Malting Barley Quality Analysis

Ashley McFarland

MSU Upper Peninsula Research and Extension Center

Ryan Hamilton

Pilot Malt House

Understanding analysis factors

- Barley quality analysis
 - Testing for malt potential
 - Variety and management factors impact
- Malt quality analysis
 - Testing for ability to produce a quality beverage
 - * Variety, management and malting factors impact

Quality Basics

- * Lot of pure variety
- Free of foreign matter
- * Free of disease
- Acceptable protein level
- High germination potential
- * Plump and uniform

Good quality malt only comes from good quality barley.

Sampling

- * Obtain a representative sample
- * Consider a composite sample

Heated

Peeled

Smut

Fusarium

Frost

Sprouted

Moisture

- * Target < 13.5% for good storage
- High moisture promotes microbial growth and germination loss
- * When drying grain, use caution with heat

Protein

- Preferred levels determined by type and use
- Many factors impact
- * High protein limits extract potential
- * Typical method requires near infrared technology

Germination

- * **Germinative energy** Will the barley germinate now?
- * Germinative capacity Is it dead or just dormant?
- * Water sensitivity Is special care required for steeping?
- * Sprouting/pre-germination What is the long-term storability of the barley?

Germination energy

- * 100 kernels germinated under controlled conditions
- Kernels inspected for visible signs of germination
- Confidence levels increase with replicated testing

Germinative capacity

- * 100 kernels in 100 ml 0.75% hydrogen peroxide
- * 48 hour test at room temperature
- * Drain, remove, and count germinated kernels

Sprout damage

- * Excessive moisture prior to harvest
- * May be detectable at severe levels
- * Use Falling Number or Rapid Visco Analysis (RVA) to determine
- Heavy impacts to storability

Uniformity

- * Various sized screens are used
- * Plump barley is desirable > 85% over 6/64" screen

Deoxynivalenol (DON)

- * Mycotoxin produced by Fusarium
- * Can survive the brewing process gushing
- * Most maltsters reject> 0.5 ppm
- Various technologies exist
- * Rapid tests are available

Take home messages

- * In-house grain analysis very expensive, equipment > \$100,000
- * Quality peace of mind = priceless
- * Limited fee for service labs

Thank you!

- * Many thanks to:
 - * Aaron MacLeod Canadian Grain Commission
 - * Paul Schwarz North Dakota State University