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A B S T R A C T

Identification of causes of gaps between yield potential and producer yields has been restricted to small geo-
graphic areas. In the present study, we developed a novel approach for identifying causes of yield gaps over large
agricultural areas with diversity in climate and soils. This approach was applied to quantify and explain yield
gaps in rainfed and irrigated soybean in the North-Central USA (NC USA) region, which accounts for about one
third of soybean global production. Survey data on yield and management were collected from 3568 producer
fields over two crop seasons and grouped into 10 technology extrapolation domains (TEDs) according to their
soil, climate, and water regime. Yield potential was estimated using a combination of crop modeling and
boundary functions for water productivity and compared against highest producer yields derived from the yield
distribution in each TED-year. Yield gaps were calculated as the difference between yield potential and average
producer yield. Explanatory factors for yield gaps were investigated by identifying management practices that
were concordantly associated with high- and low-yield fields. Management × TED interactions were then
evaluated to elucidate the underlying causes of yield gaps. The chosen spatial TED framework accounted for
about half of the regional variation in producer yield within the NC USA region. Across the 10 TEDs, soybean
average yield potential ranged from 3.3 to 5.3 Mg ha−1 for rainfed fields and from 5.3 to 5.6 Mg ha−1 for
irrigated fields. Highest producer yields in each TED were similar (± 12%) to the estimated yield potential.
Yield gap, calculated as percentage of yield potential, was larger in rainfed (range: 15–28%) than in irrigated
(range: 11–16%) soybean. Upscaled to the NC USA region, yield potential was 4.8 Mg ha−1 (rainfed) and
5.7 Mg ha−1 (irrigated), with a respective yield gap of 22 and 13% of yield potential. Sowing date, tillage, and
in-season foliar fungicide and/or insecticide were identified as explanatory causes for yield variation in half or
more of the 10 TEDs. However, the degree to which these three factors influenced producer yield varied across
TEDs. Analysis of in-season weather helped interpret management × TED interactions. For example, yield in-
crease due to advances in sowing date was greater in TEDs with less water limitation during the pod-setting
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phase. The present study highlights the strength of combining producer survey data with a spatial framework to
measure yield gaps, identify management factors explaining these gaps, and understand the biophysical drivers
influencing yield responses to crop management.

1. Introduction

Yield potential (Yp) is the yield of a crop cultivar when grown in an
environment to which it is adapted, with non-limiting water and nu-
trient supplies, and with pests, weeds, and diseases effectively con-
trolled (Evans, 1993; Evans and Fisher, 1999; van Ittersum and
Rabbinge, 1997). In these optimal conditions, crop growth is de-
termined by solar radiation, temperature, atmospheric CO2 concentra-
tion, and management practices which influence crop cycle duration
and light interception, such as sowing date, cultivar maturity, and plant
density. In rainfed systems where water supply from stored soil water at
sowing and in-season rainfall is not enough to meet crop water re-
quirement, water-limited yield potential (Yw) is determined by water
supply amount and its distribution during the growing season, and by
soil properties influencing the crop water balance, such as rootable soil
depth, available-water holding capacity, and terrain slope (van Ittersum
et al., 2013). Crop simulation models, boundary functions defining
maximum yield for a given level of resource availability, and measured
yields in highest-yielding farmer’s fields have been used to estimate Yp
and Yw (Sadras et al., 2015; van Ittersum et al., 2013). The difference
between Yp (or Yw in rainfed conditions) and producer average yield is
termed the yield gap (Yg). Closing the Yg via a fine-tuning of current
management practices provides an opportunity to increase crop pro-
duction on existing cropland (Cassman et al., 2003; van Ittersum et al.,
2013).

The most common approach for assessing the magnitude and causes
of Yg in localized areas involves conducting controlled research trials in
which researchers experimentally evaluate various input levels or
management practices to identify whether a particular input or practice
improve yield, and if the degree of yield improvement justifies input

costs (Lollato and Edwards, 2015; Salvagiotti et al., 2008; Yang et al.,
2004). However, assessing the causes of Yg over large geographic re-
gions has been an elusive goal for three main reasons. First, it is difficult
and costly to run field experiments to evaluate each potential factor
that might limit producer yields. Second, it is problematic to extra-
polate results from these localized experiments to far-flung producer
fields, especially if there is lack of an appropriate description of the
biophysical environment (e.g., climate, soil) where these experiments
are conducted. Finally, even with a large number of site-year experi-
ments, management × environment (M × E) interactions are difficult
to interpret without a rational understanding of what the word “en-
vironment” means beyond “site” and “year”. Consequently, most stu-
dies addressing the causes of Yg through on-farm trials have been
confined to small geographic areas where field-to-field variation in
weather is small (e.g., Kravchenko et al., 2017; Subedi and Ma, 2009;
Villamil et al., 2012). Without an objective way to contextualize and
extrapolate their findings, it remains uncertain how these local studies
can help support more effective research prioritization and impact as-
sessment of technology adoption on crop production and natural re-
sources at local and regional scales.

The present study addresses the aforementioned limitations by
proposing a novel, cost-effective approach that combines producer
survey data with a robust spatial framework to identify causes of Yg
across large geographic areas. We argue that having a database con-
taining yield and management data from producer fields across mul-
tiple regions and years, properly contextualized relative to the bio-
physical environment, can be considered equivalent to running
hundreds of field experiments to capture both major management ef-
fects and M x E interactions. Such analysis of large-scale producer data
can provide a focus as to what treatments are the most promising to

Fig. 1. Map of the North-Central USA (NC USA) region showing nine technology extrapolation domains (TEDs) and meteorological stations (solid circles) selected for the present study. A
coding system (from TED 1 to 9) is used to identify each TED (shown with a unique color) and its associated water regime (I: irrigated, R: rainfed). There were actually 10 TED-water
regimes (denominated ‘TEDs’ for simplicity) because rainfed and irrigated fields co-existed in TED 7 (7R and 7I, respectively). Top inset: soybean harvested area in year 2015 (green area;
USDA-NASS, 2016b) and location of the 3216 surveyed soybean fields (red dots). Bottom inset: location of NC USA region of 12 states within the conterminous USA. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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evaluate in more cost-effective agronomic field trial evaluations. And
while there have been examples of local studies addressing the causes of
Yg using producer survey data collected from relatively small regions
(e.g., Grassini et al., 2011, 2015b; Silva et al., 2016), these studies do
not provide an objective way to extrapolate results and measure impact
over large geographic areas.

We developed here a novel approach that combines producer-re-
ported data and a spatial framework to identify explanatory causes of
Yg over large geographic regions with diversity of climate, soils, and
water regimes (rainfed and irrigated). We focused on soybean in the
North-Central USA (NC USA) region, which accounts for ca. 30% of
global soybean production (2010–2014 period; FAOSTAT, 2016), as a
study case to provide a proof of concept on the proposed approach.
Specific objectives were to evaluate the proposed approach for its
ability to: (i) benchmark producer soybean yields in relation to yield
potential of their fields, (ii) identify key management practices ex-
plaining Yg, and (iii) elucidate the drivers for some of the observed
M × E interactions.

2. Material and methods

2.1. Study region and database

United States is the world largest soybean producer, accounting for
34% of global soybean production during the 2010–2014 time interval
(FAOSTAT, 2016). About 81% of USA soybean is produced on 25.7 Mha
located in the NC USA region, which includes the Corn Belt and parts of
the US Great Plains (2010–2014; USDA-NASS, 2016a) (Fig. 1, bottom
inset). Soybean in the NC USA region is commonly grown in rotation
with maize. Average (2010–2014) soybean yield in the NC USA region
was 3 Mg ha−1, yet previous studies have shown that some producers in
favorable environments can attain yields around 6 Mg ha−1 (Grassini

et al., 2015b; Villamil et al., 2012).
Data on soybean yield and management practices were collected

over two crop seasons (2014 and 2015) from fields sown with soybean
in 10 states in the NC USA region: Illinois (IL), Indiana (IN), Iowa (IA),
Kansas (KS), Michigan (MI), Minnesota (MN), Ohio (OH), Nebraska
(NE), North Dakota (ND), and Wisconsin (WI) (Fig. 1). Soybean pro-
ducers provided data via returned surveys distributed by local crop
consultants, extension educators, soybean grower boards, and Natural
Resources Districts (Fig. 2). Briefly, producers were asked to report the
range of average field yield across the fields sown with soybean in each
year and water regime and to provide data for a number of fields that
portray well that yield range. Requested data also included field loca-
tion, average field yield (at 13% seed moisture content), crop man-
agement (e.g., sowing date, seeding rate, row spacing, cultivar, and
tillage method), applied inputs (e.g., irrigation, nutrient fertilizer, lime,
manure, and pesticides), and incidence of biotic and abiotic adversities
(e.g., insect pests, diseases, weeds, hail, waterlogging, and frost). Most
surveyed fields were rainfed (82% of total fields), except for those in NE
where rainfed (34% of NE collected fields) and irrigated (66%) pro-
duction co-exist within the same geographic area. Maize was the pre-
dominant prior crop (88% of total fields), except for a few fields where
soybean was grown after wheat (5%) or soybean (4%).

2.2. Data quality assessment

Survey data were inputted into a digital database and screened to
remove erroneous or incomplete data entries. We were interested in
yield variation as related with management factors; hence, a few fields
with extremely low yield due to incidence of unmanageable production
site adversities (hail, waterlogging, wind, and frost) were excluded from
the analyses. The procedure to exclude these fields consisted on three
steps: (i) grouping fields within regions with similar soil and climate

Fig. 2. Example of an actual survey form filled out by a Nebraska soybean producer, providing information for three irrigated fields and one rainfed field sown with soybean in 2014 and
2015. This survey was used to collect information from producer fields across 10 states in the North-Central USA region. Note that producer name is not shown and field location was
hatched in order to keep personal information confidential.
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(see Section 2.3), (ii) selecting fields within the 25th percentile of yield
data distribution within each region-year, and (iii) excluding fields af-
fected by any of the aforementioned adversities reported by producers.
Because producers tended to overestimate the impact of adversities on
average field yield, even when a very small portion of the field was
affected, the aforementioned protocol helped distinguish fields with
substantial yield losses due to the reported adversity from other fields
where yield loss was negligible. After quality control, the database
contained data from a total of 3216 fields sown with soybean in 2014
and 2015 (92% of total surveyed fields). A full detailed description of
the database is available at: http://cropwatch.unl.edu/2016-soybean-
survey.

To assess quality of the producer self-reported data, database yields
were compared against estimated county-level yield data independently
collected by USDA-NASS (http://quickstats.nass.usda.gov/). Annual
average irrigated and rainfed soybean yields reported by USDA-NASS
were retrieved for the 2014 and 2015 crop seasons for the counties that
overlap with locations of surveyed fields (Fig. 3). Agreement between
yield data sources was evaluated by calculating root mean square error
(RMSE) and absolute mean error (ME) as follows:
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where YPR and YNASS are the producer-reported yield average and the
USDA-NASS county yield average, and n is the number of pairs of YPR

and YNASS. RMSE was also calculated as percentage (RMSE%) of the
mean producer-reported yield. Linear regression analysis was per-
formed to assess any deviation in the regression of producer data yields
versus USDA-NASS yields. Confidence intervals and t-tests were used to
detect statistically significant departures of the slope and intercept es-
timates from null hypothesized values of unity and zero, respectively.
Also, paired t-tests were conducted to detect significant differences
between producer data yield and USDA-NASS estimated yields.

The analysis indicated that when averaged over all site-years, the
county means for producer-reported yield (3.4 Mg ha−1) were slightly
higher (9%, p < 0.01) than the mean of the USDA-NASS yields
(3.1 Mg ha−1). However, the high coefficient of determination
(r2 = 0.79) and a slope value undistinguishable from one (p= 0.26)
between the producer-reported and USDA–NASS yields indicated that
the 3216 field-year database was reliably representative of the wide
range of soybean yields in the NC USA region, ranging from 1.5 to
5.2 Mg ha−1 across counties, years, and water regimes.

2.3. Categorization of fields based on their biophysical context

A challenge is how to cluster producer fields in order to identify
management factors that consistently lead to higher yields for a given
climate-soil combination. In the present study, surveyed fields were
grouped based upon their climate and soil using the spatial framework
developed for the central and eastern USA by the Global Yield Gap Atlas
(http://www.yieldgap.org; van Wart et al., 2013). This framework de-
lineates regions [hereafter called technology extrapolation domains
(TEDs)] based on four biophysical attributes that govern crop yield and
its inter-annual variability: (i) annual total growing degree-days, which,
in large part, determines the length of crop growing season (10 classes),
(ii) aridity index, which largely defines the degree of water limitation in
rainfed cropping systems (10 classes), (iii) annual temperature sea-
sonality, which differentiates between temperate and tropical climates
(3 classes), and (iv) plant-available water holding capacity in the roo-
table soil depth (PAWHC), which determines the ability of the soil to
supply water to support crop growth during rain-free periods (10
classes; 50-mm class interval). Each TED corresponds to a specific

combination of growing-degree days, aridity index, temperature sea-
sonality, and plant-available water holding capacity. Detailed descrip-
tion of TEDs is available at: http://www.yieldgap.org/web/guest/cz-
ted

We selected TEDs that best portrayed the diversity of climate, soils,
and water regimes in the NC USA region (Fig. 1). Six TEDs included
only rainfed soybean fields (1R, 2R, 3R, 4R, 5R, and 6R) while two
TEDs included only irrigated soybean fields (8I and 9I). One TED in-
cluded both irrigated and rainfed soybean fields (7I and 7R). Because
the impact of management factors on yield is influenced by water
supply (e.g., Grassini et al., 2015b; Heatherly, 1988), we separated
water regimes (WR; rainfed and irrigated) within the same TED. Hence,
a total of 10 TED-WR combinations were eventually used in this study,
which are referred hereafter as ‘TEDs’ for simplicity (total of 10 TEDs).
Selected TEDs included 38% of the surveyed fields (1343 fields, 38% of
the total) and accounted for 25 and 45% of USA rainfed and irrigated
soybean area, respectively. Each individual TED contained ≥98
(rainfed) and ≥59 (irrigated) surveyed fields (including both years),
with an average of 137 fields per TED (Table S1). Ex-ante power ana-
lysis indicated that the number of fields within each TED was sufficient
to detect relatively small yield differences (ca. 200 kg ha−1) attribu-
table to management factors. The lower threshold used in irrigated (59)
versus rainfed (98) is justified by the smaller field-to-field yield varia-
tion in irrigated fields within the same TED. To assess the degree to
which TEDs were able to discriminate amongst biophysical environ-
ments and their consistency over years, two-way analysis of variance
(ANOVA) was conducted to examine the partitioning of sum of squares
amongst year, TED, and TED × year sources of variation relative to
yield and management practices. The residual variation was taken as a
measure of the field-to-field variability within TED.

2.4. Estimation of soybean yield potential and yield gap

Annual yield potential (Yp) and water-limited yield potential (Yw)
were estimated using measured daily weather data (including solar
radiation, rainfall, and maximum and minimum air temperature) col-
lected at 2–3 meteorological stations located within each TED, pre-
ferably in proximity to the areas with highest density of surveyed fields
(Fig. 1). Previous assessments on the variation of Yp and Yw within
TEDs indicates that the number of weather stations used in the present
study was sufficient for a robust estimation of both parameters
(Hochman et al., 2016; van Wart et al., 2013). Likewise, our analysis

Fig. 3. Comparison between producer-reported yield and USDA-NASS yields in ten NC
USA states. Each datapoint corresponds to the average yield for a given county-year
combination (For Nebraska, R: rainfed; I: irrigated). The 1:1 line (dashed black line),
fitted linear regression (red solid line), root mean square error (RMSE), RMSE as per-
centage of mean database yield (RMSE%), and absolute mean error (ME) are also shown.
(For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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indicated that there was a very little variation in simulated yield (Yp or
Yw) among weather stations located within the same TED, even in large
TEDs such as 2R and 6R (coefficient of variation = 6% and 7%, re-
spectively). Hence, our estimates of yield potential based on 2–3
weather stations per TED can be considered robust. The stations are
managed by MESONET state-operated networks (http://mrcc.isws.
illinois.edu/gismaps/mesonets.htm). Details on weather data sources
and quality control can be found in Morell et al. (2016) and Mourtzinis
et al. (2017). Yp and Yw were calculated for each of the 2–3 locations
within each TED, and then averaged to calculate a single Yw and Yp for
that given TED, separately for each year (2014 and 2015).

For irrigated fields, Yp was calculated using a well-validated soy-
bean simulation model (SoySim; Setiyono et al., 2010) based on daily
weather data and reported sowing date, variety maturity group1 (MG),
and seeding rate (Table S1). Because early sowing date is critical to
achieve high soybean yields in the USA Corn Belt region (Bastidas et al.,
2008; De Bruin and Pedersen, 2008; Egli and Cornelius, 2009), Yp was
simulated using an early sowing date, which was calculated from the
5th percentile of the producer sowing date distribution for each TED-
year (Table S1). Average reported seeding rate and MG for each TED
were used for the simulations because (i) producer seeding rates largely
exceeded seeding rate needed to maximize yield (De Bruin and
Pedersen, 2009; Grassini et al., 2015b and references cited therein), and
(ii) there was a very narrow range of MG within TEDs (typically less
than one unit).

For rainfed fields, a boundary function relating soybean seed yield
and seasonal water supply reported by Grassini et al. (2015b) was used
to determine Yw. Boundary functions have been widely used for yield-
gap analysis (Passioura and Angus, 2010; Sadras and Angus, 2006). The
boundary function had a slope (attainable water productivity) of
9.9 kg mm−1 ha−1 and x-intercept (seasonal soil evaporation) of
73 mm. Seasonal water supply was calculated as the sum of available
soil water at sowing in the upper 1.5 m soil depth and in-season pre-
cipitation from sowing to physiological maturity (soybean stage R7;
Fehr et al., 1971). Available soil water at sowing in the upper 1.5 m soil
depth was determined dynamically using the Hybrid Maize model
(Yang et al., 2017; Yang et al., 2004) by initializing the model run at
harvest of the prior maize crop (i.e., about 6 months before soybean
sowing), assuming 50% of available soil water content at that time, and
measured weather data from that prior harvest to soybean sowing. The
choice of 50% soil water content at harvest of prior maize crop was
supported by data reported by a previous simulation study conducted in
the USA Corn Belt (Grassini et al., 2009). In-season precipitation was
calculated for the time interval between sowing date and the calendar
date of R7 stage as simulated using SoySim model.

Yw and Yp were used as benchmarks for calculating Yg for rainfed
(TEDs 1R, 2R, 3R, 4R, 5R, 6R, and 7R) and for irrigated TEDs (7I, 8I,
and 9I). The Yg was calculated as the difference between Yp (or Yw)
and average producer yield and expressed as percentage of Yp (irri-
gated) or Yw (rainfed). For rainfed TED-year cases in which Yw ≥ Yp,
rainfed crops were assumed not to be limited by water supply; in those
cases, simulated Yp was taken as an estimate of yield potential and used
to calculate the Yg for rainfed crops. Finally, Yw (or Yp) and average
producer yield were upscaled to the entire NC USA region based on the
values calculated for each TED (Table S1), weighted by the relative
contribution of each TED to the regional soybean harvested area
(USDA-NASS, 2010–2014). The upscaling was performed separately for
irrigated and rainfed TEDs.

Lobell et al. (2009) and van Ittersum et al. (2013) have shown that,
in high-input cropping systems without severe water limitations,
highest producer yields for a given year and region can be taken as

rough estimates of Yp (or Yw). To evaluate the robustness of the ap-
proach used in the present study for calculating Yg, we compared our
estimates of Yw (or Yp) derived from crop modeling and boundary
functions against independent estimates of yield potential derived from
the 95th percentile of the field yield distribution (P95) for each TED
and year. Agreement in yield potential calculated using the two in-
dependent approaches was assessed using RMSE, ME, and RMSE%.

Weather data and simulated crop stages were used to compute
means of meteorological factors (incident solar radiation, and max-
imum and minimum temperature) for four different crop phases: early
vegetative phase, late vegetative phase, pod-setting, and seed-filling.
Pod-setting was defined as the period between beginning of pod-setting
(R3 stage, Fehr and Caviness, 1977) and beginning of seed-filling (R5
stage). Seed-filling was defined as the time interval between R5 and
physiological maturity (R7 stage). The period between sowing and R3
was divided into two equal parts, with the mid-point corresponding
roughly to the first flower (R1 stage). For the indeterminate cultivars
grown in the NC USA, the vegetative period overlaps with the R1 to R2
reproductive period of flowering. An apparent water balance was also
calculated for each phase as the difference between total rainfall and
simulated non-water limiting crop evapotranspiration (ETc). A negative
and positive water balance values indicate an apparent water deficit
and surplus, respectively. Patterns for each meteorological factor and
the water balance across the different crop phases were shown for four
TEDs that portrayed well the spatial variation in weather across the
soybean-producing region in the NC USA region (Fig. 4). Magnitude of
water deficit increased following an E-W gradient, while solar radiation
followed the opposite trend. In contrast, there was a N-S temperature
gradient, with southern TEDs exhibiting warmer temperatures. PAWHC
ranged from 200 to 300 mm across fields located in the selected TEDs,
except for TED 1R where it ranged from 100 to 150 mm (Table S1).

2.5. Identification of causes of yield gaps

As a first approach to identify factors explaining Yg, high-yield (HY)
and low-yield (LY) field classes were identified based on their re-
spective presence in the upper and lower terciles of the field yield
distribution within each TED. Differences in each management practice
and applied input between the HY and LY fields were then evaluated for
significance using t-tests. Association between field classes and cate-
gorical variables (e.g., artificial field drainage, seed treatment, and
lime) was evaluated using Chi-square (χ2) tests. For some management
practices involving more than two distinguishable techniques, fields
were grouped in two categories to facilitate the analysis. Following
Grassini et al. (2015a,b), fields were categorized as either no-till or
tilled, with the latter including chisel, disk, strip-till, ridge-till, vertical,
field cultivator, and moldboard plow. Likewise, because row spacing
distribution exhibited a strong bimodal shape, field were grouped into
the two most common row spacing classes: narrow (38 cm) and wide
(76 cm). Some practices have already been widely adopted by produ-
cers in some of the TEDs; hence, it was not possible to make compar-
isons when one of the alternatives for a given practice predominated,
resulting in too few fields for a balanced comparison (e.g., herbicide
application, seed treatment). Finally, to avoid confounding effects,
fields treated with fungicide only, insecticide only, or both fungicide
and insecticide were pooled for the analysis because in-season canopy
fungicide and insecticide applications were commonly applied together
(51% total treated fields).

Variables identified as statistically significant on their influence on
seed yield, as revealed from comparison between HY versus LY fields,
were further investigated. Quantile regression was used to derive a
boundary function for the relationship between producer yield and
sowing date delay based on the 90th percentile using the quantreg
package in R (R Development Core Team, 2016). For categorical vari-
ables (e.g., tillage, artificial drainage, pesticide application), average
yields calculated for contrasting management categories were

1 Soybean varieties are divided into groups according to their relative times of ma-
turity. Maturity groups are usually designated using triple zero, double zero, zero and
Roman numerals from I to X for very short- and long-season varieties, respectively.
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compared (e.g., no-till versus tilled fields) using paired t-tests. ANOVA
was performed to evaluate the statistical significance of the yield im-
pact of each management (M) practice main effect and its interaction
with TED (M × TED) and year (M × Y). Finally, Pearson’s correlation
analysis, based on yield responses to different management factors
(dependent variable) and meteorological factors calculated for each
four crop phases in each TED (independent variables), was used to in-
vestigate the biophysical basis for some of the observed M× TED in-
teractions.

3. Results

3.1. Sources of variation in regional yields and management practices

There was a large variation in average annual yield across TEDs,
ranging from 2.6 to 4.9 Mg ha−1 (Table 1). TEDs accounted for 96% of
the treatment sum of squares (i.e., excluding the error) and of the re-
maining sums of squares, the TED × Y interaction explained at least
three times more than the contribution of year. These findings were
consistent with observed differences in seasonal weather patterns
among TEDs (Fig. 4), and similarities in weather (and yield) between
the two crop seasons within each TED (Table S2). Overall, these find-
ings indicated that the TED framework was robust at capturing the
influence of key biophysical factors on crop yield per se, and was 31×
more explanatory than the TED × Y interaction. This analysis indicates
that the TED framework can be used to delineate climate-soil domains
that predictably account for seed yield potential. This finding also can
be extended to some key agronomic practices for which the ten TEDs
account for 50–99% of the variation in the producer choices of tillage,
MG, sowing date, foliar pesticide, and row spacing.

3.2. Soybean yield potential and yield gap in the NC USA region

The two independent estimates of yield potential (Yp or Yw versus
P95) compared reasonably well, with RMSE of 0.29 Mg ha−1, re-
presenting 6% of average Yw or Yp (Fig. 5A). Average difference in
yield potential estimated using the two approaches (−0.03 Mg ha−1)

was not statistically different from zero for both rainfed and irrigated
crops (t-test, p > 0.60). In all cases, the P95 value derived from the
yield distribution was within±12% of simulated Yp or Yw. Similarity
in yield potential estimated by the two independent approaches was
consistent across the entire range of yields, indicating that our Yw (or
Yp) estimates were robust and can be reliably used as benchmarks for
estimating Yg for soybean fields across the NC USA region.

Fig. 4. Average solar radiation (A), water balance (B), and average max-
imum (C) and minimum air temperature (D) in four technology extra-
polation domains during four crop phases: early vegetative phase (V-
early), late vegetative phase and R1–R2 flowering (V-late), pod-setting
(R3–R5), and seed-filling (R5–R7). Water balance was calculated as the
difference between total rainfall and non-water limiting crop evapo-
transpiration. The four TEDs region were selected to portray the variation
in weather over the North-Central USA region. Each data point corre-
sponds to the average value for a given crop phase calculated based on 2–3
meteorological stations located within each TED and two crop seasons
(2014 and 2015).

Table 1
Analysis of variance for seed yield, tillage, variety maturity group, sowing date, in-season
foliar fungicide and/or insecticide, and row spacing reported for producer fields sown
with soybean during 2014–2015 years (Y) in ten technology extrapolation domains
(TEDs) located to the NC USA region.

Variable (and
units)

Source Degrees of
freedom

Sum of
squares

% SSa p-value

Seed yield TED 9 631 96% <0.01
(Mg ha−1) Y 1 4 1% <0.01

TED × Y 9 19 3% <0.01
Residual 1353 505

Tillage TED 9 42 87% <0.01
(% tilled fields) Y 1 1 3% 0.01

TED × Y 9 5 10% <0.01
Residual 1338 290

Maturity group TED 9 772 99% <0.01
(unitless) Y 1 1 <1% 0.01

TED × Y 9 1 <1% 0.87
Residual 1228 188

Sowing date TED 9 22616 50% <0.01
(day of year) Y 1 129 <1% 0.32

TED × Y 9 22943 50% <0.01
Residual 1310 132814

Foliar fungicide TED 9 23 82% <0.01
and/or insecticide Y 1 0 <1% 0.38
(% treated fields) TED × Y 9 5 17% <0.01

Residual 1353 297
Row spacing TED 9 28 90% <0.01
(% wide-row

fields)
Y 1 0 <1% 0.5

TED × Y 9 3 9% 0.2
Residual 920 204

a %SS: proportion of sum of squares relative to the non-error total sum of squares.
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Average Yw ranged from 3.2 to 5.4 Mg ha−1, while Yp varied from
5.4 to 6.1 Mg ha−1 across TEDs (Fig. 5B). TED 3R exhibited the lowest
Yw due to lower seasonal precipitation in relation with other TEDs
(Fig. 4). In contrast, Yp was highest in TED 8I due to non-limiting water
supply and high incident solar radiation. Upscaled to the entire NC USA
region, Yw and Yp averaged 4.8 and 5.7 Mg ha−1, respectively. Average
producer yield was consistently lower than Yw (or Yp) across all TEDs
(p < 0.01). Yield gaps, expressed as percentage of Yp (irrigated) or Yw
(rainfed), tended to be larger in rainfed (range: 15–28%) than in irri-
gated TEDs (range: 11–16%). The difference between rainfed and irri-
gated crops in relation with size of Yg persisted in TED 7, where rainfed
and irrigated fields are located adjacent to each other within the same
geographic region (21 versus 16% of Yw and Yp, respectively). At re-
gional level, the rainfed Yg averaged 22% in contrast to the irrigated Yg
of 13%.

3.3. Underpinning causes for yield variation among fields within TED

Analysis of management practices allowed identification of candi-
date factors explaining Yg in each TED (Table 2, Table S3). Differences
in sowing date, tillage, in-season foliar fungicide and/or insecticide,
and MG between HY and LY fields were statistically significant in half
or more of the 10 TEDs (p < 0.10). Sowing date had the most con-
sistent impact on soybean yield (Fig. 6). HY fields were sown, on
average, 7 days earlier than LY fields in both irrigated and rainfed
conditions (Table 2). There was a strong sowing date × TED interaction
on yield as indicated by the wide range in yield penalty across TEDs,

ranging from −1 to −33 kg ha−1 d−1 (Fig. 6). Although differences in
variety MG between HY and LY were less than one unit, there was a
consistent trend towards shorter-season MGs in the HY field tercile in
all TEDs, except for those located in the northern fringe of the NC USA
region (3R and 4R).

Similar to sowing date, other management practices also exhibited a
significant M x TED interaction (Table 2, Fig. 7). While there was an
overall statistically positive impact of foliar fungicide and/or in-
secticide (0.31 Mg ha−1, p < 0.01) and artificial drainage
(0.18 Mg ha−1, p= 0.05) on soybean seed yield, the magnitude of
these yield differences were not consistent across TEDs, and not even
significant in some of them (Table 2, Fig. 7). For example, average yield
of fields treated with foliar fungicide and/or insecticide was
0.75 Mg ha−1 higher in relation with untreated fields in TED 7R, but
this yield difference was negligible (−0.06 Mg ha−1) and not statisti-
cally significant in TED 6R. Likewise, artificially drained fields achieved
statistically higher yields compared with fields without artificial drai-
nage in only 2 of 6 TEDs. Consistent with these observations, the
M× TED term was significant for foliar fungicide and/or insecticide
and artificial drainage, explaining a larger portion of the treatment sum
of squares in relation to management and M x Y interaction (Fig. 7). We
did not find evidence of no-till fields outperforming yield of tilled fields
in every TED; indeed, tilled fields yielded significantly more in half of
the TEDs (0.15 Mg ha−1, p = 0.02) (Fig. 7). Still, there may be reasons
for producers to adopt no-till despite the observed yield penalty. For
example, no-till can help control soil erosion and reduce irrigation
water requirements. Indeed, we found that, on average, total irrigation
was 65 mm less in no-till versus tilled fields (p < 0.01). Hence, dif-
ferences in irrigation between HY and LY fields observed for 2 of the 3
irrigated TEDs are likely to be the result of lower adoption of no-till in
HY fields relative to LY fields (Table 2).

In contrast to the aforementioned variables, there were inconsistent
(and generally small) differences between HY and LY fields in relation
with row spacing, seeding rate, seed treatment, nutrient (N, P, K) fer-
tilizer application, lime, and manure (Table 2, Table S3). Lack of sta-
tistically significant differences between management practices should
be interpreted with caution. For example, some practices might influ-
ence yield depending upon the level of another management practice
[e.g., seed treatment in relation with sowing date (Gaspar and Conley,
2015)]. Likewise, the benefit of other practices may only be realized in
crop seasons with unfavorable weather, which was not the case in our
study [e.g., narrow row spacing, no-till; Taylor (1980); Wilhelm and
Wortmann (2004)]. Similarly, yield impact of some practices may be
masked by other field variables not accounted here. For example, lack
of yield differences between fields that received fertilizer application
versus those that did not receive fertilizer might reflect producer ten-
dency to apply fertilizer only in fields where soil nutrient status is in-
adequate as evaluated using soil nutrient tests. It may also reflect many
producers over-fertilizing the previous maize crop, expecting the sub-
sequent soybean crop to benefit from the residual soil fertility. Finally,
there are management practices that exhibited a very narrow range
(e.g., MG) or inputs that were applied in amounts well above their
optimums. For example, on-farm average soybean seeding rate ranged
from 36 to 42 plants m−2 across TEDs. These densities are higher than
the required plant density for maximum yields (25–35 plants m−2)
(Grassini et al., 2015a); hence, our analysis does not fully capture the
influence of these management factors on seed yield.

3.4. Interpretation of M × E interactions

Assessment of the observed TED x M interactions, in relation to
weather dynamics during the growing season, revealed a relationship
between yield response to sowing date and the degree of water deficit
during pod-setting (R3–R5) phase (Fig. 8). Yield penalty (or response)
to sowing date was negligible when water balance was<−100 mm,
but increased linearly up to nearly −40 mm. Yield response to sowing

Fig. 5. (A) Comparison between producer yield derived from the 95th percentile of the
yield distribution (P95) versus crop model estimates of yield potential for irrigated soy-
bean (Yp, blue symbols) and water-limited yield potential for rainfed soybean (Yw,
yellow symbols) across 10 technology extrapolation domains (TEDs) in 2014 (14) and
2015 (15). (B) Yield potential for rainfed (Yw) and irrigated (Yp) soybean in each of the
10 TEDs in 2014 (14) and 2015 (15). Solid and empty portions of the bars represent the
average producer yield and yield gap, respectively. Values on top of the bars indicate the
(2-year) average Yg, expressed as percentage of Yw (rainfed) or Yp (irrigated). (For in-
terpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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Table 2
Comparison of producer soybean yield, management practices, and applied inputs between the highest terciles of field yields (HY) and the lowest terciles (LY) in 10 technology
extrapolation domains (TEDs) in the NC USA region. Values indicate the mean differences (HY – LY) between the upper and lower yield terciles. Means for each variable in the HY and LY
field categories are shown in Table S3.

Variables Units NC USA TEDs (see Fig. 1)

1R 2R 3R 4R 5R 6R 7R 7I 8I 9I
HY – LY

Seed yield Mg ha−1 1.7*** 1.4*** 1.2*** 1.5*** 1.4*** 1.2*** 1.6*** 1.1*** 1.1*** 1.3***

Field management
Artificial drainage % drained fields 12 18 19** 7 −6 11 n.c. n.c. n.c. n.c.
Tillage % tilled fields −3 31** 20** 25*** 10 3 −1 22 20* 20*

Crop management
Sowing date days −10*** −3 −4* −8*** −8*** −12*** −6 −9** −10*** −4***

Row spacing % wide-row fields 11 −3 −19 20* 3 16 −9 14 −3 14
Seeding rate seeds m−2 −2 −3*** 1 −1 0 0 −1 2** 0 3***

Maturity group unitless −0.2* −0.1 0.2*** 0.1* 0 −0.3** −0.2** −0.6*** −0.3*** −0.1

Applied inputs
ST fungicide % ST fields n.c. n.c. 11 3 −3 2 2 36* 11 6
ST insecticide % ST fields n.c. n.c. 5 −5 0 23*** 15 n.c. 19 −7
ST nematicide % ST fields n.c. n.c. n.c. 6 10 31*** n.c. 6 n.c. n.c.
ST growth regulator % ST fields n.c. n.c. 5 4 −24* 13 −15 n.c. −3 −1
ST inoculant % ST fields n.c. n.c. 4 12 −9 8 −28** n.c. n.c. n.c.
Starter fertilizer % treated fields −10 n.c. −9 3 −4 n.c. 8 n.c. 12 −7
Lime % treated fields −11 −13 n.c. 6 4 −3 19* −11 n.c. n.c.
Manure % treated fields 12 15 n.c. −5 −2 21*** 0 5 n.c. n.c.
Fungicide and/or insecticide % FT fields 10 13 25*** 31*** 22** −13 39*** 44*** 20** 31***

P fertilizer kg ha−1 10 −2 −4 8 −1 8 4 −1 6 0
K fertilizer kg ha−1 0 −38** 0 11 −1 17 3 n.c. −4 n.c.
Irrigation amount mm n.c. n.c. n.c. n.c. n.c. n.c. n.c. 7 27*** 61*

ST: seed treated. FT: in-season foliar treated. Asterisks indicate significance at p < 0.1(*),p < 0.05(**), and p < 0.01(***). In some cases, comparison between HY and LY fields was
not calculated (n.c.) because the presence of a given practice exceeded 95% of the fields, and thus was not suitable for a reasonable comparisons, or because the practice was related with
a specific water regime (e.g., irrigation amount).

Fig. 6. Producer soybean yield plotted against sowing date in
10 technology extrapolation domains (TED) in the NC USA
region, including rainfed (A–G) and irrigated (G–I) produc-
tion areas. Solid line corresponds to the fitted boundary
function using quantile regression (percentile 90th). Separate
boundaries were derived for rainfed (empty symbols) and
irrigated (solid symbols) soybean fields in TED7. Slope of the
fitted boundary function (b) is shown, with asterisks in-
dicating significance at p < 0.1*, p < 0.05**, and
p < 0.01*** for the null hypothesis of b = 0.
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date remained relatively unchanged at water balance>−40 mm,
ranging from 20 to 35 kg ha−1 d−1. The role of water balance in in-
fluencing the yield response to sowing date was evident for TED 7,
where irrigated and rainfed crops exhibited a six-fold difference (33
versus 5 kg ha−1 d−1, respectively) (Fig. 8). In other words, these
findings indicated that yield response to sowing date diminished as the
degree of water limitation in the pod-setting period of the production
environment increases.

It was notable that yield response to sowing date delay exhibited
much higher explanatory power with the degree of water deficit during
pod-setting phase (r2 = 0.73, p < 0.01) relative to the other crop
phases (early vegetative phase, late vegetative phase, and seed-filling)
or entire crop season (r2 < 0.38, p > 0.06). This finding is consistent
with the notion of sequential yield determination in field crops and
further highlights the importance of a proper description of the bio-
physical environment in order to decipher the biophysical drivers be-
hind observed M× TED interactions. While the analysis performed

here is a first attempt to interpret some of these interactions in relation
with meteorological factors calculated for different crop phases, it is
still insufficient. For example, although other management practices
also exhibited a strong M× TED interaction in relation with soybean
yield (e.g., foliar fungicide and/or insecticide, artificial drainage), there
were no clear associations between the variation in yield response
across TEDs with any meteorological factor.

4. Discussion

In the present study, soybean in the NC USA region was used as a
case study to test a novel approach that combines producer self-re-
ported data, crop modeling, and a spatial framework to quantify Yg and
identify explanatory causes. Our study expanded previous Yg analysis
performed for relatively small geographic regions to large regions with
diversity of climate and soil. With increasing pressure to monitor the
productivity and environmental footprint of agricultural systems, ef-
forts have increased to collect evermore producer field data by both
private and public sectors (Antle et al., 2015; Thomson et al., 2017).
This trend means that there will be opportunities to translate producer
field data into useful information for producers, crop consultants,
agricultural industry, and regional extension and research programs.
We argue here, however, that this will be possible only if producer data
are properly contextualized in relation to the climate and soil of each
individual field in order to allow valid comparative tests of alternatives
in each given management practice in well-defined regional environ-
ments, such that any detectable M× E interactions can be better un-
derstood and interpreted. The present study provides a first step in this
direction, by providing a cost-effective approach to categorize fields
using a spatial biophysical framework that accounts for major factors
influencing yield, management, and their spatial variation.

While estimates of Yg and Yw (or Yp) that we report here for soy-
bean are consistent with those reported by Grassini et al. (2015b) for a
relatively small geographic area in Nebraska (USA), the present study
expanded estimation of these parameters to the rest of the NC USA
soybean producing region. Our spatial framework allowed upscaling of
these parameters from local to regional scales, based on the site-specific
yield potential and average producer yield and soybean area within
each TED, resulting in an average regional Yg of 22% (rainfed) and 13%
(irrigated) of the Yw and Yp, respectively. Our study also confirmed
that some farmers in each TED are attaining soybean yields that were
close to the yield potential of the production environment, which is
consistent with previous reports for high-yield cropping systems
(Grassini et al., 2014; Lobell et al., 2009). It also confirms that Yg tends

Fig. 7. Comparison of average producer soybean yield between groups of fields with different management across ten technology extrapolation domains (TEDs): (A) tillage (tilled versus
no-till), (B) in-season foliar fungicide and/or insecticide (treated versus untreated fields), and (C) artificial drainage (fields with and without artificial drainage system). Star inside
symbols indicate statistically significant difference for a given TED (t-test; p < 0.1). Asterisks indicate significance of the impact on yield with respect to the specified management factor
(M), and its interaction with year (M × Y) or with TED (M x TED) as evaluated using F-test at p < 0.1(*), p < 0.05(**), and p < 0.01(***). Data from the two crop seasons were pooled
for the analysis because M× Y influence on yield was not statistically significant. TEDs 7R, 7I, 8I, and 9I are not included in (C) because of the low number of fields with artificial
drainage.

Fig. 8. Soybean yield penalty due to sowing date delay as a function of water balance
during the pod-setting (R3–R5) phase across 10 technology extrapolation domains (TEDs),
including rainfed (yellow circles) and irrigated (blue circles) production environments
(averaged over 2014–2015). Water balance was estimated as the difference between
rainfall and simulated non-water limiting crop evapotranspiration and set to zero for
irrigated crops. Parameters of the fitted linear-plateau model (solid line) and coefficient
of determination (r2) are shown. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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to be greater in rainfed versus irrigated fields, even within the same
TED, which is consistent with the lower level of inputs and late sowing
dates in rainfed fields reported by Grassini et al. (2015b).

While the size of the regional average Yg was relatively small, this
study identified management factors that can be modulated to generate
small, but still significant, yield increases in soybean production en-
vironments in the NC USA region. For example, there was a consistent
effect of sowing date that explained yield variation across fields within
the same TED, which is in agreement with Grassini et al. (2015b) study
for Nebraska and previous experimental data (Bastidas et al., 2008 and
reference cited therein; Rowntree et al., 2013). Sowing date had the
most consistent impact on soybean yield, explaining, on average, 28%
of total Yg across TEDs (range: 2–56%). The latter values were esti-
mated based on the difference in attainable yield between early and
average sowing dates, as derived from the boundary functions shown in
Fig. 6, and comparing this yield difference against the Yg in each TED.
Tillage methods, fungicide and/or insecticide application, and artificial
drainage were other explanatory factors for the Yg. However, identifi-
cation of ‘best’ management practices at regional level is complicated
by the presence of TED x M interactions (i.e., the difference between
two alternative methods of a given agronomic practice varies from low
to high, depending on the given TED) (Figs. 6 and 7). The present study
also made a first attempt to explore the biophysical drivers for some of
the observed M× TED interactions. For instance, we found that yield
response to sowing date across TEDs (range: −1 to −33 kg ha−1 d−1)
was strongly related with the degree of water deficit during the pod-
setting phase (Fig. 8). Although intrinsically empirical, these relation-
ships between yield response and simple biophysical variables are ex-
tremely useful to determine the probability and range of yield response
associated with a change or adoption of a given practice in a given
region (Calviño et al., 2004; Calviño et al., 2003).

Another contribution of the present study is to provide a solid basis
for ex ante assessment of the extra crop production, at both local (TED)
and regional (NC USA) levels, that would result from complete pro-
ducer adoption or fine-tuning of a given management practice. For
example, the potential extra production derived from earlier soybean
sowing can be calculated based on the (i) specific yield response to
sowing date in each TED, (ii) the degree to which the current average
sowing date differs from the optimal one, and (iii) soybean harvested
area in each TED. Hence, a 2-week shift towards early soybean sowing
in TED 4R, from current average sowing on May 17 to a hypothetical,
but realistic, May 3 sowing, would result in 0.35 Mg ha−1 yield increase
and 504,000 Mg production increase, leading to a 10% and 0.7% in-
crease in soybean production in TED 4 and NC USA region, respectively.
This example illustrates the power of this approach for impact assess-
ment to support policy and investment prioritization and for monitoring
the impact of research and extension programs.

5. Conclusions

Soybean Yg and its causes were assessed for the NC USA region
using a novel approach that combines a spatial framework and pro-
ducer self-reported data. The framework applied in this study explained
the largest portion of the spatial variation in yield and management
practices across the NC USA region. Soybean Yg in the NC USA were
relatively small, averaging 22% (rainfed) and 13% (irrigated) of the
estimated yield potential. Sowing date was the most consistent factor
explaining yield variation within the same TED and year, with magni-
tude of yield response to sowing delay dependent upon degree of water
deficit during pod-setting phase. Other practices also explained yield
variation (tillage, and in-season foliar fungicide and/or insecticide, and
artificial drainage), but the degree to which each of these practices
influences yield depended upon TED. The combined use of producer
data and a robust spatial framework that captured regional variation in
weather and soils represents a cost-effective approach to identify causes
of Yg across large geographic regions, which, in turn, can help inform

and strategize research and extension programs at both local and re-
gional levels.
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