QFC Quantitative Fisheries Center

Welcome to our first (introductory
course) on using AD Model Builder

* Instructors Jim Bence and Brian Linton

» Special thanks to Travis Brenden,
Kendra Porath, Mike Wilberg, and
Weihai Liu

« And to MSU and Agency Partners

Introduction to parameter
estimation using ADMB

« What is it, really, we are trying to do?
 Why use ADMB?
» Simple nonlinear regression as a
learning example:
— General framework and likelihood
— Von Bertalanffy Growth Model
— Initial parameter values
— Coding in ADMB

OBSEenV.
Viedel

Sysiem
Viodel

The problem: estimate
parameters of models

« Many models are nonlinear.
» Models vary from one problem to the
next.
— Biological differences
— Data availability differs
— Probability distributions differ
* Interested in uncertainty about

parameter estimates and things
calculated from parameter estimates.

Negative log
likelihood

Parameter value

Reasons to use ADMB

Fast > Automatic differentiation

Accurate
Flexible (not “canned”)

Designed for general maximum
likelihood problems

Several approaches to uncertainty

ADMB Approach

» Create “template” (tpl file) that:

— Reads in data (from dat file)

— Defines model

— Defines likelihood
» Convert to c++ code using tpl2cpp.exe
 Build (compile and link) a *.exe that:

— Finds maximum likelihood

— Reports results

Nonlinear regression as an
Example

Parameters (to be estimated)
Observed value

Ty =90 X)+ e

Function (needs to be specified) Explanatory variable

(known)
2
“Distributed as” normal Mean = 0, variance = o

For nonlinear regression
minimize the objective function:
negative log concentrated
Likelihood

—Conc[LogL] :gln[RSS]+ IC

Equivalent to maximizing the likelihood. Accept for now,
later we will go over where this comes from.

To summarize the process

* Define the model
— i.e., for nonlinear regression pick g
» Figure out the negative log likelihood
— For nonlinear regression we can use negative log
concentrated likelihood
» Specify initial parameter values (educated
guess)

* Adjust parameters until likelihood is
maximized (negative log concentrated
likelihood is minimized)

Example — Modeling size versus age

30 - .
o ¢ o
- 25 o ¢
D 20 .
S 15 d
- 104 o
5
0 T T
0 5 10
Age

Simulated data

Von Bertalanffy Model

L =09(a,0) +¢
g(a,0) =L, (1-e &)

Initial values

L Asymptotic size, Brian picked 30 (about the
« length at the oldest age).

t Age at size zero. Brian picked 0.1, a
0 number close to zero.

Brody growth coefficient. Brian picked 0.35.
K Could base this on values from other
studies or crude analysis. E.g.,

A K
—(LOO—L)_(l e)

Asymptotic size

(Linf)
NNN W
BB, 88
S8882R%
AN AN
A
LY

10
6

0.37 0.38 0.39 04 0.41
Brody Growth Coefficient (K)

Age at size 0 (t0)

0.08
0.06

0.02

-0.0242

-0.06
-0.08

-0.12

29.4 206 298 302

Asymptotic size (Linf)

Objective function

128
12.75
127
12.65
126
12.55
125
12.45
124
12.35

(conc)

123 +

2 4 6 8 10 12

Iteration

Length

35
30
25
20
15
10

Age

Sections of a simple ADMB

Template
- DATA
o INITIALIZATION
- PARAMETER
- PROCEDURE
- REPORT
You will see...

How to use Emacs

How to comment out a line

How to define data

How to define parameters to be estimated
Defining the objective function

Initial values for parameters

Some simple calculations and built in
functions

Writing some results you want out (*.rep)
Standard admb output (*.par, *.std, *.cor)

Now to learn some coding.....

Create a Comment

» Add the following as a comment at the
end of DATA_SECTION

“We must make sure the data was read
in correctly”

Two Useful Commands

llcout << length_obs << endl;
Hexit(5);

* Output variable value to Run-Time Message
buffer

» Exit the model at this point and output code
number to Run-Time Message buffer

Create a Variable

* Declare a vector called residuals that
goes from 1 to nobs in length
« Calculate the value of the variable
— residuals = observed — predicted mean
length-at-age
* Include residuals in growth.rep file

.....That's all for now

5,

You saw...

Comments

— /l'in tpl, # in dat

DATA_SECTION

— init_* (int, vector — there is also number, matrix...)
PARAMETER_SECTION

— init_*, objective_function_value
INITIALIZATION_SECTION

— Setinitial values for parameters

You also saw...

« PROCEDURE_SECTION
— This is where the work gets done
— Use semicolons here
-+, -, %/, exp, log, norm2

« REPORT_SECTION

— Output defined variables, Quoted text, Calculated
quantities

* OQutput files
- *.rep, *.par, *.std, *.cor

Simple Diagnostics

» Types of error messages:
— Compile
— Run-time
» Modes of operation:
— Safe mode
— Optimization mode

TPL2CPP Errors

Error in line 65 while reading
r

» Line number refers to tpl file

» Need a space at start of each line of
code
— Except for comments and section headings

* Need a “return” after last line of tpl

Compile Errors

c:/.../growth.cpp:51: error: expected ;'
before "rss”

c:/.../growth.cpp:44: error: "Linf'
undeclared (first use this function)

» Check designated line in cpp file
» Make corrections to tpl file, not cpp file

Run-Time Errors

Error reading in dat file — no error
message

* In DATA_SECTION, values made up for
init_objects that are not assigned values
from dat file

» Use “cout” command to make sure dat
file reads in properly

— Can include arbitrary test numbers at end
of dat file as a check

Run-Time Errors

Var Value Gradient
1 10.00000 -1.#IND0e+000
Var Value Gradient
2 0.00000 1.#QNANe+000

« INDOQO: infinity or division by zero
« QNAN: not a real number

 Use “cout’” command to check
calculations

Run-Time Errors

Error in matrix inverse -- matrix singular in
inv(dmatrix)

* Hessian cannot be inverted to obtain
asymptotic standard errors

» Use different parameter starting values
» Reparameterize model

Run-Time Errors

array bound exceeded -- index too high in
prevariable::operatorf]

 Tried to assign value outside the
defined range indices for vector or
matrix

» Use “exit” command to locate error in tpl

» Error message only appears when in
safe mode

Modes of Operation

« Safe mode: provides bounds checking
on all array objects
— ADModel > tpl2cpp > compile > link
— ADModel > makeadms

» Optimization mode: provides faster
execution
— ADModel > makeadm

Some essential theory

What is a likelihood etc?

A likelihood is what it sounds like

Measure of how likely a set of parameters are
to have produced the data

Can be confusing. Often written as:
L(@|X)
Butnotalways - | (g, X)
L(9)

Think of as function of parameters.
Depends upon data.
Requires us to specify probability distributions.

A very simple example

e A Single observation Probability density function
from a normal /
distribution , 1 (X = 1)’

f(X|p,o%) = exp| — .
\N2mo 20
3 0.45 1
‘o 041
% 0.35 1
0.3 1 J—
-:\ 0.25 /Ll - 10
= 021 5
Q 0.151
S o] o =1
E 0.05 1
o 0 T
5 7 9 11 13 15

x value

More on probability distributions

o0

+ Probability density _
functions (pdf) for .[f(x)dx=1.0
continuous distributions —o

* Probability mass
functions (pmf) for Z f(x)=1.0
discrete distributions

® J0|nt pdf/pmf for f (X]_1 Xz, X3, oo Xk) —
multiple independent f(Xl) f (Xz) f (X3)--- f(Xk) _

observations
k
[Tfe0)
1

Cumulative Distribution Function
and probabilities from pdf

0.45 q
0.4 4
0.35 1
0.3 1
0.25
0.2 1
0.15 4
0.1

Vv

. CDF Fe(v) = [f(x)dx

—00

Probability density

c, x value

This slide and next altered. Here only
show CDF graph since cdf and

prob in,Interval do not show unless
Animation is active!

Cumulative Distribution Function
and probabilities from pdf

v
. cDF F,(v)= J’ f (x)dx
—00
- 0.45 q
= 041
C, 2 0.35 4
f d g 0.3
Plecxee) [FO0dx S
8 151
E g)
This slide and previous altered. Here only a %]
show prob in interval since cdf and c;(Valuec2

prob in interval do not show unless
animation is active!

The likelihood function

* Quantitatively equal to the joint
probability density function

L(@|x)=T(x]|0)

* But NOT a probability density

for parameters
Maximum likelihood
estimates are values of
parameters that
maximize the likelihood

_[L(#)d@ NOT necessary=1.0

allg

Properties of maximum likelihood
estimates

* Invariant to transformations
» Asymptotically efficient (lowest possible variance)
« Asymptotically normally distributed

» Asymptotically unbiased (expected value of the
estimated parameter equals the true value)

+ If we assume independent, normally distributed
errors, ML methods provide the same estimates
of structural parameters as least squares.

Summary — versatile and E.g., can be biased for small n

widely used with a number of Gy = 26 =%)° F |

desirable properties, but not n ornorma

perfect! L (%% distribution
Ow =" _——

n-1

Back to really, really, really simple example:
Normal, one observation, variance known

* Quantitatively equal to the probability density
function (also called the probability function for
discrete random variables)

(|07 =1) = £ (x|[{,00 =1) =~ exp| - =)
’ ’ 2o 20°

Xx=12

0.4 . . .
0a Maximum likelihood
S 035 .
S o5 estimates are values of
< parameters that
= o maximize the likelihood

0.05

Parameter (mean)

Slightly more complicated
example — normal sample

L) =TT exp[—,;m —uf)

) ol o)

k 1
|Og|(,U,02):E|n2ﬂ+k|n0+?2(xl _lu)Z

log(ab) = log(a) + log(b)

log(a") =nlog(a)

log(a/b) =log(a) + log(b™) = log(a) — log(b)
log(e?)=a
a’-a® =a""° — exp(a)exp(b) = exp(a +b)

More forms of almost the same
thing. Ignoring constants.

+ If you minimize negative log likelihood you can
ignore constants because:
For —logL(@)=1C+g(@)
same 6 will minimize neg log L and g()
« Example of the reduced (ignored constants
dropped) negative log likelihood (for normal).

This depends on what you estimate.
1

2

—log L(ﬂ,62)=k|n0+2 > (% —p)* p,0° estimated

1
20°

—logL(u,0?) = Z(Xi — u)? uestimated

OK lets do something beyond a
simple normal sample, back to
nonlinear regression

y; =09(6, X;) +¢
Yi =4 T &
Y, ~ N(14,0°)

1

—logL(u,0°) =kIno + Z:(Xi—,ui)2 +1C

20°

Concentrated Likelihood

In -log likelihood for normal replace o? by
k

Z(yi — 4)2 RSS

=1 = to obtain
k k

—Conc[LogL] :gln[RSS]Jr IC

Combining normal data with
different variances

* Data are: {yi, Y12, ---Yik1s Ya1s Yo, ---Yoxo} Plus known
predictors X

» First and second set of y have different distributions
(variances))
Yi ~ N(/uij'o-i)

o -logL=L;+L,+IC: Li:ki|n0i+$2(yij_ﬂij)2
i
+ Just special case of rule for getting joint pdf for
independent data

Concentrated negative log
likelihood when there is more
than one normal component

—Conc[LogL] :glog[RSS] +1C

K=K +K,+...K;
RSS =RSS, + 4,RSS, +...4;RSS;

~2 2
6! =R—SS, 62=21 1 :%(assumed known)
K A

Probability density

Likelihood for Lognormal

Distribution
0.003 1 . k i 1 1 e
0.0025 Lo)_1;[X 270 exp(7 (InX — 1))
0.002 :(ﬁ 1)(1]k exp[1 (i _/1)2]
1 X Nt 252
0.0015
0.001 4 ~ . 5 i i 2
00005 - logL(x,0%) = XIn(x;) + 5 In2z+kIno + 5o Zi:(ln X — 1)
0

x value
X ~LN(u,0?) then Y =In(X) ~ N(x,c?%)

E(X) =exp[;¢+°;j

Var(X)=e*" (&% +1)
CV(X)= Ve’ —1=0, o "small"

What if the data are not
normal/lognormal?

Example of different (discrete
distribution)

Tows

Albatross bycatch in New Zealand squid trawl fishery
From Chapter 4 of Ecological Detective (Hilborn and Mangel 1997),
originally published by Bartle (1991, cited in H&M)

captured

900 1
800 4
700 1
600 1
500 1
400 1
300 1
200 1 9
100 1 10
o 44— 11
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 12

Captured 13

O~NOO LB~ WN-2O

tows

80

w
J

N
~

(o]
©

7

N_2000_2=_NOO-~_W-=>bho

Negative binomial PMF and neg log
likelihood for a single observation

f(x|m,s)=r(x+s)(S js(m jx
r¢s)yxt\m+s)\m+s
—logL(m,s|x) =—log(I"(x +5s)) + log(I"(s)) + log(x!)

S m
—slog(—j—xlog(]
m+s m+s

Do NOT worry about stuff below
(included for completeness)

(x)= J'e'“ux‘ldu
0

I'@i)=(@-1! ianinteger

Lets look at some code for this
albatross!

From Royal Forest And Bird Protection
Society Website, NZ

A challenge: change the model
so that you assume a Poisson
instead of a Negative Binomial

X

f(Xx)= e‘ML—
X!

—LogL=4A—-xInA+Inx!

Probability mass functions for negative binomial and
Poisson and general likelihood and negative log-
likelihood equations

f(x|ms)—r(x+s)(s js(m jx
U TGs) X (m+s) \m+s

f(x|/1):e“i
X!

L@)=]]f(x)

all obs

—LogL = > —log(f(x))

all obs

P(X =x) = 1(x) =exp(log(f (x)))

“LogL= Y -log(f () = 3T~ log(f (x))

all obs x=0 i

2.~ log(f (%)) =n, - (~log(f (x))

How to Manage Complex
Code

 New ADMB concepts and techniques
— Sdreport objects
— Loops
— Conditional statements
— User-defined functions

« Time-varying Von Bertalanffy growth
model
— Random walk

Sdreport Objects

* Included in reports of:
— Asymptotic standard errors (std file)
— Correlation matrix (cor file)

* Declared in PARAMETER_SECTION
— sdreport_number
— sdreport_vector
— sdreport_matrix

Loops

» Repeats code a specified number of
times
looping variable
/looping

for (i=m;i<=n;i++) «— 1" goes from ‘m'to ‘n’
in increments of 1

. « Codethatis repeated for
each increment of ‘i’

Conditional Statements

* Runs code if conditions met
if (condlition) «— it condition is true

...... , = then run this code

Common Conditional Statements

(X==Y) XequaltoY

(X!=Y) X notequaltoY

(X<Y) XlessthanY

(X<=Y) Xless than orequaltoY
(

(

X>Y) XgreaterthanyY
* (X>=Y) X greater than or equalto Y

Conditional Statements

if (condiition) «— it condition is true

------ » «— then run this code
else «— if condition is false

...... , = then run this code

User-Defined Functions

* Organize code in
PROCEDURE_SECTION

function_name(); «— call function for use

FUNCTION function_name <— Define function

------ ;, +— Code for function

Time-Varying Von Bertalanffy
Growth Model

« Asymptotic length (L..) varies over time

* Mean length at age-1 (L;) and Brody growth
coefficient (K) are constant over time

I:‘y+1,a+1 = [Ly,a T (Loo,y —Lya Xl_ e ")kgy'a

Eva ™ N(O,O'f)

yy

Random Walk

» Model time-varying asymptotic length
L. ,..=L,.e"”

o,y+1

Iog(Loo,yH): Iog(Loo,y)Jr o,

w, ~ N(O,O'f))

Model Parameters

Loo,O K Ll

a)z, LI | a)m_l L1,2’ LI | Ll,n_l

Ratio of relative variances (assumed known)

Concentrated Negative Log
Likelihood

_ mn = \2 m-2
—conclog(L)="" +2m 2 Iog[Zlog(t‘J +/1wa]
i—1 i =1

Now to look at the code.....

Sdreport Object

» Change sd /og Linfto an sdreport
object

Some Sensitivity Checking

« What happens when we change the
value of the ratio of relative variances?
— Try lambda of 0.2
— Try lambda of 0.3

Now for the full likelihood.....

Build your first admb tpl from
“scratch”

« This example is a very simple surplus
production stock assessment model fit
to arrowtooth flounder data

« | will go over the model and things to
worry about as you code

« And | will make some suggestions
about coding strategy

Overview of model and data

There are 14 years of data consisting of yield
(mass) and a biomass index.

The biomass index is based on swept area
trawl and catchability (q) is assumed
known=1

Dynamics are assumed to follow logistic
model in absence of fishing and observed
yield is assumed to equal true yield

Observed biomass indices are assumed to
have a lognormal distribution.

Surplus Production Model
(simple learning example)

Bt+1 — Bt +AB(Bt’Yt)

A, =My Bilg _y
B |° B

o0 o0

Observation Stochasticity
with lognormal errors

Bobs, = gB,¢, I§obst = (B,
In(Bobs,) =In(q) + In(B,) + In(&,)

So our objective function will be to minimize the neg conc log likelihood:

conc :glog(RSS)

RSS =Y In(Bobs, / Bobs)*

Schematic of forward simulation approach
Lognormal observation error

B Y ObsB <

_________ - By g m Be
By , Yo Bobs,
A .
B, Y, Bobs,

Bt+1 = Bt +4_m B{l——

éobstz qB,

But finding a solution with the discrete

time logistic can be tricky

» During fitting process catch yield can exceed biomass
and you get negative B in next step (and you are done,
program will bail!)

* Avoid this by creating an extra “true yield” that equals
observed yield except when this is more than X% (say
50%) of current biomass, in which case just set true yield
to 50% of biomass. Add a “penalty sum of squares” to
RSS (don’t worry about adjusting n).

» Also Biomass could go negative if it starts too high over
carrying capacity. Just to be safe make Biomass equal to
a small positive value (say 10) if the pop model has it
going lower than that.

* These ad hoc fixes are to get to the solution but should
not be influencing things at solution or this is of concern.

Strategy for building your tpl from scratch
There is no one way but this is how | do it.
| start with a working file from another problem, as memory aid
on coding syntax etc (section names, define variables,
loops...).
| first create a minimal program which consists of the required
data, parameter, and procedure sections, has an objective
function variable and on estimable parameter.

| first just get the program to read the data in correctly (use
cout and exit)

| then sequentially add calculations to the procedure section
and check they work using cout and exit. | find it much easier
to check things as | build them up rather than trying to find
where the errors are after writing lots of code.

Use small steps and do not worry about efficiency too much at
this stage.

Before | get too much invested in cool stuff in the rep file, or
defining lots of derived variables of interest not needed for
estimation, | try to make sure estimation is actually working.

— First think about initial values for parameters

A few other details

* Remember estimate parameters that must be
positive on log scale and backtranform them
at top of procedure section.

* Try to avoid hard coding stuff so you can
change your mind. E.g, rather than leaving q
out of all the code because we are assuming
it is known, keep it in code, define Inq as
parameter, and set the parameter phase to -1
and give Inq an initial value of zero.

Now lets build some code....

What are these asymptotic
standard errors anyway?

An overview on inferences

» By inference | mean going beyond point
estimates and saying something about
the quality of the estimates. How likely
is it that the estimate is close to the true
value?

» Topics related to inference
— Estimates of standard errors
— Confidence intervals
— Hypothesis tests
— Bayesian probability intervals

* Inferences depend upon the variance-
covariance matrix:

2 2

Diagonal elements are variances of
parameter estimates, off-diagonals are
covariances among parameter estimates.

What is a variance and
covariance”?

* Recall definition of
expected value

E(X) = | xf (x)dx

o Var(X) = E((x-E[X])?)

e Cov(X,Y)=E[(x—E[X])(y-E[YD]

Cov(Y,X)=0

Yvelue

X value

Cov(Y,X) Positive

Yvelue

X value

Cov(Y.X) Negative

Yvelue

Covariances and parameter
estimates

» The variances describe uncertainty in the
parameter estimates. l.e., how variable are
these estimates about their true values?

» The square-root of the variances gives the
standard errors

* The covariances describe how the estimation
errors for two parameters are related. When
parameter “a@” is over-estimated does
parameter “b” also tend to be over-estimated
(+ cov), tend to be under-estimated (- cov) or

is there no relationship (0 cov)?

Correlation matrix

» Diagonals are 1.0

 Off diagonals are correlations among
parameter estimates:

2
O jj

o \/O'Zii \/Uzjj

Asymptotic results for
parameters

» Done automatically in ADMB (i.e., you
don’t have to code anything)

» Results are in *.std and *.cor
 These are based on:

T=-H"

_9%logL(9)
T 66,00,

Negative log

likelihood

o°L measures how likelihood
- —8 02 falls off away from best

i lg=6 estimate

Parameter value

Neg log likelihood for stock recruitment model

K
-0.05
o -0.25
-0.45 pAR1
010-15
H -0.65 05-10
it -0.85 0o0-5
-LogL 5 -1.05 0-5-0
o M Q ™ o N~
E 8 8 8 8 8
8 8 8 8 8 8 Cross derivatives “twist” the likelihood
© © o o o o surface. Not ccounting for them would

imati inty!
PAR2 cause underestimation of uncertainty!

Example *.std output

index name value std dev

1 log_q -1.6219e+000 2.7145e+000

2 log popscale 7.4954e+000 1.6715e-001

3 log sel par -6.0105e+000 2.7178e+000

4 log_sel_par -3.1105e+000 2.7089e+000

5 log sel par -1.3544e+000 2.7038e+000

6 log sel par -1.4792e-001 2.6779e+000

7 log_sel_par -4.7468e-002 2.5159e+000

8 log sel par -7.7288e-001 2.0588e+000

9 log_relpop 8.1995e-001 1.7816e-001

10 log_relpop 1.5404e+000 1.7094e-001

11 log_relpop 1.2639e+000 1.7262e-001
Example of *.cor file

index name value std dev 1 2 3 4 5

1 log_q -1.6219e+0002.7145e+000 1.0000

log_popscale 7.4954e+0001.6715e-001 -0.6779 1.0000

log_sel_par -6.0105e+0002.7178e+000 -0.9971 0.6695 1.0000

log_sel_par -3.1105e+0002.7089e+000 -0.9997 0.6763 0.9970 1.0000
log_sel_par -1.3544e+0002.7038e+000 -0.9999 0.6771 0.9971 0.9997 1.0000

log_sel_pa

o b~ WN

52

Standard error estimates for derived
quantities

+ Often (well ... almost always) we want to
assess the uncertainty of derived quantities
that are not formally parameters

— E.g., biomass in last year of assessment, MSY for
a logistic surplus production model, ratio of
abundance in 2002 to abundance in 1995, SSBR
based on recent mortality schedule,...

* This can be done almost automatically in
ADMB based on delta method

Standard error estimates for
derived quantities (continued)

« This is done for any variable of types:

— sdreport_number, sdreport_vector,
sdreport_matrix, likeprof_number

* The results are based on:

Colg(6),h(@)]= 3 Covl6, 6,1 2

06, 06,

* Results are included in *.std and *.cor
files

What happens if we use RSS instead
of neg logL or neg logConc?

Made this change to growth.tpl
/I conc=(nobs/2.0)*log(rss); //concentrated likelihood

/Ilchanged obj function to just be RSS for illustrative purposes
//DO NOT DO THIS

CONC=rSSs;
Neg LogL or Conc RSS
name value std value std
log_Linf 3.382 0.030 3.382 0.019
log K -0.925 0.152 -0.925 0.098

t0 0.037 0.216 0.037 0.140

Catch-At-Age Analysis

» Overview of catch-at-age model
— Population submodel
— Observation submodel
— Negative log likelihood
* New ADMB concepts and techniques
— Array and matrix functions
— Phases
— Some parameterization issues

Overview of Catch-At-Age

CAA estimates CAA predictions
of population | = | of observed
dynamics data

l

Observed data |=—p [Negative log likelihood

Observed Data

» Total annual fishery catch
» Proportion of catch-at-age

 Auxiliary data
— Fishing effort
— Survey index of relative abundance

Population Submodel

'//1 oo logNg oty

Initial numbers at age

<«<—— Recruitment

logR+w,,

Population Submodel

Numbers of fish Survival

N
N =N, &

y+1,a+1
Totallmortality Fishing mortality
L, o= I\I/I +F,,

Natural mortality

Population Submodel

Selectivity Effort
\ ¢
— y
F, . =S.0E,€ |
-
Catchability Effort error

&y~ N(O,Gé)

Observation Submodel

* Baranov’s catch equation

C.,. = ;y’a (1—e_zy'a)N

y,a
y,a

y,a

Observation Submodel

Total catch

Cy = {Z Cy,a}
a
Observed total catch

-~

y

¢, ~N(0,0?)

C = C e’ «— Observation error
y

Observation Submodel

Proportion of catch-at-age

p, — Cus
y.a C

y

Numbers sampled at age Proportions

,={N:P, .}~ MNOM (p|N,)

E'vya

t
Effective sample size
p =
7 Ng
Obs. proportion of catch-at-age

Negative Log Likelihood
for Multinomial

Ng,!

—ZNEyZ[Iogpya]

Model Parameters

R @y, ...y O Wi oo s Wi
g Spy - -+ Spa
Cir - - oy Sm o,
Ratio of relative variances (assumed known)

2
O
13
A= 2
g

Negative Log Likelihood
(ignoring constants)

—log(L)=mlog(c ZZ[IOQ[HZ

-N ZZ[Jog(P,,)

+m|og(a§)+72§y2
y

Array and Matrix Functions

The operator * provides matrix
multiplication

For vector objects x and y, and number
z

z=x*y; [l returns z=x,y,+ ... +X.Y,

For matrix objects x, y and z

z=x"y; [lreturns z;=X; 1y . . . X1V

Array and Matrix Functions

Functions elem_prod and elem_div
provide elementwise multiplication and
division

For vector objects x, y and z
z=elem_prod(x,y); //returns z=xy;
z=elem_div(x,y); /Ireturns z=xly,

For matrix objects x, y and z
z=elem_prod(x,y); /Ireturns z;=x;y;;
z=elem_div(x,y); /lreturns z;;=x; ly;;

Phases

« Minimization of objective function can
be carried out in phases

« Parameter remains fixed at starting
value until its phase is reached, then it
become active

 Allows difficult parameters to be
estimated when other parameters are
“almost” estimated

Phases

+ Specified in PARAMETER_SECTION

init_number x /lestimate in phase 1
init_number x(1) /lestimate in phase 1
init_number x(-1) /fremains fixed

init_vector x(1,n,2) /lestimate in phase 2
init_matrix x(1,n,1,m,3) //estimate in phase 3

Parameterization Issues

* How do you estimate highly correlated
parameters?
— Catchabilities for multiple fisheries
— Annual recruitments

 Difference method

* Dev vector method

Difference Method

» Estimate nfree parameters:

R Wi oo Yn-1
* Then
logN, =logR

IOgNn =|ogNn-7 * Yn-1

Dev Vector Method

» Estimate one free parameter
R

» Estimate m parameters as
bounded_dev_vector

logR; =logR + w,

logR, =logR + w,,

bounded _dev_vector

» Specified in PARAMETER_SECTION
init_bounded_dev_vector x(1,m,-10,10)

» Each element must take value between
lower and upper bounds
-10<x,<10

» All elements must sum to zero

in =0
i=1

Negative Log Likelihood
(ignoring constants)

~log(L)=mlog(c ZZPOQ[HZ

~N ZZ[P Iog]

+m|og(a§)+ﬁ2§y2
y

Selectivity
Double Logistic Function

* Double logistic function requires four
parameters:
- b1 First inflection point
- b2 First slope
- b3 Second inflection point
- b4 Second slope

Selectivity
Double Logistic Function

— 1 1 1
Sy = 1+ e—bz(a—bl) N 1+ e—b4(a—b3)

Standardize selectivity to age-5
S! = 52
L=

S5

Selectivity
Double Logistic Function

» Suggested starting values for double
logistic parameters (log scale)
- b1 1.39
- b2 0.34
- b3 1.25
- b4 -0.69

Sensitivity to Parameter Starting
Values

* Why do we care about sensitivity to
parameter starting values?

» Methods for specifying starting values
— Default values
— In tpl file
— In dat file
— In pin file
* Precedence between the methods

Why do we care about sensitivity
to starting values?

 Avoiding local minimums in the
likelihood surface
— If different starting values lead to solution

with lower obj. function value, then you
were at a local minimum

* ldentifying sensitive parameters

— If small change to parameter starting value
causes large change in results, then you
may want to reparameterize model

Default Starting Values

« Parameter with unspecified starting
value has default starting value of zero

» Bounded parameter has default starting
value which is midway between lower
and upper bounds

Specify starting values in tpl
file
INITIALIZATION_SECTION
log_q-1.0

* Must recompile tpl file everytime
starting values are changed

Specify starting values in dat
file
DATA_SECTION
init_number start_log_q

PRELIMINARY_CALCS_SECTION
log_q = start_log_q;

« Can change starting values without
recompiling tpl file

Specify starting values in pin
file
#Example pin file for model with 15 parameters
000-100000000000

» Can change starting values without
recompiling tpl file

» Must specify a starting value for each
parameter

Precedence Between
Methods

» Specifying starting values in dat file
takes precedence over pin file and
INITIALIZATION_SECTION

» Specifying starting values in pin file
takes precedence over
INITIALIZATION_SECTION

Now for an example.....

Making your code more efficient

* Really sometimes it matters!

Rule number 1 - calculate
something only once if you can!

* Quantities that do not change but are needed during
estimation should be calculated in
PRELIMINARY_CALCS_SECTION

* Quantities that are not needed for estimation but only
for reporting should be calculated in
REPORT_SECTION or if uncertainty estimates are
needed conditional on phase too:

+ If (sd_phase())

(...
}

Rule number 2 — avoid unneeded
loops
» Use admb built in functions (e.g., sum,

rowsum, element by element
multiplication and division, etc)

» Combine loops over the same index

Lets look at some example code

* New and improved albatross example
— Uses built-in admb functions to avoid loop
— Calculates quantities not needed during
estimation only during sd_phase and when
reporting
* New and improved growthtime example
— Combines three loops over years into one

— Avoids two unneeded loops using explicit
and implicit elementwise operations

Controlling where data are read
from and results written too

* You have already seen several ways to
control where initial values for
parameters come from.

* We will consider using ad_comm
method in tpl to control where data are
read from and parameters estimates
are written to.

Code fragment examples for
changing the default dat or par file:
DATA_SECTION
// will read data from file catchdat.dat
Il'ad_comm::change_datafile_name("catchdat.dat");
init_int nyrs

init_int nages

PARAMETER_SECTION
/Il will write parameters to file catch.par
Il'ad_comm::change_parfile_name("catch.par");

Examples based on admb manual

Changing where you write results to

» No add_comm for this but you can
control this with “cout”

» Method 1: redirect cout (that by default
goes to screen) to a file with a “pipe”

 Method 2: redirect cout to a file with
code in the tpl

Method 1: You have compiled and
linked “myprog”
Run myprog >junk.dat
(in e-macs select “Run...”,
then add >junk)

Method 2: // next bit of code to write
results to specific file via an output file
stream

ofstream ofs(“test.dat",ios::app);
ofs<<“Linf and K “<<end];
ofs<<Linf<<* “<<K<<endl;

What if you want to read some
data from one file and other data
from another?

/Il read effort data from effort.dat and save current
I/ position in catchdat.dat in the object tmp
Il streampos tmp =
ad_comm::change_datafile_name("effort.dat");
init_vector effort(1,nyrs)
// now read the rest of data from catchdat.dat
// including ioption argument tmp will reset the file to previous
position
I'ad_comm::change_datafile_name("catchdat.dat",tmp);
init_number M

Convergence Issues

» Convergence criteria

« Diagnosing convergence problems
— Convergence messages
— Self diagnostics
« Fixing convergence problems
— Convergence criteria problems
— Code problems

Convergence Criteria

Gradients close to zero

— Maximum |gradient| < 1x10-4

Obj. function value fails to decrease

— Change < 1x10-¢ for 10 iterations in a row
Obj. function evaluated too many times
— Maximum evaluations = 1,000

Line search fails to find parameters with
lower objective function value

— Step size adjusted 30 times

Convergence Messages

ic > imax in fminim is answer attained ?

Function minimizer not making progress ... is
minimum attained?

Minimprove criterion = 0.0000e+000

* Run-time messages indicating
convergence problems

Self Diagnostics

« Compare smallest and largest
eigenvalues of Hessian in eva file

* |s logarithm of determinant of Hessian
small in cor file?

 Are correlations large in cor file?

» Are standard errors large compared to
parameter value in std file?

« Examine trajectory of iterations
including objective function and key
parameters

Convergence Criteria
Problems

* |s convergence criteria too strict or too
loose?

— Does objective function value change
substantially as gradients approach
convergence criterion?

— Are results sensitive to changes in
convergence criterion?

— Try different parameter starting values

Changing Convergence
_ Criteria
* In tpl file
RUNTIME_SECTION

convergence_criteria 0.01,0.01,0.001
maximum_function_evaluations 20,20,500

* With runtime switches
~crit 0.01,0.01,0.001 —maxfn 20,20,500

« Switch to restart (after rescaling) if
function not improving but gradients not
near zero

-rs

Code Problems

» Do predictions respond to parameter
values?

— If not possibly need to use a different
function

— Or parameterize the current function
differently

Now for an example.....

