast to be of type

likeprof_number
• Run with “switch” -lprof

How to use the profile method
• Declare a variable you would like to profile as

type likeprof_number in the parameter section,
and assign it the correct value in the procedure
section.

• When you run your program use the lprof switch:
myprog -lprof

• Results are saved in myvar.plt where myvar is
the name of your likeprof_number variable

• Your variable is varied over a “profile” of values
and the best fit constrained to match each value
of your variable is found

()∑
=

+ −
s

ri
iii yxx 1

PLT File contains list of point (x,y)
x is value (say biomass)
y is associated prob density

Plot of Y vs X gives picture of prob distribution

ADMB manual says estimate probability x in in (xr,xs) by

Likelihood profile versus Normal approximation

0
1
2
3
4
5
6
7
8

5.9 6 6.1 6.2 6.3 6.4 6.5 6.6

log(Biomass)

Li
ke

lih
oo

d

Likeprof Normal approximation

Likelihood profile versus Normal approximation

-0.002
0.000
0.002
0.004
0.006
0.008
0.010
0.012
0.014
0.016

400 450 500 550 600 650 700

Biomass

Li
ke

lih
oo

d

Likeprof Normal approximation

Profile likelihood options
Switch

-prsave This saves the parameter values associated
with each step of profile in myvar.pvl

Options set in tpl (preliminary calcs section): e.g., for lprof
var myvar:

PRELIMINARY_CALCS_SECTION
myvar.set_stepnumber(10); // default is 8
myvar.set_stepsize(0.2); //default is 0.5

Note manuals says stepsize is in estimated standard
deviations but this appears to be altered adaptively during
the profile

WARNING -- LOTS OF STEPS CAN TAKE LOTS OF TIME!

Profile Likelihood Method

• This is NOT inverting a likelihood ratio test
in ADMB land!

• This is Bayesian in philosophy (in the
same way that MCMC is). Can also be
motivated by likelihood theory (support
intervals)

• Idea is to use the profile for g(θ) to
approximate the probability density
function for g.

∫ nn dddf θθθθθ ...),...,(321

When g(θ) = θ1 -- i.e, we are
interested in the distribution of
a parameter -- ADMB
approximates the marginal
distribution of θ1 :

with

)]|(max[01 θθθλ =f

More generally g(θ) (say biomass) is a complex
function of many parameters and we want a pdf
for g(θ)

• The approximation needs to be modified:
biomass (or other derived quantities) will change at

different rates with respect to changes in parameters in
different parts of the parameter space.

i.e., some “biomasses” might represent a small part
of the parameter space and others might represent a
larger part.

The modified approximation is:

)ˆ,...,ˆ(

]:|),...,(max[

1

01

n

n

g

ggf

θθ

θθθ
λ

∇

=

()∑
=

+ −
s

ri
iii yxx 1

PLT File contains list of point (x,y)
x is value (say biomass)
y is associated prob density

Plot of Y vs X gives picture of prob distribution

ADMB manual says estimate probability x in in (xr,xs) by

MCMC

• MCMC is a way to generate samples from a
complex multivariate pdf.

• In practice the pdf is usually the posterior in a
Bayesian analysis.

• This is useful in looking at marginal distributions
of derived quantities.

• These marginal distributions are the same thing
the profile likelihood method was approximating.

We need priors to do this!

∫
=

θθθ
θθθ

dpXL
pXLXp

)(),(
)(),()|(

Constant++=))(ln()|(ln()|(ln(θθθ pXLXp

PriorLikelihood

Posterior

ADMB presumes we are going to start by finding the parameters that
maximize the posterior density (called highest posterior or modal
estimates), so just miminize the log posterior. Just like a negative log-
likelihood but with new terms for priors

Two examples
• If prior on M were log-normal with

median of 0.2 and with sd for ln(M)=0.1,
then just add to your likelihood:

• For special case of diffuse prior ln(p()) is
constant inside the bounds, so a
bounded diffuse prior can be specified
just by setting bounds on parameters.

2

1.0
)2.0/ln(5.0 ⎟
⎠
⎞

⎜
⎝
⎛ M

θ0 θ1 θ2 θ100000....

• Transition from θi to θi+1 is stochastic
• Transition only depends upon θi
• For suitable transition rule approaches target pdf
• Approximate marginal pdf by output of chain after burn-in

The Basic Idea Behind MCMC

)(if θ

Frequency Histogram

0

1

2

3

4

5

6

1.25 1.35 1.45 1.55 1.65 1.75 1.85 1.95 2.05 2.15

Log of ratio of final biomass to initial biomass

For MCMC with 100,000 steps, every 100 saved,
100 of saved steps dropped as “burn-in”

Doing an MCMC run
• Use -mcmc N switch to generate a chain of

length N. Default N is 100,000.
• Summarized output for parameters, sdreport

variables and likeprof_numbers is in *.hst
• This automatic summary is for the entire chain

with no provision for discarding a burn-in and no
built in diagnostics.

• Serious evaluation of the validity of the MCMC
results requires you gain access to the chain
values.

Gaining access to chain values
• When you do the MCMC run, add the switch -mcsave

N, which saves in a binary file every Nth values from
the chain.

• You can rerun your program to read in the saved
results and make one run through your model for
each saved set of parameters. Use the switch -
mceval

• You can add code to your program to writeout results
(and do special calculations) during the mceval
phase.

• You can modify your program to do this even after
you generate your chain, provided your change does
influence the posterior density.

θ=r

θ=s
t(r,

s)

t(s,
r)

π(r)t(r,s)= π(s)t(s,r)

Reversibility

Approach to Achieve Reversibility
(Metropolis algorithm)

• Generate a trial value of θ* using “candidate” probability
distribution
– Candidate distribution is easy to simulate
– Here we assume candidate distributions propose symmetric

transitions
• Calculate π(θi) and π(θ*)
• If π(θ*) > π(θi) make the transition

θi+1= θ*
• If π(θ*) < π(θi) generate u~uniform(0,1)

– If u<α make the transition
θi+1= θ*

– otherwise stay put
θi+1= θi

– α = π(θ*)/ π(θi)

ADMB Implementation of
MCMC

• θ0 = mode of posterior by default
• θ*= θi + δ, where δ ~ N(0,cΣ)
• c is scaled so that 0.2 < α < 0.4 during first

2000 steps
• Options allow you to modify the

distribution of δ and the value of θ0

Example of code to write results out
when using mceval switch

if (mceval_phase()) cout << negLL << " " << Blast
<< B << endl;

Important caution: this writes to standard
output. Better redirect this to file our
millions or numbers will go scrolling by!

Some basic diagnostics

• Look at trace plot
• Look at autocorrelation function for chain
• Calculate “effective sample size”
• Compare subchain CDFs (if the first and

second half differ substantially then chain
may be too short

• Lots of other diagnostics and procedures
– E.g., parallel chains and formal comparisons

Trace plot Flounder Example

100,000 steps, sampled every 100

trace plot log scale init vs last biomass

1

1.2

1.4

1.6

1.8

2

2.2

0 200 400 600 800 1000

Autocorrelation for flounder example

AR(1) shown for comparison (curve)

Autocorrelation log-scale ratio of init to final
biomass

-0.5

-0.3

-0.1

0.1

0.3

0.5

0.7

0.9

0 10 20

Lag

C
or

re
la

tio
n

co
ef

fic
ie

nt

rho
AR(1)

First half

Second half

Entire chain

Frequency Histogram

0

1

2

3

4

5

6

1.25 1.35 1.45 1.55 1.65 1.75 1.85 1.95

Frequency Histogram

0

1

2

3

4

5

6

1.25 1.35 1.45 1.55 1.65 1.75 1.85 1.95 2.05 2.15

Frequency Histogram

0

1

2

3

4

5

6

1.25 1.35 1.45 1.55 1.65 1.75 1.85 1.95 2.05 2.15

burn-in excluded

2000 4000 6000 8000 10000

3.5×106

4×106

4.5×106

5×106

5.5×106

6×106

6.5×106

Trace Plot for Flack Lake

1,000,000 step chain sampled every 1000

MCMC Chain Options
to make changes to transition rule

• -mcgrope p p is the proportion of “fat” tail
• -mcrb N 1 to 9, smaller = weaker

correlation
• -mcdiag Hessian replaced with Identity
• -mcmult N Scaler for Hessian
• -mcnoscale No automatic adj to scaler

Starting and Restarting a Chain

• -mcr Restart from where it left off
• -mcpin fn Start chain at params in fn

– The output obtained by running with the
switches -lprof -prsave (in *.prv) can be
useful for this.

Huge literature on MCMC and
Diagnostics

• Gelman et al. Bayesian Data Analysis
good general source on all things
Bayesian

• I Like Cowles and Carlin, Markov Chain
Monte Carlo convergence diagnostics: a
comparative review. JASA 91:833-904

Do mcmc with growth model

• Modify growth model to
– Include at least one sdreport_* variable
– Cout things you care about during

mcmceval_phase
– Bound all parameters
– Change to neg log like from conc

• Tpl2cpp, compile and link your program
• Run… -mcmc 1000000 –mcsave 100
• Run… -mceval>mymcmcfile.dat

What to expect this afternoon

• Improving model efficiency
• Creating functions that take arguments
• Using control programs that automate

model fitting
– Introduction to time-varying growth model

• Simulating data to test model
• Combining control and data simulation

programs in a simulation study
– Introduction to catch-at-age model

Improving Efficiency

• You do not need to worry about model
efficiency in most cases

• In general, it is only important when:
– Your model is very complex
– You are running your model many times (e.g.,

mcmc, simulation study)

Rule number 1 – calculate
something only once if you can!

• Quantities that do not change but are needed during
estimation should be calculated in
PRELIMINARY_CALCS_SECTION

• Quantities that are not needed for estimation but only for
reporting should be calculated in REPORT_SECTION or
if uncertainty estimates are needed conditional on phase
too:

• If (sd_phase())
{…
}

Rule number 2 – avoid unneeded
loops

• Use admb built in functions (e.g., sum,
rowsum, element by element multiplication
and division, etc)

• Combine loops over the same index

Functions that take arguments

• Functions that do not take arguments can
be used to organize code

get_catch_at_age();

• Functions that take arguments can simplify
calculations

rss=norm2(residuals);

• Beware of functions that take parameters
as arguments

Functions that take arguments
w=my_function(my_argument);

FUNCTION double my_function (double x)
double y;
.
z=x+y;
.
return(z);

Call function

Returns object

Takes object as argument
Declare local variables

Carry out calculations

Output variable

0
100
200
300
400
500
600
700
800
900

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Captured

To

w
s

captured # tows
0 807
1 37
2 27
3 8
4 4
5 4
6 1
7 3
8 1
9 0

10 0
11 2
12 1
13 1
14 0
15 0
16 0
17 1

Total 897

Albatross bycatch in New Zealand squid trawl fishery
From Chapter 4 of Ecological Detective (Hilborn and Mangel 1997),
originally published by Bartle (1991, cited in H&M)

⎟
⎠
⎞

⎜
⎝
⎛

+
−⎟

⎠
⎞

⎜
⎝
⎛

+
−

+Γ++Γ−=−

sm
mx

sm
ss

xssxxsmL

loglog

)!log())(log())(log()|,(log

Negative binomial PMF and neg log
likelihood for a single observation

integer an

ss)completene for (included
belowstuffabout worryNOT Do

iii

duuex xu

)!1()(

)(
0

1

−=Γ

=Γ ∫
∞

−−

xs

sm
m

sm
s

xs
sxsmxf ⎟

⎠
⎞

⎜
⎝
⎛

+
⎟
⎠
⎞

⎜
⎝
⎛

+Γ
+Γ

=
!)(
)(),|(

Now for factorial function example
albatross.tpl

Control Programs

• A control program can be used to
automate repeated running of models
– Fitting same model to multiple dat files
– Fitting multiple models to same dat file
– Fitting multiple models to multiple dat files

• Avoid having to move tpl and dat files
around

• Manage output from multiple model runs

Tpl file must still contain:

• Data section
• Parameter section
• Procedure section
• objective_function_value
• One active parameter

Control Programs

• Most of work is done in preliminary calcs
section or using local_calcs command
– Operations involved only need to be run once

• Use “Run –est” to run control program
– No parameters or asymptotic standard errors

to estimate

Time-Varying Von Bertalanffy
Growth Model

• Asymptotic length varies over time
• Mean length at age-1 (L1) and Brody growth

coefficient (K) are constant over time

()()[]

()2
,

,,,1,1

,0~

1~ ,

ε

ε

σε N

eeLLLL

ay

K
ayyayay

ay−
∞++ −−+=

()∞L

Random Walk

• Model time-varying asymptotic length

() ()

()2

,1,

,1,

,0~

loglog

ω

ω

σω

ω

N

LL

eLL

y

yyy

yy
y

+=

=

∞+∞

∞+∞

Model Parameters

0,∞L K L1

ω2, . . . , ωm-1 L1,2, . . . , L1,n-1

2

2

ω

ε

σ
σλ =

Ratio of relative variances (assumed known)

Concentrated Negative Log
Likelihood

()
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛−+
=− ∑∑

−

==

2

1

2

2

1

~
loglog

2
2log

m

j
j

mn

i i

i

L
LmmnLconc ωλ

New ADMB Stuff

• Redirecting output
• Char objects
• Character string commands
• System commands

Redirecting Output

ofstream ofs(“myfile.txt”,ios::app);

ofs << variable << endl;

New output command Append new output to file

File to receive output

Char Objects

• Object that holds a character string
GLOBALS_SECTION
char x[5];

• Object should be large enough to hold
desired string

• Keeping track of large strings can tax
memory

Maximum string size

Character String Commands

• Convert numerical variable (y) to char
object (x)

sprintf(x,”%i”,y);

• Copy string “text” to char object (x)
strcpy(x,”text”);

• Concatenate string “text” to char object (x)
strcat(x,”text”);

System Commands

• Send commands to operating system
(e.g., Windows, Linux)

• E.g., tell OS to run mymodel.exe with –est
run-time switch

system(“mymodel –est”);

Now a control program example
controlpro.tpl

Control Program Exercise

• Modify controlpro.tpl to save the
growthtimeC.par file from each model run
to a unique file
– E.g., growthtimeC1.par, growthtimeC2.par,…

• Use character strings to create this unique
file name (as with filename variable) and
the system command to save the file (as
with runcommand variable)

system(“cat growthtimeC.par >> your_filename”);

Simulating Data

• Simulated data is useful for testing models
• How well does model perform when

processes underlying “reality” are known?
– The “true” values of parameters and variables

can be compared to model estimates
• Make sure model works before using real

world data

Simulating Data

• “Parameter” values are read in from dat
file

• “Parameter” values used in estimation
model equations to calculate true data

• Random number generator creates
random errors

• Adding random error to true data gives
observed data

How to simulate data for
time-varying growth model

Simulated data input “parameters”

0,∞L K L1

σω
2

2

2

ω

ε

σ
σλ =

Calculate ratio of relative variances

σε
2

Simulate time-varying Linf

• Deviations randomly drawn from
distribution

()

() ()

yeLL

LL

N

yy

yyy

y

ω

ω

ω

σω

,1,

,1,

2

loglog

,0~

∞+∞

∞+∞

=

+=

Simulate observed mean
length-at-age data

• Observation errors randomly drawn from
distribution

()()[]

()()[]

()2
,

,,,1,1

,10,,11,1

,0~

1~

1~

,

,1

ε

ε

ε

σε N

eeLLLL

eeLLLL

ay

K
ayyayay

K
aaa

ay

a

−
∞++

−
∞+

−−+=

−−+=

New ADMB Stuff
Random Number Generator

• Initialize random number generator (x)
random_number_generator x(seed);

• Fill object (y) with random numbers
y.fill_randn(x); // yi~Normal(0,1)
y.fill_randu(x); //yi~Uniform(0,1)

Random number seed

New ADMB Stuff
Random Number Generator

• Random number generator produces
pseudo-random numbers

• Pseudo-random numbers are generated
from an algorithm which is a function of
the random number seed

• The same random number seed will
always produce the same string of
numbers

Now an example of simulating data
datasim.tpl

Simulation Study

• Simulation study combines a data
generating model with a control program
to repeatedly fit an estimating model to
many simulated data sets

• This provides replicate model runs to
better evaluate an estimating model’s
performance
– Only one replicate normally is available in the

real world

Simulation Study

• Can evaluate how a model performs vs.
different underlying “reality”
– E.g., with different levels of observation error

• Can evaluate how well different models
can fit the same data sets
– E.g., fit Ricker and Beverton-Holt stock-

recruitment models to same data sets
• Or can use a combination of the two

approaches

Overview of Catch-At-Age

CAA estimates
of population
dynamics

CAA predictions
of observed
data

Observed data Negative log likelihood

Observed Data

• Total annual fishery catch
• Proportion of catch-at-age
• Auxiliary data

– Fishing effort

Population Submodel

logR+ω1

logR+ω2

logR+ωm

. . . .

logN1,1+ψ1 logN1,n-1+ψn-1

Recruitment

Initial numbers at age

Population Submodel

ayay

Z
ayay

FMZ

eNN ay

,,

,1,1
,

+=

= −
++

Numbers of fish Survival

Total mortality Fishing mortality

Natural mortality

Population Submodel

()2

,

,0~ ζ

ζ

σζ N

eqEsF

y

yaay
y=

Selectivity Effort

Catchability Effort error

Observation Submodel

• Baranov’s catch equation

() ay
Z

ay

ay
ay Ne

Z
F

C ay
,

,

,
,

,1 −−=

Observation Submodel

()2

,

,0~

 ~

ε

ε

σε N

eCC

CC

y

yy

a
ayy

y=

⎥
⎦

⎤
⎢
⎣

⎡
= ∑

Total catch

Observation error

Observed total catch

Observation Submodel

{ } ()

E

ay
ay

Eayy

y

ay
ay

N
n

P

NpMNOMPn

C
C

P

,
,

,E

,
,

~

~N

=

=

=

Proportion of catch-at-age

Numbers sampled at age Proportions

Effective sample size

Obs. proportion of catch-at-age

Negative Log Likelihood
for Multinomial

()

()[]∑ ∑

∑

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=−

y a
ayayyE

y kyyy

yE

pPN

nnn
N

L

,,,

,2,1,

,

log~

!!...!
!

loglog

Model Parameters

q b1, b2, b3, b4

ζ1, . . . , ζm σε

2

2

ζ

ε

σ
σλ =

Ratio of relative variances (assumed known)

ω1, . . . , ωmR ψ1, . . . , ψn-1

Negative Log Likelihood
(ignoring constants)

() ()
2

2

~
log

2
1loglog ∑

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=−

y y

y

C
C

mL
ε

ε σ
σ

() ∑++
y

ym 2
22

1log ζ
σ

σ
ζ

ζ

()[]∑∑−
y a

ayayE PPN ,, log~

Data Generating Model

• Recruitments generated from Ricker
stock-recruitment function

()2

11,

,0~

1

ω

ωβ

σω

α

N

eeSN

y

S
yy

yy−−
−=

Input “parameters”

Number of spawners

Data Generating Model

• Numbers at age in first year came from
applying mortality to randomly generated
recruitments

()2
1,1

1,1,1

,~

1
,0

NNa

Z

aa

LNN

eNN

a

j
j

σµ−

−

−

∑
= =

Data Generating Model

• Two treatments are examined in this
simulation study
– Low and high levels of total catch observation

error
• Two values for σε are specified in dat file

for data generating model and one value is
used to generate observed data based on
the current treatment

New ADMB Stuff
Random Number Generator

• A specific random number seed will
always generate the same pseudo-random
numbers

• Therefore the random number seed must
be changed each time create a new dat
file

• Otherwise all the dat files for a given
treatment will be the same

Now a simulation study example
catchsim.tpl

Simulation Study Practicum

• You have seen:
– Control program for time-varying growth

model
– Data generating model for time-varying

growth
– Simulation study for catch-at-age analysis

• Now you need to put the pieces together
to create a time-varying growth model
simulation study

Simulation Study Practicum

• Your simulation study will look at the
effects of process and observation error
on performance of a time-varying growth
model
– Two levels of observation error for mean

length-at-age
– Two levels of process error for time-varying

asymptotic length

Input “Parameters”

0,∞L K L1

σω
2

2

2

ω

ε

σ
σλ =

Calculate ratio of relative variances

σε
2

Simulate time-varying Linf
as random walk

• Deviations randomly drawn from
distribution

()

() ()

yeLL

LL

N

yy

yyy

y

ω

ω

ω

σω

,1,

,1,

2

loglog

,0~

∞+∞

∞+∞

=

+=

Simulate observed mean
length-at-age data

• Observation errors randomly drawn from
distribution

()()[]

()()[]

()2
,

,,,1,1

,10,,11,1

,0~

1~

1~

,

,1

ε

ε

ε

σε N

eeLLLL

eeLLLL

ay

K
ayyayay

K
aaa

ay

a

−
∞++

−
∞+

−−+=

−−+=

Suggested “parameter” values for
fullsim.dat

• 1 to 10 years
• 1 to 10 ages
• Linf 30
• K 0.35
• L1 9

• Low σε 0.05
• High σε 0.1
• Low σω 0.1
• High σω 0.2

Simulation Output

• Try running 5 replicates for 20 runs total
• Output final parameter values, objective

function value, and maximum gradient
component for each run
– E.g., you can use ofstream command

• Include replicate and error level numbers
in output to identify model runs

Recommendations on how to
tackle this challenge

• Create data generating model (fullsim.tpl)
so that it produces a dat file with same
format as example.dat

• Modify growthtimeF.tpl to read in dat file
correctly and make sure it runs properly

• Incorporate a control program into
fullsim.tpl to automate data generation and
loop over different levels of process and
observation error

Recommendations on how to
tackle this challenge

• Generate dat files without running
growthtimeF.tpl and make sure values
look reasonable
– Remember to change random number seed

for each new dat file you generate
• Try running the full simulation and check

run-time message buffer to help evaluate
convergence

Have fun with simulation study
fullsim.tpl

Thinking about random effects

In context of admb

Consider a model where some of the
“parameters” are assumed to be random

(from a distribution)

)|()(~

},{~)~|(

22

1

θφθφ

φθθθ

φfD

xf =

DirBBB
~},...{ 1 φφφφ =

fixed random

Particularly when random parameters are in blocks so that

iid

Time-Varying Von Bertalanffy
Growth Model

()()[]

()2
,

,,,1,1

,0~

1~ ,

ε

ε

σε N

eeLLLL

ay

K
ayyayay

ay

−
∞++ −−+=

() ()

()2

,1,

,0~

loglog

ωσω

ω

N

LL

y

yyy

+= ∞+∞

Random Walk

• Model time-varying asymptotic length

() ()

()2

,1,

,1,

,0~

loglog

ω

ω

σω

ω

N

LL

eLL

y

yyy

yy
y

+=

=

∞+∞

∞+∞

How does this connect?

• To a frequentist are not
parameters. Parameters are fixed.

• When we have encountered this we
have been “closet Bayesians.” We
estimated and assumed that
could be determined from . This is
the Highest Posterior Density
approach.

• Often not possible to estimate
variance of random effects doing this

• Frequentist mixed model or
hierarchical Bayesian approaches are
alternatives

)|()(~

},{~)~|(

22

1

θφθφ

φθθθ

φfD

xf =

θ~

2θ
1θ

φ

Hierarchical Bayesian

)(~

)(~

},,{

2

2

21

Ω

=

H

D

θ

θφ

θφθθ

)|()(~

},{~)~|(

22

1

θφθφ

φθθθ

φfD

xf =

Parameters Hyperparameters

Part of Prior

Hyperprior

Frequentist mixed model

∫∝

=

φ

φθφφθθ

θφ
θθθ

all

dpxfxf

D

)|(),|()|(

)(~
},{

21

2

21

effects random for model
parameters

ADMB-RE

• What is old
• What is new

– Random effects objects
– Objective function
– Correlated random effects

• Tips for estimating random effects

What’s Old

• In tpl file, you still need:
– Data section
– Parameter section
– Procedure section
– Declare objective_function_value
– One active parameter

• Most (but not all) ADMB functions are also
available in ADMB-RE

What’s New
Random Effect Objects

• Need to declare random effects and
associated variance in Parameter section

init_number sigma_x
random_effects_vector x(1,nobs)

init_number sigma_y
random_effects_matrix y(1,nrow,1,ncol)

• Random effects must be declared after all
the other parameters (i.e., after all the
init_objects)

What’s New
Objective Function

• Distribution of random effects should be
included in objective function

• Objective function must be the negative
log likelihood or sum of negative log
likelihoods

• Laplace approximation used to integrate
negative log likelihood with respect to
random effects
– Approximation is less accurate when random

effects are not normally distributed

What’s New
Correlated Random Effects

• Can estimate unstructured covariance
matrix for random effects

init_matrix cov(1,nobs,1,nobs)
random_effects_vector x(1,nobs)

• ADMB-RE manual covers how to
parameterize cov matrix using Cholesky
factor
– Reduces number of parameters
– Ensures matrix is positive definite

What’s New
Correlated Random Effects

• ADMB-RE manual covers how to
cholesky_decomp() function to specify
structured cov matrix

Tips for estimating random effects

• Estimate random effects and associated
variances in later phase
– i.e., after fixed effects parameters are well

estimated
• Random effects and associated variances

should be estimated in same phase
• Try estimating multiple random effects

(i.e., multiple random effects objects) in
different phases

Let’s try out ADMB-RE
growthtimeRE.tpl

Miscellaneous Topics and Tricks

• Ragged arrays
• Missing data
• Advanced ADMB functions
• Using dat file for flexibility

Ragged Arrays

• Ragged matrix is matrix whose rows are
vectors with varying valid indices

• Ragged array is an array of matrices of
different sizes
– Matrices themselves may or may not be

ragged
• You can learn more about ragged arrays

in the AutoDif manual

Ragged Arrays
int min=0; // minimum valid row index
int max=4; // maximum valid row index
ivector minind(0,4); //minimum valid index of vector

forming each row of matrix
ivector maxind(0,4); //maximum valid index of vector

forming each row of matrix
//Read in values to minind and maxind
.
dmatrix M(min,max,minind,maxind);

Ragged Array

• For example, if:
minind(4)=-1,
maxind(4)=5,

• Then row 4 of matrix M can be thought of
as:

vector m(-1,5)

Missing Data

• It is not uncommon to have missing years
of data in a time series of observed data

• One solution is to interpolate the missing
years of data outside the model fitting
process by some ad hoc method
– E.g., averaging data from the adjacent years

• A better solution is to allow the model to
predict values for the missing data
– This takes advantage of all the available data

Missing Data
Implementation

• Use special value to denote missing data
in dat file
– E.g., a value you wouldn’t normally see in real

data like -1
• Use loops and conditional statements to

exclude missing data values from
objective function value

• Otherwise, model will try to match
predicted values to the missing data
values

Missing Data
Multinomial Case

• Replace missing data with 0 and it will not
contribute to negative log likelihood value

() ()[]∑∑−=−
y a

ayayE PPNL ,, log~log

Let’s look at an example
catchMD.tpl

Advanced Functions

• Filling objects
• Obtaining shape information
• Extracting subobjects
• Sorting vectors and matrices
• Cumulative density functions

Filling Objects
v.fill(“{1,2,3,6}”); // v=[1,2,3,6]
v.fill_seqadd(1,0.5); // v=[1,1.5,2,2,5]

m.rowfill_seqadd(3,1,0.5); // fill row 3 with sequence
m.colfill_seqadd(2,1,0.5); // fill column 2 with sequence

m.rowfill(3,v); // fill row 3 with vector v
m.colfill(2,v); // fill column 2 with vector v

Obtaining Shape Information
i=v.indexmax(); // returns maximum index
i=v.indexmin(); // returns minimum index

i=m.rowmax(); // returns maximum row index
i=m.rowmin(); // returns minimum row index
i=m.colmax(); // returns maximum column index
i=m.colmin(); // returns minimum column index

Extracting Subobjects
v=column(m,2); // extract column 2 of m
v=extract_row(m,3); // extract row 3 of m
v=extract_diagonal(m); // extract diagonal elements of m

vector u(1,20)
vector v(1,19)
u(1,19)=v; // assign values of v to elements 1-19 of u
--u(2,20)=v; // assign values of v to elements 2-20 of u
u(2,20)=++v; // assign values of v to elements 2-20 of u

u.shift(5); // new min is 5 new max is 24

Sorting Objects

• Sorting vectors
w=sort(v); // sort elements of v in ascending order

• Sorting matrices
x=sort(m,3); // sort columns of m, with column 3 in

ascending order

Cumulative Density Functions

• For standard normal distribution
x=cumd_norm(z); // x=p(Z<=z), Z~N(0,1)

• Also have CDF for Cauchy distribution
cumd_cauchy()

Flexible dat files

• You can use dat file to prevent having to
modify and recompile tpl file

• Quantities you can read in from dat file:
– Object indices
– Parameter starting values
– Parameter bounds
– Parameter phases
– Switches turn code on/off

Let’s look at an example
catchS.tpl

