An Introduction to Blueberries

Mark Longstroth
Extension Fruit Educator
Blueberries

• Minor fruit crop of American origin
• Perennial shrub
• New shoots from crown every year
• Bears fruit on last-year’s wood
• Requires pruning to maintain young shoots
• Requires moist soils
Growing Blueberries

• Requires Special Soils
• Soil pH 4.5 to 5.5
• Usually Acid Sands or Acid Mucks
• Soil Should be Moist, But Not Wet
• Originally a Wetland Plant
Blueberry sites

- Porous soils with high water tables.
Basic Plant Physiology

- Stems
- Leaves
- Roots
- Fruit
- All made of cells
- Cell growth
- Growth from meristems
- Competition
Plant Growth

Three ways that plants grow.

- Cell Division
- Cell Expansion
- Cell Differentiation

Cell Division occurs

- Apical meristems (shoot and root tips)
- Cambium (cell layer makes wood & bark)
Plant Organs

- Stems
- Buds
- Leaves
- Flowers & Fruit
- Roots
- Annual Growth Cycle
Leaves

- Green - chlorophyll
- Harvest light
- Carbon Dioxide + Water = Sugar + Oxygen
- Photosynthesis
- Plants make their Food
Leaves

- Harvest Light - Photosynthesis
- Stomates let air in and water out
- Stomates on bottom of leaf
- Transpiration
- Leaf Structure
- Leaf designed to conserve Water
Stems

- Provide support
- Transport water from the roots (xylem) and sugars from the leaves (phloem)
- Storage of sugars and protein for later growth
- Annual Cycle of Shoot Growth and Flower Development
Roots

- Anchor plant
- Absorb water
- Absorb nutrients
- Storage
Roots

- Root Growth and Structure
- Absorb Water (passive)
- Absorb Mineral Nutrients (Active or passive)
- Root structure affects absorption
- Blueberries lack root hairs
- Mycorrhizal Fungi
- Blueberries have a small shallow root system.
Blueberry Root

Water carries Nutrients into Cortex

Cortex moves nutrients past Casparian Strip and this draws water into the root
Root Growth

White root

Zone of Maturation

Zone of Elongation

Apical Meristem at tip

Root Cap
Blueberry Root Zone
Competition

• **Sources vs. Sinks**

 – **Sources**

 • Leaves - carbohydrates
 • Roots - water
 • Storage tissues

 – **Sinks**

 • New growth
 • Fruit
 • New shoots
 • New roots
Annual Shoot Growth
Dormant Shoot

- Fruit Buds at Tip
- Withered flower Cluster at Base
- Vegetative buds on lower nodes
- Growth begins at tip
Bud break

- Flower buds swell first.
- Leaf buds begin swelling from shoot tips down the shoot.

Leaf bud stages here are:
- 4 mm green
- 2 mm green
- green tip
Spring Growth

- Flower bud opens and blooms
- Rapid shoot expansion from vegetative buds
- Growth continues as long as conditions are good
- Buds develop in axils of leaves
Spring Growth
Spring Growth
Mid-Summer Growth

- Shoots are competing with fruit
- Shoot tip dies
- Shoot growth stops
- New terminal bud develops in axil of uppermost leaf
- Leaf buds develop below
End of Growth Flush

- Terminal Bud Dies
- Shoot growth stops
- No new leaves
- New terminal bud develops in axil of uppermost leaf
- Leaf buds develop in all leaf axils
Bud Set - End of Growth

Actively Growing
New leaves at shoot tips

No Growth
No new leaves
Late Summer and Fall Growth

- Fruits Ripen
- Terminal bud develops into flower cluster bud
- Lower buds may develop into Flower buds also
Late Summer Flower Buds
Stages of Plant Development:
- Leaf Bud Swell
- Immature Green
- Flower Bud Formation

Soil Temp at 15 cm:
- April: 4°C
- May: 7°C
- June: 10°C
- July: 13°C
- August: 16°C
- September: 19°C
- October: 16°C
- November: 13°C

Mean Shoot Growth (mm):
- April: 5 mm
- May: 10 mm
- June: 15 mm
- July: 20 mm
- August: 25 mm
- September: 20 mm
- October: 15 mm
- November: 10 mm

Mean Length of White Unsuberized Roots (mm):
- April: 2 mm
- May: 4 mm
- June: 6 mm
- July: 8 mm
- August: 10 mm
- September: 12 mm
- October: 14 mm
- November: 2 mm

Graph showing the development stages of a plant, with corresponding soil temperature and growth data.
Fruit Growth

- Double Sigmoidal Growth Curve
- Competition between fruits
- First fruit are the Largest Fruit
- Small Fruit are Always Small
Shoot Fruitfulness

- Fruit buds form on last year’s wood!
- Vigorous shoots usually have lots of flowers and grow vigorous new shoots for next years crop.
- Less vigorous shoots have few buds on only one or two small shoots with one fruit bud.
- The most fruitful canes are 4 to 6 years old.
Benefits of Mulches

• Increase Organic Matter
• Provide micronutrients increasing fertility of topsoil.
• Increase water holding capacity of soil
• Cool soil in hot summer
• Blueberry roots love the interface between the mulch and the soil.
• Just like Home!
• These 3-year old blueberries were both grown in silty clay loam but the one on the right received a 6 inch sawdust mulch
Mulching and Root Growth

- Mulching increases fine root numbers.
Blueberry Sites

- Low pH soils. Below 6!
- Moist soils, ability to irrigate, or drainage
Blueberry Sites

- There are almost always problem spots in the field!
- Fixing the problem may cost more than it is worth
Blueberry Establishment: Does and Don’ts

• Preplant decisions
 • Choosing the right site.
 • Preparing the site.

• Planting mistakes

• Cultural mistakes
 • Irrigation
 • Herbicides
 • Mulching
Site Analysis

• Is this a blueberry site?

• Soil pH
 • Is an acid soil
 • Can I make it acid enough for blueberries.

• Naturally moist soil.
 • Poor drainage.
 • Water table close to surface.

• Is drainage needed?
Blueberry Site Preparation

• Determine soil pH with a soil test.
 • Below pH 5.5
 • Best between pH 5 – 4.5
• Use Sulfur to lower pH
 • 500#/A, sand from pH 6 to 4.5
• Order plants.
• Control perennial weeds.
• Determine if drainage needed
• Prepare irrigation system.
Soil pH and Availability

- Solubility and availability of most minerals is influenced by soil pH.
- Extreme pH can cause mineral deficiencies or mineral toxicities.
This blueberries has an Iron deficiency from a high soil pH
Lowering Soil pH

- Ammonium nitrogen fertilizers
 Ammonium sulfate slowly lowers pH.
- Elemental sulfur can be used before planting to really lower the pH.
- Iron sulfate (6 times sulfur requirement)
- Acids in irrigation water
Lowering Soil pH with Sulfur

• Is not a rapid chemical reaction.
• Bacteria use the sulfur for energy and change the sulfur to sulfuric acid.
• It is a slow biological process.
• Soil must be moist. Not Wet! (hydrogen sulfide kills)
• Soil temperature must be 55 F (13 C).
• Conversion takes place in the summer and fall, nothing in winter and early spring.
• Don’t apply more than 500 lb/A to annually blueberries or you can injure the plants
Lowering Soil pH with Sulfur

Sulfur needed to lower soil pH to 4.5

<table>
<thead>
<tr>
<th>Soil pH</th>
<th>Sand</th>
<th>Loam</th>
<th>Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>175</td>
<td>530</td>
<td>800</td>
</tr>
<tr>
<td>5.5</td>
<td>350</td>
<td>1030</td>
<td>1600</td>
</tr>
<tr>
<td>6.0</td>
<td>530</td>
<td>1540</td>
<td>2300</td>
</tr>
<tr>
<td>6.5</td>
<td>660</td>
<td>2020</td>
<td>3030</td>
</tr>
<tr>
<td>7.0</td>
<td>840</td>
<td>2560</td>
<td>3830</td>
</tr>
</tbody>
</table>
Planting: Dos and Don’ts

• Don’t plant before soil amendments have worked.

• Do break up the root ball when planting.
 • Roots never come out of the peat!
 • Small root mass dries quickly.

• Do add peat to the planting hole.

• Do mulch the plants

• Do Irrigate the planting
Blueberries

Breakup root ball
May need to add organic matter in planting hole.
The peat pot of this plant is clearly visible and dries out quickly.
A good candidate for mulching
Fertilizing Blueberries

You need to use the correct nutrients
Optimize Fertility

• **Soil tests** reveal what is in the Soil, not what the plants is getting from the soil.

• **Leaf Analysis**, Tissue tests reveal what nutrients are in the plant and if any are deficient.

• **Law of the Minimum**: Plant growth is dependent on essential elements and growth will be limited if one of these elements is limited. When that essential elements is added the plants growth is contained by another deficient element.

• **Luxury Consumption**, when an element is abundant the plant will absorb more than it needs. Can cause deficiencies.
Fertilizing Blueberries

• For annual plants corn, tomatoes
 More fertilizer = bigger plant, higher yield

• Blueberries are perennial plants
 Nutrients are recycled from year to year
 Fertilizer this year increased growth this year
 Increased yield next year
 Too much fertilizer = too much growth
 Too much shoot growth reduces yields.
Fertilizers

- Too much fertilizer can cause more problems than not enough.
- Foliar nutrients are OK but can also be overdone.
Nitrogen Fertilizers

• Annual applications,
• Use only ammonium N,
• Split application are best.
 • Bud break & after bloom
• More on sandy soil, less on heavier or organic soils
• Mulching increases demand for Nitrogen.
• Need to adjust Nitrogen based on growth and crop
Nitrogen Fertilizers

- **Urea 46-0-0**
 Use if soil pH is below 5
- **Ammonium Sulfate (AMS) 21-0-0**
 Use if soil pH is above 5 to lower soil pH
- **Cost per pound of nitrogen is important, not cost of fertilizer.**
- **Urea is $605/ton and 46% N**
- **Urea N is $0.66 a pound**
- **AMS is $390 and 21% N**
- **AMS N is $0.97 a pound?**
Nitrogen Recommendations for Michigan Blueberries (lb/acre, broadcast).

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>N</th>
<th>Urea</th>
<th>Ammonium sulfate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>15</td>
<td>35</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>70</td>
<td>150</td>
</tr>
<tr>
<td>6</td>
<td>45</td>
<td>100</td>
<td>215</td>
</tr>
<tr>
<td>8</td>
<td>65</td>
<td>150</td>
<td>300</td>
</tr>
</tbody>
</table>
Nitrogen per Plant

Nitrogen Recommendations for Michigan Blueberries (oz/plant).

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>N</th>
<th>Urea</th>
<th>Ammonium sulfate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.2</td>
<td>0.4</td>
<td>1.0</td>
</tr>
<tr>
<td>4</td>
<td>0.3</td>
<td>0.65</td>
<td>1.5</td>
</tr>
<tr>
<td>6</td>
<td>0.5</td>
<td>1.0</td>
<td>2.5</td>
</tr>
<tr>
<td>8</td>
<td>0.7</td>
<td>1.5</td>
<td>3.3</td>
</tr>
</tbody>
</table>
Fertilizers

• If you fertilize plants individually, Do not put the fertilizer on the plant.
• Put the fertilizer in a loose ring at least 6” from the plant.
• Don’t burn the roots off with salt.
Soil Nutrient Levels

• Nutrient levels are higher in heavier clay soils and organic than sandy soils,
• Relative proportions of nutrients is an important measure of status.
• A suitable balance of soil Ca, Mg, and K as percent of exchangeable bases,
 • 60-80% Ca,
 • 15-30% Mg,
 • 10-15% K.
Phosphorus Fertilizers

Most phosphorus fertilizer do not dissolve well in acid soils, these do.

• **MAP** Monoammonium phosphate
 11-48-0

• **DAP** Diammonium phosphate
 18-52-0

• **APP** Ammonium Polyphosphate
 15-62-0
Potash Fertilizers

- Potassium Sulfate 0-0-50
- Potassium Magnesium Sulfate (Sul-Po-Mag) 0-22-0-11-22 N-P-K-Mg-S
- Potassium Chloride 0-0-60
Blueberry Nutrition

• Blueberries are perennial plants and recycle their nutrients from year to year.
• Soil availability of nutrients is a poor measure of how to fertilize the plant.
• Tissue tests measure how much of each nutrient is in the plant.
• Tissue test are taken in late July.
Blueberry Leaf Analysis

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Deficient</th>
<th>Sufficient</th>
<th>Excess</th>
</tr>
</thead>
<tbody>
<tr>
<td>N %</td>
<td>< 1.7</td>
<td>1.7 – 2.1</td>
<td>2.3</td>
</tr>
<tr>
<td>P %</td>
<td>< .08</td>
<td>0.08 – 0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>K %</td>
<td>< 0.35</td>
<td>0.4 – 0.65</td>
<td>0.9</td>
</tr>
<tr>
<td>Ca %</td>
<td>< 0.13</td>
<td>0.3 – 0.8</td>
<td>1.0</td>
</tr>
<tr>
<td>Mg %</td>
<td>< 0.10</td>
<td>0.15 – 0.3</td>
<td>-</td>
</tr>
</tbody>
</table>

E-2011: Managing the Nutrition of Highbush Blueberries
Irrigating Blueberries

If you don’t water them they won’t grow
Water

• Vital to Chemistry - Photosynthesis
• Transports materials
• Vital to Growth - Expansion
• Reduced water = smaller plants
 • stems, leaves, fruits
• Reduced water = more roots
Plant Water Use

- Plants use little water if they have no leaves.
- As the leaves grow water use increases (Photosynthesis, transpiration).
- Organs grow by expansion.
- Pumped up by water.
Evaporation pulls water out of the soil into the plant.
Minimum Demand
Maximum Demand
Water Management

• Irrigation adds supplemental water and maintains water in the soil.
• Drainage removes excess water.
• Mulching reduces evaporation and moderates soil temperature.
• Blueberries have a small shallow root system.
Why Irrigate Blueberries

- Plant Growth is Dependent on Water.
 - Shoot Growth
 - Fruit Growth
 - Fruit Set for Next Year
- Blueberries do not manage water well.
- Moist soil is required for good blueberry growth.
Drought Stress
Drought

• Lack of water reduces photosynthesis and causes wilting
• Reduced growth and reduced food reserves available for growth
• Available reserves are shifted to the roots.
• Fruit compete for available reserves
2005 Cumulative Water Deficit (inches)
Drought
Drought
Irrigation

• How much water is the plant using?
• How much water can the soil hold?
• How much water can you apply?
• How much rain have you received?

• Soil should be recharged when soil water is 50% of capacity.
Water Deficit

- Soil Water Storage
- Plant Water Use
 - Evapo-transpiration
- Precipitation
- Irrigation
Blueberry Water Use

• Plants use little water if they have no leaves.
• As the leaves grow water use increases (Photosynthesis, transpiration).
• Organs grow by expansion.
• Cells are pumped up by water.
Soil Water Management

• Sandy soils do not hold much water
• Smaller more frequent irrigations that do not over fill the soil are better than heavy irrigation cycles that may wash nutrients from the soil.
Soil Water Holding Capacity

<table>
<thead>
<tr>
<th>Soil Texture</th>
<th>in/in</th>
<th>In/ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>0.07 - 0.10</td>
<td>0.84 – 1.20</td>
</tr>
<tr>
<td>Sandy Loam</td>
<td>0.09 - 0.15</td>
<td>1.08 – 1.80</td>
</tr>
<tr>
<td>Loam</td>
<td>0.14 - 0.19</td>
<td>1.68 – 2.28</td>
</tr>
</tbody>
</table>
Water Use in Blueberries

<table>
<thead>
<tr>
<th>Month</th>
<th>Monthly Use</th>
<th>Weekly Use</th>
<th>Daily Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>May</td>
<td>0.48</td>
<td>0.12</td>
<td>0.02</td>
</tr>
<tr>
<td>June</td>
<td>2.87</td>
<td>0.72</td>
<td>0.10</td>
</tr>
<tr>
<td>July</td>
<td>5.09</td>
<td>1.26</td>
<td>0.17</td>
</tr>
<tr>
<td>August</td>
<td>2.13</td>
<td>0.53</td>
<td>0.07</td>
</tr>
</tbody>
</table>
Soil Water Holding Capacity

<table>
<thead>
<tr>
<th>Soil Texture</th>
<th>In/ft</th>
<th>in/18 in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>0.84 – 1.20</td>
<td>1.26 – 2.40</td>
</tr>
<tr>
<td>Sandy Loam</td>
<td>1.08 – 1.80</td>
<td>2.16 – 3.60</td>
</tr>
<tr>
<td>Loam</td>
<td>1.68 – 2.28</td>
<td>3.36 – 4.56</td>
</tr>
</tbody>
</table>
Water Management

• Sandy soils do not hold much water
 – 1 to 2 inches
• Irrigation should be about half of soil capacity.
• Continually recharge as soil gets to 50% of soil moisture.
Irrigation in Blueberries

<table>
<thead>
<tr>
<th>Month</th>
<th>Weekly Use</th>
<th>Soil holds 1 in</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>May</td>
<td>0.12</td>
<td>8 weeks</td>
<td>4 weeks</td>
</tr>
<tr>
<td>June</td>
<td>0.72</td>
<td>10 day</td>
<td>5 days</td>
</tr>
<tr>
<td>July</td>
<td>1.26</td>
<td>5.5 days</td>
<td>2.5 days</td>
</tr>
<tr>
<td>August</td>
<td>0.53</td>
<td>13 days</td>
<td>1 weeks</td>
</tr>
</tbody>
</table>
Irrigation in Blueberries

<table>
<thead>
<tr>
<th>Month</th>
<th>Weekly Use</th>
<th>50% recharge</th>
</tr>
</thead>
<tbody>
<tr>
<td>May</td>
<td>0.12</td>
<td>Every other week</td>
</tr>
<tr>
<td>June</td>
<td>0.72</td>
<td>Every 5 days</td>
</tr>
<tr>
<td>July</td>
<td>1.26</td>
<td>Every 3 days</td>
</tr>
<tr>
<td>August</td>
<td>0.53</td>
<td>Every week</td>
</tr>
</tbody>
</table>
Irrigation Types

- Trickle
 - Cheap
 - Slow application rate
- Sprinkler
 - Expensive
 - Lots of water,
 - Frost protection
Blueberry Water Measurements

• Acre inch = 27,156 gals
• .2 inches = 5,431 gals
• 1452 blueberry plants / acre (10’ rows and 3’ between plants)
• 3.7 gal/plant/day ~ 4 gal/day
• Critical times – May to September
 Bloom > berry sizing > flower bud forms
• 2 inches a week during hot harvest!
Pruning

- Remove older less productive wood
- Directs growth into new wood which is more fruitful.
- Better distribution of fruit buds by avoiding lots of short shoots with single buds.
Pruning Young Bushes

First 2 seasons:
- Remove flower buds (strip off or prune off).
- Remove low-growing, spindly branches to encourage upright vigorous wood.
Goals: pruning mature bushes

1. Promote new replacement canes.
2. Open canopy to increase flower bud initiation, reduce disease.
3. Balance leaf area and fruit load for good berry size.
4. Shape bush so base is narrow and fruiting wood is off the ground.
Desired Cane Mix for Jersey/Bluecrop/Elliott

15-20 % young canes (1-2 year-old)
60-70 % intermediate (3-5 year-old)
15-20 % older (6 years and older)
Mature Jersey bushes (% of Full Sun)

May 28 (1st bloom)
- 74
- 42
- 33

June 4
- 53
- 25
- 19

LSD (5%) = 6

June 12 (full bloom)
- 30
- 8
- 4

June 27
- 26
- 9
- 4

July 19
- 25
- 5
- 2

August 22
- 24
- 5
- 2
Keep bushes upright by removing low-growing wood.

Before

After
Blueberry Pest Management

Mark Longstroth
Extension Small Fruit Educator
Michigan State University Extension
Blueberry Scouting Guide

- Pictures and short descriptions of major insect pests and diseases.
- Also has herbicide injury and other common or not so common problems.
- Used for quick ID of problems.
- No information control.
Blueberry Diseases

- Mummyberry
- Shoot Diseases
 - Phomopsis or Fusarium
 - Shoot tip dieback
 - Anthracnose and others
- Fruit rots
 - Alternaria
 - Anthracnose
- Leaf Diseases
 - Powdery Mildew
 - Leaf rust
- Virus Diseases
Mummy Berry Life Cycle

SPRING
- Ascospores dispersed by wind
- Ascospores infect developing leaves

EARLY SPRING
- Mummies germinate and develop apothecia in the spring

WINTER
- Mummies overwinter on the ground

LATE SPRING
- Conidia form on blighted tissue
- Conidia infect flower ovaries through stigma
- Bee delivering conidia to stigma

SUMMER
- Infected fruit turn pink or tan, shrivel and drop prematurely

LATE SPRING
- Conidia are insect, wind or rain splash dispersed to flowers

Mummy Berry Life Cycle

Leaf wetness

Young shoots and occasionally flower clusters become blighted
CBFW Life-Cycle

SPRING
- Egg deposition in calyx of young fruit
- Emergence of moths and mating in spring during bloom

EARLY SUMMER
- Webbing on fruit from feeding larvae moving between fruit
- Larvae feeding in fruit

CRANBERRY FRUITWORM LIFE CYCLE
- Pupa
- Larva

EARLY SPRING
- Larvae overwinter in hibernaculae

WINTER
- Mature larvae move to overwintering sites and form hibernaculae

FALL
Spring Shoot Dieback

• Phomopsis?
Blueberry Fruit Rots

• **Anthracnose**, an orange mold appears at harvest but the infection occurred soon after bloom.

• Sprays for Anthracnose should focus on wet periods during the green fruit stage.
Anthracnose Fruit Rot

Fig. 6. Disease cycle of anthracnose fruit rot caused by *Colletotrichum acutatum* on blueberries.
Phomopsis Stem Canker

- Stems die suddenly
- Hard to control
- Remove and dispose of dead and diseased wood
Phomopsis Stem Canker
Blueberry Fruit Rots

- Alternaria a black sooty mold appears on ripening fruit. The infection occurs just before harvest.

Anthracnose an orange mold also appears at harvest but the infection occurred soon after bloom.
Blueberry Insects

Direct Pests
• Cranberry Fruit Worm
• Cherry Fruit Worm
• Blueberry Maggot
• SWD
 spotted wing drosophila

Indirect Pests
• Aphids
• Japanese Beetle
Pest activity and management periods in blueberry

<table>
<thead>
<tr>
<th>Growth stage</th>
<th>pre-bloom</th>
<th>bloom</th>
<th>mid-season</th>
<th>pre-harvest</th>
<th>harvest</th>
<th>post-harvest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree days</td>
<td>100</td>
<td>300</td>
<td>400</td>
<td>700</td>
<td>1100</td>
<td>1300</td>
</tr>
</tbody>
</table>

Bars show period when scouting and management of the pest is most important. Blue = key pest
Fruitworms

- Cranberry and Cherry fruit worms attack the young green fruit after bloom.
- The adults lay their eggs on the green fruit and the larvae burrow into the fruit.
Blueberry Maggot

- Picture Wing Fruit Fly
- Harvest Season Pest
- Hard to detect
- Easy to Kill
- Immigrates from wild blueberries and becomes established in planting.
Spotted Wing Drosophila
A new invasive pest of Michigan fruit crops
Biology of SWD

Optimal development at 65-70°F, ~12 day generation time.

Adult flies live for 3-6 weeks, and females can lay over 300 eggs.

Female fly lays eggs into ripening fruit.

Limited by high heat in summer and by winter cold. But, SWD populations are found in cold regions of Japan.
Identifying male and female SWD

FEMALE

two rows of serrations on ovipositor

no dark spots on wings

MALE

dark spot on each wing

two dark bands on each foreleg
Non-crop hosts of SWD

<table>
<thead>
<tr>
<th>Common name</th>
<th>Scientific name</th>
<th>Ripe fruit period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honeysuckle</td>
<td>Lonicera spp.</td>
<td>7/1 – 10/7</td>
</tr>
<tr>
<td>Common blackberry</td>
<td>Rubus sp.</td>
<td>7/8 – 9/16</td>
</tr>
<tr>
<td>Bittersweet nightshade</td>
<td>Solanum dulcamara</td>
<td>7/21 – 10/3</td>
</tr>
<tr>
<td>Stiff dogwood</td>
<td>Cornus foemina</td>
<td>8/19 – 10/6</td>
</tr>
<tr>
<td>Elderberry</td>
<td>Sambucus canadensis</td>
<td>8/15 - 9/20</td>
</tr>
<tr>
<td>American pokeweed</td>
<td>Phytolacca americana</td>
<td>8/26 – 10/7</td>
</tr>
<tr>
<td>Silky dogwood</td>
<td>Cornus amomum</td>
<td>8/29 – 10/7</td>
</tr>
<tr>
<td>Spicebush</td>
<td>Lindera benzoin</td>
<td>9/8 – 10/7</td>
</tr>
<tr>
<td>Autumn olive</td>
<td>Elaeagnus umbellata</td>
<td>9/8 – 10/6</td>
</tr>
</tbody>
</table>
SWD phenology in unmanaged fields, 2011

First catch in early June

Average SWD per trap

strawberries
cherries
raspberries
blueberries
Fall raspberries
grapes

Dates:
6/12, 6/19, 6/26, 7/3, 7/10, 7/17, 7/24, 7/31, 8/7, 8/14, 8/21, 8/28, 9/4, 9/11, 9/18, 9/25, 10/2, 10/9, 10/16, 10/23
Effective insecticides for SWD control

Most effective: Imidan, Lannate, Mustang Max, Danitol, Exirel, Delegate

Very effective: Malathion, Brigade/Bifenture, Hero

Shorter residual: Entrust, Pyganic, Assail

2013 national review of insecticide efficacy against SWD, across all crops.
Preventing larvae in berries – effect of rain

0.8 inches of rain on treated bushes
1 day after application
<table>
<thead>
<tr>
<th>Trade name</th>
<th>Class</th>
<th>Active ingredient</th>
<th>Rate</th>
<th>Season max.</th>
<th>Max. apps</th>
<th>Days btn spray</th>
<th>PHI* (d)</th>
<th>REI** (h)</th>
<th>Resid. (d)</th>
<th>RANK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imidan Malathion 8F<sup>a</sup></td>
<td>Org. phos.</td>
<td>phosmet malathion</td>
<td>1.33 lb 2.5 pt</td>
<td>7.13 lb 5 pt</td>
<td>5 2</td>
<td>0 5</td>
<td>3 1</td>
<td>24 12</td>
<td>7-10 5</td>
<td>****</td>
</tr>
<tr>
<td>Mustang Max Danitol Brigade/Bifenture Hero</td>
<td>Pyr. z-cypermeth. fenpropathrin bifenthrin z-cyp + bifenthr.</td>
<td>4 oz 10.6-16 oz 5.3-16 oz 4-10.3 oz 46.35 oz</td>
<td>24 oz 32 oz 80 oz 7 14 - 7 1 12 12 5-7 **** 5-7 **** *** ***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lannate SP</td>
<td>Carb. methomyl</td>
<td>0.5-1 lb 4 lb</td>
<td>4 3 3 48 7</td>
<td>4</td>
<td>3</td>
<td>3 48</td>
<td>7</td>
<td>****</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exirel</td>
<td>Diamide cyazypyr</td>
<td>13-20.5 60 oz</td>
<td>- 5 3 12 7</td>
<td>5</td>
<td>3</td>
<td>12</td>
<td>7</td>
<td>****</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delegate Entrust WP Entrust 2SC</td>
<td>Spin. spinetoram spinosad spinosad</td>
<td>3-6 oz 1.25-2 oz 4-6 oz 19.5 oz 9 oz 29 oz</td>
<td>6 6 6 3 4 7 4 3 4 3-5 3-5 ** **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assail</td>
<td>Neonic. acetamiprid</td>
<td>5.3 oz 26.6 oz</td>
<td>5 7 1 12 5-7</td>
<td>7</td>
<td>1</td>
<td>12</td>
<td>5-7</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyganic</td>
<td>Pyr’um pyrethrum</td>
<td>- - - - 0.5 0 2</td>
<td>- - - - 0.5 0</td>
<td>2</td>
<td>5-7</td>
<td>5-7</td>
<td>**</td>
<td>*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a Malathion 8F (Gowan) has a 24c label for Michigan blueberries

Visit our website at www.ipm.msu.edu/SWD.htm
Example SWD spray programs

2013 example spray program

<table>
<thead>
<tr>
<th>Timing</th>
<th>Product</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 July</td>
<td>Imidan 70WP</td>
<td>1.3 lb</td>
</tr>
<tr>
<td>12 July</td>
<td>Hero</td>
<td>6 oz</td>
</tr>
<tr>
<td>21 July</td>
<td>Mustang Max</td>
<td>4 oz</td>
</tr>
<tr>
<td>4 August</td>
<td>Mustang Max</td>
<td>4 oz</td>
</tr>
<tr>
<td>8 August</td>
<td>Imidan 70 WP</td>
<td>1.3 lb</td>
</tr>
<tr>
<td>16 August</td>
<td>Imidan 70 WP</td>
<td>1.3 lb</td>
</tr>
<tr>
<td>29 August</td>
<td>ULV malathion</td>
<td>10 oz</td>
</tr>
</tbody>
</table>

Some long intervals
Rate of Hero
Two chemical classes
Poor rotation

2014 spray program

<table>
<thead>
<tr>
<th>Timing</th>
<th>Product</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>First SWD, if ripe fruit</td>
<td>Imidan</td>
<td>1.3 lb</td>
</tr>
<tr>
<td>+ 7</td>
<td>Danitol</td>
<td>16 oz</td>
</tr>
<tr>
<td>+14</td>
<td>Delegate</td>
<td>6 oz</td>
</tr>
<tr>
<td>+21</td>
<td>Exirel</td>
<td>10.5 oz</td>
</tr>
<tr>
<td>+28</td>
<td>Lannate</td>
<td>1 lb</td>
</tr>
<tr>
<td>+35</td>
<td>Danitol</td>
<td>16 oz</td>
</tr>
<tr>
<td>+42</td>
<td>Imidan</td>
<td>1.3 lb</td>
</tr>
<tr>
<td>+49</td>
<td>Mustang Max</td>
<td>4 oz</td>
</tr>
</tbody>
</table>

Tighter spray intervals
Five chemical classes
Better rotation
SWD insecticidal control in 2016

• Prune to open bush canopy
• Focus control on the fruit ripening/harvest period
• Respond rapidly to fly detection if berries are ripe.
• Use effective rates of effective products.
• Nu Lure for enhanced intake of insecticide.
• Use a sticker with Delegate.
• Tighten intervals (weekly).
• Improve spray coverage (gallons, speed, pruning, rows).
• Reapply after rain.
• Know the seasonal limits, PHI, REI, etc.
Blueberry Pesticide Recommendations

E-154

Michigan Fruit Management Guide

Pesticide information

Crop specific information

Blueberries, pages 229-246

Herbicides, page 255; BB p. 271

Recordkeeping information
What Does It All Mean?

- Understanding what is unique about blueberries is important for maximizing yields.
- Proper water management insures good plant growth and large fruit.
- Pruning increases fruit size.
- Pest and disease control is important to maintain fruit quality.
Michigan is the number one state in highbush blueberry production with growers producing over 100 million pounds of blueberries every year. This website was developed by Michigan State University’s Blueberry Team to communicate information about blueberry production and pest management for the blueberry industry.

Blueberries on MSUE News

Do you need a brush-up on pest management basics?
MSU’s Integrated Pest Management (IPM) Academy is a quick, concentrated way to update your IPM skills. Join us on the MSU campus February 20-21.

Posted on February 10, 2012 3:47pm by Amy Irish-Brown

Who is eating the produce that I grow?
When adopting food safety practices on the farm, it’s important to remember why and for whom it is being done.

Posted on February 3, 2012 5:11pm by Phil Tocco

Dealing with water for irrigating
Questions?

www.blueberries.msu.edu