
Welcome to our second (advanced) 
course on using AD Model Builder

• Instructors Jim Bence and Brian Linton
• Special thanks to Travis Brenden, 

Kendra Porath, Mike Wilberg, and 
Weihai Liu

• And to MSU, GLFC, MDNR and CLC 
Agency Partners 

Preliminary Issues
• Please wear your name tags (have pity on my 

poor memory…)
• Coffee etc in room 153
• Change in schedule:  Tonight we plan to meet 

from 6:30-9:00 and offer to organize a Pizza 
Dinner in room 153 during the break

• Course materials (revised based on workshop) 
will be available within two weeks at an ftp site.

• Possibility of group purchase of admb software.
• Do you have a parking pass on your vehicle?



Course Overview
• Session 1 (this morning):  Course introductory 

material, using the computing system, assessing 
uncertainty using admb

• Session 2 (this afternoon): Using functions and 
doing simulations

• Session 3 (tonight):  Hands on development of 
simulation code

• Session 4 (tomorrow morning):  Random effects 
in admb

• Session 5 (tomorrow afternoon): Misc. topics 
and catchup

E-macs: 
editing and 
menu system

tpl (template)

Admb software

Cpp (C++ 
code)

Exe file

GNU C++ 
Compiler

Results (par, std, rep, etc)



Welcome to Emacs

• Von Bertalanffy growth model
• Navigating and editing in Emacs
• ADMB in Emacs

– Growth model example

Von Bertalanffy Growth Model
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Concentrated Negative Log 
Likelihood
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Now to learn about Emacs
growth.tpl



ADMB Methods of Assessing 
Uncertainty

• Asymptotic standard errors
– Of parameters (produced by default)
– Of derived quantities

• Likelihood profile method
• MCMC (Bayesian posterior distribution)
• All admb methods require minimizing the 

negative log-likelihood (or something 
related to it)

Review on probability distributions

• Likelihood depends on assumed probability distribution 
for the data summarized by f(x)

• f(x) represents either a probability density function (pdf
continuous distributions) or probability mass functions 
(pmf) for discrete distributions

• Joint pdf/pmf for multiple independent observations
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More probability distribution stuff

• Previous slide presumed that joint pdf/pmf
was for multiple independent observations 
from the same probability distribution.

• Similar result when observations come from 
different distributions. 
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Example PDF/PMFs
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Mathematically, likelihood function is same as 
pdf/pmf – But expressed as function of parameters

• Implicitly (and sometimes explicitly) pdf/pmf
is conditional on parameter values

• Sometimes likelihood function is expressed 
as conditional on data
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The negative log-likelihood

• Log transform the likelihood (joint pdf) and 
remember that log(a*b)=log(a)+log(b)
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-log Likelihood functions
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Normal

Lognormal

Another form of Normal
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Asymptotic results
• Done automatically for parameters 

ADMB or for any calculating quantity of 
type sdreport_* or likeprof_number

• Results are in *.std and *.cor
• These are based on:
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• The variance-covariance matrix:

Diagonal elements are variances of 
parameter estimates, off-diagonals are 
covariances among parameter estimates.
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Elements of variance-covariance matrix

• The variances describe uncertainty in the 
parameter estimates.  I.e., how variable are 
these estimates about their true values?

• The square-root of the variances gives the 
standard errors

• The covariances describe how the estimation 
errors for two parameters are related.  When 
parameter “a” is over-estimated does 
parameter “b” also tend to be over-estimated 
(+ cov), tend to be under-estimated (- cov) or 
is there no relationship (0 cov)?

Correlation matrix

• Diagonals are 1.0
• Off diagonals are correlations among 

parameter estimates:
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Asymptotic standard errors can 
produce misleading inferences

• When sample sizes are small
• and the curvature of the likelihood surface 

changes substantially within the range of 
plausible estimates – i.e., “near to the maximum 
likelihood estimates

• We will now explore alternative approaches to 
assessing uncertainty using a surplus production 
model fit to arrowtooth flounder data

• First we review the model and data



Overview of model and data
• There are 14 years of data consisting of yield 

(mass) and a biomass index.
• The biomass index is based on swept area trawl 

and catchability (q) is assumed known=1
• Dynamics are assumed to follow logistic model 

in absence of fishing and observed yield is 
assumed to equal true yield

• Observed biomass indices are assumed to have 
a lognormal distribution.

Surplus Production Model
(one simple variant)
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Observation Stochasticity
with lognormal errors
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So our objective function will be to minimize the neg log likelihood 
with additive constants dropped:
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OK – enough already!
Lets look at the code, make sure it runs, and 

then move on to implementing alternative 
approaches to assessing uncertainty!

Find flounder folder and open up founder.dat
and flounder.tpl in buffers



Things to do

• Create tpl, compile and link
• Look at results (rep file, cor file)
• Change lnblast to be of type 

likeprof_number
• Run with “switch” -lprof

How to use the profile method
• Declare a variable you would like to profile as 

type likeprof_number in the parameter section, 
and assign it the correct value in the procedure 
section.

• When you run your program use the lprof switch:  
myprog -lprof

• Results are saved in myvar.plt where myvar is 
the name of your likeprof_number variable

• Your variable is varied over a “profile” of values 
and the best fit constrained to match each value 
of your variable is found
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PLT File contains list of point (x,y) 
x is value (say biomass)
y is associated prob density

Plot of Y vs X gives picture of prob distribution

ADMB manual says estimate probability x in in (xr,xs) by

Likelihood profile versus Normal approximation
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Likelihood profile versus Normal approximation
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Profile likelihood options
Switch

-prsave This saves the parameter values associated 
with each step of profile in myvar.pvl

Options set in tpl (preliminary calcs section):  e.g., for lprof
var myvar:

PRELIMINARY_CALCS_SECTION
myvar.set_stepnumber(10); // default is 8
myvar.set_stepsize(0.2); //default is 0.5

Note manuals says stepsize is in estimated standard 
deviations but this appears to be altered adaptively during 
the profile

WARNING -- LOTS OF STEPS CAN TAKE LOTS OF TIME!



Profile Likelihood Method

• This is NOT inverting a likelihood ratio test 
in ADMB land!

• This is Bayesian in philosophy (in the 
same way that MCMC is).  Can also be 
motivated by likelihood theory (support 
intervals)

• Idea is to use the profile for g(θ) to 
approximate the probability density 
function for g. 
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When g(θ) = θ1 -- i.e, we are 
interested in the distribution of 
a parameter -- ADMB 
approximates the marginal 
distribution of θ1 :
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More generally g(θ) (say biomass) is a complex 
function of many parameters and we want a pdf
for g(θ)

• The approximation needs to be modified:
biomass (or other derived quantities) will change at 

different rates with respect to changes in parameters in 
different parts of the parameter space.  

i.e., some “biomasses” might represent a small part 
of the parameter space and others might represent a 
larger part.  

The modified approximation is:

)ˆ,...,ˆ(

]:|),...,(max[

1

01

n

n

g

ggf

θθ

θθθ
λ

∇

=

( )∑
=

+ −
s

ri
iii yxx 1

PLT File contains list of point (x,y) 
x is value (say biomass)
y is associated prob density

Plot of Y vs X gives picture of prob distribution

ADMB manual says estimate probability x in in (xr,xs) by



MCMC 

• MCMC is a way to generate samples from a 
complex multivariate pdf.

• In practice the pdf is usually the posterior in a 
Bayesian analysis.

• This is useful in looking at marginal distributions 
of derived quantities.

• These marginal distributions are the same thing 
the profile likelihood method was approximating. 

We need priors to do this!
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Posterior

ADMB presumes we are going to start by finding the parameters that 
maximize the posterior density (called highest posterior or modal 
estimates), so just miminize the log posterior.  Just like a negative log-
likelihood but with new terms for priors



Two examples
• If prior on M were log-normal with 

median of 0.2 and with sd for ln(M)=0.1, 
then just add to your likelihood:

• For special case of diffuse prior ln(p()) is 
constant inside the bounds,  so a 
bounded diffuse prior can be specified 
just by setting bounds on parameters.
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• Transition from θi to θi+1 is stochastic
• Transition only depends upon θi
• For suitable transition rule         approaches target pdf
• Approximate marginal pdf by output of chain after burn-in

The Basic Idea Behind MCMC

)( if θ



Frequency Histogram
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Doing an MCMC run
• Use -mcmc N switch to generate a chain of 

length N.  Default N is 100,000.
• Summarized output for parameters, sdreport

variables and likeprof_numbers is in *.hst
• This automatic summary is for the entire chain 

with no provision for discarding a burn-in and no 
built in diagnostics.

• Serious evaluation of the validity of the MCMC 
results requires you gain access to the chain 
values.

Gaining access to chain values
• When you do the MCMC run, add the switch -mcsave

N, which saves in a binary file every Nth values from 
the chain.

• You can rerun your program to read in the saved 
results and make one run through your model for 
each saved set of parameters. Use the switch -
mceval

• You can add code to your program to writeout results 
(and do special calculations) during the mceval
phase.  

• You can modify your program to do this even after 
you generate your chain, provided your change does 
influence the posterior density.



θ=r

θ=s
t(r,

s)

t(s,
r)

π(r)t(r,s)= π(s)t(s,r)

Reversibility

Approach to Achieve Reversibility 
(Metropolis algorithm)

• Generate a trial value of θ* using “candidate” probability 
distribution
– Candidate distribution is easy to simulate
– Here we assume candidate distributions propose symmetric 

transitions
• Calculate π(θi) and π(θ*) 
• If π(θ*) > π(θi) make the transition

θi+1= θ*
• If π(θ*) < π(θi) generate u~uniform(0,1)

– If u<α make the transition 
θi+1= θ*

– otherwise stay put
θi+1= θi

– α = π(θ*)/ π(θi)



ADMB Implementation of 
MCMC

• θ0 = mode of posterior by default
• θ*= θi + δ, where δ ~ N(0,cΣ)
• c is scaled so that 0.2 < α < 0.4 during first 

2000 steps
• Options allow you to modify the 

distribution of δ and the value of θ0 



Example of code to write results out 
when using mceval switch

if (mceval_phase()) cout << negLL << " " << Blast 
<< B << endl;

Important caution:  this writes to standard 
output.  Better redirect this to file our 
millions or numbers will go scrolling by!



Some basic diagnostics

• Look at trace plot
• Look at autocorrelation function for chain
• Calculate “effective sample size”
• Compare subchain CDFs (if the first and 

second half differ substantially then chain 
may be too short

• Lots of other diagnostics and procedures
– E.g., parallel chains and formal comparisons

Trace plot Flounder Example

100,000 steps, sampled every 100

trace plot log scale init vs last biomass
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Autocorrelation for flounder example 

AR(1) shown for comparison (curve)

Autocorrelation log-scale ratio of init to final 
biomass
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Trace Plot for Flack Lake

1,000,000 step chain sampled every 1000

MCMC Chain Options
to make changes to transition rule

• -mcgrope p p is the proportion of “fat” tail
• -mcrb N        1 to 9, smaller = weaker 

correlation 
• -mcdiag Hessian replaced with Identity
• -mcmult N    Scaler for Hessian
• -mcnoscale No automatic adj to scaler



Starting and Restarting a Chain

• -mcr Restart from where it left off
• -mcpin fn   Start chain at params in fn

– The output obtained by running with the 
switches -lprof -prsave (in *.prv) can be 
useful for this.

Huge literature on MCMC and 
Diagnostics

• Gelman et al. Bayesian Data Analysis
good general source on all things 
Bayesian

• I Like Cowles and Carlin, Markov Chain 
Monte Carlo convergence diagnostics: a 
comparative review.  JASA 91:833-904



Do mcmc with growth model

• Modify growth model to
– Include at least one sdreport_* variable
– Cout things you care about during 

mcmceval_phase
– Bound all parameters
– Change to neg log like from conc

• Tpl2cpp, compile and link your program
• Run… -mcmc 1000000 –mcsave 100
• Run… -mceval>mymcmcfile.dat



What to expect this afternoon

• Improving model efficiency
• Creating functions that take arguments
• Using control programs that automate 

model fitting
– Introduction to time-varying growth model

• Simulating data to test model
• Combining control and data simulation 

programs in a simulation study
– Introduction to catch-at-age model

Improving Efficiency

• You do not need to worry about model 
efficiency in most cases

• In general, it is only important when:
– Your model is very complex
– You are running your model many times (e.g., 

mcmc, simulation study)



Rule number 1 – calculate 
something only once if you can!

• Quantities that do not change but are needed during 
estimation should be calculated in 
PRELIMINARY_CALCS_SECTION

• Quantities that are not needed for estimation but only for 
reporting should be calculated in REPORT_SECTION or 
if uncertainty estimates are needed conditional on phase 
too:

• If (sd_phase())
{…
}

Rule number 2 – avoid unneeded 
loops

• Use admb built in functions (e.g., sum, 
rowsum, element by element multiplication 
and division, etc)

• Combine loops over the same index



Functions that take arguments

• Functions that do not take arguments can 
be used to organize code

get_catch_at_age();

• Functions that take arguments can simplify 
calculations

rss=norm2(residuals);

• Beware of functions that take parameters 
as arguments

Functions that take arguments
w=my_function(my_argument);

FUNCTION double my_function (double x)
double y;
. . . . . . 
z=x+y;
. . . . . . 
return(z);

Call function

Returns object

Takes object as argument
Declare local variables

Carry out calculations

Output variable
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Albatross bycatch in New Zealand squid trawl fishery
From Chapter 4 of Ecological Detective (Hilborn and Mangel 1997), 
originally published by Bartle (1991, cited in H&M)
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Now for factorial function example
albatross.tpl

Control Programs

• A control program can be used to 
automate repeated running of models
– Fitting same model to multiple dat files
– Fitting multiple models to same dat file
– Fitting multiple models to multiple dat files

• Avoid having to move tpl and dat files 
around

• Manage output from multiple model runs



Tpl file must still contain:

• Data section
• Parameter section
• Procedure section
• objective_function_value
• One active parameter

Control Programs

• Most of work is done in preliminary calcs
section or using local_calcs command
– Operations involved only need to be run once

• Use “Run –est” to run control program
– No parameters or asymptotic standard errors 

to estimate



Time-Varying Von Bertalanffy
Growth Model

• Asymptotic length        varies over time
• Mean length at age-1 (L1) and Brody growth 

coefficient (K) are constant over time
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Random Walk

• Model time-varying asymptotic length
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Model Parameters
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New ADMB Stuff

• Redirecting output
• Char objects
• Character string commands
• System commands

Redirecting Output

ofstream ofs(“myfile.txt”,ios::app);

ofs << variable << endl;

New output command Append new output to file

File to receive output



Char Objects

• Object that holds a character string
GLOBALS_SECTION
char x[5];

• Object should be large enough to hold 
desired string

• Keeping track of large strings can tax 
memory

Maximum string size

Character String Commands

• Convert numerical variable (y) to char 
object (x)

sprintf(x,”%i”,y);

• Copy string “text” to char object (x)
strcpy(x,”text”);

• Concatenate string “text” to char object (x)
strcat(x,”text”);



System Commands

• Send commands to operating system 
(e.g., Windows, Linux)

• E.g., tell OS to run mymodel.exe with –est
run-time switch

system(“mymodel –est”);

Now a control program example
controlpro.tpl



Control Program Exercise

• Modify controlpro.tpl to save the 
growthtimeC.par file from each model run 
to a unique file
– E.g., growthtimeC1.par, growthtimeC2.par,…

• Use character strings to create this unique 
file name (as with filename variable) and 
the system command to save the file (as 
with runcommand variable)

system(“cat growthtimeC.par >> your_filename”);

Simulating Data

• Simulated data is useful for testing models
• How well does model perform when 

processes underlying “reality” are known?
– The “true” values of parameters and variables 

can be compared to model estimates
• Make sure model works before using real 

world data



Simulating Data

• “Parameter” values are read in from dat
file

• “Parameter” values used in estimation 
model equations to calculate true data

• Random number generator creates 
random errors

• Adding random error to true data gives 
observed data

How to simulate data for 
time-varying growth model



Simulated data input “parameters”
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Simulate time-varying Linf

• Deviations randomly drawn from 
distribution
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Simulate observed mean 
length-at-age data

• Observation errors randomly drawn from 
distribution
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New ADMB Stuff
Random Number Generator

• Initialize random number generator (x)
random_number_generator x(seed);

• Fill object (y) with random numbers
y.fill_randn(x);  // yi~Normal(0,1)
y.fill_randu(x);  //yi~Uniform(0,1)

Random number seed



New ADMB Stuff
Random Number Generator

• Random number generator produces 
pseudo-random numbers

• Pseudo-random numbers are generated 
from an algorithm which is a function of 
the random number seed

• The same random number seed will 
always produce the same string of 
numbers 

Now an example of simulating data
datasim.tpl



Simulation Study

• Simulation study combines a data 
generating model with a control program 
to repeatedly fit an estimating model to 
many simulated data sets

• This provides replicate model runs to 
better evaluate an estimating model’s 
performance
– Only one replicate normally is available in the 

real world

Simulation Study

• Can evaluate how a model performs vs. 
different underlying “reality”
– E.g., with different levels of observation error

• Can evaluate how well different models 
can fit the same data sets
– E.g., fit Ricker and Beverton-Holt stock-

recruitment models to same data sets
• Or can use a combination of the two 

approaches



Overview of Catch-At-Age

CAA estimates 
of population 
dynamics

CAA predictions 
of observed 
data

Observed data Negative log likelihood

Observed Data

• Total annual fishery catch
• Proportion of catch-at-age
• Auxiliary data

– Fishing effort



Population Submodel
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Population Submodel
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Observation Submodel

• Baranov’s catch equation
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Observation Submodel
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Negative Log Likelihood
for Multinomial
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Negative Log Likelihood 
(ignoring constants)
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Data Generating Model

• Recruitments generated from Ricker 
stock-recruitment function
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Data Generating Model

• Numbers at age in first year came from 
applying mortality to randomly generated 
recruitments
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Data Generating Model

• Two treatments are examined in this 
simulation study
– Low and high levels of total catch observation 

error
• Two values for σε are specified in dat file 

for data generating model and one value is 
used to generate observed data based on 
the current treatment



New ADMB Stuff
Random Number Generator

• A specific random number seed will 
always generate the same pseudo-random 
numbers

• Therefore the random number seed must 
be changed each time create a new dat
file

• Otherwise all the dat files for a given 
treatment will be the same

Now a simulation study example
catchsim.tpl



Simulation Study Practicum

• You have seen:
– Control program for time-varying growth 

model
– Data generating model for time-varying 

growth
– Simulation study for catch-at-age analysis

• Now you need to put the pieces together 
to create a time-varying growth model 
simulation study

Simulation Study Practicum

• Your simulation study will look at the 
effects of process and observation error 
on performance of a time-varying growth 
model
– Two levels of observation error for mean 

length-at-age
– Two levels of process error for time-varying 

asymptotic length



Input “Parameters”
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Simulate time-varying Linf
as random walk

• Deviations randomly drawn from 
distribution
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Simulate observed mean 
length-at-age data

• Observation errors randomly drawn from 
distribution
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Suggested “parameter” values for 
fullsim.dat

• 1 to 10 years
• 1 to 10 ages
• Linf 30
• K 0.35
• L1 9

• Low σε 0.05
• High σε 0.1
• Low σω 0.1
• High σω 0.2



Simulation Output

• Try running 5 replicates for 20 runs total
• Output final parameter values, objective 

function value, and maximum gradient 
component for each run
– E.g., you can use ofstream command

• Include replicate and error level numbers 
in output to identify model runs

Recommendations on how to 
tackle this challenge

• Create data generating model (fullsim.tpl) 
so that it produces a dat file with same 
format as example.dat

• Modify growthtimeF.tpl to read in dat file 
correctly and make sure it runs properly

• Incorporate a control program into 
fullsim.tpl to automate data generation and 
loop over different levels of process and 
observation error



Recommendations on how to 
tackle this challenge

• Generate dat files without running 
growthtimeF.tpl and make sure values 
look reasonable
– Remember to change random number seed 

for each new dat file you generate
• Try running the full simulation and check 

run-time message buffer to help evaluate 
convergence

Have fun with simulation study
fullsim.tpl



Thinking about random effects

In context of admb

Consider a model where some of the 
“parameters” are assumed to be random 

(from a distribution)
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Time-Varying Von Bertalanffy
Growth Model
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Random Walk

• Model time-varying asymptotic length
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How does this connect?

• To a frequentist are not 
parameters.  Parameters are fixed.

• When we have encountered this we 
have been “closet Bayesians.”  We 
estimated      and assumed that      
could be determined from     .  This is 
the Highest Posterior Density 
approach.

• Often not possible to estimate 
variance of random effects doing this

• Frequentist mixed model or 
hierarchical Bayesian approaches are 
alternatives
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Frequentist mixed model
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ADMB-RE

• What is old
• What is new

– Random effects objects
– Objective function
– Correlated random effects

• Tips for estimating random effects



What’s Old

• In tpl file, you still need:
– Data section
– Parameter section
– Procedure section
– Declare objective_function_value
– One active parameter

• Most (but not all) ADMB functions are also 
available in ADMB-RE

What’s New
Random Effect Objects

• Need to declare random effects and 
associated variance in Parameter section

init_number sigma_x
random_effects_vector x(1,nobs) 

init_number sigma_y
random_effects_matrix y(1,nrow,1,ncol) 

• Random effects must be declared after all 
the other parameters (i.e., after all the 
init_objects)



What’s New
Objective Function

• Distribution of random effects should be 
included in objective function

• Objective function must be the negative 
log likelihood or sum of negative log 
likelihoods

• Laplace approximation used to integrate 
negative log likelihood with respect to 
random effects
– Approximation is less accurate when random 

effects are not normally distributed

What’s New
Correlated Random Effects

• Can estimate unstructured covariance 
matrix for random effects

init_matrix cov(1,nobs,1,nobs)  
random_effects_vector x(1,nobs) 

• ADMB-RE manual covers how to 
parameterize cov matrix using Cholesky
factor
– Reduces number of parameters
– Ensures matrix is positive definite



What’s New
Correlated Random Effects

• ADMB-RE manual covers how to 
cholesky_decomp() function to specify 
structured cov matrix

Tips for estimating random effects

• Estimate random effects and associated 
variances in later phase 
– i.e., after fixed effects parameters are well 

estimated
• Random effects and associated variances 

should be estimated in same phase 
• Try estimating multiple random effects 

(i.e., multiple random effects objects) in 
different phases



Let’s try out ADMB-RE
growthtimeRE.tpl

Miscellaneous Topics and Tricks

• Ragged arrays
• Missing data
• Advanced ADMB functions
• Using dat file for flexibility



Ragged Arrays

• Ragged matrix is matrix whose rows are 
vectors with varying valid indices

• Ragged array is an array of matrices of 
different sizes
– Matrices themselves may or may not be 

ragged
• You can learn more about ragged arrays 

in the AutoDif manual

Ragged Arrays
int min=0;  // minimum valid row index
int max=4;  // maximum valid row index
ivector minind(0,4);  //minimum valid index of vector 

forming each row of matrix 
ivector maxind(0,4);  //maximum valid index of vector 

forming each row of matrix 
//Read in values to minind and maxind
. . . . . . 
dmatrix M(min,max,minind,maxind);



Ragged Array

• For example, if:
minind(4)=-1,
maxind(4)=5,

• Then row 4 of matrix M can be thought of 
as: 

vector m(-1,5)

Missing Data

• It is not uncommon to have missing years 
of data in a time series of observed data

• One solution is to interpolate the missing 
years of data outside the model fitting 
process by some ad hoc method
– E.g., averaging data from the adjacent years

• A better solution is to allow the model to 
predict values for the missing data
– This takes advantage of all the available data



Missing Data
Implementation

• Use special value to denote missing data 
in dat file
– E.g., a value you wouldn’t normally see in real 

data like -1
• Use loops and conditional statements to 

exclude missing data values from 
objective function value

• Otherwise, model will try to match 
predicted values to the missing data 
values

Missing Data
Multinomial Case

• Replace missing data with 0 and it will not 
contribute to negative log likelihood value
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Let’s look at an example
catchMD.tpl

Advanced Functions

• Filling objects
• Obtaining shape information
• Extracting subobjects
• Sorting vectors and matrices
• Cumulative density functions



Filling Objects
v.fill(“{1,2,3,6}”);  // v=[1,2,3,6]
v.fill_seqadd(1,0.5);  // v=[1,1.5,2,2,5]

m.rowfill_seqadd(3,1,0.5);  // fill row 3 with sequence
m.colfill_seqadd(2,1,0.5);  // fill column 2 with sequence

m.rowfill(3,v);  // fill row 3 with vector v
m.colfill(2,v);  // fill column 2 with vector v

Obtaining Shape Information
i=v.indexmax();  // returns maximum index
i=v.indexmin();  // returns minimum index

i=m.rowmax();  // returns maximum row index
i=m.rowmin();  // returns minimum row index
i=m.colmax();  // returns maximum column index
i=m.colmin();  // returns minimum column index



Extracting Subobjects
v=column(m,2);  // extract column 2 of m
v=extract_row(m,3);  // extract row 3 of m
v=extract_diagonal(m);  // extract diagonal elements of m

vector u(1,20)
vector v(1,19)
u(1,19)=v;  // assign values of v to elements 1-19 of u
--u(2,20)=v;  // assign values of v to elements 2-20 of u
u(2,20)=++v;  // assign values of v to elements 2-20 of u

u.shift(5);  // new min is 5 new max is 24

Sorting Objects

• Sorting vectors
w=sort(v);  // sort elements of v in ascending order

• Sorting matrices
x=sort(m,3);  // sort columns of m, with column 3 in 

ascending order



Cumulative Density Functions

• For standard normal distribution
x=cumd_norm(z);  // x=p(Z<=z), Z~N(0,1)

• Also have CDF for Cauchy distribution
cumd_cauchy()

Flexible dat files

• You can use dat file to prevent having to 
modify and recompile tpl file

• Quantities you can read in from dat file:
– Object indices
– Parameter starting values
– Parameter bounds
– Parameter phases
– Switches turn code on/off



Let’s look at an example
catchS.tpl


