MICHIGAN STATE UNIVERSITY EXTENSION

Michigan State University

AgBio**Research**

Polymer-Coated Urea as N Source for Sugarbeet Production

Kurt Steinke and Andrew Chomas, Michigan State University

Location: Saginaw Valley Research and Extension Center	Tillage: Conventional with			
	light S-tine at sidedress			
Planting Date: April 5, 2012 (Harvest 10/5/12)	N Source and Rate: See below			
Soil Type : Clay loam; 2.9 OM; 7.8 pH; 40 ppm P; 183 ppm K	Population : 4 ¹ / ₄ in. spacing			
Variety: Hilleshog 9042 Roundup Ready	Replicated : 4 replications			

N Trt.	Sidedress (2-4 lf)				%	%		
(Total lb. N/A)	Lb. N/A	RWSA	RWST	Tons/A	Sugar	CJP	NH2	Amino-N
40^{a}	0	8595	297	28.9	20.0	94.8	138	8.1
80	40 - Urea	8786	290	30.2	19.8	94.5	167	9.8
120	80 - Urea	9197	282	32.5	19.3	94.3	183	11.0
160	120 - Urea	10197	287	35.5	19.6	94.2	224	13.5
200	160 -Urea	9645	277	34.8	19.3	93.6	213	12.8
120	80 - ESN	9120	285	32.0	19.5	94.1	324	19.2
	(PRE-PLANT)							
200	160 – ESN	9119	269	33.9	18.8	93.3	258	15.4
	(PRE-PLANT)							
$LSD_{(0.10)}^{b}$			9	3.2	0.4	0.4	110	6.5

^a All plots received 40 lbs. N/A as 28% applied 2x2 starter.

^b LSD, least significant difference between means within a column at ($\alpha = 0.10$).

Comments/Summary: Trial was conducted to determine the effects of polymer-coated urea (ESN, Environmentally Smart Nitrogen) on sugarbeet production and quality. ESN is one example of a polymer-coated urea product that functions as a slow-release N fertilizer by metering the N release through the polymer coating. All treatments received 40 lbs. N/A as 28%, 20 lbs. P₂O₅/A, 50 lbs. K₂O/A. and 2 lbs. Mn/A as starter placed 2x2 on April 5. Sidedress N applications of urea were completed on May 14 and were followed by a light cultivation to avoid N volatilization. In order to initiate the N release process early, polymer-coated urea was applied as a pre-plant application on April 5. At similar N rates, polymer-coated urea and urea obtained similar tonnage, RWSA, RWST, % sugar, and % CJP. Polymer-coated urea did increase soluble N impurities within the beet. The extremely dry weather conditions of 2012 may have delayed N release until later in the growing season as evidenced by green tops at harvest (personal observation) and elevated levels of soluble N. Slow- release nitrogen products such as polymer coated urea offer the benefit of reduced number of trips/applications through the field but will need to be considered along with trends in overall precipitation.