

Specialty Cut Flower Production and Handling

Roberto G. Lopez Department of Horticulture Michigan State University rglopez@msu.edu

Traditional Cut Flowers

- Most cut flowers are imported
 - Columbia, Ecuador, Kenya, Israel, Thailand, and Netherlands
 - Roses, carnations, alstroemeria, gerbera, mums, orchids
- Can ship well
- Popular
- Bulk of arrangements

Specialty Cut Flowers

What are they?

- Flowers that do not ship well or have short post-harvest vase-life
- Dahlia, lisianthus, lilies, peonies, snapdragon, sunflower, and zinnia
- Worth over \$450 million annually in the U.S.
 - 90% wholesale (florists, etc.)

MICHIGAN STATE

Extension

Specialty Cut Flower Markets

- Wholesale
- Direct to florists
- U-pick
- Roadside stands
- Farmers markets
- Subscription
 - CSA, restaurants, offices, etc.

Top 10 Specialty Cut Flowers (sales)

- Cut tulips
 - \$65,330,000
- Oriental lily
 - \$38,287,000
- Gerbera
 - \$35,231,000
- Gladioli
 - \$25,140,000
- Asiatic lily
 - \$25,062,000

- Iris
 - \$13,863,000
- Sunflower
 - \$13,747,000
- Snapdragon
 - \$12,187,000
- Dahlia
 - \$10,356,000
- Peony
 - \$7,765,000

Association of Specialty Cut Flower Growers Cut Flowers of the Year

- Board of Directors nominate 5 fresh herbaceous, 5 fresh woody and 5 dried / bulb flowers
 - Top performers from ASCFG trials
 - Membership suggestions
- ASCFG membership select top fresh, dried/bulb, and woody cut flowers through electronic voting

Specialty Cut Flower of the Year - Fresh

- 2016 Snapdragon 'Madame Butterfly'
- 2015 Celosia 'Sunday Orange'
- 2014 Snapdragon Chantilly Series
- 2013 Stock 'Katz Cherry Blossom'
- 2012 Zinnia 'Queen Red Lime'
- 2011 Lisianthus 'Mariachi Carmine'
- 2010 Dahlia 'Karma Naomi'
- 2009 Zinnia 'Uproar Rose'
- 2008 Eryngium 'Blue Glitter'
- 2007 Hydrangea 'Limelight'
- 2006 Echinacea 'Ruby Star'
- 2005 Ilex verticillata 'Winter Red'
- 2004 Dianthus 'Amazon Neon Duo'

Specialty Cut Flower of the Year - Dried

- 2011 Capsicum 'Nippon Taka'
- 2010 Panicum 'Frosted Explosion'
- 2009 Achillea 'Coronation Gold'
- 2008 Sorghum bicolor
- 2007 Amaranthus 'Hot Biscuits'
- 2006 Lavandula xintermedia 'Grosso'
- 2005 Nigella damascena 'Cramers Plum'
- 2004 Paeonia 'Sarah Bernhardt'
- 2003 Hydrangea paniculata
- 2002 Celosia 'Chief' Series
- 2001 Artemisia 'Silver King'

Specialty Cut Flower of the Year - Bulbs

- 2016 Tuberose Mexican Single
- 2015 Ranunculus La Belle Series
- 2014 Anemone 'Galilee Blue'
- 2013 Ranunculus 'Super Green'
- 2012 Lily 'Royal Sunset'

MICHIGAN STATE

Extension

Specialty Cut Flower of the Year - Woody

- 2016 Hydrangea 'Annabelle'
- 2015 Caryopteris 'Longwood Blue'
- 2014 Hydrangea Everlasting Series
- 2013 Symphoricarpos 'Amethyst'
- 2012 Vibernum 'Wentworth'
- 2011 Physocarpus 'Coppertina'
- 2010 Vibernum 'Snowball'
- 2009 Hydrangea 'Hamburg'™

MICHIGAN STATE

Extension

Specialty Cut Flower Production

- Site Selection:
 - Well-drainedFertile soils
- Raised Beds
- Field, High
 Tunnel or
 Greenhouse

Field Cut Flower Production

MICHIGAN STATE UNIVERSITY Extension

MICHIGAN STATE UNIVERSITY Extension

MICHIGAN STATE

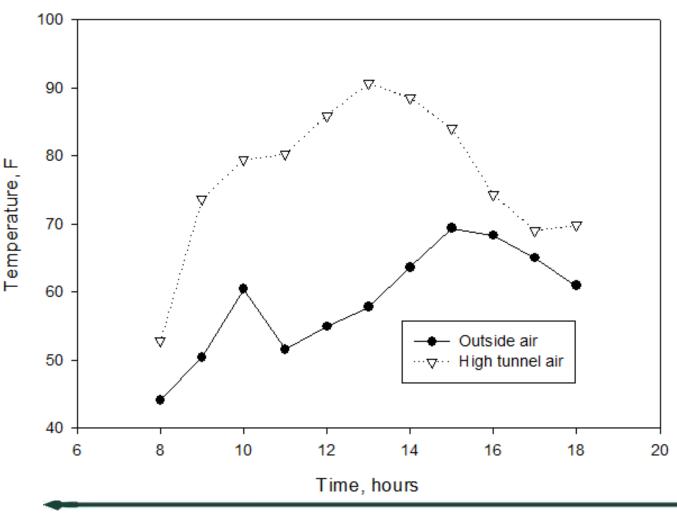
High Tunnel Cut Flower Production

MICHIGAN STATE

MICHIGAN STATE | Extension

MICHIGAN STATE | Extension

High Tunnels


- High tunnel = unheated single or multi span polyhouse or hoop house
 - taller and more uniform temp than a cold frame
- Cost to construct \$1 to 3 per square foot
- For overwintering plants typically adds 2 USDA hardiness zones additional protection

High Tunnels

- A temporary structure (single or multi-span) made from a pipe or other durable material framework that is covered in a single layer of greenhouse- grade 4 to 6 millimeter plastic and has no electrical or heating systems.
 - Low set up cost
 - Possibility for fast return on investment

Air temperature inside and outside a high tunnel on a sunny day on April 26, in Ithaca, NY.

Ventilation is absolutely necessary during the day, even when outside air temperatures are not extreme

Chris Wien, Cornell University

$\frac{\text{MICHIGAN STATE}}{U N I V E R S I T Y} | \text{Extension}$

High Tunnel Cut Flower Production

- Provides season extension
 - Early spring and fall extension (4 to 6 weeks)
- Protects crops from wind, rain, and hail
- Usually higher quality stem
 - Increased stem length and caliper, earlier flowering, larger flowers

Preparing the High Tunnel

- Topsoil (fine-silty, mixed, mesic Typic Endoaquoll) contained ≈3.2% organic matter and has a pH of 7.0.
- Raised beds gilled with topsoil and compost (pH 6.6)

Raised Beds production in HT

In ground production in HT

Raised bed Production Outdoors

MICHIGAN STATE | Extension

MICHIGAN STATE UNIVERSITY Extension

Cut flower High tunnel Research

- Bellflower
 - 'Campana Deep Blue'
- Bells of Ireland
- Celosia
 - 'Chief'
 - 'Bombay Firosa'
- Dahlia
 - 'Karma Thalia'
- Dianthus
 - 'Amazon Neon'
 - 'Amazon Neon Purple'
- Gomphrena
 - 'Fireworks'

- Lisianthus
 - 'Mariachi'
- Matricaria
 - 'Vegmo Snowball Extra'
- Snapdragon
 - 'Rocket'
 - 'Potomac'
 - 'Potomac Lavender'
- Stock
 - 'Katz'
- Sun Flower
 - 'Sunrich Yellow'
 - 'Premier'
- Zinnia
 - 'Benary Giant'

Snapdragon

Dahlia

Lisianthus

Stock

Dianthus

Celosia

<u>Sunflower</u>

'Bombay Firosa' celosia

High Tunnel

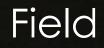
Field

'Chief' Celosia

High Tunnel

'ABC 3 White' lisianthus

High Tunnel



Field

'Katz' stock

High Tunnel

'Benary Giant' zinnia

High Tunnel

'Premier Lemon' sunflower

High Tunnel

Field

High Tunnel

- Bellflower
 - 'Campana Deep Blue'
 - $_{\odot}\,$ No difference between HT or field
- Bells of Ireland
 - $_{\odot}\,$ HT yielded 10 more stems per 11 ft^2
 - HT stems were >3.5 in. longer, larger flowers
 - Reduced TTH in HT by 6 days
- Celosia
 - 'Chief Red'
 - $_{\odot}\,$ HT yielded 14 more stems per 11 ft^2
 - $_{\odot}\,$ HT stems had 17 % smaller flowers by width
 - 'Bombay Firosa'
 - $_{\odot}\,$ HT stems were 6 in. longer and had 12% larger stem caliper

Dahlia

- 'Karma Thalia Dark Fuchsia'
 - \circ Reduced TTH in HT by 4 days

- Dianthus
 - 'Amazon Neon Cherry'
 - $_{\odot}\,$ In HT, 185 more stems per 11 ft^2 and 10 day reduction in TTH
 - 'Amazon Neon Purple'
 - Field stems were >3.5 in. longer
 - $_{\odot}~$ 7 day reduction in TTH
- Gomphrena
 - 'Fireworks'
 - HT stems were >3.5 in. longer
- Matricaria
 - 'Vegmo Snowball Extra'

 HT stems were 2.5 inches longer
- Lisianthus
 - 'Mariachi Blue'
 - \circ HT stems ≈6 in longer with 8 % larger flowers by width

- Snapdragon
 - 'Rocket'
 - \circ HT yielded 26 more stems per 11 ft²
 - HT stems >5 in. longer with 29 % longer inflorescences
 - 'Potomac Lavender'
 - $_{\odot}\,$ HT stems >4 in. longer with 5 % smaller stem caliper

Sunflower

- 'Premier'
 - $_{\odot}\,$ Reduced TTH in HT by 8 days
- 'Sunrich Yellow'
 - $_{\odot}\,$ HT stems had 8% larger flowers by width
- Stock
 - Katz Lavender Blue'
 - o HT stems ≈5 in. longer, 32 % larger stem caliper, 21 % longer inflorescences, 24 % larger flowers by width

Zinnia

- 'Benary Giant Scarlet'
 - HT yielded 192 more stems per 11 ft² (59%)
 - o HT stems ≈3.5 in. longer, 13 % larger stem caliper, and 12 % larger flowers by width

Average Stem Length (in.)

	High Tunnel	Field		High Tunnel	Field
Bell's of Ireland	27.5	23.8	Gomphrena	17.2	14.5
Campanula	13.5	13.0	Lisianthus	22.6	18.0
Celosia	47.6	40.7	Matricaria	12.6	15.1
Dianthus	19.5	22.9	Snapdragon	25.8	24.1

Total Marketable Stems Harvested per 40 ft²

	High Tunnel	Field		High Tunnel	Field
Bell's of Ireland	510	238	Gomphrena	1,240	1,237
Campanula	194	215	Lisianthus	35	27
Celosia	214	216	Matricaria	406	388
Dianthus	811	889	Snapdragon	297	194

Greenhouse Cut Flower Production

MICHIGAN STATE | Extension

Oriental Lily Greenhouse Production

Planting

- Direct sow or transplant
 - Plugs started in greenhouse/high tunnel

Spacing

- Species/cultivar dependent
- Planted closely to encourage stem elongation

MICHIGAN STATE

Irrigation

- Sprinkler or hand irrigation
- Drip tape
 - Gets water directly to the roots
 - Avoid getting foliage/flowers wet

Wind Protection

- Wind Breaks
 - Field plantings or structures
 - High Tunnel
 - Greenhouse
- Stem Support
 - Wire or plastic mesh

MICHIGAN STATE | Extension

MICHIGAN STATE UNIVERSITY Extension

Pest Control

- Insects
 - Aphids, thrips, Japanese beetle, cut worm, grass hoppers
 - Biological or chemical control

Diseases

- Fungal; Powdery Mildew
- Resistant cultivars

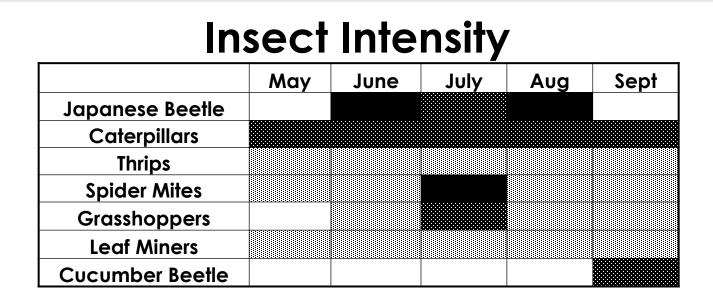
What Was Found:

TOP PESTS:

- 1. Japanese beetle
- 2. Caterpillar species
- 3. Thrips
- 4. Spider mites

What was Found:

SUSCEPTIBLITY OF FLOWERS:


- 1. Dahlia
- 2. Zinnia
- 3. Snapdragon
- 4. Sunflower
- 5. Stock
- 6. Dianthus
- 7. Lisianthus
- 8. Celosia

Japanesé Beetle

Thrips

Caterpillars

Thrips

Plant Susceptibility

	May	June	July	Aug	Sept
Dahlia				NA	NA
Zinnia					NA
Snapdragon					
Sunflower					
Stock					
Dianthus					
Lisianthus					
Celosia					

Intensity/ Susceptibility 3 2 1 0

Japanese Decies

Caterpillars

Virginia Tiger Moth: Dahlia

Marsh Caterpillar: Dahlia

Yellow-Striped Armyworm: Zinnia, Lisianthus

MICHIGAN STATE

Thrips

MICHIGAN STATE

Extension

Runners up!

Grasshoppers

Leaf miners

What we found:

FLOWER SUSCEPTIBLITY:

- 1. Dahlia
- 2. Zinnia
- 3. Snapdragon

TOP PESTS:

- 1. Japanese beetle
- 2. Caterpillar species
- 3. Thrips
- 4. Spider mites

Grower Summary:

TOP FLOWERS GROWN IN MIDWEST:

- 1. Zinnia
- 2. Celosia
- 3. Sunflowers

TOP PESTS:

- 1. Japanese beetle
- 2. Thrips
- 3. Aphids
- 4. Other

Herbicide Damage

Pre-harvest Factors Effecting Postharvest Life

- Quality
 - Poor quality declines faster
- Nutrition
- Insects and diseases
 - Grounds for rejection by customer
 - Provide entry points for botrytis
 - Increase ethylene production

Pre-harvest Factors

- High light levels promote high carbohydrate levels
 - Maximizes postharvest life
 - Maximum light tolerated for each species without reducing quality
- Lowering temperatures 2 to 10 °F during the last 1 to 3 weeks of the production cycle enhances flower color and quality

When to Harvest?

- Spike-shaped inflorescences (multiple flowers per stem) are harvested when one-fourth to one-half of the florets are open
- Composite family flowers (daisy types) are often harvested when the outer petals are fully developed

Harvesting

- Cut flowers should be harvested in the morning
 - Plants have highest water content
 - Tissue is coolest
 - Cut into water, if possible
- Dry foliage
- Cut location
 - High on the stem

 best postharvest
 Less dirt
 - Low on the stem
 - Longest stems
 - More contamination

Harvesting

- Foliage and flowers must be turgid
- But.....surfaces must be dry to prevent *Botrytis*

Postharvest Handling of Cut Flowers

Why do we worry about postharvest handling?

 Flowers may look good at harvest but....
 Vase life quality can quickly decrease for the consumer

Why do we worry about postharvest handling?

- Allow flowers to reach their full potential:
 - Flowers open completely
 - Flower color develops
 - Buds open / spikes elongates
 / sprays open
 - Fragrance develops

Long Vase Life

- Allows for postharvest handling, shipping, storage, and outdoor display at markets
- Provide a long period of enjoyment by the consumers and repeat sales!

Key Concepts for Postharvest

- Water
- Carbohydrates
- Ethylene
- Temperature
- Disease prevention

Water

- Keeps flowers alive and turgid
- Effects
 - Prevents wilting
 - Any wilting will decrease vase life
- Sources
 - Held in the stem at time of harvest
 - Provided by the grower in a postharvest solution

Water Uptake

- Vase life declines due to lack of water uptake
- High quality water
 - Promotes water uptake
 - Low salt best: 0.2 0.5 dS/m
 - pH 5.0 7.0 initially
 - pH 3.5 4.0 after treatment
- Knives and stem cutters
 - Sharp and clean
 - Don't crush the stem
- Flowers should not wilt

Stem Blockage

- Microorganisms block xylem (water transport)
 - Bacteria and fungi occur naturally on plants and in tap water
 - Build up in buckets
 - Use a cleaner/soap
 - SANITATION!

Stem Blockage

- Air embolisms (plugs)
 - Form from air drawn into xylem
 - Whenever stems are out of water, recut to remove plug
 - Recut under clean water or recut in the air

Carbohydrates

- Sugars fuel cut flowers
- Effects
 - Open buds
 - Develop/maintain color
- Source

- Made by the leaves/stored in the stem
- Provided by the grower in a postharvest solution

Ethylene

- Many flowers are sensitive to ethylene
- Effects:
 - Petal, leaf, flower and bud abscission
 - Bud abortion
 - Shortened vase life

Ethylene

Sources:

- Natural aging process
- Other flowers
- Engine exhaust, smoke, incomplete combustion from malfunctioning heaters, etc.
- Rotting leaves, pathogens, fruits, etc.

NEVER STORE/ DISPLAY CUT FLOWERS NEAR FRUIT!

Preventing Ethylene Effects

- Lowering temperature
- Applying anti-ethylene agents
 - Silver thiosulfate (STS) on cuts

 Effective for longer, but safe disposal is a major issue
 - 1-Methylcyclopropene (MCP) for both cuts and containers
 - Not as long lasting, but very safe to use. Multiple applications can be made

Temperature

- High temperatures in the dark (low light) reduces carbohydrate levels
 - Increase respiration
 - Reduce postharvest life

Temperature

- Cold as possible for the species
 - Close to 32 °F for most species, except tropicals
 - Decrease water loss
 - Decrease carbohydrate
 loss
 - Decrease ethylene production and reduces ethylene sensitivity

Diseases during Shipping and Storage

- Botrytis
 - Water required for spore germination
 - High humidity for growth
- Pack with dry foliage and flowers
- Pretreat with fungicides

Postharvest practices – What you can do

- Increase water uptake
- Prevent ethylene effects
- Lower temperature
- Prevent diseases
- Use floral preservatives

Floral Preservatives

- Contain one or more:
 - Sugar source
 - Citric or other acid to reduce water pH
 - Anti-microbial agent
 - STS, 1-MCP
 - Plant growth regulators

Floral Preservatives

- Processing/holding solutions
 - Many types available
 - Some specific to the water quality
- Consumer vase solutions
 - Sugar, acidifier, antimicrobial agent

Shipping and storage

- Short as possible!!!!
- Coolers
 - Keep clean
 - One air exchange per hour
 - High humidity (90 95%)

MICHIGAN STATE UNIVERSITY Extension

Acknowledgements

- Ball Horticulture Co.
- John Dole, North Carolina State University
- Cliff Sadof, Purdue University
- Garrett Owen, Purdue University