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An introduction to R 

 
 
 
Short course agenda 
 
Day 1 (9:00 – 12:00) 
Introductions and course overview 

• What is R and where can I find it? 
The R working environment  

• Command window  
• Workspace 

Getting started  
• Current R session 
• Working directory 
• Saving workspace 

Executing simple commands 
R object types 

• Vector, matrix, array, data frame, functions, lists 
Accessing data from objects 
Data queries in R 
Exercise 1 
 
Day 1 (1:30 – 5:00) 
Importing data from Excel (or a text file) 

• Tips on ‘cleaning up your data’ prior to importing 
Exporting data from R 
Introduction to R functions 
Introduction to loops 
User-defined functions 
Exercise 2 part 1 
Sub-setting data 

• The subset function 
Exercise 2 part 2 
Introduction to graphing in R 
Plotting commands 

• High-level commands 
• Low-level commands 
• Exercise 3 

 
Day 2 (9:00 – 12:00) 
Graphing continued 
Lower-level commands 
Exercise 4 
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Introduction to statistical analyses using R 
• Descriptive 
• Univariate 
• Multivariate 

The basic model structure in R 
• Simple linear regression example 

Linear regression 
• Model diagnostics 
• Subset data  
• Running models through loops-an illustration 

 
Day 2 (1:30 – 5:00)
Analysis of variance 

• Categorical explanatory variables 
• Multiple comparisons 

Exercise 5 
Nonlinear regression 

• Specifying models 
• Starting values 
• Von Bertalanffy example (least-squares estimates) 
• Plotting fitted lines 

Exercise 6
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#Quantitative Fisheries Center 
#R Short course 
#R object types 1 (vectors, arrays, data frames) 
 
 
#Vector 
v1<-c(12, 5, 6, 8, 24) #numeric 
v2<-c("Yellow perch", "Largemouth bass", "Rainbow trout", "Lake whitefish", 
"Northern pike") #character 
years<-c(1990:2007) #Obtain a sequence of numbers in a vector 
#Print the vectors 
v1 
v2 
years 
 
#Matrix 
#Create a 4 row by 5 column matrix using the array function 
m1<-array(1:20, dim=c(4,5)) #The dim statement gives the dimensions of the 
matrix or array 
m1 
 
#Create a 4 row by 5 column matrix using the matrix function 
m2<-matrix(1:20, ncol=5, nrow=4) 
m2 
 
#Create a matrix using the cbind (column) and rbind (row) commands (vectors 
must be of equal length) 
m3<-cbind(v1, v2) 
m3 
 
m4<-rbind(v1, v2) 
m4 
 
#Create a data frame using vectors 1 and 2 
df1<-data.frame(v1, v2) 
 
#Create a data frame using matrix 1 
df2<-data.frame(m1) 
df2 
 
#Alternatively, you can type vectors into a data frame 
df3<-data.frame(x1=c(1,2,3), x2=c(4,5,6)) 
df3 
 
#Edit data frame 1 in a spreadsheet-like view 
df2<-edit(df1) 
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#Quantitative Fisheries Center 
#R Short course 
#R object types 2 (vectors, arrays, data frames) 
 
 
#Vectors 
v1<-c(1:7) 
v2<-c(6:12) 
v3<-seq(length=7, from=10, by=3) 
v4<-seq(length=7, from=-5, by=2) 
 
#create a matrix 
mat1<-cbind(v1, v2, v3, v4) 
mat1 
 
#select the element in the 2nd row and 4th column 
select1<-mat1[2,4] 
select1 
 
#select the 2nd through fourth columns 
select2<-mat1[,2:4] 
select2 
 
#OR 
select3<-mat1[,c(2,3,4)] 
select3 
 
#select the first row 
select4<-mat1[1,] 
select4 
 
#select the first 3 rows and the last 2 columns 
select5<-mat1[1:3, 3:4] 
select5 
 
#Get length of first vector in mat1 
length1<-length(mat1[,1]) 
length1 
 
#Get dimensions of matrix 
dim(mat1) 
 
#Create data frame from vectors 
df1<-data.frame(v1,v2,v3,v4) 
df1 
 
#query out the last 3 columns of the data frame df1 
query<-df1[,2:4] 
query 
 
#query all rows with a value of v3>20 
query1<-df1$v3 > 20 
#print query--prints all the columns for the rows that meet the criteria in 
query1 
df1[query1,] 
#print only those values >20 in vector (column) 3 
df1[query1,3] 
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#Quantitative Fisheries Center 
#R Short course 
#R functions 1 
 
#########################Generate data######################## 
 
#Set the dimensions of the matrix 
row.num=20 
col.num=3 
 
#Create a matrix to fill with data 
data<-matrix(0, ncol=col.num, nrow=row.num) 
data 
 
#Use two loops to fill matrix data 
 
for(i in 1:row.num){ #for row 1 to row.num 
 for(j in 1:col.num){ #for column 1 to col.num 
  data[i,1]=rnorm(1, mean=100, sd=20) #Fill column 1 with a random 
number from a normal distribution with a mean of 100 and sd or 20 
  data[i,2]=runif(1, min=0, max=1) #Fill column 2 with a random 0,1 
uniform number 
  data[i,3]=data[i,1]*data[i,2] #Fill row i of column 3 with the 
product of row i in column 1 and 2 
 } 
} 
data 
 
#rename columns of matrix data 
colnames(data) <- c("x","y","z") 
 
################################################################# 
 
#convert data to a data frame 
df<-data.frame(data) 
df 
 
#retrieve the names of data frame df 
var.names<-names(df) 
var.names 
 
 
#Calculate the mean of variable x in data frame df 
mean.x<-mean(df$x) 
mean.x 
 
#Calculate the variance of the variable x in data frame df 
var.x<-var(df$x) 
var.x 
 
#Calculate the standard deviation of x 
sd.x<-sd(df$x) 
sd.x 
 
#OR 
 
sd.x2<-sqrt(var.x) 
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sd.x2 
 
#Get summary of variable x 
sum1<-summary(df$x) 
sum1 
 
#Get summary of contents of data frame df 
sum2<-summary(df) 
sum2 
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#Quantitative Fisheries Center 
#R Short course 
#R functions 2 
 
#Read in data table from text file 
 
lake.data<-read.table("C:\\Documents and Settings\\wagnerty\\My Documents\\R-
SHORT\\Programs\\2_R Functions\\Water_qual_data.txt", na.strings="NA", 
header=T) 
 
#attach data frame 
attach(lake.data) 
 
#Print column names 
names(lake.data) 
 
#Print first few rows of the data frame lake.data 
head(lake.data) 
 
#Obtain summary of data frame 
summary(lake.data) 
 
#Obtain the mean for total phosphorus (tp.ugL) 
mean.tp1<-mean(tp.ugL) 
mean.tp1 
 
#Now obtain the mean after removing the missing values (NA) 
mean.tp2<-mean(tp.ugL, na.rm = TRUE) 
mean.tp2 
 
#Obtain column means of variables in the data frame 
sapply(lake.data, FUN="mean", na.rm=T) 
 
#sapply and tapply are similar to "looping through" columns 
loop.mean<-numeric(11) 
for (i in 1:11){ 
 loop.mean[i]<-mean(lake.data[,i+2], na.rm=T) 
} 
loop.mean 
 
 
#Obtain column standard deviations of variables in the data frame 
sapply(lake.data, FUN="sd", na.rm=T) 
 
#Obtain column variance estimates of variables in the data frame 
sapply(lake.data, FUN="var", na.rm=T) 
 
#Obtain mean tp.ugl by group 
tapply(tp.ugL, list(county), mean) 
 
#Use the by() function to obtain means of select columns 
county.means<-by(lake.data[,3:6], county, summary, na.rm=TRUE) 
county.means 
 
#Obtain the levels of character variables 
levels<-levels(county) 
levels 
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#Export data 
write.table(loop.mean, file="C:\\Documents and 
Settings\\wagnerty.DOBIESZN\\My Documents\\R-SHORT\\Programs\\2_R 
Functions\\export1.txt", sep=",", col.names=NA) 
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#Quantitative Fisheries Center 
#R Short course 
#R functions 3 
 
#Read in data table from text file 
 
lake.data<-read.table("C:\\Documents and Settings\\wagnerty\\My Documents\\R-
SHORT\\Programs\\2_R Functions\\Water_qual_data.txt", na.strings="NA", 
header=T) 
 
#attach data frame 
attach(lake.data) 
 
#Create a simple function that squares a number 
 
sqr<-function(x){ 
 x*x 
} 
 
sqr(tp.ugL) 
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#Quantitative Fisheries Center 
#R Short course 
#R subset a data frame 
 
#Import data frame 
fish<-read.table("C:\\Documents and Settings\\wagnerty\\My Documents\\R-
SHORT\\Programs\\2_R Functions\\Exercise 2_Fish_stream_example_TW.txt", 
na.strings="NA", header=T) 
 
attach(fish) 
 
#Subset rows using the subset function 
 
sub1<-subset(fish, no.fish > 50) 
sub1 
 
#Subset rows using multiple conditions 
 
sub2<-subset(fish, no.fish>50 & position=="Below") 
sub2 
 
#Select specific columns in a data frame 
sub3<-subset(fish, select=c(stream, site, no.fish)) 
sub3 
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#Quantitative Fisheries Center 
#R Short course 
#Graphing Basics 1 
 
####################Generate data################### 
#generate random numbers to plot 
x<-rnorm(100, mean=20, sd=3) 
y<-(x^2 + runif(100))+ rnorm(100, mean=20, sd=15) 
#Create a chracter column 
group<-ifelse(x>20, "A", "B") 
#################################################### 
 
#Create a data frame 
df<-data.frame(x,y,group) 
 
#Plot x 
plot(x) 
 
#scatter plot of x versus y 
plot(df$x,df$y) 
 
#Use the plot function to form a boxplot 
plot(df$group,df$x) 
 
#histogram of x 
hist(x) 
 
#barplot of x 
barplot(x) 
 
#boxplot of x 
boxplot(x) 
 
 
#boxplot of x and y 
boxplot(x,y) 
boxplot(df$x~df$group) 
 
 
#Combine the columns of x and y and use scatter plot matrix 
z<-cbind(x, y) 
pairs(z) 
 
pairs(df[,1:2]) 
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#Quantitative Fisheries Center 
#R Short course 
#Graphing Basics 2 
 
#generate random numbers to plot 
x<-rnorm(100, mean=20, sd=3) 
y<-(x^2 + runif(100))+ rnorm(100, mean=20, sd=15) 
 
 
#Sort x and y 
x1<-sort(x) 
y1<-sort(y) 
plot(x1,y1, type="l", main="Line type l") #type = "l" plots a line graph 
plot(x1,y1, type="o", main="Line type 0") #type = "o" overlays line and 
points 
plot(x1,y1, type="h", main="Line type h") #type = "h" plots a histogram-like 
graph 
 
 
#Add axis labels to plot 
plot(x1,y1, xlab="x-label here", ylab="y-label here")  
 
#Add main title to graph 
plot(x1,y1, xlab="x-label here", ylab="y-label here", main="Practice Graph")  
 
#Change plotting character in graph using pch= 
plot(x1,y1, xlab="x-lable here", ylab="y-label here", main="Practice Graph", 
pch=16)  
plot(x1,y1, xlab="x-lable here", ylab="y-label here", main="Practice Graph", 
pch="+")  
 
#Change size of character using cex= 
plot(x1,y1, xlab="x-lable here", ylab="y-label here", main="Practice Graph", 
pch=16, cex=2)  
 
#Change color of axis lables and main title using col.lab=, and col.main= 
plot(x1,y1, xlab="x-lable here", ylab="y-label here", main="Practice Graph", 
pch=16, cex=2, col.lab="blue", col.main="purple")  
 
#Change the x and y axis scales using the xlim= and ylim= statements 
plot(x1,y1, xlab="x-lable here", ylab="y-label here", main="Practice Graph", 
pch=16, cex=2, cex.main=3, col.lab="blue", col.main="purple", xlim=c(0,40), 
ylim=c(0,800))  
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#Quantitative Fisheries Center 
#R Short course 
#Graphing basics 3 
 
 
chinook<-read.table("C:\\Documents and Settings\\wagnerty\\My Documents\\R-
SHORT\\Programs\\3_Graphing Basics\\Chinook salmon data graphing 
example.txt", na.strings="NA",header=T) 
 
 
 
#Plot-showing mean, mean+sd, and median of fish length 
#xlab='' makes x-axis label blank 
plot(chinook$length, xlab='', ylab="Chinook length (mm)") 
 
#Add lines to graph 
abline(h=mean(chinook$length, na.rm=T), lty=1) 
abline(h=mean(chinook$length, na.rm=T)+ sd(chinook$length, na.rm=T), lty=2) 
abline(h=median(chinook$length, na.rm=T), lty=3) 
 
#Add text to graph, coordinates are (x,y) 
text(9,130,"Mean", cex=0.8) 
text(9, 125, "Median", cex=0.8) 
text(15, 138, "Mean + 1 SD", cex=0.8) 
 
 
#Scatter plot identifying points by hatchery of origin. This is accomplished 
using the points() function 
plot(chinook$length,chinook$wgt, xlab="Length (mm)", ylab="Weight (g)") 
points(chinook$length[chinook$hatchery=="DWOR"], 
chinook$wgt[chinook$hatchery=="DWOR"], col="red", pch=19)  
points(chinook$length[chinook$hatchery=="MCCA"], 
chinook$wgt[chinook$hatchery=="MCCA"], col="blue", pch=9)  
points(chinook$length[chinook$hatchery=="RAPH"], 
chinook$wgt[chinook$hatchery=="RAPH"], col="black", pch=16)  
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#Quantitative Fisheries Center 
#R Short course 
#Graphing pch and cex illustration 
 
x<-1:28 
y<-1:28 
 
pch<-c(1:25) 
plot(x,y,pch=1, cex=0, xlab="", ylab="") 
text(10,25, "pch = symbol types", font=4, cex=1.9) 
text(10,23, "col = color types", font=4, cex=1.9) 
for(i in 1:length(pch)){ 
 points(i,i, pch=i, cex=1.7, col=i) 
 text(i-.5,i+2,i, cex=1.5, font=4) 
} 
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#Quantitative Fisheries Center 
#R Short course 
#Graphing example 
 
 
chinook<-read.table("C:\\Documents and Settings\\wagnerty\\My Documents\\R-
SHORT\\Programs\\3_Graphing Basics\\Chinook salmon data graphing 
example.txt", na.strings="NA",header=T) 
 
#Set the size of a multiple figure array using the par and mfrow functions 
par(mfrow=c(2,2)) 
 
#HISTOGRAM 
hist(chinook$length, prob=T, main="Length (mm) histogram", xlab="Chinook 
slamon lengths", cex.lab=1, col="lightgrey", cex.axis=1) 
lines(density(chinook$length, na.rm=T), col="blue") 
#rug and jitter show data points as lines on axis 
rug(jitter(chinook$length)) 
#Boxplot of length 
boxplot(chinook$length, ylab="Length (mm)", xlab='', col="orange3", lty=1, 
main="Boxplot of length") 
 
#BOXPLOT 
#boxwex is a scale factor for the box width, lty=line type, h=horizontal 
boxplot(chinook$trigly~chinook$hatchery, boxwex=0.15, ylab="Triglycerides 
(mg/dL)", cex.lab=1, cex.axis=1, col=c("lightyellow", "red", "blue"), lty=1, 
main="Chinook triglyceride levels for three hatcheries") 
abline(h=mean(chinook$trigly, na.rm=T), lty=3)  
 
#SCATTER PLOT 
plot(chinook$length,chinook$wgt, xlab="Length (mm)", ylab="Weight (g)", 
cex.lab=1, cex.axis=1, main="Scatter plot of length-weight") 
points(chinook$length[chinook$hatchery=="DWOR"], 
chinook$wgt[chinook$hatchery=="DWOR"], col="red", pch=19)  
points(chinook$length[chinook$hatchery=="MCCA"], 
chinook$wgt[chinook$hatchery=="MCCA"], col="blue", pch=9)  
points(chinook$length[chinook$hatchery=="RAPH"], 
chinook$wgt[chinook$hatchery=="RAPH"], col="black", pch=16)  
legend(110,50, c("DWOR","MCCA","RAPH"), pch=c(19,9,16), 
col=c("red","blue","black"), bty="n") 
arrows(165,35,165,50,0.5,angle=45,lty=1,length=0.25, code=2) 
arrows(172,35,172,50,0.5,angle=45,lty=1,length=0.25, code=2) 
text(168,33, "Big Fish") 
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#Quantitative Fisheries Center 
#R Short course 
#correlations and t-tests 
 
ex1<-read.table("C:\\Documents and Settings\\wagnerty\\My Documents\\R-
SHORT\\Programs\\4_corr and t_test\\Chinook salmon data.txt", 
na.strings="NA",header=T) 
 
#Obtain correlation matrix for chinook salmon data 
chinook.cor<-cor(ex1[,2:5]) 
chinook.cor 
 
#T-test for examining differences in mean length between Dworshak and McCall 
hatchery fish.  
#Select out Dworshak and Rapid River hatcheries using the subset command (| 
means logical OR) 
dwor.raph.data<-subset(ex1, hatchery=="DWOR" | hatchery=="RAPH") 
 
dwor.raph.t.test<-t.test(dwor.raph.data$length~dwor.raph.data$hatchery) 
dwor.raph.t.test 
 
#OR 
 
#Query out desired hatcheries within the t.test function 
dwor.raph.t.test2<-t.test(ex1$length[ex1$hatchery=="DWOR"], 
ex1$length[ex1$hatchery=="RAPH"]) 
dwor.raph.t.test2 
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#Quantitative Fisheries Center 
#R Short course 
#Simple linear regression 1 
 
 
#Linear regression example 1 
int<-c(1,1,1,1,1) 
x<-c(1,2,3,4,5) 
y<-c(1,1.6,3.3,3.7,5.4) 
#Create design matrix 
design<-cbind(int,x) 
design 
 
#Estimate coefficients for linear regression of x and y, including intercept 
#Betas = (t(x)*x)-1 * t(x)*y 
 
#Regression with slope and intercept 
m1<-(t(design)%*%design) 
#take inverse of m1 
m2<-solve(m1) 
betas<-m2%*%t(design)%*%y 
betas 
 
#Regression with slope only (intercept through origin) 
m1a<-(t(x)%*%x) 
#take inverse of m1a 
m2a<-solve(m1a) 
beta<-m2a%*%t(x)%*%y 
beta 
 
#Linear regression of y~x with an intercept using the lm() function 
reg.example1<-lm(y~x) 
reg.example1 
 
#Look at design matrix for the above model 
model.matrix(y~x) 
reg.example1 
 
#OR 
 
reg.example2<-lm(y~1+x) 
reg.example2 
 
#Linear model without an intercept 
reg.example3<-lm(y~0+x) 
reg.example3 
 
#Look at design matrix 
model.matrix(y~0+x) 
reg.example3 
 
plot(y~x, pch=16, cex=1.2) 
abline(lm(y~1+x), lty=1) 
abline(lm(y~0+x), lty=2) 
text(2,3, "No intercept model (line through origin)", cex=1.2) 
arrows(1.5,2.8,1.5,1.6, angle=30,lty=2,length=0.25, code=2) 
text(2.5,1.5, "Intercept model", cex=1.2) 

53  



R short course 
Version 1/8/07 

54

arrows(2.5,1.6,2.5,2.3, angle=30, lty=1, length=0.25, code=2) 
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#Quantitative Fisheries Center 
#R Short course 
#Simple linear regression 2 
 
#Read in data 
reg.data<-read.table("C:\\Documents and Settings\\wagnerty\\My Documents\\R-
SHORT\\Programs\\5_Linear regression\\Chinook salmon data.txt", 
na.strings="NA",header=T) 
 
#Plot length-weight data 
plot(reg.data$length~reg.data$wgt, xlab="Weight (g)", ylab="Length (mm)", 
pch=16) 
 
model1<-lm(length~wgt, data=reg.data) 
#obtain summary of fit 
summary(model1) 
#Obtain ANOVA table 
aov(model1) 
#Obtain coefficients for model1 
model.coefs<-coef(model1) 
model.coefs 
#Obtain residuals for model1 
model.resids<-residuals(model1) 
model.resids 
#Obtain fitted values for model1 
model.fit.info<-fitted(model1) 
model.fit.info 
#Obtain AIC fpr model1 
AIC(model1) 
#Log likelihood of model1 
logLik(model1) 
 
#Plot model fit 
plot(length~wgt, data=reg.data, pch=16, xlab="Weight (g)", ylab="Length 
(mm)") 
abline(lm(length~wgt, data=reg.data)) 
 
 
#Obtain diagnostics for model1 
#Make it so all four graphs can be placed on one page 
par(mfrow=c(2,2)) 
plot(model1) 
 
 
 
#Perform a log-log regression length vs weight 
model2<-lm(log(length)~log(wgt), data=reg.data) 
summary(model2) 
plot(log(length)~log(wgt), data=reg.data) 
abline(lm(log(length)~log(wgt), data=reg.data)) 
par(mfrow=c(2,2)) 
plot(model2) 
 
#Perform a quaratic regression. The I represents multiplication and the ^ 
means to the power (you have to insulate powers of numeric vectors (using 
I()) 
model3<-lm(length~wgt+I(wgt^2), data=reg.data) 
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#Look at desing matrix 
model.matrix(length~wgt+I(wgt^2), data=reg.data) 
summary(model3) 
plot(length~wgt, data=reg.data) 
abline(lm(length~wgt+I(wgt^2), data=reg.data)) 
 
 
#Plot both model fits on same page 
par(mfrow=c(2,1)) 
plot(length~wgt, data=reg.data) 
abline(lm(length~wgt, data=reg.data)) 
plot(log(length)~log(wgt), data=reg.data) 
abline(lm(log(length)~log(wgt), data=reg.data)) 
 
#Multiple regression 
model4<-lm(trigly ~ length + chol, data=reg.data) 
summary(model4) 
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#Quantitative Fisheries Center 
#R Short course 
#Simple linear regression 3 
 
#Read in data 
reg.data<-read.table("C:\\Documents and Settings\\wagnerty\\My Documents\\R-
SHORT\\Programs\\5_Linear regression\\Chinook salmon data.txt", 
na.strings="NA",header=T) 
 
#Perform regression only on Dworshak hatchery fish 
dwor.reg <- lm(length ~ wgt, subset=hatchery=="DWOR", data=reg.data) 
summary(dwor.reg) 
anova.lm(dwor.reg) 
 
#Perform regression on those fish less than 140 mm 
length.reg <- lm(length ~ wgt, subset=length < 140, data=reg.data) 
summary(length.reg) 
#Plot the model fit 
plot(length~wgt, subset=length < 140, data=reg.data) 
abline(lm(length ~ wgt, subset=length < 140, data=reg.data)) 
 
 
########## EXAMPLE of running a model through a loop #################### 
#Regressions by grouping factors, using a loop 
#Create a new variable called hatch and set to zero 
reg.data$hatch<-0 
#Re-code the three hatcheries into a numeric 
reg.data[1:30,6]<-1 
reg.data[31:60,6]<-2 
reg.data[61:90,6]<-3 
 
#Or we can use an ifelse statement 
#ifelse syntax is: ifelse(test, yes, no) 
reg.data$hatch2<-ifelse(reg.data$hatchery=="DWOR", 1, 
ifelse(reg.data$hatchery=="MCCA", 2,3)) 
 
#Create an empty list to fill during the loop 
model<-list() 
#Loop through hatcheries. Note, we use double brackets to index a list 
for(i in 1:3){ 
model[[i]]<-lm(length~wgt, subset=hatch==i, data=reg.data) 
print("Model") 
print(i) 
print(summary(model[[i]])) 
} 
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#Quantitative Fisheries Center 
#R Short course 
#Analysis of variance 1 
 
#Read in data 
chinook<-read.table("C:\\Documents and Settings\\wagnerty\\My Documents\\R-
SHORT\\Programs\\6_ANOVA\\Chinook salmon data.txt", na.strings="NA",header=T) 
 
#Compare mean plasma triglycerides between hatcheries 
 
anova.example<-aov(chinook$trigly~chinook$hatchery) 
summary(anova.example) 
summary.lm(anova.example) 
 
boxplot(chinook$trigly~chinook$hatchery, xlab="Hatchery", ylab="Triglycerides 
(mg/dL)", col=c("blue", "red", "yellow")) 
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#Quantitative Fisheries Center 
#R short-course 
#Nonlinear regression example 
 
#These data are from a spring gill net survey of lake trout in the Great 
Lakes conducted by the Michigan Department of Natural Resources 
 
length.age<-read.table("C:\\Documents and Settings\\wagnerty\\My 
Documents\\R-SHORT\\Programs\\7_NonlinearRegression\\non linear reg data-
length-weight-age.txt", header=TRUE) 
 
 
 
#Nonlinear regression - Model for length at age 
#Fit a von Bertalanffy Growth Model 
 
vonB1<-nls(length~Linf*(1-exp(-k*(age-to))), data=length.age, 
start=list(Linf=1000, k=0.05, to=-2)) 
summary(vonB1) 
 
 
#Create a sequence of ages from 0 to 16 by 1 
age2<-seq(0,16,1) 
#Predict the lengths using estimated parameters 
y1<-1247.537*(1-exp(-0.06164*(age2--4.6745))) 
#Plot original data points 
plot(length~age, data=length.age, xlim=c(0,17), pch=16, xlab="Age (yrs)", 
ylab="Length (mm)",cex.lab=1.5, cex.axis=1.5) 
#Overlay predicted values form models 
lines(age2,y1) 
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What is R?  
R is a programming environment for data analysis and graphing. The R language evolved from 
the S language, which was developed at AT&T’s Bell Laboratories by Rick Becker, John 
Chambers, and Allan Wilks. A commercial product called S-PLUS was then developed from S. 
Finally, statisticians (Ross Ihaka and Robert Gentleman) from the University of Auckland, New 
Zealand, decided to write a version of S for teaching purposes and they called this program ‘R’. 
The code for R was released in 1995 under a General Public License. R is an Open Source 
implementation of S-PLUS that can be freely downloaded. 
 
 
Web resources 
R home page: http://www.r-project.org/
R Archive (download R): http://cran.r-project.org/
R FAQ (frequently asked questions about R): http://cran.r-project.org/doc/FAQ/R-FAQ.html
R manuals: http://cran.r-project.org/manuals.html
 
 
The R environment 
The R command window (Console) or graphical user interface (RGui) is a window for entering 
commands for data manipulations, statistical analyses, and graphing. This window can also be 
used as a sophisticated calculator.  
 
Although commands can be readily entered into the R console, scripts are an easy way of 
organizing your R programs. To create new scripts use the File menu and select New script. 
Commands can now be entered into the script and the commands are executed by highlighting 
the command and hitting <Ctrl> <R>, or by going to the Edit menu and selecting Run all. The 
results from executing your commands are written to the R console. Scripts can be saved after 
you have completed your session in R.  
 
The R workspace 
The R workspace is your current working environment. This environment consists primarily of 
user-defined objects, such as variables, datasets, and functions. Saving the current workspace is 
done while in the R Console by using the File menu and selecting Save Workspace… 
When you open your previously saved workspace it will contain the objects from the previous 
session.  
 
To see what objects are in your workspace type ls() or objects() in the R console. It is often a 
good idea to clean up your workspace when you are finished with a session. You can remove 
objects by typing rm(object1, object2, etc) or to remove all objects type rm(list=ls()). However, 
be certain you want to delete all objects. 
 
Some tips for getting started in R 

1. Create a new folder on your hard drive for your current R session 
2. Open R and set the working directory to that folder (File Change dir…) 
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3. Save the workspace with a descriptive name and date 
4. Open a new script and save the script with a descriptive name and date 

 
Executing simple commands in R 
In R objects (e.g., variables, vectors, matrices, etc) are assigned values by using the assignment 
operator <- which is a composite symbol consisting of the less than symbol (<) and the minus 
sign(-). 
 
For example: 
x <- 5 assigns the value of 5 to the variable x 
y <- 2*x assigns the value of 2 times x (2*5, 10 in this case) to the variable y 
r <- 4 
area.circle <- pi*r^2 
 
NOTE: R is case-sensitive, the variable y ≠ Y 
 
R object types 
Vector: a one-dimensional array, all elements of a vector must be of the same type (numerical, 
character, etc) 
Matrix: a two-dimensional array with rows and columns 
Array: as a matrix, but of arbitrary dimension; again all elements must be of the same type 
Data frame: a set of data organized similarly to a matrix. Each column of the data frame may 
contain its own type of data (numeric, character, etc) 
Function: Built in and user-created functions (e.g., min, mean, var, etc) 
List: a collection of R objects 
 
Entering data into R 
 
Vectors 
The easiest way to enter data directly into R is by using the “c” command to combine or 
concatenate data. Data entered using the “c” command can be either numeric or character. For 
example, if we want to enter the numbers 12, 5, 6, 8, 24 into a vector called v1, we would enter: 
 
v1<-c(12, 5, 6, 8, 24) 
 
If we wanted to enter the names of the five fish species into a vector called v2 we would enter: 
 
v2<-c("Yellow perch", "Largemouth bass", "Rainbow trout", "Lake whitefish", 
"Northern pike") 
 
It is very easy to generate a sequence of numbers in R. If we wanted to generate a vector of years 
from 1990 to 2007 into a vector called years we would enter: 
 
years<-c(1990:2007) 
 
A sequence of numbers can also be generated in reverse order (e.g., the construction of 30:1 
generates a sequence of 30 – 1). 
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NOTE: When working in the R console, you can toggle through previously written code by using 
the up and down arrow keys (which saves retyping really long commands). 
 
Arrays 
Arrays or matrices can easily be generated by using the array or matrix function. To create a 4 
row by 5 column matrix called m1 using the array function, enter: 
 
m1<-array(1:20, dim=c(4,5)) 
 
The dim= c(4,5) statement gives the dimensions of the matrix and the 1:20 statement populates 
the matrix with the number 1 – 20. Note that this will fill the columns before the rows, so the 
resulting matrix will be: 
 
1    5    9   13   17 
2    6   10   14   18 
… 
…                      
 
NOT 
 
1    2    3    4    5 
6    7    8    9    10 
… 
… 
 
To create the same matrix using the matrix function, and naming it m2, use: 
 
m2<-matrix(1:20, ncol=5, nrow=4) 
 
Matrices can also be created by combining vectors using the rbind (combines vectors as rows) 
and cbind (combines vectors as columns). To combine two vectors v1 and v2 as rows or columns 
into a matrix we would use: 
 
m3<-cbind(v1, v2) 
 
 
m4<-rbind(v1, v2) 
 
Data frames 
 
Vectors can be combined to form data frames and matrices can be converted to data frames using 
the data.frame function. Creating a data frame using vectors v1 and v2 and by using matrix m1 
are as follows: 
 
df1<-data.frame(v1, v2) – this is similar to the cbind function above 
 
df2<-data.frame(m1) 
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Data frames can also be edited in a spreadsheet-like view by using the edit function. 
 
df2<-edit(df1) 
 
The columns in data frames are referred to as variables. 
 
Example using vectors and matrices and data frames 
(Script: QFC R short course R object types_1_vectors and arrays.R) 
 
Accessing data from an array, vector, or data frame 
Extracting data (elements) from an object in R is a relatively easy task and is accomplished 
through the use of subscripts. Subscripts describe the location of desired data within a matrix or 
data frame. Subscripts appear in square brackets. For example, x[3] is the third element in the 
vector called x. When accessing data from a matrix or data frame, the subscripts refer to the row 
and column, respectively. Thus, y[3,9] is referring the element in the 3rd row and 9th column of a 
matrix called y. When we do not specify a row or column using a subscript, this implies that we 
want all the rows or columns in the query. For example, y[,2:6] means that we want all the rows 
for columns 2 through 6 from the object y. Alternatively, z[1:20,] means that we want all the 
columns for rows 1 through 20 from the object z.  
 
Placing variables in the R search path 
When variables in a data frame are used in R, the data frame name followed by a $ sign and then 
the variable name is required. For example, if you want to query the values of variable v3 in data 
frame df1 that are greater than 20, the code is as follows: 
 
query1<-df1$v3 > 20 
 
Alternatively, the attach() command allows the variables in the data frame to be called directly. 
For example, if we attach data frame df1, attach(df1), then the above query can be coded as: 
 
query1<-v3 > 20 
 
Once data frame df1 is no longer wanted in the search path, the data frame can be removed from 
the search path using the detach function, detach(df1). It is often a good idea to immediately 
detach an object after it is no longer needed to ensure that you don’t accidentally use a variable 
from an attached object. Alternatively, the safest approach is not to attach objects.  
 
We can also use logical tests on one or more variables during a query. For example: 
 
query1<-df1$v3 > 20 
 
Query1 is a query for the values of variable v3 located in data frame df1 that are greater than 20. 
To print the results of this query we must use: 
 
df1[query1,] 
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The above code is asking for the rows and all the columns that meet the criteria of query1, 
specifically those rows that have a value of v3 > 20. 
 
Multiple logical tests can also be used as follows: 
 
Query2<-df1$v3 > 20 & df1$v4 < 30 
 
Example querying from a matrix or data frame 
(Script: QFC R short course R object types_2_query arrays data frames.R) 
 
EXERCISE 1: Vectors, arrays, and data frames 
 
Importing data from Excel (or any other database management program) 
Data are typically stored and managed in a data management or manipulation program such as 
Microsoft Excel or Access. Once data have been entered into a program such as Excel, it is then 
easy to save the data (e.g., the spreadsheet) as a tab delimited text (.txt) file. This text file can 
then be read into R using the read.table() function. Here are some useful tips to remember before 
saving your spreadsheet as a text file. 

1. You do not want any spaces in your heading names, so either make all heading names 
one word, or replace the space with a period (this can be easily done using the find-
replace tool in Excel). 

2. If you have character fields that contain, for example lake names consisting of multiple 
words, replace the space between words with a period. 

3. If there are missing data in your database, replace the missing values with NA. Other 
values such as -9999 can also be used, but NA is often used in R. 

The basic syntax for the read.table() function is as follows: 
 
data.frame.name<-read.table(“file path”, na.strings=”NA”, header=TRUE) 
 
df1<-read.table("C:\\R\\Example\\datafile1.txt", na.strings="NA", header=TRUE) 
 
Note that the path name uses double backslashes. In R, the single backslash (\) is as escape 
character. The na.strings=”NA” tells R that missing values are designated with NA. The 
header=TRUE indicates that the first row contains the names of the variables. When the text file 
is imported, character vectors are automatically converted to factors. 
 
Note: If you set the directory in your R workspace to where your data file (e.g., text file) is 
found, then you do not need to write the path to your file as above. Instead, you can simply write 
the name of your data file in parentheses as follows: 
 
df<-read.table("datafile1.txt", na.strings="NA", header=TRUE)   
 
*This assumes you have set your working directory and your data file is located in that directory. 
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Exporting data from R  
Once analyses have been performed it is often of interest to export data frames or objects from R. 
This can be accomplished using the write.table() function. The syntax for writing a CSV file 
from a data frame called df is: 
 
write.table(df, file = "Path Name\\file_name.csv", sep = ",", col.names = NA) 
 
 
Note that other file formats can be exported as well, see R help for details. 
 
Introduction to R functions 
R has many built-in functions and many more that can be downloaded from CRAN sites. User-
defined functions can also be created, but here we will focus primarily on commonly used R 
functions that are available in the base package. There are many R functions for performing 
descriptive statistics on data sets (e.g., calculate mean, standard deviation, min, max, etc). Most 
are fairly intuitive and easy to implement. An example of commonly used functions to obtain 
summaries of objects and to calculate basic descriptive statistics is as follows. 
 
To obtain the variable names of a data frame 
var.names <- names(df) 
 
To obtain the mean of variable x in data frame df 
mean.x <- mean(df$x)  
 
To obtain the variance of variable x in data frame df 
var.x<-var(df$x) 
 
To obtain the standard deviation of variable x in data frame df 
sd.x<-sd(df$x) 
 
To obtain a summary (min, 1st quantile, median, 3rd quantile, and max) of variable x in data 
frame df 
sum1<-summary(df$x) 
 
To obtain a summary of all the variables in data frame df 
sum2<-summary(df) 
 
Example using R functions 1 
(Script: QFC R short course R functions_1.R) 
 
R functions on a ‘real’ data set 
The above examples deal with data frames or objects that have no missing data. Most functions 
in R have to be “told” to exclude missing values during the calculation of desired quantities. For 
example, if we want the mean value of a vector called tp.ugL (i.e., total phosphorus in ug/L) and 
the vector contains some missing values (e.g., some cells are NA), then the following command 
will return NA as below: 
 
mean.tp1<-mean(tp.ugL) 
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mean.tp1 
[1] NA 
 
The NA is returned because R can’t use missing values (NA) to estimate the mean. You need to 
specify that R is to exclude missing values, the mean function needs to be modified as follows: 
 
mean.tp2<-mean(tp.ugL, na.rm = TRUE) 
 
The function now states to remove missing values (na.rm=TRUE). The na.rm= statement can be 
used in many other functions where missing data needs to be excluded. 
 
To obtain column-wise summaries the sapply() function can be used as follows: 
 
sapply(data, FUN="mean", na.rm=T) 
 
The FUN= statement describes the function to apply to each column (e.g., mean, sd, var). 
 
To obtain mean by groups the tapply() function can be used as follows: 
 
tapply(variable, list(group1, group2), mean) 
 
The variable is the variable to calculate means for, the list statement contains the grouping 
variables. 
 
 
The by() function can also be used to calculate summaries by a grouping variable. For example 
we can obtain summary statistics of columns 3:6 by county: 
 
county.means<-by(lake.data[,3:6], county, summary, na.rm=TRUE) 
 
The above code produced summaries for columns 3:6 from the data frame lake.data by county. 
 
To obtain the different levels of a character vector, the levels() function can be used as follows. 
Suppose we have a character variable called ‘county’ that is composed of several county names 
and we want to print the names of each county (or level of this character vector). We do the 
following: 
 
county.levels<-levels(county) 
 
Example using R functions 2 
(Script: QFC R short course R functions_2.R) 
 
Simple user-defined functions 
There are times when a function is not available in R, so the user must create one. Here we will 
just briefly discuss how to create a very simple function using the function() command in R. In 
general the function statement will require the name of the function, followed by the function() 
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command, followed the code describing what the function will do (enclosed in braces). To create 
a function that squares a number, we can do the following: 
 
sqr<-function(x){ 
 x*x} 
 
Example using R functions 
(Script: QFC R short course R user defined functions_3.R) 
 
 
EXERCISE 2 (Part 1): Importing text files, summarizing data using basic R functions 
 
R functions part 2: subset data 
Subsetting data is an essential part of data management. There are several ways to subset data in 
R. One approach is to use the subset() function to subset rows. 
 
sub1<-subset(fish, no.fish > 50) 
 
The above code returns the sites with a number of fish (no.fish) greater than 50 from the data 
frame fish. 
 
Multiple criteria can also be used with the subset function. 
 
sub2<-subset(fish, no.fish>50 & position=="Below") 
 
The above code returns sites with a number of fish greater than 50 and those that are in the 
position “Below”. 
 
The subset function can also be used to subset the data by selecting specific columns of data. 
 
sub3<-subset(fish, select=c(stream, site, no.fish)) 
 
The above code subsets the data frame fish into a data frame called sub3 that consists of the 
columns stream, site, and no.fish. 
 
(Script: QFC R short course R subset_4.R) 
 
EXERCISE 2 (Part 2): Importing text files, summarizing data using basic R functions 
 
 
Introduction to basic graphing 
R provides a powerful and flexible graphing environment. Plotting commands can be broken 
down into three main types. 
1. High-level functions: These functions create a new plot on the graphics device. 
2. Low-level functions: These functions add more information to an already existing plot, such as 
extra points, lines, and labels. 
3. Interactive graphing functions: These functions allow you to interactively add information to a 
graph. 

67  



R short course 
Version 1/8/07 

68

 
We will focus on high-level functions for this section. Some of the basic high-level plotting 
functions include: 
plot(): A generic function that produces a type of plot that is dependent on the type of the first 
argument 
hist(): Creates a histogram of frequencies 
barplot(): Creates a histogram of values 
boxplot(): Creates a boxplot 
pairs(): Creates a scatter plot matrix 
 
To plot the values of x simply use the plot() function as follows: 
 
plot(x) 
 
To create a scatter plot of variables x and y, the plot function can be used with two variables.  
 
plot(x,y) 
 
The plot() function can also be used to generate box plots if the first variable is a factor and the 
second variable is numeric. 
 
plot(group,x) 
 
To plot a histogram and barplot of x, simply use: 
 
hist(x) 
 
barplot(x) 
 
To create a boxplot using the boxplot() function, you need to use a formula 
using a tilde (~) to separate the numeric and character variables. 
 
boxplot(x~group) 
 
A scatter plot matrix can be useful for examining several bivariate relationships and is 
implemented using: 
 
pairs(z) 
 
Where z is a data frame containing the numeric variables you wish to plot. 
 
 
(Scripts: QFC R course Graphing Basics_1.R) 
 
EXERCISE 3: Graphing basics 
 
 
DAY 2 
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Graphing: using lower-level functions 
R provides a very flexible graphing environment, and we will focus on just a few useful lower-
level functions that allow the user to add items to a graph and make them publication quality. 
Common functions are those that allow the user to modify axes, labels, and add points or lines to 
an existing graph. R uses variable names to label the x and y axes of a graph. This is often 
undesirable and more descriptive labels need to be added. Labels can be added using the 
following: 
 
plot(x1,y1, xlab="x-label here", ylab="y-label here") 
 
When adding text to a graph, such as labels, use quotation marks (single or double are ok). 
 
To add a main title to a graph, simply use the main= statement. 
 
plot(x1,y1, xlab="x-label here", ylab="y-label here", main="Practice Graph") 
 
To change the symbol shape and color of a graph, use the pch= and col=, respectively. See the R 
program “QFC short course graph symbol and color example.R” for details of shapes and colors. 
The size of the symbol is changed using the cex= statement for character expansion. The cex 
statement also changes the font size of titles and axis labels using the cex.main= and cex.lab= 
statements. 
 
The scales of graphs are set by R by default to correspond with the range of the data. To change 
the x and y-axis scales use the xlim= and ylim= statements. These statements are followed by the 
c command and the lower and upper limit of the axis. For example: 
 
plot(x1,y1, xlim=c(0,50), ylim=c(0,100)) 
 
If the user wants to add lines, points, or text to an already existing graph, these statements must 
follow the higher-level function that created the graph. To add lines to a graph use the abline() 
function.  
 
plot(x) 
abline(h=mean(x, na.rm=T)) 
 
The above commands plot the variable x and then adds a horizontal line (the h can be replaced 
with a v for a vertical line) at the mean value of x. The abline() function can be used to add a line 
of a desired slope and intercept to a graph using the format of: 
 
abline(a,b) 
 
This code places a line with intercept a and slope b on a graph. The line style can be changed by 
using the lty= command: 1 = solid line, 2 = dashed, 3 = dotted. 
 
The text() function is used to add text to a graph. The text is placed on a graph using x,y 
coordinates. For example, 
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text(9,130,"Mean", cex=0.8) 
 
The above code places the text “Mean” on a graph at the x,y coordinates of 9,130 and decreases 
the font size from default by using the cex=0.8 option. 
 
Points are added to a graph using a similar format, by using x,y coordinates. For example, 
 
points(20,150, cex=2, pch=5, col="Blue") 
 
The above code places a point at the coordinates 20,150, increases the size from default, changes 
the symbol character to a diamond, and changes the color to blue. 
 
(Scripts: QFC R course Graphing Basics_2.R, QFC R course Graphing Basics_3.R) 
 
EXERCISE 4: Graphing basics 2 
 
Introduction to statistical analyses 
R provides many functions for analyzing data, from descriptive statistics to inferential statistics. 
As we have seen, obtaining descriptive statistics is fairly straightforward in R. For instance we 
can obtain a correlation matrix using the cor() function as follows: 
 
cor(df1[,2:6]) 
 
The above code provides a correlation matrix of the variables in columns 2-6 that are located in 
data frame df1. 
 
For more complex analyses the user must become familiar with how models are specified in R, 
because R is not a “point-and-click” programming environment. The basic structure of models in 
R is as follows: 
 
response variable ~ predictor variable(s) 
 
The response variable and predictor variable are separated by the tilde (~) symbol. The right side 
of the tilde shows the predictor variables, any interactions between predictor variables, and non-
linear terms in the predictor variables.  
 
Symbols in model statements are used differently compared to arithmetic expressions. 

Symbol Meaning 
+ Indicates inclusion of a predictor variable, not addition 
- Indicates the deletion of a predictor variable, not subtraction 
* Indicates inclusion of a predictor variable and an interaction, not multiplication 
/ Indicates nesting of predictor variables, not division 
| Indicates conditioning 
: Indicates an interaction (e.g., A:B is a two-way interaction between A and B) 

 

70  



R short course 
Version 1/8/07 

71

Note that both the response variable and predictor variable(s) can appear as transformations, or 
as powers, or polynomials.  
 
For a simple example of using a formula, we can perform a t-test to compare the means of two 
groups using the  t.test() function as follows: 
 
t.test(length~hatchery) 
 
The above code compares the mean lengths of fish in two hatcheries. 
 
Simple linear regression: 
Model specification in R is simplified if one has some understanding of how models are 
specified in matrix notation. We will use simple linear regression as an example: 
 
Suppose you have n observations of y and associated observed values for x and you wish to fit a 
linear function: 
 

iii exy ++= 10 ββ   i = 1, 2,…n 
 
where 0β is the intercept, 1β  is the slope, and is the error for the iie th data point. Using matrix 
notation we can re-express the above equation as: 
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The model can be rewritten as eXY += β , and we can solve for the parameters 0β and 1β by 
solving the equation:  
 

( ) YXXX TT 1−
=β  

 
(Scripts: QFC R short course simple linear regression example 1.R) 
 
 
In R, a linear model can be fit by either implicitly or explicitly including the intercept (the 
column of 1’s in the design matrix) in the model by: 
 
y~x  or 
 
y~1+x  
 
A regression can be fit through the origin by: 
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 y~0+x 
 
Other examples of models include: 
 
y~A 
 
where A is a categorical variable as in an ANOVA 
 
y~A + x 
 
where x is a covariate and A is a factor 
 
y~A*B or 
 
y~A+B+A:B 
 
are ANOVAs with interactions. 
 
All the above models can be fit using the linear model lm() function in R. Models variables can 
be specified after attaching the data frame, using the $ (component selection) syntax, or by using 
the data= statement in the model statement as follows: 
 
model1<-lm(length~wgt, data=reg1) 
 
To obtain a summary of the fit of model1 use: 
 
summary(model1) 
 
Residuals and fitted values can be obtained easily by using: 
 
residuals(model1) 
 
fitted(model1) 
 
Once parameters have been estimated, it is often desirable to plot the data along with the fitted 
regression line. This can be accomplished by using the plot() and abline() functions to produce 
the following plot. 
 
plot(length~wgt, data=reg1) 
abline(lm(length~wgt, data=reg1)) 
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Diagnostic plots are obtained for a model by using the plot() function with the model name as 
follows: 
 
plot(model1) 
 

120 130 140 150 160 170

-1
0

-5
0

5
10

15

Fitted values

R
es

id
ua

ls

Residuals vs Fitted
77

80 73

-2 -1 0 1 2

-2
0

2
4

Theoretical Quantiles

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Normal Q-Q
77

80 73

120 130 140 150 160 170

0.
0

0.
5

1.
0

1.
5

2.
0

Fitted values

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Scale-Location
77

80 73

0.00 0.05 0.10 0.15 0.20 0.25

-2
0

2
4

Leverage

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Cook's distance

Residuals vs Leverage

6

77

25

 
 
 
It is also common to transform variables prior to performing analyses. There are several ways to 
accomplish this in R. First, one could create a new variable consisting of, for example, the log a 
variable: 
 
df$log.x <- log(df$x) 
 
This new variables log.x can then be used in the model statement. Alternatively, you can specify 
the log of a variable (or other transformations) directly within the model statement such as: 
 
model2<-lm(log(length)~log(wgt), data=reg1) 
 
Plots can be obtained the same way. 
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plot(log(length)~log(wgt), data=reg1) 
abline(lm(log(length)~log(wgt), data=reg1)) 
 
Multiple regression is accomplished by adding additional explanatory variables to the model 
statement as follows: 
 
model4<-lm(trigly ~ length + chol, data=reg1) 
 
It is often the case where you will need to perform an analysis on a subset of data. We have 
already discussed how to subset data, however, this can also be accomplished within the model 
statement. 
 
lm(length ~ wgt, subset=hatchery=="DWOR", data=reg1) 
 
The above code performs a linear regression on only Dworshak hatchery fish (DWOR). A subset 
can also be performed on continuous variables as follows:  
 
lm(length ~ wgt, subset=length < 140, data=reg1) 
(Scripts: QFC R short course simple linear regression example_2.R, QFC R short course simple 
linear regression example_3.R) 
  
Analysis of variance: 
When explanatory variables are categorical, it is often of interest to compare the means in each 
group or category. In R the aov() function is used for analysis of variance. The syntax is very 
similar to that of lm(). To compare means in two or more groups, simply construct a model 
statement as previously described. To compare the mean triglycerides (trigly) between the three 
hatcheries, simply write: 
 
anova1<-aov(anova$trigly~anova$hatchery) 
summary(anova1) 
summary.lm(anova1) 
 
The summary and summary.lm provide summaries of the output from the aov statement. Means 
of these groups can also be plotted as previously described. 
 
(Script: QFC short course ANOVA 1.R) 
 
EXERCISE 5: Linear regression and ANOVA 
 
Nonlinear regression 
Non-linear regression is commonly used in ecology. In R, the nls() function can be used to fit 
nonlinear least squares regression models. A difference between linear and nonlinear regressions 
in R, is that for nonlinear regression models the user must specify the exact equation as part of 
the model statement. The user must also specify initial guesses as to the value of the parameters 
that are being estimated.  
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As an example of fitting a nonlinear regression model, we will focus on the Von Bertalanffy 
(VB) growth model. The VB growth model is a model of growth in length used commonly in 
fisheries. The model is a three parameter model (von Bertalanffy 1938). 
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t +−= −−

∞
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Where is the length at age t,  is the asymptotic average maximum length, k is the growth 
rate coefficient that determines how quickly the maximum size is attained, and is the 
hypothetical age which the species has zero length. 

tL ∞L
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The model in R can be specified as follows: 
 
vonB1<-nls(length~Linf*(1-exp(-k*(age-to))), data=length.age, 
start=list(Linf=1000, k=0.05, to=-2)) 
 
Note, that the entire VB equation is specified in the model statement, along with initial values for 
the parameters Linf, k, and to. Once parameters are estimated they can be obtained as with linear 
regression by using the summary() function. 
 
Graphing the fitted regression line, however, is a little more complicated compared to simple 
linear regression. One approach to graphing a fitted nonlinear regression fit is to predict values 
using the estimated parameters from the model fit and then overlaying the predictions as a line 
on the original scatter plot. 
 
1. Create a sequence of ages (x-values) from 0 to 16 by 1 (a vector called age2) 

age2<-seq(0,16,1) 
 
2. Predict the lengths using estimated parameters and x-values in age2 

y1<-1247.537*(1-exp(-0.06164*(age2--4.6745))) 
 
3. Plot original data points 

plot(length~age, data=length.age, xlim=c(0,17), pch=16) 
 
4. Overlay predicted values form models 

lines(age2,y1) 
 
(Script: QFC R course Von Bertalanffy Nonlinear regression 6 Oct 2006.R) 
 
EXERCISE 6: Nonlinear regression 
 
 

Useful R references (descriptions are from the R website) 
 
Richard A. Becker, John M. Chambers, and Allan R. Wilks. The New S Language. Chapman & 
Hall, London, 1988. 
This book is often called the “Blue Book”, and introduced what is now known as S version 2.  
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John M. Chambers and Trevor J. Hastie. Statistical Models in S. Chapman & Hall, London, 
1992. 
This is also called the “White Book”, and introduced S version 3, which added structures to facilitate statistical 
modeling in S.  
 
John M. Chambers. Programming with Data. Springer, New York, 1998. ISBN 0-387-98503-4. 
http://cm.bell-labs.com/cm/ms/departments/sia/Sbook/ ]  
This “Green Book” describes version 4 of S, a major revision of S designed by John Chambers to improve its 
usefulness at every stage of the programming process.  
 
William N. Venables and Brian D. Ripley. Modern Applied Statistics with S. Fourth Edition. 
Springer, New York, 2002. ISBN 0-387-95457-0. http://www.stats.ox.ac.uk/pub/MASS4/ ]  
A highly recommended book on how to do statistical data analysis using R or S-Plus. In the first chapters it gives an 
introduction to the S language. Then it covers a wide range of statistical methodology, including linear and 
generalized linear models, non-linear and smooth regression, tree-based methods, random and mixed effects, 
exploratory multivariate analysis, classification, survival analysis, time series analysis, spatial statistics, and 
optimization. The `on-line complements' available at the books homepage provide updates of the book, as well as 
further details of technical material.  
 
William N. Venables and Brian D. Ripley. S Programming. Springer, New York, 2000. ISBN 0-
387-98966-8. http://www.stats.ox.ac.uk/pub/MASS3/Sprog/ ]  
This provides an in-depth guide to writing software in the S language which forms the basis of both the commercial 
S-Plus and the Open Source R data analysis software systems.  
 
Jose C. Pinheiro and Douglas M. Bates. Mixed-Effects Models in S and S-Plus. Springer, 2000. 
ISBN 0-387-98957-0.  
A comprehensive guide to the use of the `nlme' package for linear and nonlinear mixed-effects models.  
  
John Fox. An R and S-Plus Companion to Applied Regression. Sage Publications, Thousand 
Oaks, CA, USA, 2002. ISBN 0-761-92279-2. 
http://socserv.socsci.mcmaster.ca/jfox/Books/Companion/index.html ]  
A companion book to a text or course on applied regression (such as “Applied Regression, Linear Models, and 
Related Methods” by the same author). It introduces S, and concentrates on how to use linear and generalized-linear 
models in S while assuming familiarity with the statistical methodology.  
 
Peter Dalgaard. Introductory Statistics with R. Springer, 2002. ISBN 0-387-95475-9. 
http://www.biostat.ku.dk/~pd/ISwR.html ]  
 
John Maindonald and John Braun. Data Analysis and Graphics Using R. Cambridge University 
Press, Cambridge, 2003. ISBN 0-521-81336-0. http://wwwmaths.anu.edu.au/~johnm/r-
book.html  
 
Sylvie Huet, Annie Bouvier, Marie-Anne Gruet, and Emmanuel Jolivet. Statistical Tools for 
Nonlinear Regression. Springer, New York, 2003. ISBN 0-387-40081-8. 
 
Richard M. Heiberger and Burt Holland. Statistical Analysis and Data Display: An Intermediate 
Course with Examples in S-Plus, R, and SAS. Springer Texts in Statistics. Springer, 2004. ISBN 
0-387-40270-5. http://astro.temple.edu/~rmh/HH ]  
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A contemporary presentation of statistical methods featuring 200 graphical displays for exploring data and 
displaying analyses. Many of the displays appear here for the first time. Discusses construction and interpretation of 
graphs, principles of graphical design, and relation between graphs and traditional tabular results. Can serve as a 
graduate-level standalone statistics text and as a reference book for researchers. In-depth discussions of regression 
analysis, analysis of variance, and design of experiments are followed by introductions to analysis of discrete 
bivariate data, nonparametrics, logistic regression, and ARIMA time series modeling. Concepts and techniques are 
illustrated with a variety of case studies. S-Plus, R, and SAS executable functions are provided and discussed. S 
functions are provided for each new graphical display format. All code, transcript and figure files are provided for 
readers to use as templates for their own analyses.  
 
John Verzani. Using R for Introductory Statistics. Chapman & Hall/CRC, Boca Raton, FL, 2005. 
ISBN 1-584-88450-9. http://wiener.math.csi.cuny.edu/UsingR/ ]  
There are few books covering introductory statistics using R, and this book fills a gap as a true “beginner” book. 
With emphasis on data analysis and practical examples, `Using R for Introductory Statistics' encourages 
understanding rather than focusing on learning the underlying theory. It includes a large collection of exercises and 
numerous practical examples from a broad range of scientific disciplines. It comes complete with an online resource 
containing datasets, R functions, selected solutions to exercises, and updates to the latest features. A full solutions 
manual is available from Chapman & Hall/CRC.  
 
Paul Murrell. R Graphics. Chapman & Hall/CRC, Boca Raton, FL, 2005. ISBN 1-584-88486-X. 
http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html ]  
A description of the core graphics features of R including: a brief introduction to R; an introduction to general R 
graphics features. The base graphics system of R: traditional S graphics. The power and flexibility of grid graphics. 
Building on top of the base or grid graphics: Trellis graphics and developing new graphics functions.  
 
Michael J. Crawley. Statistics: An Introduction using R. Wiley, 2005. ISBN 0-470-02297-3. 
http://www.bio.ic.ac.uk/research/crawley/statistics/ ]  
The book is primarily aimed at undergraduate students in medicine, engineering, economics and biology - but will 
also appeal to postgraduates who have not previously covered this area, or wish to switch to using R.  
 
Brian S. Everitt. An R and S-Plus Companion to Multivariate Analysis. Springer, 2005. ISBN 1-
85233-882-2. http://biostatistics.iop.kcl.ac.uk/publications/everitt/ ]  
In this book the core multivariate methodology is covered along with some basic theory for each method described. 
The necessary R and S-Plus code is given for each analysis in the book, with any differences between the two 
highlighted.  
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R QUICK REFERENCE SHEET 
 
Website: http://www.r-project.org/  
 
Getting started 

• Open R by double clicking on the R icon. 
• Commands are entered into the “R Console” window (the command window within the 

graphical user interface (RGui) or into R scripts.  
• Command can also be copied and pasted into the R console or scripts. 
• Close R by typing q() in the R console or via the File menu, or by clicking the close 

button on the top right of the screen. 
• When you close R you will be prompted to “Save workspace image?”. This will save all 

the currently defined objects and is automatically restored when R is started. 
• Parentheses ( ) are for functions. 
• Brackets [ ] are for indicating the position of items in a vector or matrix. 
• R commands are case sensitive 
• You can use the keystroke <Ctrl> <L> to clear the R console 

 
General commands 
 
Command Function
# Add a comment 
<-  
(less than and minus sign) 

Assign 

q() Quit 
Help(mean) Get help on a function called mean 
?mean Get help on a function called mean 
 
Managing objects 
 
Command Function
objects() or ls() Display a list of all objects currently stored within R 
rm(x, growth) Remove objects x and growth 
dim(matrix1) Returns the dimensions of a matrix called matrix1 
dimnames(matrix1) Returns the names of dimensions of a matrix called matrix1 
length(date) Returns the length of the vector called date 
rep(x, n) Repeat the vector x n times 
cbind(x, y, z) Combine columns into a matrix 
rbind(x2, y2, z2) Combines rows into a matrix 
t(x) Switch rows and columns (transpose) 
data.frame(matrix1) Create a data frame from a matrix 
attach(fish.length) Make variables in object fish.length accessible by name within R 

(put variables in search path) 
detatch(fish.length) Remove variables in object fish.length from search path 
names(fish.length) Returns a list of variable names in object fish.length 
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merge(df1, df2) Merge data two data frames 
levels(site.name) Returns a list of the names of the different categories of site.name  
$ Designate the object a variable is coming from. For example, 

fish.growth$length refers to the variable length in the object (e.g., 
data frame) fish.growth  

head(df1) Show the first few lines of a data frame or matrix 
tail(df1) Show the last few lines of a data frame or matrix 
page(x) Show the structure of a data frame or matrix 
is.factor(x1) Returns TRUE/FALSE if x1 is a factor 
is.matrix(x) Returns TRUE/FALSE if x is a matrix 
as.factor(x1) Encode a vector as a factor 
as.matrix(x) Creates a matrix from a given set of values 
read.table Read a text file into R 
write.tble Export a data frame or matrix out of R 
 
 
Conditional statements 
 
Command Function
which(x>y) Identifies which x variables are greater than y 
which(x1==y | x2==”z”) Identify variables where x1 equals y OR where x2 = “z” 
ifelse(test, yes, no) Returns the value for yes if the test is true, no otherwise 
If else  
 
Logical arguments 
 
Command Function
= Logical equals 
== Logical equals 
!x Indicates logical negation (not), not x 
x & y Logical and, x and y 
x && y Logical and 
x | y Logical or, x or y 
x || y Logical or 
The shorter form of & and |, perform element-wise comparisons in much the same way as 
arithmetic operators. The longer form (&&, ||) evaluates left to right examining only the first 
element of each vector. Evaluation proceeds only until the result is determined. The longer 
form is appropriate for programming control-flow 
  
 
Descriptive Statistics 
 
Command Function
max(x) Max of x 
min(x) Min of x 
mean(x) Mean of x 
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median(x) Median of x 
sum(x) Sum of x 
var(x) Variance of x 
sd(x) Standard deviation of x 
quantile(x) Generates multiple quintiles of x 
log(x, base) Computes logarithm of x with base base 
colSum(df) Column-wise sums for a data frame 
colMean(df) Column-wise means of a data frame 
apply(x, 2, function) Column-wise estimation of function (e.g., median, mean, etc) for 

matrix x 
sapply(df, FUN=””) Column-wise calculation of a function  
lapply(df, FUN=””) Column-wise calculation of a function 
ave(x1, group) Average of x1 by group 
by(df[,1:2], group, 
mean) 

Average of column 1 and 2 in a data frame by a group name 

 
 
High-level plotting functions (create a new plot on the graphics device) 
 
Command Function
plot(x,y) Plot x versus y (generic function, see R help) 
hist(x) Histogram of frequencies of x 
barplot(x) Histogram of values of x 
boxplot(x) Boxplot of x 
pairs(df) Scatter plot matrix of variables in a data frame 
For more graphing options see the Lattice library for the mplementation of Trellis Graphics in 
R. 
 
Common axis and label functions 
 
Command Function
xlim= Specify x-axis lower and upper limits e.g., xlim=c(0,100) 
ylim= Specify y-axis lower and upper limits 
xlab= Specify x-axis label 
ylab= Specify y-axis label 
main= Specify main graph title 
sub= Specify sub-title 
add=TRUE Superimposes a plot on a previous plot  
 
 
Some low-level plotting functions (add more information to an existing plot) 
 
Command Function
pch= Change plotting character 
cex= Change size of character 
cex.axis= Change font size of axes 
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cex.lab= Change font size of axis labels 
cex.main= Change size of main title 
col.main= Change color of main title 
col.lab= Change color of axis labels 
col.axis= Change font color of axes 
col= Change color of symbols 
abline(a,b) Draws a line of slope b and intercept a 
abline(h=y) Draws a horizontal line at ordinate y 
abline(v=x) Draws a vertical line at abscissa x 
points(x,y) Adds points  
lty= Changes the line type 
lwd= Change the width of a line 
font= 1=normal; 2=italics; 3=bold; 4=bold italics 
colors() List all named colors in R 
expression() Used to create mathematical symbols, superscript, and subscript 

axis labels or added text to a graph 
 
 
Commonly used statistical analyses  
lm: fits a linear model with normal errors and constant variance. It can be used to carry out 
single stratum analysis of variance and analysis of covariance (although 'aov' may provide a 
more convenient interface for these). 
 
aov: fits an analysis of variance model by a call to 'lm' for each stratum. aov fits analysis of 
variance with normal errors, constant variance, and the identity link. 
 
glm: used to fit generalized linear models, specified by giving a symbolic description of the 
linear predictor and a description of the error distribution (e.g., Poisson for count data or 
binomial for proportion data). 
 
gam: used to fit generalized additive models, specified by giving a symbolic description of the 
additive predictor and a description of the error distribution. 'gam' uses the backfitting algorithm 
to combine different smoothing or fitting methods. The methods currently supported are local 
regression and smoothing splines. (gam package). 
 
lme: fits a linear mixed-effects models with specified mixtures of fixed and random effects and 
allows for the specification of  correlation structure among the explanatory variables and 
autocorrelation of the response variable (package nlme). 
 
nls: determine the nonlinear (weighted) least-squares estimates of the parameters of a nonlinear 
model. 
 
nlme: this generic function fits a nonlinear mixed-effects model in the formulation described in 
Lindstrom and Bates (1990) but allowing for nested random effects. The within-group errors are 
allowed to be correlated and/or have unequal variances (package nlme). 
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loess: fit a polynomial surface determined by one or more numerical predictors, using local 
fitting. 
 
tree: fits a regression tree model. A tree is grown by binary recursive partitioning using the 
response in the specified formula and choosing splits from the terms of the right-hand-side. 
(package tree) 
 
 
Functions used to obtain information about statistical models 
 
summary: produces parameter estimates and standard errors from lm and ANOVA tables from 
aov. 
 
plot: produces diagnostic plots for model checking. 
 
anova: compares different models and produces ANOVA tables. 
 
update: used to modify the latest model fit. 
 
coef: returns the estimated coefficients and sometimes their standard errors 
 
fitted: returns the fitted values 
 
resid: returns residuals 
 
predict: prediction from a model 
 
AIC: computes the Akaike information criterion 
 
logLik: computes the logarithm of the likelihood and the number of parameters 
 
Symbols in model statements are used differently compared to arithmetic expressions. 

Symbol Meaning 
+ Indicates inclusion of a predictor variable, not addition 
- Indicates the deletion of a predictor variable, not subtraction 
* Indicates inclusion of a predictor variable and an interaction, not multiplication 
/ Indicates nesting of predictor variables, not division 
| Indicates conditioning 
: Indicates an interaction (e.g., A:B is a two-way interaction between A and B) 

 
 
Examples of model formulae (From Crawley 2005) 
Model Model formula Comments 
Null y ~ 1 1 is the intercept in regression models, but 

here it is the overall mean 
Regression y ~ x x is a continuous explanatory variable 
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One-way ANOVA y ~ gender Gender is a two-level categorical variable 
Two-way ANOVA y ~ gender + genotype Genotype is a four-level categorical variable 
Factorial ANOVA y ~ N * P * K N, P, and K are two-level factors to be fit 

along with all their interactions 
Three-way 
ANOVA 

y ~ N * P * K-N:P:K As above, but don’t fit the three-way 
interaction 

Analysis of 
covariance 

y ~ x + gender A common slope for y against x but with two 
intercepts, one for each gender 

Analysis of 
covariance 

y ~ x * gender Two slopes and two intercepts 

Nested ANOVA y ~ a / b / c Factor c nested within factor b within factor a
Split-plot ANOVA y ~ a * b * c + Error(a/b/c) A factorial experiment but with three plot 

sizes and three different error variances, one 
for each plot size 

Multiple 
regression 

y ~ x + z Two continuous explanatory variables 

Multiple 
regression 

y ~ x * z Fit an interaction term as well (x+z+x:z) 

Multiple 
regression 

y ~ x + I(x^2) + z + I(z^2) Fit a quadratic term for both x and z 

Multiple 
regression 

y ~ poly(x,2) + z Fit a quadratic polynomial for x and linear z 

Non-parametric 
model 

y ~ s(x) + Io(z) y is a function of a smoothed x and loess z 

Transformed 
response and 
explanatory 
variables 

log(y) ~ I(1/x) +  sqrt(z) All three variables are transformed in the 
model 
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Mathematical annotation in R 
 
Syntax    Meaning 
x + y  x plus y 
x - y  x minus y 
x*y  juxtapose x and y 
x/y  x forwardslash y 
x %+-% y  x plus or minus y 
x %/% y  x divided by y 
x %*% y  x times y 
x[i]  x subscript i 
x^2  x superscript 2 
paste(x, y, z)  juxtapose x, y, and z 
sqrt(x)  square root of x 
sqrt(x, y)  yth root of x 
x == y  x equals y 
x != y  x is not equal to y 
x < y  x is less than y 
x <= y  x is less than or equal to y 
x > y  x is greater than y 
x >= y  x is greater than or equal to y 
x %~~% y  x is approximately equal to y 
x %=~% y  x and y are congruent 
x %==% y  x is defined as y 
x %prop% y  x is proportional to y 
plain(x)  draw x in normal font 
bold(x)  draw x in bold font 
italic(x)  draw x in italic font 
bolditalic(x)  draw x in bolditalic font 
list(x, y, z)  comma-separated list 
...  ellipsis (height varies) 
cdots  ellipsis (vertically centred) 
ldots  ellipsis (at baseline) 
x %subset% y  x is a proper subset of y 
x %subseteq% y  x is a subset of y 
x %notsubset% y  x is not a subset of y 
x %supset% y  x is a proper superset of y 
x %supseteq% y  x is a superset of y 
x %in% y  x is an element of y 
x %notin% y  x is not an element of y 
hat(x)  x with a circumflex 
tilde(x)  x with a tilde 
dot(x)  x with a dot 
ring(x)  x with a ring 
bar(xy)  xy with bar 
widehat(xy)  xy with a wide circumflex 
widetilde(xy)  xy with a wide tilde 
x %<->% y  x double-arrow y 
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x %->% y  x right-arrow y 
x %<-% y  x left-arrow y 
x %up% y  x up-arrow y 
x %down% y  x down-arrow y 
x %<=>% y  x is equivalent to y 
x %=>% y  x implies y 
x %<=% y  y implies x 
x %dblup% y  x double-up-arrow y 
x %dbldown% y  x double-down-arrow y 
alpha – omega  Greek symbols 
Alpha – Omega  uppercase Greek symbols 
infinity  infinity symbol 
partialdiff  partial differential symbol 
32*degree  32 degrees 
60*minute  60 minutes of angle 
30*second  30 seconds of angle 

displaystyle(x)  
draw x in normal size (extra 
spacing) 

textstyle(x)  draw x in normal size 
scriptstyle(x)  draw x in small size 
scriptscriptstyle(x)  draw x in very small size 
underline(x)  draw x underlined 
x ~~ y  put extra space between x and y 
x + phantom(0) + y  leave gap for "0", but don't draw it 
x + over(1, 
phantom(0))  

leave vertical gap for "0" (don't 
draw) 

frac(x, y)  x over y 
over(x, y)  x over y 
atop(x, y)  x over y (no horizontal bar) 
sum(x[i], i==1, n)  sum x[i] for i equals 1 to n 
prod(plain(P)(X==x), x)  product of P(X=x) for all values of x 
integral(f(x)*dx, a, b)  definite integral of f(x) wrt x 
union(A[i], i==1, n)  union of A[i] for i equals 1 to n 
intersect(A[i], i==1, n)  intersection of A[i] 
lim(f(x), x %->% 0)  limit of f(x) as x tends to 0 

min(g(x), x > 0)  
minimum of g(x) for x greater than 
0 

inf(S)  infimum of S 
sup(S)  supremum of S 
x^y + z  normal operator precedence 
x^(y + z)  visible grouping of operands 
x^{y + z}  invisible grouping of operands 
group("(",list(a, b),"]")  specify left and right delimiters 
bgroup("(",atop(x,y),")")  use scalable delimiters 
group(lceil, x, rceil)  special delimiters 
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The following annotations can be used to add equations to a chart as follows (from plotmath 
demo): 
 
plot(1:10, 1:10) 
text(4, 9, expression(hat(beta) == (X^t * X)^{-1} * X^t * y)) 
text(4, 8.4, "expression(hat(beta) == (X^t * X)^{-1} * X^t * y)", 
     cex = .8) 
text(4, 7, expression(bar(x) == sum(frac(x[i], n), i==1, n))) 
text(4, 6.4, "expression(bar(x) == sum(frac(x[i], n), i==1, n))", 
     cex = .8) 
text(8, 5, expression(paste(frac(1, sigma*sqrt(2*pi)), " ", 
                            plain(e)^{frac(-(x-mu)^2, 2*sigma^2)})), 
     cex = 1.2) 
 

2 4 6 8 10

2
4

6
8

10

1:10

1:
10

β̂ = (XtX)−1Xty

expression(hat(beta) == (X t̂ * X) {̂-1} * X t̂ * y)

x = ∑
i=1

n xi

n
expression(bar(x) == sum(frac(x[i], n), i==1, n))

1

σ 2π
 e

−(x−μ)2

2σ2
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