QFC Quantitative Fisheries Center

Welcome to our second (advanced)
course on using AD Model Builder

e Instructors Jim Bence and Brian Linton

» Special thanks to Travis Brenden,
Kendra Porath, Mike Wilberg, and
Weihai Liu

* And to MSU, GLFC, MDNR and CLC
Agency Partners

Preliminary Issues

Please wear your name tags (have pity on my
poor memory...)

Coffee etc in room 153

Change in schedule: Tonight we plan to meet
from 6:30-9:00 and offer to organize a Pizza
Dinner in room 153 during the break

Course materials (revised based on workshop)
will be available within two weeks at an ftp site.

Possibility of group purchase of admb software.
Do you have a parking pass on your vehicle?




Course Overview

Session 1 (this morning): Course introductory
material, using the computing system, assessing
uncertainty using admb

Session 2 (this afternoon): Using functions and
doing simulations

Session 3 (tonight): Hands on development of
simulation code

Session 4 (tomorrow morning): Random effects
in admb

Session 5 (tomorrow afternoon): Misc. topics
and catchup

Cpp (C++
| ” | code)

—

v

Admb software

tpl (template) A GNU C++
\ .+ | Compiler

E-macs: 1
edltlng and ---------- * EXe flle

menu system l

Results (par, std, rep, etc)




Welcome to Emacs

« VVon Bertalanffy growth model
» Navigating and editing in Emacs
« ADMB in Emacs

— Growth model example

Von Bertalanffy Growth Model

Asymptotic length Age of length O

ey

Brody growth coefficient

E, N(O,ng)




Concentrated Negative Log
Likelihood

2

—conclog(l) —|OQZ[|09( ) log(L )]

Now to learn about Emacs
growth.tpl




ADMB Methods of Assessing
Uncertainty

Asymptotic standard errors

— Of parameters (produced by default)

— Of derived quantities

Likelihood profile method

MCMC (Bayesian posterior distribution)
All admb methods require minimizing the

negative log-likelihood (or something
related to it)

Review on probability distributions

» Likelihood depends on assumed probability distribution
for the data summarized by f(x)

* f(x) represents either a probability density function (pdf
continuous distributions) or probability mass functions
(pmf) for discrete distributions

[f(gdx=1.00r 3 f(x)=10
 Joint pdf/pmf for multiple independent observations

F(X)= £, %0 Xy 0 %) =
f(x)f (%) f(x) - f(x)=

[T70x)




More probability distribution stuff

* Previous slide presumed that joint pdf/pmf
was for multiple independent observations
from the same probability distribution.

¢ Similar result when observations come from
different distributions.

F(Y) = F (e Xy Yoo Vi) =
fx (Xl) fx (Xz) fx (Xs)"' fx (Xk)' fy(y1)'--- fv (ym) =

TT 00T £ () = £, (0 ,(¥)

Example PDF/PMFs

> oss
08 2%
> 07 G 0w
£ 03
% 0s T Normal
g o = 0
S 04 % 015
% 03 En
0.2 E.O' unz
01 5 7 9 1 13 15
0 x value 1 ( )2
0 1 2 3 4 5 6 7 > X— U
£(x1 ,0%) = ———exp| -4
X-value 2ro 20"
Poisson
LA
f(x)=e* 2
x!

Probability density

Negative Binomial

f(XIm,s):r(“S)[ s )[ m )

T(s)x! {m+s)(m+s

Lognormal
o
x value

1 1 1
f ) ———(Inx—pu)?
(x| u,0%) . T”Uexp( 2Uz(nx 1) )




Mathematically, likelihood function is same as
pdf/pmf — But expressed as function of parameters

» Implicitly (and sometimes explicitly) pdf/pmf
Is conditional on parameter values

F(x)=1(x]9)

» Sometimes likelihood function is expressed
as conditional on data

L(0)=L(@]|x)=1(x]|0)

The negative log-likelihood

» Log transform the likelihood (joint pdf) and
remember that log(a*b)=log(a)+log(b)

—logL(6) =—log f(x, y) =—log f, (x) —log f, (y) =-Lx - L,

Ly =log f, (x) =log f, (x,) +log f, (x,)+...+log f, (X,)




-log Likelihood functions

Negative Binomial Normal

—logL(m,s) =—log(I'(x + s)) + log(I"(s)) + log(x!) _|09L(ﬂ10_2):2|n2”+n|n6+ 1 Z(Xi—ﬂ)2

s m 20°
—slogl —— |- xlog
m+s m+s

Lognormal n
—logL(x, %) =2 In(x;) +§In27r+nlno+

L3 nx, - g

Poisson
—logL(2)=ni-2A) %+ Inx!

Another form of Normal
n 1
—logL(z,0*)=—Inc?+—> (x. — u)*+IC
gL(u,0°) 5o 2022(./1)

2 measures how likelihood
ﬁliL falls off away from best

06?2 ; - estimate

Negative log
likelihood

Parameter value




Asymptotic results

» Done automatically for parameters
ADMB or for any calculating quantity of
type sdreport_* or likeprof _number

* Results are in *.std and *.cor
 These are based on:
T=-H"
_9%logL(9)
! 86’i86’j

e The variance-covariance matrix:

Diagonal elements are variances of
parameter estimates, off-diagonals are
covariances among parameter estimates.




Elements of variance-covariance matrix

* The variances describe uncertainty in the
parameter estimates. l.e., how variable are
these estimates about their true values?

» The square-root of the variances gives the
standard errors

» The covariances describe how the estimation
errors for two parameters are related. When
parameter “a” is over-estimated does
parameter “b” also tend to be over-estimated
(+ cov), tend to be under-estimated (- cov) or
is there no relationship (0 cov)?

Correlation matrix

» Diagonals are 1.0

« Off diagonals are correlations among
parameter estimates:

2
O jj

Pij = \/0_2" '\/O-zjj




2 measures how likelihood
— 0 Iog L falls off away from best
067 ,_; estimate

Negative log
likelihood

Parameter value

Asymptotic standard errors can
produce misleading inferences

When sample sizes are small

and the curvature of the likelihood surface
changes substantially within the range of
plausible estimates — i.e., “near to the maximum
likelihood estimates

We will now explore alternative approaches to
assessing uncertainty using a surplus production
model fit to arrowtooth flounder data

First we review the model and data




Overview of model and data

There are 14 years of data consisting of yield
(mass) and a biomass index.

The biomass index is based on swept area trawl
and catchability (g) is assumed known=1

Dynamics are assumed to follow logistic model
in absence of fishing and observed yield is
assumed to equal true yield

Observed biomass indices are assumed to have
a lognormal distribution.

Surplus Production Model
(one simple variant)

Bt+1 — Bt +AB(Bt’Yt)

A, =My Blg _y
B " B

o0 o0




Observation Stochasticity
with lognormal errors

Bobs, = gB.¢, I§obst = (B,
In(Bobs,) =In(q) + In(B,) +In(&,)

So our objective function will be to minimize the neg log likelihood
with additive constants dropped:

1

—logL(u,0*)=nlnoc+ —;
20

> (Inx, - p)?

OK - enough already!
Lets look at the code, make sure it runs, and
then move on to implementing alternative
approaches to assessing uncertainty!

Find flounder folder and open up founder.dat
and flounder.tpl in buffers




Things to do

Create tpl, compile and link
Look at results (rep file, cor file)

Change Inblast to be of type
likeprof _number

Run with “switch” -lprof

How to use the profile method

Declare a variable you would like to profile as
type likeprof _number in the parameter section,
and assign it the correct value in the procedure
section.

When you run your program use the Iprof switch:
myprog -lprof

Results are saved in myvar.plt where myvar is
the name of your likeprof _number variable

Your variable is varied over a “profile” of values
and the best fit constrained to match each value
of your variable is found




PLT File contains list of point (x,y)
x is value (say biomass)
y is associated prob density

Plot of Y vs X gives picture of prob distribution

ADMB manual says estimate probability x in in (x,,x,) by

S

Z (Xi+1 =X )Yi

I=r

Likelihood profile versus Normal approximation

Likelihood
OFRNWPMUUOTO N

5.9 6 6.1 6.2 6.3 6.4 6.5 6.6
log(Biomass)

— Likeprof = Normal approximation ‘




Likelihood profile versus Normal approximation

0.016 1
0.014 1
0.012 1
0.010 1
0.008 1
0.006 1
0.004 1
0.002 1
0.000 1

-0.002400 450 500 550 600 650 700
Biomass

Likelihood

= Likeprof = Normal approximation

Profile likelihood options

Switch
-prsave This saves the parameter values associated
with each step of profile in myvar.pvl

Options set in tpl (preliminary calcs section): e.g., for Iprof
var myvar:

PRELIMINARY_CALCS_SECTION
myvar.set_stepnumber(10); // default is 8
myvar.set_stepsize(0.2); //default is 0.5

Note manuals says stepsize is in estimated standard
deviations but this appears to be altered adaptively during
the profile

WARNING -- LOTS OF STEPS CAN TAKE LOTS OF TIME!




Profile Likelihood Method

* This is NOT inverting a likelihood ratio test
in ADMB land!

» This is Bayesian in philosophy (in the
same way that MCMC is). Can also be

motivated by likelihood theory (support
intervals)

 |dea is to use the profile for g(6) to
approximate the probability density
function for g.

When g(6) =0, --i.e, we are
interested in the distribution of
a parameter -- ADMB
approximates the marginal
distribution of 0, :

[ £6,....6,)d0,d6,..d6,

with

Amax[f (|6, =6,)]




More generally g(6) (say biomass) is a complex
function of many parameters and we want a pdf

for g(6)

» The approximation needs to be modified:
v biomass (or other derived quantities) will change at
different rates with respect to changes in parameters in
different parts of the parameter space.
v i.e., some “biomasses” might represent a small part
of the parameter space and others might represent a
larger part.

The modified approximation is:

o max[f(6,....0,)10: 9 =g,
HVg(@l,...,Hn)

PLT File contains list of point (x,y)
X is value (say biomass)
y is associated prob density

Plot of Y vs X gives picture of prob distribution

ADMB manual says estimate probability x in in (x,,X;) by

S

Z (Xi+1 =X )Yi

i=r




MCMC

« MCMC is a way to generate samples from a
complex multivariate pdf.

* In practice the pdf is usually the posterior in a
Bayesian analysis.

» This is useful in looking at marginal distributions
of derived quantities.

» These marginal distributions are the same thing
the profile likelihood method was approximating.

We need priors to do this!

Likelihood Prior
L(X,8)p(6
010 o LX.0)p()
P [L(X,0)p6)de

In(p(8| X) = In(L(X | 8) + In(p(8)) + Constant

ADMB presumes we are going to start by finding the parameters that
maximize the posterior density (called highest posterior or modal
estimates), so just miminize the log posterior. Just like a negative log-
likelihood but with new terms for priors




Two examples

* If prior on M were log-normal with
median of 0.2 and with sd for In(M)=0.1,
then just add to your likelihood:

o_E{ln(M /0.2))2
0.1

» For special case of diffuse prior In(p()) is
constant inside the bounds, so a
bounded diffuse prior can be specified
just by setting bounds on parameters.

The Basic Idea Behind MCMC

« Transition from 01 to O1+1 is stochastic

* Transition only depends upon Gi
* For suitable transition rule f (&) approaches target pdf
» Approximate marginal pdf by output of chain after burn-in

60 — 61 — 62 — ... — 06100000




Log of ratio of final biomass to initial biomass

Frequency Histogram

1.35 1.45 1.55 1.65 1.75 1.85 1.95 2.05

215

For MCMC with 100,000 steps, every 100 saved,
100 of saved steps dropped as “burn-in”




Doing an MCMC run

Use -mcmc N switch to generate a chain of
length N. Default N is 100,000.

Summarized output for parameters, sdreport
variables and likeprof _numbers is in *.hst

This automatic summary is for the entire chain
with no provision for discarding a burn-in and no
built in diagnostics.

Serious evaluation of the validity of the MCMC
results requires you gain access to the chain
values.

Gaining access to chain values

* When you do the MCMC run, add the switch -mcsave
N, which saves in a binary file every Nth values from
the chain.

* You can rerun your program to read in the saved
results and make one run through your model for
each saved set of parameters. Use the switch -
mceval

* You can add code to your program to writeout results
(and do special calculations) during the mceval
phase.

* You can modify your program to do this even after
you generate your chain, provided your change does
influence the posterior density.




Reversibility

0=s
\\‘f)

\@“\

o=r m(Nt(r,s)= n(s)t(s,r)

Approach to Achieve Reversibility
(Metropolis algorithm)

Generate a trial value of 6* using “candidate” probability
distribution
— Candidate distribution is easy to simulate

— Here we assume candidate distributions propose symmetric
transitions

Calculate =(6i) and =(6*)
If ©(6*) > =(6i) make the transition
0i+1= 0*
If ©(6*) < =(01) generate u~uniform(0,1)
— If u<a make the transition
0i+1= 0*
— otherwise stay put
0i+1= 0
— o = n(0%)/ n(6i)




ADMB Implementation of
MCMC

00 = mode of posterior by default
0*= 0i + 5, where 6 ~ N(0,c)

c is scaled so that 0.2 < a < 0.4 during first
2000 steps

Options allow you to modify the
distribution of 6 and the value of 60




Example of code to write results out
when using mceval switch

ifT (nceval_phase()) cout << negLL << " " << Blast
<< B << endl;

Important caution: this writes to standard
output. Better redirect this to file our
millions or numbers will go scrolling by!




Some basic diagnostics

Look at trace plot
Look at autocorrelation function for chain
Calculate “effective sample size”

Compare subchain CDFs (if the first and

second half differ substantially then chain
may be too short

Lots of other diagnostics and procedures
— E.g., parallel chains and formal comparisons

Trace plot Flounder Example

trace plot log scale init vs last biomass

2.2

1.2 4

100,000 steps, sampled every 100




Autocorrelation for flounder example

Autocorrelation log-scale ratio of init to final
biomass
0.9 -
§ 0.7
S
£ 05
3
=
o —AR(1)
g 011\, . e .
8 0.1 10 20
0.3
0.5 -
Lag

AR(1) shown for comparison (curve)

Frequency Histogram
6
5 -
. First half
3
2
1
0 =
125 135 145 155 1.65 175 185 1.95
Frequency Histogram
6
5
: Second half
3
2
1
0+
125 135 145 155 165 175 185 195 205 215

Frequency Histogram

: Entire chain

125 135 145 155 165 175 185 195 205 215

burn-in excluded




Trace Plot for Flack Lake

6.5x10°]
6x10°}
5.5x10°}
5x10°}
4.5x10°¢
4x10°}
3.5x10°%}

2000 4000 6000 8000 10000

1,000,000 step chain sampled every 1000

MCMC Chain Options
to make changes to transition rule

-mcgrope p p is the proportion of “fat” tail

-mcrb N 1 to 9, smaller = weaker
correlation
-mcdiag Hessian replaced with ldentity

-mcmult N Scaler for Hessian
-mcnoscale No automatic adj to scaler




Starting and Restarting a Chain

e -McCr Restart from where it left off

« -mcpin fn Start chain at params in fn

— The output obtained by running with the

switches -lprof -prsave (in *.prv) can be
useful for this.

Huge literature on MCMC and
Diagnostics

* Gelman et al. Bayesian Data Analysis
good general source on all things
Bayesian

| Like Cowles and Carlin, Markov Chain
Monte Carlo convergence diagnostics: a
comparative review. JASA 91:833-904




Do mcmc with growth model

Modify growth model to
— Include at least one sdreport_* variable

— Cout things you care about during
mcmceval_phase

— Bound all parameters

— Change to neg log like from conc
Tpl2cpp, compile and link your program
Run... -mcmc 1000000 —mcsave 100

Run... -mceval>mymcmcfile.dat




What to expect this afternoon

Improving model efficiency
Creating functions that take arguments

Using control programs that automate
model fitting

— Introduction to time-varying growth model
Simulating data to test model
Combining control and data simulation
programs in a simulation study

— Introduction to catch-at-age model

Improving Efficiency

* You do not need to worry about model
efficiency in most cases

 In general, it is only important when:

— Your model is very complex

— You are running your model many times (e.g.,
mcmc, simulation study)




Rule number 1 — calculate
something only once if you can!

» Quantities that do not change but are needed during
estimation should be calculated in
PRELIMINARY_CALCS_SECTION

* Quantities that are not needed for estimation but only for
reporting should be calculated in REPORT_SECTION or
if uncertainty estimates are needed conditional on phase
too:

* If (sd_phase())

{...
}

Rule number 2 — avoid unneeded
loops
* Use admb built in functions (e.g., sum,

rowsum, element by element multiplication
and division, etc)

« Combine loops over the same index




Functions that take arguments

« Functions that do not take arguments can
be used to organize code
get_catch_at_age();

» Functions that take arguments can simplify
calculations
rss=norm2(residuals);

* Beware of functions that take parameters
as arguments

Functions that take arguments

w=my_function(my_argument); <— Call function
» Returns object
FUNCTION double my_function (double x)
t

double y; .
oubiey Takes object as argument

------ N Declare local variables

------ N Carry out calculations
return(z);

~ Output variable




# Tows

Albatross bycatch in New Zealand squid trawl fishery
From Chapter 4 of Ecological Detective (Hilborn and Mangel 1997),
originally published by Bartle (1991, cited in H&M)

# captured # tows

0 807

900 1 1 37

800 4 m 2 27

700 3 8

600 - g j
500 -

400 1 6 !

7 3

300 1 8 1

200 1 9 0

100 1 10 0

o +—"—~14r-——-rrrr—r—r— 11 2

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 12 1

# Captured 13 1

14 0

15 0

16 0

17 1

Total 897

Negative binomial PMF and neg log
likelihood for a single observation

f(le’s):r(x+s)[ S )S( m jx
rs)xtim+s)\m+s
—logL(m,s|x) =—log(I"(x +s)) + log(T"(s)) + log(x!)

S m
—slog( j—xlog( j
m+s m+s

Do NOT worry about stuff below
(included for completeness)

r(x)= fe’“u“du

r'@i)=(-1)! ianinteger




Now for factorial function example
albatross.tpl

Control Programs

» A control program can be used to
automate repeated running of models
— Fitting same model to multiple dat files
— Fitting multiple models to same dat file
— Fitting multiple models to multiple dat files

» Avoid having to move tpl and dat files
around

* Manage output from multiple model runs




Tpl file must still contain:

Data section

Parameter section
Procedure section
objective_function_value
One active parameter

Control Programs

* Most of work is done in preliminary calcs
section or using local_calcs command
— Operations involved only need to be run once
* Use “Run —est” to run control program

— No parameters or asymptotic standard errors
to estimate




Time-Varying Von Bertalanffy
Growth Model

« Asymptotic length (L.,) varies over time

Mean length at age-1 (L,) and Brody growth

coefficient (K) are constant over time

~

K Eya
Lyiran = [Ly,a + (Loo,y B Ly,axl_ € )k §
2
¢,.~N(0,07)
Random Walk
* Model time-varying asymptotic length
Loo,y+l — Loo,yea)y

Iog(Loo,yﬂ): Iog(Loo,y)+ o,

w, ~ N(O,Gf))




Model Parameters

Lo K L,

@py v+ s Oy Ligooi b

Concentrated Negative Log
Likelihood

mn m-2
_conclog(L)="*M=2 2) [ZIog( JJHIZ@JZ}
j=1




New ADMB Stuff

Redirecting output

Char objects

Character string commands
System commands

Redirecting Output

New output command Append new output to file

|

ofstream ofs(“myfile.txt”,ios::app);
File to receive output

ofs << variable << endl;




Char Objects

» Object that holds a character string
GLOBALS_SECTION
char x[5];
N Maximum string size
» Object should be large enough to hold
desired string

« Keeping track of large strings can tax
memory

Character String Commands

« Convert numerical variable (y) to char
object (x)
sprintf(x,”%i",y);

» Copy string “text” to char object (x)
strepy(x, text”);

« Concatenate string “text” to char object (x)
strcat(x,’text”);




System Commands

« Send commands to operating system
(e.g., Windows, Linux)

* E.g., tell OS to run mymodel.exe with —est
run-time switch
system(“mymodel —est”);

Now a control program example
controlpro.tpl




Control Program Exercise

» Modify controlpro.tpl to save the
growthtimeC.par file from each model run
to a unique file
— E.g., growthtimeCL1.par, growthtimeC2.patr,...

» Use character strings to create this unique
file name (as with filename variable) and
the system command to save the file (as
with runcommand variable)

system(“cat growthtimeC.par >> your_filename”);

Simulating Data

» Simulated data is useful for testing models
* How well does model perform when
processes underlying “reality” are known?

— The “true” values of parameters and variables
can be compared to model estimates

» Make sure model works before using real
world data




Simulating Data

“Parameter” values are read in from dat
file

“Parameter” values used in estimation
model equations to calculate true data

Random number generator creates
random errors

Adding random error to true data gives
observed data

How to simulate data for
time-varying growth model




Simulated data input “parameters”

Simulate time-varying Linf

» Deviations randomly drawn from
distribution

o, ~ N (O, af))
Iog(Lw,yﬂ): Iog(Lw,y)+ @,

L, ,.=L,.e"

o, y+1




Simulate observed mean
length-at-age data

» Observation errors randomly drawn from
distribution

Lo = [l + (Lo~ L e e

Cnen =L, +(L,, L, Ji—e ™)

~N(0.07)

gy,a

New ADMB Stuff
Random Number Generator

* |nitialize random number generator (x)
random_number_generator x(seed);
%

Random number seed

* Fill object (y) with random numbers
y.fill_randn(x); // y~Normal(0,1)
y.fill_randu(x); //y,~Uniform(0,1)




New ADMB Stuff
Random Number Generator

« Random number generator produces
pseudo-random numbers

» Pseudo-random numbers are generated
from an algorithm which is a function of
the random number seed

e The same random number seed will
always produce the same string of
numbers

Now an example of simulating data
datasim.tpl




Simulation Study

« Simulation study combines a data
generating model with a control program
to repeatedly fit an estimating model to
many simulated data sets

» This provides replicate model runs to
better evaluate an estimating model’s
performance

— Only one replicate normally is available in the
real world

Simulation Study

« Can evaluate how a model performs vs.
different underlying “reality”

— E.g., with different levels of observation error
» Can evaluate how well different models
can fit the same data sets
— E.g., fit Ricker and Beverton-Holt stock-
recruitment models to same data sets
e Or can use a combination of the two
approaches




Overview of Catch-At-Age

CAA estimates CAA predictions
of population | === of observed
dynamics data

l

Observed data |=—=p | Negative log likelihood

Observed Data

» Total annual fishery catch
* Proportion of catch-at-age

» Auxiliary data
— Fishing effort




Population Submodel

‘//1 S l0gN; 1+ Y42

Initial numbers at age
logR+ @, J

<+<——— Recruitment

logR+a,,

Population Submodel

Numbers of fish Survival

/ \ /
N y+l,a+1 =N y,a

Total mortality Fishing mortality

L,,=M+F, ,

S

Natural mortality




Population Submodel

Select|V|ty Effort
F, o = saqE ]

Catchablllty Effort error

Gy~ N(O’Jé)

Observation Submodel

» Baranov’s catch equation

Cya= ;y’a (1_e—Zy,a )Ny,a

y.a




Observation Submodel

Total catcT
C, = {ch,a}

Observed total catch
~ C e Observation error

C,=C,

y

gy~ N(O,O'f)

Observation Submodel
Proportion of catch-at-age

5 Cus
y.a C

y

Numbers sampled at age Proportions

éy :{N P }~ MNOM (E‘NE)

E'vya

t
Effective sample size
p =
y,a N
t E
Obs. proportion of catch-at-age




Negative Log Likelihood
for Multinomial

- o )

|
y,ll ny,2Illl

B Zy: NE,yZa: [Isy.a Iog(py,a)]

Model Parameters

R @y ey O, Wis o« v s W
q by, by, bs, by,
Cpy v v v Cm O
Ratio of relative variances (assumed known)
PR




Negative Log Likelihood
(ignoring constants)

£
-N ZZ[ log(P,, )|

+m|og(o—§)+2f‘gzy;§y2

7 2

e Y

—log(L)=mlog(c, )+ 21

Data Generating Model

» Recruitments generated from Ricker

stock-recruitment function
Input “parameters\:

! —BSy4 @
N, :a1Sy_1e Iy e’

Number of spawners

w, ~ N(O,af))




Data Generating Model

 Numbers at age in first year came from
applying mortality to randomly generated
recruitments .
270,

Nl,a — Nl—a,le .

Ny a1 ~ LN (ﬂN ’O-li )

Data Generating Model

* Two treatments are examined in this
simulation study
— Low and high levels of total catch observation

error

» Two values for ¢, are specified in dat file
for data generating model and one value is
used to generate observed data based on
the current treatment




New ADMB Stuff
Random Number Generator

» A specific random number seed will
always generate the same pseudo-random
numbers

» Therefore the random number seed must
be changed each time create a new dat
file

» Otherwise all the dat files for a given
treatment will be the same

Now a simulation study example
catchsim.tpl




Simulation Study Practicum

* You have seen:

— Control program for time-varying growth
model

— Data generating model for time-varying
growth

— Simulation study for catch-at-age analysis
* Now you need to put the pieces together

to create a time-varying growth model
simulation study

Simulation Study Practicum

» Your simulation study will look at the
effects of process and observation error
on performance of a time-varying growth
model
— Two levels of observation error for mean

length-at-age

— Two levels of process error for time-varying
asymptotic length




Input “Parameters”

Simulate time-varying Linf
as random walk

» Deviations randomly drawn from
distribution

o, ~N(0,52)
Iog(Loo,yﬂ): Iog(Lw,y)Jr o,

L =L,.e"

00,y+1




Simulate observed mean
length-at-age data

» Observation errors randomly drawn from
distribution

Lo = [l + (Lo~ L e e

Cnen =L, +(L,, L, Ji—e ™)

~N(0.07)

gy,a

Suggested “parameter” values for

fullsim.dat
* 1to 10 years e Lowos, 0.05
* 1to 10 ages  Higho, 0.1
 Linf 30 « Lowos, 0.1
e K 0.35 * Higho, 0.2

L, 9




Simulation Output

* Try running 5 replicates for 20 runs total

« Output final parameter values, objective
function value, and maximum gradient
component for each run

— E.g., you can use ofstream command

* Include replicate and error level numbers
in output to identify model runs

Recommendations on how to
tackle this challenge

» Create data generating model (fullsim.tpl)
so that it produces a dat file with same
format as example.dat

* Modify growthtimeF.tpl to read in dat file
correctly and make sure it runs properly

 Incorporate a control program into
fullsim.tpl to automate data generation and
loop over different levels of process and
observation error




Recommendations on how to
tackle this challenge

» Generate dat files without running
growthtimeF.tpl and make sure values
look reasonable
— Remember to change random number seed

for each new dat file you generate

* Try running the full simulation and check
run-time message buffer to help evaluate
convergence

Have fun with simulation study
fullsim.tpl




Thinking about random effects

In context of admb

Consider a model where some of the
“parameters” are assumed to be random
(from a distribution)

fixed random
~ ~ N/
f(x18) @=1{6¢}
¢~D(0,) 1,(¢16,)
Particularly when random parameters are in blocks so that

QB ={¢s.- #s} 2 ~D




Time-Varying Von Bertalanffy
Growth Model

~

Lyitan = [Ly,a + (Loo,y -L,. )(1— e« )ksy,a

g,, ~N(0,6?)

log(L..,..)=log(L,, )+ @,

o, ~ N (0,05))

Random Walk
* Model time-varying asymptotic length
Loo,y+l — Loo,yea)y

Iog(Loo,yﬂ): Iog(Loo,y)+ o,

w, ~ N(O,Gf))




How does this connect?

To a frequentist ¢ are not f(x|8) 6={0, ¢}
Sirr]ameters. Parameters are f|?<ed. 4~D(O,) 1,416,

en we have encountered this we
have been “closet Bayesians.” We
estimated ¢ and assumed that &,
could be determined from ¢, . This is
the Highest Posterior Density
approach.

Often not possible to estimate
variance of random effects doing this

Frequentist mixed model or
hierarchical Bayesian approaches are
alternatives

Hierarchical Bayesian

Parain\e\ter:, Hyperparameters
0= {le Q; Qz}

Part of Pri
?‘”D(QZ) . Part of Prior
0, ~H(Q)

\ Hyperprior

f(x10) 0=1{0,¢}
Q"D(Qz) f¢(¢|Q2)




Frequentist mixed model

0={60,,0,} parameters
¢~ D(¢,) model for random effects

f(x10) = [ f(x|0,,4)p(¢]0,)d¢

all ¢

ADMB-RE

 What is old

 What is new
— Random effects objects
— Objective function
— Correlated random effects

» Tips for estimating random effects




What's Old

* In tpl file, you still need:
— Data section
— Parameter section
— Procedure section
— Declare objective function_value
— One active parameter

* Most (but not all) ADMB functions are also
available in ADMB-RE

What's New
Random Effect Objects

* Need to declare random effects and
associated variance in Parameter section
init_number sigma_x
random_effects_vector x(1,nobs)

init_number sigma_y
random_effects_matrix y(1,nrow,1,ncol)
 Random effects must be declared after all
the other parameters (i.e., after all the
init_objects)




What's New
Objective Function

» Distribution of random effects should be
included in objective function

» Objective function must be the negative
log likelihood or sum of negative log
likelihoods

» Laplace approximation used to integrate
negative log likelihood with respect to
random effects

— Approximation is less accurate when random
effects are not normally distributed

What's New
Correlated Random Effects

» Can estimate unstructured covariance
matrix for random effects

init_matrix cov(1,nobs,1,nobs)
random_effects_vector x(1,nobs)

« ADMB-RE manual covers how to
parameterize cov matrix using Cholesky
factor
— Reduces number of parameters
— Ensures matrix is positive definite




What's New
Correlated Random Effects
« ADMB-RE manual covers how to

cholesky decomp() function to specify
structured cov matrix

Tips for estimating random effects

o Estimate random effects and associated
variances in later phase
—i.e., after fixed effects parameters are well
estimated
 Random effects and associated variances
should be estimated in same phase

» Try estimating multiple random effects
(i.e., multiple random effects objects) in
different phases




Let’s try out ADMB-RE
growthtimeRE.tpl

Miscellaneous Topics and Tricks

Ragged arrays

Missing data

Advanced ADMB functions
Using dat file for flexibility




Ragged Arrays

« Ragged matrix is matrix whose rows are
vectors with varying valid indices

» Ragged array is an array of matrices of
different sizes

— Matrices themselves may or may not be
ragged

* You can learn more about ragged arrays
in the AutoDif manual

Ragged Arrays

int min=0; // minimum valid row index
int max=4; // maximum valid row index

ivector minind(0,4); //minimum valid index of vector
forming each row of matrix

ivector maxind(0,4); //maximum valid index of vector
forming each row of matrix

//IRead in values to minind and maxind

dmatrix M(min,max,minind,maxind);




Ragged Array

» For example, if:
minind(4)=-1,
maxind(4)=5,
* Then row 4 of matrix M can be thought of
as:
vector m(-1,5)

Missing Data

* |t is not uncommon to have missing years
of data in a time series of observed data

» One solution is to interpolate the missing
years of data outside the model fitting
process by some ad hoc method
— E.g., averaging data from the adjacent years

» A better solution is to allow the model to
predict values for the missing data

— This takes advantage of all the available data




Missing Data
Implementation

» Use special value to denote missing data
in dat file
— E.g., a value you wouldn’t normally see in real
data like -1
» Use loops and conditional statements to
exclude missing data values from
objective function value

» Otherwise, model will try to match
predicted values to the missing data
values

Missing Data
Multinomial Case

* Replace missing data with 0 and it will not
contribute to negative log likelihood value

~log(L)=-N ZZ[ Iog ]




Let’s look at an example
catchMD.tpl

Advanced Functions

Filling objects

Obtaining shape information
Extracting subobjects
Sorting vectors and matrices
Cumulative density functions




Filling Objects

vAill(“41,2,3,6Y); 1/ v=[1,2,3,6]
v fill_seqadd(1,0.5); // v=[1,1.5,2,2,5]

m.rowfill_seqadd(3,1,0.5); //fill row 3 with sequence
m.colfill_seqadd(2,1,0.5); // fill column 2 with sequence

m.rowfill(3,v); // fill row 3 with vector v
m.colfill(2,v); /I fill column 2 with vector v

Obtaining Shape Information

i=v.indexmax(); // returns maximum index
i=v.indexmin(); // returns minimum index

i=m.rowmax(); // returns maximum row index
i=m.rowmin(); // returns minimum row index
i=m.colmax(); // returns maximum column index
i=m.colmin(); // returns minimum column index




Extracting Subobjects

v=column(m,2); // extract column 2 of m
v=extract_row(m,3); // extract row 3 of m
v=extract_diagonal(m); // extract diagonal elements of m

vector u(1,20)

vector v(1,19)

u(1,19)=v; // assign values of v to elements 1-19 of u
--u(2,20)=v; /I assign values of v to elements 2-20 of u
u(2,20)=++v; // assign values of v to elements 2-20 of u

u.shift(5); // new min is 5 new max is 24

Sorting Objects

» Sorting vectors
w=sort(v); // sort elements of v in ascending order

» Sorting matrices

x=sort(m,3); // sort columns of m, with column 3 in
ascending order




Cumulative Density Functions

» For standard normal distribution
x=cumd_norm(z); // x=p(Z<=z), Z~N(0,1)

» Also have CDF for Cauchy distribution

cumd_cauchy()

Flexible dat files

* You can use dat file to prevent having to
modify and recompile tpl file

» Quantities you can read in from dat file:
— Object indices
— Parameter starting values
— Parameter bounds
— Parameter phases
— Switches turn code on/off




Let’s look at an example
catchS.tpl




