

# Research<br/>BesuitsResearch<br/>BesuitsGrowing<br/>He Best<br/>Sugarbeets





### **REACh/SUGARBEET ADVANCEMENT COMMITTEE LIST** 2011 VOTING MEMBERSHIP

#### 24 Voting Members

| Company                                               | Name                                     | Terms | Expire |
|-------------------------------------------------------|------------------------------------------|-------|--------|
|                                                       | Paul Pfenninger (5 <sup>th</sup> Member) | 4     | 2015   |
|                                                       | Greg Clark                               | 2     | 2013   |
|                                                       | Jim Stewart                              | 1     | 2012   |
| Michigan Sugar                                        | Paul Wheeler                             | 3     | 2014   |
| Company                                               | Dave Bailey                              | 4     | 2015   |
|                                                       | Matt Booms                               | 2     | 2013   |
|                                                       | Lee Hubbell                              | 1     | 2012   |
|                                                       | Ron Meyer                                | 3     | 2014   |
|                                                       | Chris Guza (Vice Chairman)               | 1     | 2012   |
| Michigan Sugar<br>Company District Growers            | Mark Sylvester                           | 1     | 2012   |
| company District Growers                              | Rick Leach                               | 1     | 2012   |
|                                                       | Clay Crumbaugh                           | 2     | 2013   |
|                                                       | Kurt Ewald (Chairman)                    | 1     | 2012   |
| Michigan Sugar Company<br>at Large Growers            | Scott Roggenbuck (Secretary)             | 3     | 2014   |
| at Large Growers                                      | Olan Humm (Treasurer)                    | 2     | 2013   |
|                                                       | Mark Richards                            | 3     | 2012   |
|                                                       | Linda Hanson                             | 3     | 2014   |
| Michigan State University<br>and University of Guelph | John Zandstra                            | 1     | 2012   |
|                                                       | Christy Sprague                          | 2     | 2013   |
| Sugar Beet Seed Company                               | Andy Bernia                              | 2     | 2013   |
| A sui Dusiness                                        | Travis Tanton                            | 2     | 2013   |
| Agri-Business                                         | Mark Varner                              | 1     | 2012   |
| Michigan Sugar Beet                                   | Ben Booms                                | 1     | 2012   |
| Board of Directors                                    | Kent Houghtaling                         | 1     | 2012   |

#### **Ex-Officio Members**

| Company                                                  | Name               |
|----------------------------------------------------------|--------------------|
| Farm Bureau                                              | Bob Boehm          |
| USDA                                                     | Mitch McGrath      |
| SBA Director                                             | Steve Poindexter   |
| Chairman of Board of Directors<br>Michigan Sugar Company | Rick Gerstenberger |
| CEO of Michigan Sugar Company                            | Mark Flegenheimer  |



#### **MISSION STATEMENT:**

The mission of the *Michigan Sugarbeet Research Education Advisory Council* is to be the central trusted source of agronomic information for the sugarbeet industry.

The council will provide direction for the Michigan- Ontario sugarbeet researchers and assemble and distribute research/agronomy information.

Cooperative educational efforts will be conducted with the goal of improving productivity and profitability for all stakeholders.















# **2011 Research Results** Table of Contents

#### **Cercospora Control Trials**

| •                                                                                      |       |
|----------------------------------------------------------------------------------------|-------|
| Cercospora: Evaluate Fungicides for Leafspot Control (Blumfield)MSC                    | 3     |
| Cercospora: Evaluate Strobilurin, Triazole and Tin Fungicides (Herford)MSC             | 4-8   |
| Cercospora: Evaluate Fungicide Sequences for Leafspot Control                          |       |
| (Gilford & Blumfield)MSC                                                               | 9-11  |
| BEETcast: Evaluate Tolerant and Susceptible Varieties in a Red Zone (Sylvester)MSC     | 12-13 |
| BEETcast: Evaluate Tolerant and Susceptible Varieties in a Green Zone (Stoutenburg)MSC | 14-15 |
| BEETcast: Evaluate Susceptible Varieties in a Red Zone (Crumbaugh & Herford)MSC        | 16-17 |
| Cercospora Resistance to Strobilurin FungicidesMSU/USDA                                | 18    |
| Cercospora Resistance & ManagementMSC                                                  | 19-20 |
|                                                                                        |       |

#### **Rhizoctonia Control Trials**

| Rhizoctonia: Quadris Rate, T-Band Width and Foliar Timings (Crumbaugh & Hoard)MSC    |       |  |
|--------------------------------------------------------------------------------------|-------|--|
| Rhizoctonia: Quadris Rate, T-Band Width and Foliar Timings (Blumfield)MSC            |       |  |
| Rhizoctonia: Quadris Rate, T-Band Width and Foliar Timings and Varieties             |       |  |
| (Hoard & Crumbaugh)MSC                                                               | 23    |  |
| Rhizoctonia: Evaluate Registered and Experimental Fungicides (Gilford)MSC            | 24    |  |
| Rhizoctonia: Evaluate Moncut and Other Fungicides (Blumfield)MSC                     | 25    |  |
| Rhizoctonia Control Trials 2011 (Hrabal Farms)                                       | 26    |  |
| Rhizoctonia Control Trials 2011 (Gene Meylan)                                        | 27    |  |
| Rhizoctonia Control Trials 2011 (Schindler Farms LLC)                                | 28    |  |
| Rhizoctonia Control Trials 2011 (Wallace Hecht Farms, Inc.)                          | 29    |  |
| Rhizoctonia: Evaluate Foliar Quadris + Insecticide Tank Mixes                        |       |  |
| (Gayari, Hoard & Gilford)MSC                                                         | 30-32 |  |
| Rhizoctonia: Quadris + Insecticides T-band (Crumbaugh & Stoutenburg)MSC              | 33-36 |  |
| Rhizoctonia: Evaluate Quadris + Starter Fertilizers (T-Band) (Gilford and Knoerr)MSC | 37-38 |  |

#### **Seedling Diseases**

| Survey in Michigan | USDA-ARS | 39-40 |
|--------------------|----------|-------|
| · · · · · ·        |          |       |

#### **Date of Harvest**

| Date of Harvest Study - Average of 2 LocationsMSC    |       |
|------------------------------------------------------|-------|
| Date of Harvest Study (Sylvester & Knoerr)MSC        | 42-43 |
| Date of Harvest Study (Gerstenberger Farms)          | 44-45 |
| Date of Harvest Study (Saginaw Valley Research Farm) | 46-47 |
| Date of Harvest Study (Meylan Farms)                 |       |

#### Row Spacing (22" Compared to 30") Trials

| Row Spacing & Sugarbeet Populations - Average of 3 Years, 7 LocationsMSC |       |
|--------------------------------------------------------------------------|-------|
| Row Spacing & Populations (Sylvester)MSC                                 | 51-52 |
| Row Spacing Trials (Stoutenburg & Blumfield)MSC                          | 53-54 |

#### **Seed Treatment Trials**

| Tach 20 & 45 Seed Treatments - Average of 4 LocationsMSC          | 55    |
|-------------------------------------------------------------------|-------|
| Tach 20 & 45 Seed Treatments (Knoerr, Gilford, Bebow & Bender)MSC | 56-57 |
| Seed Treatment & Priming TrialsMSC                                | 58    |

#### **Fertility Trials**

| NITROGEN | Nitrogen Rates on Late Planted Beets (Roggenbuck)MSC                   | 59    |
|----------|------------------------------------------------------------------------|-------|
|          | Nitrogen Rate Following Manure (Meadow Muth Farms)                     | 60    |
|          | Nitrogen Response Following CornMSU                                    | 61    |
|          | Nitrogen Response Following Soybeans MSU                               | 62    |
|          | Nitrogen Source & Rate EffectsMSU                                      | 63    |
|          | Environmentally Smart Nitrogen (ESN) as a N Source MSU                 | 64    |
|          | SPAD Meter in Predicting Sidedress Nitrogen Need & Harvest RWST U of G | 65-66 |
|          |                                                                        |       |



#### **RESEARCH SPECIALISTS:**

#### MICHIGAN SUGAR COMPANY

| Jim Stewart,           | Director of Research            |  |  |
|------------------------|---------------------------------|--|--|
| Cell                   |                                 |  |  |
| Email                  | james.stewart@michigansugar.com |  |  |
| Lee Hubbell,           | Research Specialist             |  |  |
| Cell                   |                                 |  |  |
| Email                  | lee.hubbell@michigansugar.com   |  |  |
| Greg Clark, Agronomist |                                 |  |  |
| Cell                   |                                 |  |  |
| Email                  | greg.clark@michigansugar.com    |  |  |

#### MICHIGAN STATE UNIVERSITY

| Steven | <b>Poindexter, Senior</b> | Extension Educator |
|--------|---------------------------|--------------------|
| Cell.  |                           | 989.798.5848       |
| Emai   | l                         | poindex2@msu.edu   |





MICHIGAN SUGAR COMPANY CORPORATE AGRICULTURAL OFFICE: 2600 South Euclid Avenue Bay City, Michigan 48706 Tel: 989.686.0161

# **2011 Research Results** Table of Contents, *continued*

#### FOLIARS, MICRO-NUTRIENTS

| Foliar Nitrogen (Richmond Brothers Farms LLC)                     | 67       |
|-------------------------------------------------------------------|----------|
| Foliar Slow-Release Nitrogen                                      | 68       |
| Foliar Nutrients (Richmond Brothers Farms LLC)                    | 69<br>70 |
| Upplause & Advantage (Roggenbuck)MSC STARTER FERTILIZER TRIAL     | 70       |
|                                                                   |          |
| Starter Trial (Richmond Brothers Farms LLC)                       | 71       |
| Beet Lime                                                         |          |
| Beet Lime (Helmreich)                                             | 72       |
| Tillage                                                           |          |
| Zone Till vs. Chisel Plow Trial (Clay Crumbaugh)SBA               | 73       |
| Comparison of Fall Tillage SystemsMSU                             | 74       |
| Cover Crop                                                        |          |
| Cover Crop                                                        | 75       |
| Clover Cover Crop Trial (Gene Meylan)                             | 75       |
| Sugarbeet Cyst Nematode Trials                                    |          |
| Seed Treatments for Cyst Nematode Control MSU                     | 76-77    |
| Nematode Tolerant Variety Comparison (Hoard & Blumfield)MSC       | 78       |
| New Nematode Germplasm Releases for Michigan USDA-ARS             | 79       |
| Oil Seed Radish                                                   |          |
| Crowfoot Closing Wheels                                           |          |
| Oil Seed Radish & Crowfoot Closing Wheels (Bernia Family Farms)   | 80       |
|                                                                   |          |
| Herbicide Trials                                                  |          |
| Roundup Ready & Conventional Varieties & Weed Control             | 81       |
| UpBeet & Glyphosate Tank-mixtures                                 | 82       |
| Sugarbeet Tolerance From Betamix & Glyphosate Tank-mixtures       | 83       |
| Weed Control & Crop Tolerance With Warrant (Not Labeled)          | 84<br>85 |
| Tolerance of Sugarbeets After Valor Desiccation in Dry Beans      | 86       |
| Weed Control Timing & Nitrogen Rate Influences on Quality & Yield | 87       |
|                                                                   | 0/       |
| Seeding Rate                                                      |          |
| Seeding Rate on Sandy Soil (Clay Crumbaugh)SBA                    | 88       |
| <b>Carryover Seed Research - Evaluate Methods of Storin</b>       | a        |
| 2010 Seed, Average of 3 Locations (Bender, Sylvester & Trost)MSC  |          |
| 2009 Seed, Average of 2 Locations (Sylvester & Trost)MSC          |          |
|                                                                   |          |
| Planter Setup                                                     |          |
| Planter Air Bag Down Pressure (Richmond Brothers Farms LLC)       | 93       |
| Planter Seed Plate Pressure (Richmond Brothers Farms LLC)         | 94       |
| Topped Beet Temperature                                           |          |
| Topped Beet Temperature Experiment - Saginaw Valley Research Farm | 95       |
| ProAct                                                            |          |
|                                                                   | 06       |
| ProAct Foliar Spray Trial (Schindler Farms LLC)                   | 96       |
| Rhizomania & Cyst Nematode Survey                                 |          |
| Survey in CanadaOMA                                               | 97-98    |
| Harvest Loss                                                      |          |
| Respiratory Sugar Losses From Harvest to the Piling Grounds       | 99-100   |
| , , ,                                                             |          |

2 Research Results 2011



# **Cercospora: Evaluate Fungicides for Leafspot Control** Blumfield, MI

| <b>Trial Quality:</b> | Fair        | <b>Applic Details:</b>              |
|-----------------------|-------------|-------------------------------------|
| Planted:              | May 5       | JD 990 tractor plot                 |
| Harvested:            | October 17  | 90 psi, 25 gpa<br>Compressed air, 8 |
| Rainfall:             | 14.5 inches | Disease Level: Low                  |
| Variety:              | B-19RR90    |                                     |
| Row Spacing:          | 22 Inches   | Seeding Rate: 4.2 inc               |

|                             | Plot Size           |
|-----------------------------|---------------------|
| plot sprayer                | Reps:               |
| a<br>ir, 8002 flat fan<br>w | Applicat<br>Timing: |
| inch spacing                |                     |

ize: 6 Rows X 35 Ft 6 cation g: July 15 (78 dsv) Aug 2 (38 dsv) Aug 19 (35 dsv)

| Treatment   | Rate        | Appl<br>Code | CLS Rate<br>0-9 | Net<br>Income<br>\$/Acre | RWSA  | RWST    | T/A  | %<br>Sugar | %<br>CJP |
|-------------|-------------|--------------|-----------------|--------------------------|-------|---------|------|------------|----------|
| Inspire     | 7 fl oz/A   | AC           | 1.0             | \$1,611                  | 7082  | 287     | 24.7 | 19.3       | 95.1     |
| Dithane     | 2 lb/A      | В            |                 |                          |       |         |      |            |          |
| Eminent     | 13 fl oz/A  | AC           | 1.1             | \$1,487                  | 6540  | 283     | 23.2 | 19.1       | 94.9     |
| Dithane     | 2 lb/A      | В            |                 |                          |       |         |      |            |          |
| Enable      | 8 fl oz/A   | AC           | 1.4             | \$1,474                  | 6482  | 290     | 22.3 | 19.5       | 95.2     |
| Dithane     | 2 lb/A      | ABC          |                 |                          |       |         |      |            |          |
| Crop Oil    | 1 qt/A      | AC           |                 |                          |       |         |      |            |          |
| Proline     | 5.7 fl oz/A | AC           | 1.6             | \$1,469                  | 6459  | 284     | 22.8 | 19.2       | 95.0     |
| Dithane     | 2 lb/A      | В            |                 |                          |       |         |      |            |          |
| Induce      | 0.5% v/v    | AC           |                 |                          |       |         |      |            |          |
| Super Tin   | 5 oz/A      | AC           | 1.7             | \$1,525                  | 6706  | 285     | 23.6 | 19.2       | 95.0     |
| Dithane     | 2 lb/A      | В            |                 |                          |       |         |      |            |          |
| Dithane     | 2 lb/A      | ABC          | 2.1             | \$1,505                  | 6619  | 287     | 23.1 | 19.3       | 95.1     |
| Gem         | 3.6 fl oz/A | AC           | 2.3             | \$1,500                  | 6594  | 288     | 22.9 | 19.4       | 95.1     |
| Dithane     | 2 lb/A      | В            |                 |                          |       |         |      |            |          |
| Headline SC | 7 fl oz/A   | AC           | 2.4             | \$1,509                  | 6636  | 286     | 23.3 | 19.2       | 95.2     |
| Dithane     | 2 lb/A      | В            |                 |                          |       |         |      |            |          |
| Headline    | 9.2 fl oz/A | AC           | 2.4             | \$1,505                  | 6619  | 285     | 23.3 | 19.2       | 94.9     |
| Dithane     | 2 lb/A      | В            |                 |                          |       |         |      |            |          |
| Untreated   |             |              | 3.1             | \$1,499                  | 6590  | 284     | 23.2 | 19.1       | 95.0     |
| Average     |             |              | 1.9             | \$1,508                  | 6633  | 286     | 23.2 | 19.2       | 95.1     |
| LSD 5%      |             |              | 0.2             | 110.5                    | 486.1 | ns(8.0) | 1.8  | ns(0.4)    | ns(0.4)  |
| CV %        |             |              | 12.5            | 8.9                      | 8.9   | 3.0     | 8.8  | 2.5        | 0.4      |

Bold: Results are not statistically different from top-ranking treatment in each column.

Cercospora: lower number is better

\$/Acre: Gross dollars per acre assuming a \$60 payment.

#### SUMMARY

Triazole, strobilurin, tin and EBDC fungicides were evaluated for control of Cercospora leafspot in this small plot replicated trial. The sugarbeet stand was a little spotty which caused variation in sugarbeet yields. Cercospora 0-9 ratings are considered to be more reliable than yield and quality values. Inspire provided the best Cercospora control followed by Eminent, Enable + Dithane, Proline, Super Tin and Dithane. Gem and Headline were less effective. The leafspot level was low.



# **Cercospora: Evaluate Strobilurin, Triazole & Tin Fungicides** Herford Farm, Elkton, MI Page 1 of 5

| Trial Quality:<br>Planted: | April 15          | A   |           | (51 DSV),   | C = 8/17 (  | (33 DSV) |             |      |        |         |           |        |
|----------------------------|-------------------|-----|-----------|-------------|-------------|----------|-------------|------|--------|---------|-----------|--------|
| Harvested:                 | October 5         |     |           |             | are fungici | ide trts | PSI:        |      | 90     |         |           |        |
| Plot Size:                 | 6 rows X 35 ft, 4 |     | -         | g is Dithar |             |          | GPA:        |      | 25     |         |           |        |
| Variety:                   | C-RR827           | FI  | rst Spot: | 70 DSV, 7   | //14        |          |             |      |        |         |           |        |
|                            | Rate/             |     |           |             |             |          | %           | %    | Cer    | cospora | 0-9 Ratii | ngs    |
| Treatment                  | Acre              | Арр | \$/Acre   | RWSA        | RWST        | T/A      | 50<br>Sugar | CJP  | Sep 24 | Sep 9   | Î.        | Aug 23 |
| Inspire                    | 7 fl oz           | AC  | \$1,962   | 7634        | 244         | 31.3     | 16.8        | 94.2 | 1.7    | 1.3     | 1.2       | 1.2    |
| Dithane                    | 2 lbs             | В   | + .,      |             |             |          |             | P    |        |         |           |        |
| Induce                     | 0.125%            | AC  |           |             |             |          |             |      |        |         |           |        |
| 28% N                      | 2 qts             | AC  |           |             |             |          |             |      |        |         |           |        |
| Inspire                    | 7 fl oz           | AC  | \$1,907   | 7420        | 237         | 31.3     | 16.7        | 93.4 | 1.6    | 1.4     | 1.4       | 1.3    |
| Dithane                    | 2 lbs             | В   |           |             |             |          |             |      |        |         |           |        |
| Roundup                    | 22 fl oz          | AC  |           |             |             |          |             |      |        |         |           |        |
| Mustang M                  | 4.2 fl oz         | AC  |           |             |             |          |             |      |        |         |           |        |
| Inspire                    | 7 fl oz           | AC  | \$1,863   | 7248        | 245         | 29.7     | 17.0        | 93.4 | 2.1    | 1.6     | 1.8       | 1.8    |
| Dithane                    | 2 lbs             | В   |           |             |             |          |             |      |        |         |           |        |
| Roundup                    | 22 fl oz          | AC  |           |             |             |          |             |      |        |         |           |        |
| Proline                    | 5.7 fl oz         | AC  | \$1,856   | 7218        | 243         | 29.8     | 16.8        | 94.1 | 1.9    | 1.9     | 1.7       | 1.1    |
| Dithane                    | 2 lbs             | В   |           |             |             |          |             |      |        |         |           |        |
| Roundup                    | 22 fl oz          | AC  |           |             |             |          |             |      |        |         |           |        |
| Inspire                    | 7 fl oz           | AC  | \$1,841   | 7162        | 241         | 29.8     | 16.6        | 94.4 | 1.8    | 1.5     | 1.5       | 1.3    |
| Dithane                    | 2 lbs             | В   |           |             |             |          |             |      |        |         |           |        |
| Roundup                    | 22 fl oz          | AC  |           |             |             |          |             |      |        |         |           |        |
| Mustang M                  | 4.2 fl oz         | AC  |           |             |             |          |             |      |        |         |           |        |
| Eezyman                    | 2 qts             | AC  |           |             |             |          |             |      |        |         |           |        |
| Inspire                    | 7 fl oz           | AC  | \$1,838   | 7149        | 236         | 30.3     | 16.6        | 93.4 | 1.6    | 1.4     | 0.9       | 0.9    |
| Dithane                    | 2 lbs             | В   |           |             |             |          |             |      |        |         |           |        |
| No Additive                |                   | AC  |           |             |             |          |             |      |        |         |           |        |
| Eminent                    | 13 fl oz          | AC  | \$1,834   | 7135        | 239         | 29.9     | 16.7        | 93.9 | 1.9    | 1.8     | 1.7       | 1.4    |
| Dithane                    | 2 lbs             | В   |           |             |             |          |             |      |        |         |           |        |
| Induce                     | 0.125%            | AC  |           |             |             |          |             |      |        |         |           |        |
| 28% N                      | 2 qts             | AC  |           |             |             |          |             |      |        |         |           |        |
| Super Tin                  | 5 oz              | AC  | \$1,805   | 7023        | 236         | 29.7     | 16.7        | 93.2 | 2.6    | 2.6     | 2.4       | 2.1    |
| Dithane                    | 2 lbs             | В   |           |             |             |          |             |      |        |         |           |        |
| Roundup                    | 22 fl oz          | AC  |           |             |             |          |             |      |        |         |           |        |
| Eminent                    | 13 fl oz          | AC  | \$1,798   | 6996        | 239         | 29.2     | 16.9        | 93.4 | 1.9    | 1.8     | 1.7       | 1.7    |
| Dithane                    | 2 lbs             | В   |           |             |             |          |             |      |        |         |           |        |
| Roundup                    | 22 fl oz          | В   | -         |             |             |          |             |      |        |         |           |        |
| Super Tin                  | 5 oz              | AC  | \$1,796   | 6987        | 243         | 28.8     | 17.0        | 93.7 | 2.4    | 2.3     | 2.2       | 1.9    |
| Dithane                    | 2 lbs             | В   |           |             |             |          |             |      |        |         |           |        |
| No Additive                |                   | B   | <b>.</b>  |             |             |          |             |      |        |         |           |        |
| Super Tin                  | 5 oz              | AC  | \$1,774   | 6902        | 241         | 28.6     | 16.8        | 93.8 | 2.4    | 2.2     | 2.3       | 2.1    |
| Dithane                    | 2 lbs             | B   |           |             |             |          |             |      |        |         |           |        |
| Roundup                    | 22 fl oz          | AC  |           |             |             |          |             |      |        |         |           |        |
| Mustang M                  | 4.2 fl oz         | AC  |           |             |             |          |             |      |        |         |           |        |



# **Cercospora: Evaluate Strobilurin, Triazole & Tin Fungicides** Herford Farm, Elkton, MI Page 2 of 5

|             | Rate/     |         |                |      |      |      | %     | %    | Cer    | cospora | 0-9 Ratiı | ngs    |
|-------------|-----------|---------|----------------|------|------|------|-------|------|--------|---------|-----------|--------|
| Treatment   | Acre      | Арр     | \$/Acre        | RWSA | RWST | T/A  | Sugar | CJP  | Sep 24 | Sep 9   | Aug 30    | Aug 23 |
| Super Tin   | 5 oz      | AC      | \$1,772        | 6894 | 233  | 29.6 | 16.5  | 93.0 | 2.5    | 2.1     | 2.2       | 1.7    |
| Dithane     | 2 lbs     | В       |                |      |      |      |       |      |        |         |           |        |
| Roundup     | 22 fl oz  | AC      |                |      |      |      |       |      |        |         |           |        |
| Mustang M   | 4.2 fl oz | AC      |                |      |      |      |       |      |        |         |           |        |
| Eezyman     | 2 qts     | AC      |                |      |      |      |       |      |        |         |           |        |
| Eminent     | 13 fl oz  | AC      | \$1,749        | 6803 | 241  | 28.5 | 16.8  | 93.9 | 1.8    | 1.4     | 1.7       | 1.3    |
| Dithane     | 2 lbs     | В       | 4.,            |      |      |      |       |      |        |         |           |        |
| Roundup     | 22 fl oz  | AC      |                |      |      |      |       |      |        |         |           |        |
| Mustang M   | 4.2 fl oz | AC      |                |      |      |      |       |      |        |         |           |        |
| Proline     | 5.7 fl oz | AC      | \$1,741        | 6773 | 233  | 29.3 | 16.4  | 93.4 | 2.4    | 2.0     | 2.1       | 2.0    |
| Dithane     | 2 lbs     | В       | <i>γ</i> 1,711 | 0//3 | 200  | 20.5 | 1011  | 55.1 | 2.1    | 2.0     | 2.1       | 2.0    |
| Roundup     | 22 fl oz  | AC      |                |      |      |      |       |      |        |         |           |        |
| Mustang M   | 4.2 fl oz | AC      |                |      |      |      |       |      |        |         |           |        |
| Eezyman     | 2 qts     | AC      |                |      |      |      |       |      |        |         |           |        |
| Eminent     | 13 fl oz  | AC      | \$1,707        | 6641 | 237  | 28.1 | 16.7  | 93.0 | 1.8    | 1.8     | 1.6       | 1.9    |
| Dithane     | 2 lbs     | B       | \$1,707        | 0041 | 257  | 20.1 | 10.7  | 95.0 | 1.0    | 1.0     | 1.0       | 1.9    |
| No Additive | 2 105     | AC      |                |      |      |      |       |      |        |         |           |        |
| Proline     | 5.7 fl oz | AC      | \$1,686        | 6558 | 240  | 27.5 | 16.8  | 93.6 | 2.4    | 1.9     | 1.8       | 1.4    |
| Dithane     | 2 lbs     |         | \$1,080        | 0550 | 240  | 27.5 | 10.0  | 95.0 | 2.4    | 1.9     | 1.0       | 1.4    |
|             |           | B<br>AC |                |      |      |      |       |      |        |         |           |        |
| Induce      | 0.125%    |         |                |      |      |      |       |      |        |         |           |        |
| 28% N       | 2 qts     | AC      | £1.000         | 6402 | 224  | 27.6 | 16.6  | 02.0 | 2.1    | 1.0     |           | 1.0    |
| Proline     | 5.7 fl oz | AC      | \$1,666        | 6482 | 234  | 27.6 | 16.6  | 93.0 | 2.1    | 1.9     | 1.4       | 1.9    |
| Dithane     | 2 lbs     | B       |                |      |      |      |       |      |        |         |           |        |
| No Additive | -         | AC      | 44.660         | 6450 |      |      |       |      |        |         |           | 4.5    |
| Super Tin   | 5 oz      | AC      | \$1,660        | 6458 | 229  | 28.2 | 16.2  | 93.2 | 2.3    | 2.2     | 2.3       | 1.5    |
| Dithane     | 2 lbs     | B       |                |      |      |      |       |      |        |         |           |        |
| Induce      | 0.125%    | AC      |                |      |      |      |       |      |        |         |           |        |
| 28% N       | 2 qts     | AC      |                |      |      |      |       |      |        |         |           |        |
| Headline    | 9.2 fl oz | AC      | \$1,658        | 6451 | 239  | 27.1 | 16.8  | 93.6 | 4.8    | 3.3     | 2.6       | 2.4    |
| Dithane     | 2 lbs     | В       |                |      |      |      |       |      |        |         |           |        |
| Roundup     | 22 fl oz  | AC      |                |      |      |      |       |      |        |         |           |        |
| Mustang M   | 4.2 fl oz | AC      |                |      |      |      |       |      |        |         |           |        |
| Eezyman     | 2 qts     | AC      |                |      |      |      |       |      |        |         |           |        |
| Eminent     | 13 fl oz  | AC      | \$1,587        | 6174 | 237  | 26.1 | 16.7  | 93.4 | 2.3    | 2.2     | 2.3       | 2.1    |
| Dithane     | 2 lbs     | В       |                |      |      |      |       |      |        |         |           |        |
| Roundup     | 22 fl oz  | AC      |                |      |      |      |       |      |        |         |           |        |
| Mustang M   | 4.2 fl oz | AC      |                |      |      |      |       |      |        |         |           |        |
| Eezyman     | 2 qts     | AC      |                |      |      |      |       |      |        |         |           |        |
| Proline     | 5.7 fl oz | AC      | \$1,573        | 6119 | 237  | 25.8 | 16.7  | 93.4 | 2.3    | 1.8     | 1.8       | 1.4    |
| Dithane     | 2 lbs     | В       |                |      |      |      |       |      |        |         |           |        |
| Roundup     | 22 fl oz  | AC      |                |      |      |      |       |      |        |         |           |        |
| Mustang M   | 4.2 fl oz | AC      |                |      |      |      |       |      |        |         |           |        |
| Gem SC      | 3.6 fl oz | AC      | \$1,546        | 6015 | 227  | 26.4 | 16.0  | 93.2 | 4.9    | 3.3     | 2.7       | 2.4    |
| Dithane     | 2 lbs     | В       |                |      |      |      |       |      |        |         |           |        |
| Induce      | 0.125%    | AC      |                |      |      |      |       |      |        |         |           |        |
| 28% N       | 2 qts     | AC      |                |      |      |      |       |      |        |         |           |        |



# **Cercospora: Evaluate Strobilurin, Triazole & Tin Fungicides** Herford Farm, Elkton, MI Page 3 of 5

|             | Rate/     |     |         |       |      |      | %     | %    | Cer    | cospora | 0-9 Ratii | ngs    |
|-------------|-----------|-----|---------|-------|------|------|-------|------|--------|---------|-----------|--------|
| Treatment   | Acre      | Арр | \$/Acre | RWSA  | RWST | T/A  | Sugar | CJP  | Sep 24 | Sep 9   | Aug 30    | Aug 23 |
| Gem SC      | 3.6 fl oz | AC  | \$1,508 | 5865  | 220  | 26.7 | 15.8  | 92.5 | 5.7    | 3.6     | 2.7       | 2.9    |
| Dithane     | 2 lbs     | В   |         |       |      |      |       |      |        |         |           |        |
| No Additive |           | AC  |         |       |      |      |       |      |        |         |           |        |
| Headline    | 9.2 fl oz | AC  | \$1,507 | 5864  | 237  | 24.7 | 16.6  | 93.6 | 4.7    | 3.1     | 2.7       | 2.5    |
| Dithane     | 2 lbs     | В   |         |       |      |      |       |      |        |         |           |        |
| Induce      | 0.125%    | AC  |         |       |      |      |       |      |        |         |           |        |
| 28% N       | 2 qts     | AC  |         |       |      |      |       |      |        |         |           |        |
| Headline    | 9.2 fl oz | AC  | \$1,481 | 5762  | 237  | 24.2 | 16.7  | 93.3 | 4.6    | 3.2     | 2.4       | 2.2    |
| Dithane     | 2 lbs     | В   |         |       |      |      |       |      |        |         |           |        |
| Roundup     | 22 fl oz  | AC  |         |       |      |      |       |      |        |         |           |        |
| Mustang M   | 4.2 fl oz | AC  |         |       |      |      |       |      |        |         |           |        |
| Headline    | 9.2 fl oz | AC  | \$1,470 | 5717  | 221  | 25.8 | 15.9  | 92.6 | 6.6    | 4.3     | 3.1       | 3.1    |
| Dithane     | 2 lbs     | В   |         |       |      |      |       |      |        |         |           |        |
| No Additive |           | AC  |         |       |      |      |       |      |        |         |           |        |
| Gem SC      | 3.6 fl oz | AC  | \$1,370 | 5331  | 227  | 23.5 | 16.3  | 92.5 | 4.7    | 3.2     | 2.8       | 2.6    |
| Dithane     | 2 lbs     | В   |         |       |      |      |       |      |        |         |           |        |
| Roundup     | 22 fl oz  | AC  |         |       |      |      |       |      |        |         |           |        |
| Mustang M   | 4.2 fl oz | AC  |         |       |      |      |       |      |        |         |           |        |
| Eezyman     | 2 qts     | AC  |         |       |      |      |       |      |        |         |           |        |
| Gem SC      | 3.6 fl oz | AC  | \$1,335 | 5191  | 223  | 23.5 | 15.9  | 93.1 | 5.4    | 3.4     | 2.8       | 3.0    |
| Dithane     | 2 lbs     | В   |         |       |      |      |       |      |        |         |           |        |
| Roundup     | 22 fl oz  | AC  |         |       |      |      |       |      |        |         |           |        |
| Mustang M   | 4.2 fl oz | AC  |         |       |      |      |       |      |        |         |           |        |
| Gem SC      | 3.6 fl oz | AC  | \$1,251 | 4868  | 220  | 22.2 | 15.9  | 92.7 | 5.8    | 3.8     | 2.6       | 2.9    |
| Dithane     | 2 lbs     | В   |         |       |      |      |       |      |        |         |           |        |
| Roundup     | 22 fl oz  | AC  |         |       |      |      |       |      |        |         |           |        |
| Headline    | 9.2 fl oz | AC  | \$1,246 | 4845  | 216  | 22.7 | 15.8  | 92.1 | 6.4    | 4.4     | 2.8       | 3.2    |
| Dithane     | 2 lbs     | В   |         |       |      |      |       |      |        |         |           |        |
| Roundup     | 22 fl oz  | AC  |         |       |      |      |       |      |        |         |           |        |
| Untreated   |           | AC  | \$1,079 | 4197  | 205  | 20.5 | 14.8  | 92.6 | 7.8    | 6.4     | 4.3       | 3.8    |
| Average     |           |     | \$1,641 | 6383  | 233  | 27.3 | 16.5  | 93.3 | 3.3    | 2.5     | 2.2       | 2.0    |
| LSD 5%      |           | 1   | 218.7   | 850.7 | 13.8 | 3.4  | 0.8   | 1.0  | 0.5    | 0.5     | 0.4       | 0.4    |
| CV %        |           |     | 9.4     | 9.4   | 4.3  | 8.7  | 3.3   | 0.8  | 9.8    | 13.7    | 14.1      | 12.9   |
|             |           | I   |         |       |      |      |       |      |        |         |           |        |

**Bold:** Results are not statistically different from top-ranking treatment in each column.

Cercospora: lower number is better

\$/Acre: Gross dollars per acre assuming a \$60 payment.

SUMMARY: Strobilurin Fungicides (Headline and Gem) failed to control Cercospora leafspot in this small plot replicated trial. Spray additives including a non-ionic surfactant, 28% Nitrogen and Mustang Max improved leafspot control marginally. The addition of Roundup to spray treatments had no effect on Cercospora control. Triazole fungicides (Inspire, Eminent and Proline) provided very good Cercospora control and Super Tin also gave good leafspot control. There was a direct relationship between Cercospora infection levels and sugarbeet yield and guality. The Triazole treatments averaged 29 T/A and 16.7% sugar compared to 24.7 T/A and 16.2% sugar for the Strobilurin treatments. The untreated check yielded 20.5 T/A and had a 14.8% sugar. The leafspot pressure was high and the plot was not inoculated. The initial fungicide applications were applied July 14 (70 DSV) and very few spots were present. The application intervals for sprays 2 and 3 were shortened up considerably (51 and 33 DSVs). The variety C-RR827 is susceptible to Cercospora leafspot. The plot area was relatively uniform and the soil texture was somewhat sandy. Sugarbeet yields were high and sugars were a little low, possibly because of the early harvest. Rainfall was adequate: April - 5.9 inches, May - 2.3 inches, June - 3.1 inches, July - 2.1 Inches, August - 3.6 inches, September - 3.2 inches and October harvest date - 0.1 inches, for a total of 20.2 inches.



# **Cercospora: Evaluate Strobilurin, Triazole & Tin Fungicides** Herford Farm, Elkton, MI Page 4 of 5

# **Fungicide Treatment Effects**

|           |         |       |      |      | %     | %    | C      | ercospora | 0-9 Rating | gs     |
|-----------|---------|-------|------|------|-------|------|--------|-----------|------------|--------|
| Treatment | \$/Acre | RWSA  | RWST | T/A  | Sugar | CJP  | Sep 24 | Sep 9     | Aug 30     | Aug 23 |
| Inspire   | \$1,882 | 7322  | 240  | 30.5 | 16.7  | 93.8 | 1.8    | 1.4       | 1.4        | 1.3    |
| Dithane   |         |       |      |      |       |      |        |           |            |        |
| Super Tin | \$1,762 | 6853  | 237  | 29.0 | 16.6  | 93.4 | 2.4    | 2.3       | 2.3        | 1.8    |
| Dithane   |         |       |      |      |       |      |        |           |            |        |
| Eminent   | \$1,735 | 6650  | 238  | 28.4 | 16.7  | 93.6 | 2.0    | 1.8       | 1.8        | 1.7    |
| Dithane   |         |       |      |      |       |      |        |           |            |        |
| Proline   | \$1,704 | 6630  | 237  | 28.0 | 16.7  | 93.5 | 2.2    | 1.9       | 1.8        | 1.6    |
| Dithane   |         |       |      |      |       |      |        |           |            |        |
| Headline  | \$1,473 | 5728  | 230  | 24.9 | 16.4  | 93.0 | 5.4    | 3.7       | 2.7        | 2.7    |
| Dithane   |         |       |      |      |       |      |        |           |            |        |
| Gem SC    | \$1,402 | 5454  | 223  | 24.5 | 16.0  | 92.8 | 5.3    | 3.4       | 2.7        | 2.8    |
| Dithane   |         |       |      |      |       |      |        |           |            |        |
| Average   | \$1,660 | 6439  | 234  | 27.5 | 16.5  | 93.4 | 3.2    | 2.4       | 2.1        | 2.0    |
| LSD 5%    | 82.9    | 322.8 | 6.1  | 1.7  | 0.3   | 0.4  | 0.4    | 0.3       | 0.3        | 0.2    |

# **Tank Mix Additive Effects**

|             |         |         |         |         | %       | %    | Cercospora 0-9 Ratings |       |        |        |  |
|-------------|---------|---------|---------|---------|---------|------|------------------------|-------|--------|--------|--|
| Treatment   | \$/Acre | RWSA    | RWST    | T/A     | Sugar   | CJP  | Sep 24                 | Sep 9 | Aug 30 | Aug 23 |  |
| Induce      | \$1,699 | 6611    | 236     | 28.0    | 16.5    | 93.6 | 3.0                    | 2.2   | 2.1    | 1.7    |  |
| 28% N       |         |         |         |         |         |      |                        |       |        |        |  |
| No Additive | \$1,664 | 6474    | 232     | 27.9    | 16.4    | 93.1 | 3.4                    | 2.5   | 2.0    | 2.1    |  |
| Roundup     | \$1,662 | 6464    | 235     | 27.6    | 16.5    | 93.4 | 3.1                    | 2.4   | 2.2    | 2.0    |  |
| Mustang Max |         |         |         |         |         |      |                        |       |        |        |  |
| Eezyman     |         |         |         |         |         |      |                        |       |        |        |  |
| Roundup     | \$1,637 | 6366    | 233     | 27.2    | 16.5    | 93.2 | 3.5                    | 2.7   | 2.2    | 2.2    |  |
| Roundup     | \$1,637 | 6366    | 236     | 27.0    | 16.6    | 93.5 | 3.0                    | 2.2   | 2.1    | 1.9    |  |
| Mustang Max |         |         |         |         |         |      |                        |       |        |        |  |
|             | 1       | 1       | 1       | 1       | T       |      |                        | 1     | 1      |        |  |
| Average     | \$1,660 | 6456    | 234     | 27.5    | 16.5    | 93.3 | 3.2                    | 2.4   | 2.1    | 2.0    |  |
| LSD 5%      | ns(89)  | ns(347) | ns(5.8) | ns(1.4) | ns(0.3) | 0.4  | 0.2                    | 0.2   | 0.2    | 0.2    |  |

7

**Bold:** Results are not statistically different from top-ranking treatment in each column.

Cercospora: lower number is better

\$/Acre: Gross dollars per acre assuming a \$60 payment.



# **Cercospora: Evaluate Strobilurin, Triazole & Tin Fungicides** Herford Farm, Elkton, MI Page 5 of 5

# **General Trial Information**

| PLANTING & APPLICATION            |  |  |  |  |  |  |  |
|-----------------------------------|--|--|--|--|--|--|--|
| C-RR827 (Susceptible)             |  |  |  |  |  |  |  |
| April 15, 2011                    |  |  |  |  |  |  |  |
| Application Dates Jul 14 (70 dsv) |  |  |  |  |  |  |  |
| Jul 14 (70 dsv)                   |  |  |  |  |  |  |  |
| Aug 3 (51 dsv)                    |  |  |  |  |  |  |  |
| Aug 17 (33 dsv)                   |  |  |  |  |  |  |  |
|                                   |  |  |  |  |  |  |  |
|                                   |  |  |  |  |  |  |  |

**First Spot** 

Jul 14 (70 dsv)

#### Total DSV's for season: 202

| WEATHER INFORMATION |       |      |     |  |  |  |  |  |  |
|---------------------|-------|------|-----|--|--|--|--|--|--|
| Date                | Rain  | GDD  | DSV |  |  |  |  |  |  |
| Apr 15              | 1.82  | 159  |     |  |  |  |  |  |  |
| Apr 20              | 4.04  | 354  |     |  |  |  |  |  |  |
| May 15              | 0.58  | 675  | 3   |  |  |  |  |  |  |
| May 31              | 1.72  | 1100 | 14  |  |  |  |  |  |  |
| Jun 15              | 0.56  | 1606 | 23  |  |  |  |  |  |  |
| Jun 30              | 2.5   | 2122 | 45  |  |  |  |  |  |  |
| Jul 15              | 0.87  | 2713 | 72  |  |  |  |  |  |  |
| Jul 31              | 1.21  | 3400 | 112 |  |  |  |  |  |  |
| Aug 15              | 3.02  | 3977 | 150 |  |  |  |  |  |  |
| Aug 31              | 0.55  | 4526 | 181 |  |  |  |  |  |  |
| Sep 15              | 0.19  | 5005 | 202 |  |  |  |  |  |  |
| Sep 30              | 2.97  | 5384 |     |  |  |  |  |  |  |
| Oct 5               | 0.09  | 5485 |     |  |  |  |  |  |  |
| Total               | 20.12 | 5485 | 202 |  |  |  |  |  |  |

#### **APPLICATION EQUIPMENT**

JD 990 Plot Sprayer (compressed air)

12, 2 gal stainless steel tanks

12 spray booms

8002 flat fan nozzles

90 psi, 25 gpa

| APPLICATION DESCRIPTION |           |           |           |  |  |  |  |  |  |
|-------------------------|-----------|-----------|-----------|--|--|--|--|--|--|
| Date                    | Jul 14    | Aug 3     | Aug 17    |  |  |  |  |  |  |
| Timing                  | 70 DSV    | 51 DSV    | 33 DSV    |  |  |  |  |  |  |
| Air Temp                | 74        | 78        | 76        |  |  |  |  |  |  |
| % RH                    | 45        | 50        | 50        |  |  |  |  |  |  |
| Wind speed              | 4 mph     | 6 mph     | 7 mph     |  |  |  |  |  |  |
| Dew                     | No        | No        | No        |  |  |  |  |  |  |
| Crop Stage              | Row Close | Row Close | Row Close |  |  |  |  |  |  |
| Crop Height             | 22 inches | 24 inches | 22 inches |  |  |  |  |  |  |

| DISEASE LEVEL ON APPLIC DATES<br># SPOTS/LEAF |        |       |        |  |  |  |  |  |  |
|-----------------------------------------------|--------|-------|--------|--|--|--|--|--|--|
| Treatment                                     | Jul 14 | Aug 3 | Aug 17 |  |  |  |  |  |  |
| Untreated                                     | <1     | ~ 40  | ~ 300  |  |  |  |  |  |  |
| Triazole Trt                                  | <1     | ~ 2   | ~ 10   |  |  |  |  |  |  |
| Super Tin                                     | <1     | ~ 2   | ~ 10   |  |  |  |  |  |  |
| Strobi Trt                                    | <1     | ~ 10  | ~ 50   |  |  |  |  |  |  |



# **Cercospora: Evaluate Fungicide Sequences for Leafspot Control** Average of 2 Locations

| <b>Trial Quality:</b> | Good             | Applic Details:                               | Plot Size:   | 6 Rows X 35 Ft     |
|-----------------------|------------------|-----------------------------------------------|--------------|--------------------|
| Locations:            | Saginaw and      | JD 990 tractor plot sprayer<br>90 psi, 25 gpa | Reps         | 5                  |
| Row Spacing           | Tuscola Counties | Compressed air, 8002 flat fan                 | Seeding Rate | • 4.2 inch spacing |

**Kow Spacing:** 22 inches

| Treatment           | Cerc<br>0-9 | Net<br>Income<br>\$/Acre | RWSA    | RWST     | T/A  | %<br>Sugar | %<br>CJP |
|---------------------|-------------|--------------------------|---------|----------|------|------------|----------|
| Inspire XT 7 oz     | 2.0         | \$1,285                  | 5433    | 241      | 22.3 | 17.0       | 93.2     |
| Headline 9 oz       |             |                          |         |          |      |            |          |
| Super Tin 5 oz      |             |                          |         |          |      |            |          |
| Proline 5.7 oz      | 2.3         | \$1,236                  | 5194    | 242      | 21.3 | 17.0       | 93.4     |
| Headline 9.0 oz     |             |                          |         |          |      |            |          |
| Super Tin 5 oz      |             |                          |         |          |      |            |          |
| Enable/Dithane/COC  | 2.4         | \$1,260                  | 5342    | 242      | 21.9 | 17.2       | 92.8     |
| 8 oz / 2 lbs / 1 qt |             |                          |         |          |      |            |          |
| Headline 9 oz       |             |                          |         |          |      |            |          |
| Super Tin 5 oz      |             |                          |         |          |      |            |          |
| Eminent 13 oz       | 2.5         | \$1,245                  | 5241    | 242      | 21.5 | 17.1       | 92.9     |
| Headline 9 oz       |             |                          |         |          |      |            |          |
| Super Tin 5 oz      |             |                          |         |          |      |            |          |
| Untreated           | 3.7         | \$1,228                  | 4994    | 243      | 20.3 | 17.1       | 93.1     |
|                     | 2.4         | 64.054                   | 52.44   | 242      | 24.5 | 47.4       | 02.1     |
| Average             | 2.6         | \$1,251                  | 5241    | 242      | 21.5 | 17.1       | 93.1     |
| LSD 5%              | 0.8         | ns(152)                  | ns(637) | ns(15.4) | 1.6  | ns(0.7)    | ns(0.8)  |
| CV %                | 11.0        | 4.4                      | 4.4     | 2.3      | 2.7  | 1.5        | 0.3      |

**Bold:** Results are not statistically different from top-ranking treatment in each column.

Cercospora: lower number is better

\$/Acre: Figured using a \$60 payment

#### SUMMARY

Inspire, Proline, Enable + Dithane and Eminent were evaluated for control of Cercospora leaf spot in small plot replicated trials in 2011. Sugarbeet stands were good and the plots were relatively uniform. The initial applications were made either just before first spot or at first spot. The Cercospora pressure in these trials was lower than average. Inspire provided the best leafspot control and highest yields in these trials, however, the differences were not large and not always statistically different. All of the fungicide treatments outperformed the untreated check plots.



# **Cercospora: Evaluate Fungicide Sequences for Leafspot Control** Blumfield, MI

| Trial Quality:        | Good           |
|-----------------------|----------------|
| Location:             | Saginaw County |
| Planted:              | May 5          |
| Harvested:            | October 17     |
| <b>Previous Crop:</b> | Soybeans       |
| Variety:              | B-17RR32       |

Seasonal Rainfall: 14.5 inches Soil Info: Silt Loam; 7.6 pH, 3.0% OM Nutrient Levels: Adequate Applic Details JD 990 plot sprayer 90 psi, 25 gpa, 8002 Plot Size: 6 Rows X 35 ft, 5 Reps Row Spacing: 22 inches Seeding Rate: 4.2 inches Application Dates: July 15 (70 dsv)

Aug 2 (38 dsv) Aug 19 (35 dsv)

| Treatment                             | Cerc<br>0-9 | Net<br>Income<br>\$/Acre | RWSA     | RWST     | T/A     | %<br>Sugar | %<br>CJP |
|---------------------------------------|-------------|--------------------------|----------|----------|---------|------------|----------|
| Inspire XT 7 oz                       | 1.6         | \$1,369                  | 6510     | 275      | 23.6    | 18.6       | 94.9     |
| Headline 9 oz                         |             |                          |          |          |         |            |          |
| Super Tin 5 oz                        |             |                          |          |          |         |            |          |
| Proline 5.7 oz                        | 2.0         | \$1,244                  | 5936     | 273      | 21.8    | 18.4       | 95.0     |
| Headline 9 oz                         |             |                          |          |          |         |            |          |
| Super Tin 5 oz                        |             |                          |          |          |         |            |          |
| Enable/Dith/COC<br>8 oz / 2 lb / 1 qt | 2.1         | \$1,357                  | 6456     | 282      | 22.9    | 19.0       | 94.9     |
| Headline 9 oz                         |             |                          |          |          |         |            |          |
| Super Tin 5 oz                        |             |                          |          |          |         |            |          |
| Eminent 13 oz                         | 2.1         | \$1,269                  | 6052     | 272      | 22.2    | 18.5       | 94.6     |
| Headline 9 oz                         |             |                          |          |          |         |            |          |
| Super Tin 5 oz                        |             |                          |          |          |         |            |          |
| Untreated                             | 2.9         | \$1,297                  | 5950     | 275      | 21.6    | 18.6       | 94.9     |
|                                       | 2.1         | \$1,307                  | 6181     | 275      | 22.4    | 18.6       | 94.9     |
| Average                               |             |                          |          |          |         |            |          |
| LSD 5%                                | 0.4         | ns(237)                  | ns(1089) | ns(13.8) | ns(3.7) | ns(0.7)    | ns(0.6)  |
| CV %                                  | 14.5        | 13.6                     | 13.1     | 3.7      | 12.2    | 3.0        | 0.4      |

**Bold:** Results are not statistically different from top-ranking treatment in each column.

Cercospora: lower number is better

\$/Acre: Figured using a \$60 payment

#### SUMMARY

The first application was applied at 1st spot. Inspire, Proline, Enable + Dithane and Eminent were evaluated for Cercospora control in this small plot replicated trial. The leafspot pressure was low. Inspire provided better leafspot control than the other fungicides at this location.



# **Cercospora: Evaluate Fungicide Sequences for Leafspot Control** Gilford, MI

| Trial Quality:        | Good            |
|-----------------------|-----------------|
| Location:             | Tuscola County  |
| Planted:              | May 18          |
| Harvested:            | September 23    |
| <b>Previous Crop:</b> | Oil Seed Radish |
| Variety:              | B-19RR1N        |

Seasonal Rainfall: 17.9 inches Soil Info: Silt Loam; 7.8 pH, 8.6% OM Fertilizer Levels: All adequate Applic Details JD 990 tractor plot sprayer 90 psi, 25 gpa, 8002 Plot Size: 6 Rows X 35 ft, 5 Reps Row Spacing: 22 inches Seeding Rate: 4.2 inches Application Dates: July 13 (67dsv) Aug 1 (41 dsv)

Aug 19 (34 dsv)

| Treatment           | Cerc<br>0-9 | Net<br>Income<br>\$/Acre | RWSA   | RWST   | T/A     | %<br>Sugar | %<br>CJP |
|---------------------|-------------|--------------------------|--------|--------|---------|------------|----------|
| Inspire XT 7 oz     | 2.4         | \$1,201                  | 4357   | 208    | 20.9    | 15.4       | 91.5     |
| Headline 9 oz       |             |                          |        |        |         |            |          |
| Super Tin 5 oz      |             |                          |        |        |         |            |          |
| Proline 5.7 oz      | 2.5         | \$1,228                  | 4453   | 212    | 20.9    | 15.5       | 91.9     |
| Headline 9 oz       |             |                          |        |        |         |            |          |
| Super Tin 5 oz      |             |                          |        |        |         |            |          |
| Enable/Dith/COC     | 2.7         | \$1,164                  | 4228   | 203    | 20.8    | 15.3       | 90.7     |
| 8 oz / 2 lbs / 1 qt |             |                          |        |        |         |            |          |
| Headline 9 oz       |             |                          |        |        |         |            |          |
| Super Tin 5 oz      |             |                          |        |        |         |            |          |
| Eminent 13 oz       | 2.8         | \$1,222                  | 4431   | 212    | 20.8    | 15.7       | 91.3     |
| Headline 9 oz       |             |                          |        |        |         |            |          |
| Super Tin 5 oz      |             |                          |        |        |         |            |          |
| Untreated           | 4.4         | \$1,159                  | 4037   | 211    | 19.0    | 15.6       | 91.4     |
| A                   | 3.00        | ¢1 105                   | 4301.0 | 209.0  | 20.5    | 15.5       | 91.4     |
| Average             |             | \$1,195                  |        |        |         |            |          |
| LSD 5%              | 0.3         | ns(159)                  | ns(55) | ns(10) | ns(2.4) | ns(0.7)    | 0.7      |
| CV %                | 8.8         | 11.0                     | 10.7   | 4.0    | 9.7     | 3.7        | 0.7      |

Bold: Results are not statistically different from top-ranking treatment in each column.

**Cercospora:** lower number is better

\$/Acre: Figured using a \$60 payment

#### SUMMARY

The first application was applied at 67 DSV's. Inspire, Proline, Enable + Dithane and Eminent were evaluated for Cercospora leafspot control in this small plot replicated trial. Inspire and Proline provided better leafspot control than the other treatments. All of the treatments kept Cercospora leafspot below economic damage levels. The Cercospora 0-9 ratings are the best indication of fungicide performance in this trial.



# BEETcast: Evaluate Tolerant and Susceptible Varieties in a Red Zone Sylvester Farms, Reese, MI Page 1 of 2

| <b>Trial Quality:</b> | Very Good       | Fungicides Used:  | Plot Size:        | 6 Rows X 38 ft   |
|-----------------------|-----------------|-------------------|-------------------|------------------|
| Location:             | Tuscola County  | 1st App: Eminent  | Reps:             | 6                |
| Planted:              | May 5           | 2nd: Headline     | Row Spacing:      | 22 inches        |
| Harvested:            | October 13      | 3rd: Inspire      | Seeding Rate:     | 4 inches         |
| <b>Previous Crop</b>  | Oil Seed Radish | 4th: Gem          | Seasonal Rainfall | 14.5 inches      |
| Soil Type:            | Silt Loam       | GPA: 25, PSI: 100 | Total DSV's:      | 179              |
|                       |                 |                   | First Spot:       | 71 DSV (July 18) |

### Susceptible Variety (B-19RR1N)

| Treatment (DSV)                                  | # Applic | CLS<br>0-9 | Net<br>Income<br>\$/Acre | RWSA | RWST | T/A  | %<br>Sugar |
|--------------------------------------------------|----------|------------|--------------------------|------|------|------|------------|
| 49 / 43 / 45 / 40<br>Jun 30/Jul 25/Aug 17/Sep 12 | 4        | 2.6        | \$1,907                  | 9218 | 281  | 32.8 | 18.6       |
| 56 / 49 / 53<br>Jul 7 / Aug 2 / Sep 1            | 3        | 3.0        | \$1,830                  | 8767 | 281  | 31.3 | 18.7       |
| 66 / 39 / 53<br>Jul 15 / Aug 2 / Sep 1           | 3        | 3.5        | \$1,962                  | 9382 | 281  | 33.4 | 18.6       |
| Scout (77) / 38 / 59<br>Jul 20 / Aug 4 / Sep 12  | 3        | 3.8        | \$1,853                  | 8873 | 276  | 32.2 | 18.3       |
| Scout Late (89) / 45<br>July 25 / Aug 17         | 2        | 4.3        | \$1,881                  | 8911 | 279  | 32.0 | 18.6       |
| Untreated                                        | 0        | 6.2        | \$1,646                  | 7638 | 261  | 29.2 | 17.5       |

# Moderately Tolerant Variety (B-19RR90)

| Treatment (DSV)                                  | # Applic | CLS<br>0-9 | Net<br>Income<br>\$/Acre | RWSA | RWST | T/A  | %<br>Sugar |
|--------------------------------------------------|----------|------------|--------------------------|------|------|------|------------|
| 49 / 43 / 45 / 40<br>Jun 30/Jul 25/Aug 17/Sep 12 | 4        | 2.3        | \$1,687                  | 8199 | 282  | 29.0 | 18.9       |
| 56 / 49 / 53<br>Jul 7 / Aug 2 / Sep 1            | 3        | 2.6        | \$1,728                  | 8295 | 280  | 29.6 | 18.9       |
| 66 / 39 / 53<br>Jul 15 / Aug 2 / Sep 1           | 3        | 3.0        | \$1,724                  | 8277 | 277  | 29.8 | 18.7       |
| Scout (77) / 38 / 59<br>Jul 20 / Aug 4 / Sep 12  | 3        | 3.3        | \$1,773                  | 8503 | 283  | 30.1 | 18.9       |
| Scout Late (89) / 45<br>July 25 / Aug 17         | 2        | 4.0        | \$1,779                  | 8437 | 285  | 29.6 | 19.1       |
| Untreated                                        | 0        | 5.3        | \$1,587                  | 7364 | 268  | 27.5 | 18.1       |



# BEETcast: Evaluate Tolerant and Susceptible Varieties in a Red Zone Sylvester Farms, Reese, MI Page 2 of 2

Page 2 of 2

# **Tolerant Variety (HM-131RR)**

| Treatment (DSV)                                  | # Applic | CLS<br>0-9 | Net<br>Income<br>\$/Acre | RWSA  | RWST | T/A  | %<br>Sugar |
|--------------------------------------------------|----------|------------|--------------------------|-------|------|------|------------|
| 49 / 43 / 45 / 40<br>Jun 30/Jul 25/Aug 17/Sep 12 | 4        | 2.2        | \$1,666                  | 8098  | 279  | 29.1 | 18.9       |
| 56 / 49 / 53<br>Jul 7 / Aug 2 / Sep 1            | 3        | 2.4        | \$1,676                  | 8056  | 282  | 28.6 | 19.1       |
| 66 / 39 / 53<br>Jul 15 / Aug 2 / Sep 1           | 3        | 2.7        | \$1,625                  | 7818  | 276  | 28.4 | 18.7       |
| Scout (77) / 38 / 59<br>Jul 20 / Aug 4 / Sep 12  | 3        | 2.8        | \$1,664                  | 7997  | 274  | 29.2 | 18.6       |
| Scout Late (89) / 45<br>July 25 / Aug 17         | 2        | 3.3        | \$1,684                  | 7997  | 283  | 28.3 | 19.1       |
| Untreated                                        | 0        | 4.08       | \$1,682                  | 7802  | 282  | 27.6 | 19.1       |
| LSD 5%                                           |          | 0.21       | 94.8                     | 439.8 | 9.0  | 1.4  | 0.5        |
| CV %                                             |          | 5.4        | 4.7                      | 4.6   | 2.8  | 4.1  | 2.3        |

**Bold:** Results are not statistically different from top-ranking treatment in each column.

Cercospora: Lower number is better.

\$/Acre: Figured using a \$60 payment.

#### **SUMMARY**

Different BEETcast spray schedules and varieties with varying levels of Cercospora leafspot tolerance were evaluated in this small plot replicated trial. The treatments were applied with a JD 990 test plot sprayer at 100 psi and 25 gpa. The field was very uniform and a good sugarbeet population existed. The varieties tested were: HM-131RR (tolerant), B-19RR90 (moderate tolerance) and B-19RR1N (highly susceptible). The 45/45 spray schedule was needed to protect B-19RR1N from Cercospora damage while the tolerant and moderately tolerant varieties were protected with the 55/55 spray schedule. Starting later (66 DSV or scouting) did not provide adequate protection for any of the varieties. The first spots were discovered at 71 DSV.



# BEETcast: Evaluate Tolerant and Susceptible Varieties in a Green Zone Stoutenburg, Sandusky, MI Page 1 of 2

| <b>Trial Quality:</b> | Good           | Fungicides Used:  | Plot Size:         | 6 Rows X 38 ft    |
|-----------------------|----------------|-------------------|--------------------|-------------------|
| Location:             | Sanilac County | 1st App: Eminent  | Reps:              | 6                 |
| Planted:              | May 9          | 2nd: Headline     | Row Spacing:       | 22 inches         |
| Harvested:            | October 10     | 3rd: Inspire      | Seeding Rate:      | 4 inches          |
| <b>Previous Crop:</b> | Dry Beans      | 4th: Gem          | Seasonal Rainfall: | 14.9 inches       |
| Soil Type:            | Loam           | GPA: 25, PSI: 100 | Total DSV's:       | 190               |
|                       |                |                   | First Spot:        | 105 DSV (July 29) |

#### Susceptible Variety (B-19RR1N)

| Treatment (DSV)                            | #<br>Applic | CLS<br>0-9<br>Oct 10 | CLS<br>0-9<br>Sep 21 | Net<br>Income<br>\$/Acre | RWSA | RWST | T/A  | %<br>Sugar |
|--------------------------------------------|-------------|----------------------|----------------------|--------------------------|------|------|------|------------|
| 54 / 58 / 52 DSV<br>Jul 5 / Aug 1 / Sep 1  | 3           | 1.9                  | 0.5                  | \$1,684                  | 7324 | 248  | 29.6 | 16.8       |
| 70 / 53 / 54 DSV<br>Jul 15 / Aug 5 / Sep 6 | 3           | 2.0                  | 0.5                  | \$1,789                  | 7764 | 250  | 31.0 | 16.9       |
| 81 / 59 DSV<br>Jul 19 / Aug 14             | 2           | 2.4                  | 0.5                  | \$1,757                  | 7548 | 249  | 30.4 | 16.8       |
| Scout Late (135) / 42<br>Aug 10 / Sep 6    | 2           | 2.5                  | 0.6                  | \$1,815                  | 7789 | 257  | 30.4 | 17.2       |
| Scout (112) / 52<br>Aug 1 / Sep 1          | 2           | 2.6                  | 0.9                  | \$1,685                  | 7243 | 254  | 28.3 | 17.0       |
| Untreated                                  | 0           | 3.1                  | 1.3                  | \$1,773                  | 7446 | 251  | 29.7 | 17.0       |

### Moderately Tolerant Variety (B-19RR90)

| Treatment (DSV)                            | #<br>Applic | CLS<br>0-9<br>Oct 10 | CLS<br>0-9<br>Sep 21 | Net<br>Income<br>\$/Acre | RWSA | RWST | T/A  | %<br>Sugar |
|--------------------------------------------|-------------|----------------------|----------------------|--------------------------|------|------|------|------------|
| 54 / 58 / 52 DSV<br>Jul 5 / Aug 1 / Sep 1  | 3           | 1.6                  | 0.4                  | \$1,655                  | 7203 | 251  | 28.7 | 17.3       |
| 70 / 53 / 54 DSV<br>Jul 15 / Aug 5 / Sep 6 | 3           | 1.7                  | 0.3                  | \$1,753                  | 7615 | 254  | 29.9 | 17.3       |
| Scout (112) / 52<br>Aug 1 / Sep 1          | 2           | 2.0                  | 0.3                  | \$1,659                  | 7133 | 257  | 27.7 | 17.5       |
| 81 / 59 DSV<br>Jul 19 / Aug 14             | 2           | 2.1                  | 0.3                  | \$1,736                  | 7459 | 255  | 29.2 | 17.3       |
| Scout Late (135) / 42<br>Aug 10 / Sep 6    | 2           | 2.3                  | 1.0                  | \$1,661                  | 7145 | 254  | 28.1 | 17.3       |
| Untreated                                  | 0           | 2.8                  | 0.5                  | \$1,785                  | 7496 | 261  | 28.8 | 17.7       |



# **BEETcast: Evaluate Tolerant and** Susceptible Varieties in a Green Zone Stoutenburg, Sandusky, MI Page 2 of 2

# **Tolerant Variety (HM-131RR)**

| Treatment (DSV)                            | #<br>Applic | CLS<br>0-9<br>Oct 10 | CLS<br>0-9<br>Sep 21 | Net<br>Income<br>\$/Acre | RWSA      | RWST     | T/A     | %<br>Sugar |
|--------------------------------------------|-------------|----------------------|----------------------|--------------------------|-----------|----------|---------|------------|
| 54 / 58 / 52 DSV<br>Jul 5 / Aug 1 / Sep 1  | 3           | 1.3                  | 0.3                  | \$1,499                  | 6548      | 250      | 26.1    | 17.1       |
| 70 / 53 / 54 DSV<br>Jul 15 / Aug 5 / Sep 6 | 3           | 1.5                  | 0.4                  | \$1,462                  | 6392      | 244      | 26.2    | 16.9       |
| 81 / 59 DSV<br>Jul 19 / Aug 14             | 2           | 2.0                  | 0.3                  | \$1,490                  | 6427      | 245      | 26.1    | 16.9       |
| Scout Late (135) / 42<br>Aug 10 / Sep 6    | 2           | 2.0                  | 0.3                  | \$1,557                  | 6709      | 252      | 26.6    | 17.3       |
| Scout (112) / 52<br>Aug 1 / Sep 1          | 2           | 2.1                  | 0.4                  | \$1,514                  | 6526      | 254      | 25.5    | 17.4       |
| Untreated                                  | 0           | 2.5                  | 0.6                  | \$1,552                  | 6517      | 252      | 25.9    | 17.3       |
| LSD 5%                                     |             | 0.2                  | 0.2                  | ns(141.4)                | ns(593.7) | ns(11.1) | ns(2.0) | ns(0.6)    |
| CV %                                       |             | 8.1                  | 27.9                 | 7.4                      | 7.2       | 3.8      | 6.2     | 2.9        |

**Bold:** Results are not statistically different from top-ranking treatment in each column.

Cercospora: lower number is better

\$/Acre: Figured using a \$60 payment

#### **SUMMARY**

Different BEETcast spray schedules and varieties with varying levels of Cercospora leafspot tolerance were compared in this small plot replicated trial. The field was fairly uniform and a good sugarbeet population was present. The sugarbeet varieties evaluated were: HM-131RR (tolerant), B-19RR90 (moderate tolerance) and B-19RR1N (highly susceptible). The 55/55 and 70/55 spray schedules provided equal Cercospora control. It appeared that spraying as early as 55 DSV is not necessary in this area. Scouting or starting applications at 80 DSV's worked well for the tolerant (HM-131RR) and moderately tolerant (B-19RR90) varieties. The 70/55 DSV schedule was needed to protect leaves from Cercospora damage for the highly susceptible variety (B-19RR1N). The Cercospora pressure was somewhat low in this trial. The first spots were discovered at 105 DSV's.

**Research Results 2011** 



# **BEETCast: Evaluate a Susceptible Variety in a Red Zone** Clay Crumbaugh, St. Louis, MI

| Trial Quality:        | Good                     |
|-----------------------|--------------------------|
| Location:             | Gratiot County           |
| Planted:              | May 7                    |
| Harvested:            | Not harvested            |
| <b>Previous Crop:</b> | Soybeans                 |
| Soil Type:            | Loam,<br>2.8% OM, 6.1 pH |

Variety Used: B-19RR1N Fungicides Used: 1st App: Eminent 2nd: Headline 3rd: Inspire 4th: Gem Application:4 Wheeler Plot Sprayer, 3 mph, 80 psi, 21 gpaPlot Size:6 Rows X 50 ftReps:6Seasonal16.7 inchesTotal DSV's:190First Spot:74 DSV (July 18)

|                                  | #           | Cerc Rating 0-9 |        |        |  |  |
|----------------------------------|-------------|-----------------|--------|--------|--|--|
| Treatment (DSV)                  | #<br>Applic | Sep 13          | Aug 23 | Aug 11 |  |  |
| 47 / 46 / 44 / 33 DSV            |             |                 |        |        |  |  |
| Jun 28 / Jul 26 / Aug 15 / Sep 5 | 4           | 1.4             | 1.1    | 0.9    |  |  |
| 53 / 55 / 54 DSV                 |             |                 |        |        |  |  |
| Jul 2 / Aug 2 / Sep 5            | 3           | 2.3             | 2.1    | 1.8    |  |  |
| Scout (74) / 62 / 33 DSV         |             |                 |        |        |  |  |
| Jul 18 / Aug 15 / Sep 5          | 3           | 2.4             | 2.3    | 2.1    |  |  |
| Scout (74) / 34 / 40 DSV         |             |                 |        |        |  |  |
| Jul 18 / Aug 2 / Aug 22          | 3           | 2.4             | 2.1    | 1.9    |  |  |
| Untreated Check                  | 0           | 4.1             | 3.6    | 3.0    |  |  |
| A                                |             | 25              | 2.2    | 1.0    |  |  |
| Average                          |             | 2.5             | 2.2    | 1.9    |  |  |
| LSD 5%                           |             | 0.3             | 0.2    | 0.3    |  |  |
| CV %                             |             | 8.1             | 6.8    | 10.6   |  |  |

Bold: Results are not statistically different from top-ranking treatment in each column.

#### **SUMMARY**

Harvest data was not obtained from this trial because the trial was on 30 inch rows and our harvesters are on 22 inch rows. The variety B-19RR1N is highly susceptible to Cercospora leafspot. The Cercospora infestation level was low to moderate for this area. Four applications starting at 52 DSV followed by 45 DSV's provided the best control. All of the treatments kept Cercospora in a safe range.



# **BEETCast: Evaluate a Susceptible Variety in a Red Zone** Herford Farm, Elkton, MI

| Trial Quality:<br>Location:<br>Planted:<br>Harvested:<br>Variety Used: | Good<br>Huron County<br>April 15<br>October 5<br>C-RR827 | Fungicides Used:<br>1st Applic: Eminent<br>2nd: Headline<br>3rd: Proline<br>4th: Gem<br>Tractor Plot Sprayer:<br>25 gpa, 90 psi | Plot Size:<br>Reps:<br>Row Spacing:<br>Seeding Rate:<br>Seasonal Rainfall:<br>Cercospora pressure: | 6 Rows X 38 ft<br>6<br>22 inches<br>4 inches<br>16.6 inches<br>Very High |
|------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
|                                                                        |                                                          | 25 gpa, 90 psi                                                                                                                  | First Spot:                                                                                        | 70 DSV (July 14)                                                         |

| Treatment (DSV)                   | #<br>Applic | CLS<br>0-9<br>Sep 24 | Net<br>Income<br>\$/Acre | RWSA  | RWST | T/A  | %<br>Sugar | %<br>CJP |
|-----------------------------------|-------------|----------------------|--------------------------|-------|------|------|------------|----------|
| 42 / 54 / 38 / 30 DSV             |             |                      |                          |       |      |      |            |          |
| Jun 29 / Jul 25 / Aug 13 / Aug 30 | 4           | 2.5                  | \$1,561                  | 6685  | 251  | 26.9 | 17.1       | 94.7     |
| 52 / 57 / 55 DSV                  |             |                      |                          |       |      |      |            |          |
| Jul 5 / Aug 1 / Aug 30            | 3           | 2.7                  | \$1,571                  | 6645  | 252  | 26.3 | 17.2       | 94.7     |
| Scout 82 / 27 / 55 DSV            |             |                      |                          |       |      |      |            |          |
| Jul 20 / Aug 1 / Aug 30           | 3           | 2.8                  | \$1,438                  | 6102  | 249  | 24.5 | 17.1       | 94.5     |
| Scout 82 / 52 / 51                |             |                      |                          |       |      |      |            |          |
| Jul 20 / Aug 13 / Sep 14          | 3           | 3.4                  | \$1,547                  | 6544  | 245  | 26.8 | 16.8       | 94.6     |
| Untreated                         | 0           | 7.7                  | \$1,091                  | 4446  | 226  | 19.7 | 15.9       | 93.6     |
| Average                           | 3.25        | 3.8                  | \$1,442                  | 6084  | 244  | 24.8 | 16.8       | 94.4     |
| LSD 5%                            |             | 0.5                  | 200.5                    | 816.6 | 17.0 | 2.4  | 0.8        | ns(1.2)  |
| CV %                              |             | 7.6                  | 9.0                      | 8.7   | 4.5  | 6.3  | 3.1        | 0.8      |

**Bold:** Results are not statistically different from top-ranking treatment in each column.

Cercospora: lower number is better.

**\$/Acre:** Figured using a \$60 payment.

#### **SUMMARY**

Different BEETcast spray schedules were compared in this small plot replicated trial. The field was uniform and a good sugarbeet population was present. The variety C-RR827 is highly susceptible to Cercospora leafspot. The leafspot pressure was high. A total of 200 DSV's were recorded in this trial. An intense spray schedule (42/54/38/30 DSV's) provided the best control of leafspot, however, a 52/57/55 spray schedule also gave good leafspot control. Scouting treatments were somewhat less effective, however, the application was a little late. One problem with making the first application based on scouting is that by the time spots are found and the application is made the treatment often ends up being a week or more late. When that occurs it is better to come back early (35 DSV's) with the second spray. Resistance to Headline and Gem has been documented in this field. It is encouraging to note that Cercospora control was adequate when considering that the Strobilurin fungicides were not at full strength.

**Research Results 2011** 



# Qol (strobilurin) resistance in Cercospora beticola in Michigan sugarbeet.

W. W. Kirk1, L.E. Hanson2, E. Gachango1, G. Clark3 and J. Stewart3.

Cercospora leaf spot caused by the fungus Cercospora beticola Sacc. is the most serious and important foliar disease of sugar beet (Beta vulgaris L.) in Michigan. Cercospora leaf spot is controlled mainly with fungicides, including strobilurins (FRAC group 11, Quinone outside Inhibitors [Qol]). Qol resistance in C. betcola has not been previously reported. In 2011, fields sprayed with Qols from several areas in Michigan showed high Cercospora leaf spot levels. Isolates were collected from symptomatic plants and grown on sugarbeet leaf agar. A conidium germination bioassay was carried out on sugar beet leaf agar covered with water agar amended with pyraclostrobin, azoxystrobin or trifloxystrobin at 0, 0.001, 0.01, 0.1, 1, 10, or 100 µg/mL (ppm). The medium was supplemented with salicylhydroxamic acid (SHAM) to block the alternate oxidation pathway. After 24 h incubation at 22°C under ambient light, the number of germinated conidia out of 50 observed was counted in each of three replicates per treatment. Germination was recorded as positive when the germ tube was at least half the width of the conidium. All four isolates with the G143A mutation were able to germinate at the highest pyraclostrobin concentration tested (50% germination at 100 µg/mL relative to the SHAM control). Isolates that contained the G143A mutation included representatives from Huron and Saginaw counties. Conversely, a representative wild type isolate was unable to germinate over the 0.01 µg/mL concentration. The estimated EC50 for the sensitive isolate was 0.03 µg/mL, while the value for the resistant isolate could not be calculated because it was greater than the highest concentration tested. Additionally, in the controls with no SHAM or fungicide, the representative resistant isolate showed a consistent reduced germination rate compared to the sensitive isolate (30% and 93.5% germination, respectively). Isolates also grew on spiral dilution plates amended with the three different Qol fungicides. These findings indicate that the observed reduction in Cercospora leaf spot control in some commercial Michigan sugarbeet fields may be due to the development of resistance to Qols. A more detailed study is needed to determine the extent to which C. beticola populations in Michigan have shifted to less sensitive phenotypes in order to devise better recommendations for disease and fungicide resistance management. Additional isolates are being collected from fields in Bay, Genesee, Gratiot, Ingham, Sandusky and Tuscola Counties.

<sup>&</sup>lt;sup>1</sup> Department of Plant Pathology, Michigan State University, 35 Plant Biology Building

<sup>&</sup>lt;sup>2</sup> USDA-ARS, East Lansing, MI 48824

<sup>&</sup>lt;sup>3</sup> Michigan Sugar Company, Euclid Road, Bay City, MI 48706.

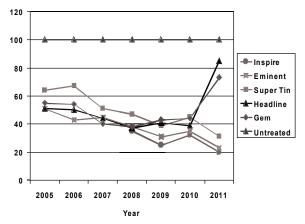


# **Cercospora Leafspot Resistance & Management Guidelines**, Page 1 of 2

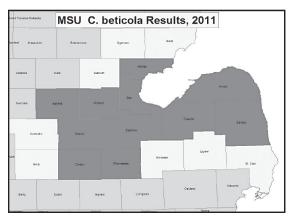
# **Recent insights on Cercospora Leafspot Resistance**

by Gregory M. Clark<sup>1\*</sup> and James F. Stewart<sup>2</sup>

Cercospora leafspot, caused by the fungus Cercospora beticola, is one of the most serious diseases of sugarbeets in Michigan. This disease can cause reduced tonnage and sucrose and increased impurities. Losses of 30 percent in recoverable sucrose are fairly common under moderate disease conditions.


Cercospora leafspot has been more difficult for some growers to control the past two seasons. Typically growers use Quadris (a strobilurin) for Rhizoctonia control then apply Proline, Eminent, Enable, or Inspire (triazoles) as the first leafspot spray. Headline or Gem (strobilurins) are generally the second leafspot spray and it is evident that we are losing control of Cercospora at that time.

A sentinel plot was conducted near Elkton, MI in 2011 to evaluate the efficacy of fungicides for leafspot control. Results from this trial show that Headline and Gem (strobilurins) did not provide adequate leafspot control in 2011 (Graph 1). This graph shows leafspot control for fungicides over time. Values are based on the Cercospora rating scale of 0-9 and are expressed as a percent of the untreated. At the sentinel plot in 2011, Eminent; Inspire; Proline and Super Tin provide good Cercospora control, while Headline and Gem failed to control leafspot.


Leaves from the sentinel plot were gathered and sent to Michigan State and to North Dakota State Universities to analyze for Cercospora resistance. Preliminary results from both universities indicate that Cercospora spores from the sentinel plot are resistant to Headline and Gem.

Michigan Sugar Company agriculturists also sampled leaves from around the sugarbeet growing area and a high percentage of those leaves tested positive for resistance to Headline and Gem (Fig. 1& 2). Data from both universities showed that over 85% of the samples had an effective concentration (EC50) greater than 1 ppm, which indicates resistance. Samples considered not to be resistant should have sensitive isolates (isolates killed by fungicide) levels in the range of 0.02-0.06 ppm.

#### **Graph 1: Cercospora Fungicide Efficacy**

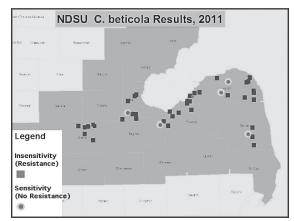


#### Figure 1: Darkest Gray Counties Indicate Strobiluins Resistance • MSU, 2011



The same question has been asked multiple times, "why did resistance happen?" This is a difficult question to answer, since many variables could lead to this resistance issue. Here are some possible answers to this question.

- First Leafspot application late.
- Poor spray techniques.
- Not tank mixing with other modes of action.
- Earlier planting dates.
- Not controlling leafspot to the end of the season.
- Increased use of susceptible varieties.
- Failing to rotate modes of action.
- Stretching spray intervals.
- Spraying corn, wheat, soybeans, etc., with Headline or Gem and not rotating modes of action.




# **Cercospora Leafspot Resistance** & Management Guidelines, Page 2 of 2

The situation with fungicide resistance in Michigan sugarbeets will be manageable if actions are taken now in a consistent manner by all growers. Management practices need to be implemented and adhered to by all sugarbeet growers in Michigan so that we can continue to produce a successful crop and preserve the fungicides that are still effective in controlling Cercospora leafspot. Practices that all growers should follow include:

- Plant susceptible varieties only if you are willing to follow an aggressive spray recommendation.
- Use of more tolerant varieties is especially important when planting next to a field that had Cercospora problems the previous year.
- Tank mix triazole, strobilurin and Topsin fungicides with an EBDC or Super Tin.
- Never spray with the same mode of action back-to-back.
- Use Headline and Gem (strobilurins) and Topsin only once per season.
- Use the highest labeled rates of all fungicides even in tank mixes.
- Apply fungicides in an approach to insure maximum coverage. Enhanced coverage results in improved Cercospora leafspot control.
- Use 20-25 gallons of water with 90 PSI or greater. Higher pressure and gallonage will produce the best control.
  - Minimum of 80 PSI and 20 gallons of water.
- Use surfactants and additives as required by product labels.
- Do not delay your first leafspot application by following BEETcast or if scouting no later than the first leafspot in your area.
- If following BEETcast refer to Table 1, if you are not following BEETcast then follow the spray intervals as recommended by the product label.

#### Figure 2: Strobiluins REsistance • NDSU, 2011



#### Table 1: Initial Spray/Subsequent Sprays

|                     | High        | Medium      | Low      |
|---------------------|-------------|-------------|----------|
| Tolerant            | 55/55/55/55 | 60/55/55/55 | 75/55/55 |
| Moderately Tolerant | 55/50/50/50 | 55/55/55/55 | 70/55/55 |
| Highly Susceptible  | 50/40/40/40 | 55/50/50/50 | 65/55/55 |

- When using Headline and Gem (strobilurin) fungicides in other crops (e.g. corn, soybeans, wheat, dry beans, etc.), always tank-mix with a fungicide with a different mode of action or use available combination products.
- Crop rotation plays a key component in reducing Cercospora leafspot levels. Inoculum over-winters in plant debris and soils. A four-year rotation is recommended.

# Summary

Growers are doing very well with high sugar prices, high yielding and high quality varieties, disease tolerant varieties and Roundup for weed control. However, resistance to Cercospora is developing with Headline and Gem and we can also lose Eminent, Proline, Enable and Inspire if we do not employ proper resistance management strategies. We need to protect our crop from Cercospora leafspot and need to preserve the fungicides that we have left from developing resistance to Cercospora. There are no new fungicides coming out on the market. This is why tank-mixing and following the Management for Cercospora leafspot program is an important strategy in prolonging our fungicides for Cercospora leafspot control.

<sup>&</sup>lt;sup>1</sup> Michigan Sugar Company, Bay City, MI 48706

<sup>&</sup>lt;sup>2</sup> Michigan Sugar Company, Agricultural Research Center, 1459 S. Valley Center Drive, Bay City, MI



# **Rhizoctonia: Quadris Rate, T-Band Width & Foliar Application Timings** Average of 2 Locations

### **Breckenridge & St. Louis/Hoard and Crumbaugh**

| <b>Trial Quality:</b> | Fair           | Breckenridg         | le:                   | St. Louis | }                   |
|-----------------------|----------------|---------------------|-----------------------|-----------|---------------------|
| Planted:              | Mid-May        |                     | Soil Info: Sandy Loam |           | Soil Info: Loam     |
| Harvested:            | Not harvested  |                     | 3.1% OM, 7.0 pH       |           | 2.8% OM, 6.1 pH     |
| Variety Used:         | C-RR824        | <b>T-band trts:</b> | 10 gpa, 6502E         |           | 15 gpa, 7 inch band |
| Plot Size:            | 6 rows x 35 ft | Reps:               | 6                     | Rainfall: | 15 inches           |

|           | ]             |                            | Dead Beets          | Stand            |                  |  |
|-----------|---------------|----------------------------|---------------------|------------------|------------------|--|
| Treatment | Rate          | Application<br>Description | per 100'<br>Sept 13 | B/100'<br>June 2 | B/100'<br>Sept 1 |  |
| Quadris   | 16.6 fl oz/A  | 6-8 lf 7" band             | 15                  | 148              | 118              |  |
| Quadris   | 7.125 fl oz/A | T-band 3.5" band           | 23                  | 142              | 113              |  |
| Quadris   | 9.5 fl oz/A   | 6-8 lf 7" band             |                     |                  |                  |  |
| Quadris   | 14.25 fl oz/A | T-band 2" band             | 24                  | 139              | 114              |  |
| Quadris   | 7.125 fl oz/A | T-band 3.5" band           | 25                  | 137              | 109              |  |
| Quadris   | 14.25 fl oz/A | 6-8 lf 7" band             |                     |                  |                  |  |
| Quadris   | 14.25 fl oz/A | T-band 3.5" band           | 25                  | 136              | 105              |  |
| Quadris   | 9.5 fl oz/A   | 6-8 lf 7" band             | 30                  | 142              | 106              |  |
| Quadris   | 14.25 fl oz/A | T-band 7" band             | 33                  | 139              | 112              |  |
| Quadris   | 14.25 fl oz/A | 6-8 lf 7" band             | 34                  | 132              | 92               |  |
| Quadris   | 14.25 fl oz/A | 2-4 lf 7" band             | 37                  | 140              | 102              |  |
| Quadris   | 4.1 fl oz/A   | T-band 2" band             | 41                  | 153              | 114              |  |
| Quadris   | 7.125 fl oz/A | T-band 3.5" band           | 41                  | 146              | 111              |  |
| Untreated |               |                            | 60                  | 135              | 93               |  |
| Average   |               |                            | 32.1                | 140.7            | 107.3            |  |
| LSD 5%    |               |                            | 13.0                | ns(19)           | 15.7             |  |
| CV %      |               |                            | 35.1                | 11.9             | 12.7             |  |

Bold: Results are not statistically different from top-ranking treatment in each column.

#### SUMMARY

Small plot replicated trials were conducted near Breckenridge to evaluate Quadris application timings and rates. There was a lot of variability in stand at both locations and yield information was not obtained. The reliability of the data (live and dead beet counts) is considered to be fair. For dead beet counts, caused by Rhizoctonia, there are trends suggesting that the lower Quadris rates in narrow bands were less effective, however, the differences were not significantly different. On average the Quadris treatments appeared to provide about 50% disease control.



# Rhizoctonia: Quadris Rate, T-Band Width & Foliar Application Timings Blumfield, MI

| Trial Quality:        | Fair-Good      |
|-----------------------|----------------|
| Location:             | Saginaw County |
| Planted:              | Мау б          |
| Harvested:            | September 21   |
| <b>Previous Crop:</b> | Soybeans       |
| Variety:              | C-RR827        |

Rhizoc Control: Good Cercospora Control: Good Spray Dates: June 8 and June 15 Seasonal Rainfall: 12.2 inches Soil Info: Loam, 3.0% OM, 7.6 pH

Plot Size: 6 Rows X 38 ft Reps: 4 Row Spacing: 22 inches Seeding Rate: 4.2 inches

|           | Rate    | Application  | Net<br>Income |       |      |      | %     | %    |       | gence<br>)0 Ft |
|-----------|---------|--------------|---------------|-------|------|------|-------|------|-------|----------------|
| Treatment | fl oz/A | Method       | \$/Acre       | RWSA  | RWST | T/A  | Sugar | CJP  | Jun 8 | Sep 14         |
| Quadris   | 16.6    | 6-8lf 7"band | \$1,520       | 5965  | 249  | 24.0 | 17.1  | 94.3 | 146   | 138            |
| Quadris   | 16.6    | Tb 3.5" band | \$1,501       | 5889  | 233  | 25.2 | 16.4  | 93.6 | 173   | 172            |
| Quadris   | 7.1     | Tb 3.5" band | \$1,486       | 5830  | 239  | 24.4 | 16.7  | 93.6 | 183   | 173            |
| Quadris   | 14.3    | 2-4lf 7"band | \$1,479       | 5811  | 242  | 24.0 | 16.8  | 93.9 | 166   | 150            |
| Quadris   | 14.3    | 6-8lf 7"band | \$1,447       | 5680  | 245  | 23.2 | 17.1  | 93.7 | 154   | 145            |
| Untreated |         |              | \$1,424       | 5592  | 233  | 24.0 | 16.3  | 93.7 | 148   | 147            |
| Quadris   | 7.1     | Tb 3.5" band | \$1,412       | 5580  | 235  | 23.7 | 16.5  | 93.6 | 164   | 172            |
| Quadris   | 9.5     | 6-8lf 7"band |               |       |      |      |       |      |       |                |
| Quadris   | 14.3    | Tb 3.5" band | \$1,381       | 5421  | 236  | 23.0 | 16.4  | 93.8 | 186   | 174            |
| Quadris   | 14.3    | Tb 2" band   | \$1,351       | 5306  | 240  | 22.1 | 16.6  | 94.0 | 169   | 150            |
| Quadris   | 4.1     | Tb 2" band   | \$1,311       | 5150  | 224  | 23.0 | 15.8  | 93.5 | 157   | 148            |
| Quadris   | 16.6    | 6-8lf 7"band | \$1,285       | 5048  | 236  | 21.4 | 16.5  | 93.7 | 144   | 135            |
| Quadris   | 7.1     | Tb 3.5" band | \$1,261       | 4995  | 220  | 22.7 | 15.6  | 93.2 | 141   | 141            |
| Quadris   | 14.3    | 6-8lf 7"band |               |       |      |      |       |      |       |                |
| Quadris   | 9.5     | 6-8lf 7"band | \$1,252       | 4919  | 224  | 21.9 | 15.9  | 93.1 | 138   | 135            |
| Quadris   | 14.3    | Tb 7" band   | \$1,250       | 4913  | 218  | 22.4 | 15.5  | 93.4 | 156   | 144            |
| Average   |         |              | \$1,383       | 5436  | 234  | 23.2 | 16.4  | 93.6 | 159   | 152            |
| LSD 5%    |         |              | 236.2         | 918.6 | 20.5 | 3.1  | 1.2   | 0.8  | 46.4  | 34.4           |
| CV %      |         |              | 11.7          | 11.7  | 6.1  | 9.1  | 4.9   | 0.6  | 20.4  | 15.9           |

Bold: Results are not statistically different from top-ranking treatment in each column.

**Tb:** T-band application

\$/Acre: Figured using a \$60 payment.

#### SUMMARY

Quadris was applied in 2 inch, 3.5 inch and 7 inch T-band treatments at planting at different rates. Quadris was also applied as a foliar treatment at the 6-8 leaf stage. The plot was inoculated with Rhizoctonia but the disease did not establish. There were very few dead beets in the untreated check plots. The in-furrow (T-band) treatments did not hurt emergence, even with high Quadris rates in narrow bands.

**Research Results 2011** 



# Rhizoctonia: Quadris In-Furrow & Foliar Applications to Tolerant & Susceptible Varieties • Average, 2 Locations

| <b>Trial Quality:</b> | Fair           |
|-----------------------|----------------|
| Location:             | Gratiot County |
| Planted:              | Mid-May        |
| Harvested:            | Not harvested  |

3.5" T-band: 10 gpa
Breckenridge Soil Info: Sandy Loam, 3.1% OM, 7.0 pH
St. Louis Soil Info:

Soil Info: Loam, 2.8% OM, 6.1 pH

# **Quadris Effects**

|           |        |         | Dead Beets            | Stand             |                       |  |
|-----------|--------|---------|-----------------------|-------------------|-----------------------|--|
| Treatment | Timing | Fl oz/A | per 100 Ft<br>Mid Sep | B/100 Ft<br>Early | B/100' Ft<br>Mid-Late |  |
| Quadris   | T-band | 14.25   | 23                    | 122               | 106                   |  |
| Quadris   | T-band | 7.125   | 25                    | 127               | 106                   |  |
| Quadris   | T-band | 7.125   |                       |                   |                       |  |
| Quadris   | 8 leaf | 14.25   | 25                    | 132               | 112                   |  |
| Quadris   | 8 leaf | 14.25   | 26                    | 118               | 94                    |  |
| Quadris   | 4 leaf | 14.25   |                       |                   |                       |  |
| Quadris + | 8 leaf | 14.25   | 24                    | 117               | 95                    |  |
| Untreated |        |         | 55                    | 105               | 83                    |  |
| Average   |        |         | 18.7                  | 97.8              | 74.2                  |  |
| LSD 5%    |        |         | 1.8                   | 7.7               | 5.1                   |  |
| CV %      |        |         | 16.3                  | 5.8               | 7.7                   |  |

# **Variety Effects**

|           | Dead Beets          | Stand             |                       |  |  |  |
|-----------|---------------------|-------------------|-----------------------|--|--|--|
| Treatment | per 100 Ft<br>Sep 9 | B/100 Ft<br>Early | B/100' Ft<br>Mid-Late |  |  |  |
| SX-1281RR | 14                  | 118               | 102                   |  |  |  |
| HM-28RR   | 15                  | 114               | 96                    |  |  |  |
| C-RR824   | 60                  | 128               | 101                   |  |  |  |
|           |                     |                   |                       |  |  |  |
| Average   | 18.7                | 97.8              | 82.7                  |  |  |  |
| LSD 5%    | 3.3                 | 4.8               | 5.3                   |  |  |  |
| CV %      | 16.3                | 5.8               | 7.7                   |  |  |  |

**Bold:** Results are not statistically different from top-ranking treatment in each column.

**SUMMARY:** Sugarbeet emergence, growth and vigor was too variable to obtain yield information. Quadris applications provided Rhizoctonia control however there were no significant differences between application methods and Quadris rates. SX-1281RR and HM-28RR tolerated Rhizoctonia pressure much better than C-RR824, however, at harvest populations were as high for C-RR824 due to better emergence.



# Rhizoctonia: Evaluate Registered & Experimental Fungicides • Gilford, MI

Trial Quality:GoodLocation:Tuscola CountyPlanted:May 17Harvested:September 22Previous Crop:Oilseed Radish

Rhizoc Control: Good Cercospora Control: Good Foliar Applic: June 10 and June 28 Soil Info: Silt Loam, 8.6% OM, 7.8 pH Variety: C-RR827 Plot Size: 6 Rows X 35 ft Reps: 6 Row Spacing: 22 inches Seeding Rate: 4.2 inches Seasonal Rainfall: 17.4 inches

| Treatment                   | Rate                           | Appl<br>Timing        | \$/Acre | RWSA  | RWST | T/A  | %<br>Sugar | %<br>CJP | Vigor<br>1-10<br>Jun 20<br>34 Day | B/100ft<br>Jun 13<br>27 Day | B/100ft<br>Aug 16<br>91 Day |
|-----------------------------|--------------------------------|-----------------------|---------|-------|------|------|------------|----------|-----------------------------------|-----------------------------|-----------------------------|
| Vertisan                    | 29.7 fl oz/a                   | Tb 7" band            | \$1,440 | 5555  | 236  | 23.5 | 17.4       | 91.3     | 6.5                               | 208                         | 202                         |
| Vertisan                    | 14.85 fl oz/a                  | Tb 3.5" band          | \$1,396 | 5385  | 238  | 22.7 | 17.4       | 91.6     | 6.3                               | 212                         | 200                         |
| Headline EC                 | 9.2 fl oz/a                    | Tb 7" band            | \$1,394 | 5379  | 229  | 23.5 | 17.0       | 91.2     | 6.3                               | 200                         | 192                         |
| Gem SC                      | 3.6 fl oz/a                    | Tb 3.5" band          | \$1,390 | 5363  | 237  | 22.6 | 17.5       | 91.2     | 6.3                               | 208                         | 202                         |
| Moncut DF                   | 8.8 oz/a                       | Tb 3.5" band          | \$1,371 | 5289  | 240  | 21.9 | 17.4       | 92.0     | 5.8                               | 192                         | 202                         |
| Actinovate AG               | 12 oz/a                        | Tb 1" band            | \$1,369 | 5281  | 230  | 23.0 | 17.0       | 91.1     | 6.3                               | 198                         | 186                         |
| Gem SC                      | 3.6 fl oz/a                    | 4-6lf                 | \$1,369 | 5281  | 234  | 22.5 | 17.3       | 91.2     | 6.0                               | 177                         | 176                         |
| Quadris FL                  | 14.25 fl oz/a                  | Tb 3.5" band          | \$1,355 | 5228  | 238  | 22.1 | 17.4       | 91.6     | 5.9                               | 197                         | 198                         |
| Proline SC                  | 5.7 fl oz/a                    | 4-6lf                 | \$1,353 | 5219  | 232  | 22.6 | 17.2       | 90.9     | 5.9                               | 161                         | 151                         |
| Moncut DF                   | 17.6 oz/a                      | 4-6lf                 | \$1,351 | 5210  | 234  | 22.4 | 17.3       | 91.2     | 5.9                               | 174                         | 171                         |
| Actinovate AG<br>Quadris FL | 12 oz/a<br>14.25 fl oz/a       | Tb 1" band<br>4-6lf   | \$1,348 | 5199  | 232  | 22.4 | 17.2       | 91.2     | 5.8                               | 193                         | 189                         |
| Quadris FL                  | 16.5 fl oz/a                   | 6-8lf                 | \$1,340 | 5171  | 238  | 21.8 | 17.6       | 91.0     | 5.8                               | 173                         | 168                         |
| Quadris FL                  | 14.25 fl oz/a                  | 6-8lf                 | \$1,333 | 5143  | 224  | 23.0 | 16.9       | 90.7     | 5.8                               | 160                         | 153                         |
| Quadris FL                  | 14.25 fl oz/a                  | 4-6lf                 | \$1,333 | 5140  | 229  | 22.5 | 17.1       | 90.8     | 5.9                               | 158                         | 157                         |
| Moncut DF                   | 17.6 oz/a                      | Tb 3.5" band          | \$1,329 | 5127  | 235  | 21.9 | 17.4       | 91.0     | 6.3                               | 208                         | 210                         |
| Quadris FL                  | 14.25 fl oz/a                  | Tb 7" band            | \$1,299 | 5012  | 237  | 21.1 | 17.5       | 91.3     | 5.8                               | 204                         | 197                         |
| Quadris FL<br>Quadris FL    | 14.25 fl oz/a<br>14.25 fl oz/a | Tb 3.5" band<br>4-6lf | \$1,284 | 4952  | 231  | 21.4 | 17.0       | 91.5     | 6.0                               | 211                         | 213                         |
| Headline EC                 | 9.2 fl oz/a                    | Tb 3.5" band          | \$1,283 | 4948  | 236  | 21.0 | 17.4       | 91.4     | 6.2                               | 199                         | 197                         |
| Proline SC                  | 5.7 fl oz/a                    | Tb 3.5" band          | \$1,283 | 4948  | 230  | 21.4 | 17.0       | 91.4     | 6.2                               | 206                         | 201                         |
| Headline EC                 | 4.6 fl oz/a                    | Tb 3.5" band          | \$1,276 | 4922  | 231  | 21.3 | 17.1       | 91.1     | 6.0                               | 205                         | 201                         |
| Vertisan                    | 29.7 fl oz/a                   | 4-6lf                 | \$1,272 | 4905  | 233  | 21.2 | 17.2       | 91.2     | 5.6                               | 177                         | 171                         |
| Quadris FL                  | 7.1 fl oz/a                    | Tb 3.5" band          | \$1,267 | 4887  | 232  | 21.2 | 17.2       | 91.0     | 6.2                               | 190                         | 203                         |
| Quadris FL                  | 16.5 fl oz/a                   | 4-6lf                 | \$1,263 | 4872  | 238  | 20.5 | 17.5       | 91.5     | 5.8                               | 173                         | 167                         |
| Penthiopyrad<br>Quadris FL  | 14 g/unit<br>14.25 fl oz/a     | Seed Tmt<br>4-6lf     | \$1,259 | 4855  | 212  | 23.0 | 16.0       | 90.6     | 5.8                               | 183                         | 173                         |
| Headline EC                 | 4.6 fl oz/a                    | Tb 7" band            | \$1,247 | 4809  | 237  | 20.3 | 17.4       | 91.5     | 6.2                               | 195                         | 192                         |
| Penthiopyrad                | 14 g/unit                      | Seed Tmt              | \$1,210 | 4668  | 200  | 23.4 | 15.0       | 91.0     | 6.2                               | 180                         | 177                         |
| Untreated                   |                                |                       | \$1,205 | 4647  | 226  | 20.6 | 16.9       | 90.9     | 6.0                               | 167                         | 165                         |
| Average                     |                                |                       | \$1,319 | 5089  | 231  | 22.0 | 17.1       | 91.2     | 6.0                               | 189                         | 186                         |
| LSD 5%                      |                                |                       | 141.4   | 545.3 | 12.5 | 2.3  | 0.7        | 0.8      | 0.6                               | 22.1                        | 20.9                        |
| CV %                        |                                |                       | 9.4     | 9.4   | 4.7  | 9.3  | 3.6        | 0.7      | 8.2                               | 10.2                        | 9.9                         |

Bold: Results are not statistically different from top-ranking treatment in each column. • Tb: T-band application

\$/Acre: Figured using a \$60 payment, gross payment unless noted as net.

**SUMMARY:** Fungicides were applied in-furrow at planting in a 3.5 in T-band (6502E, 25 psi, 10 gpa) or foliar (8002, 30 psi, 15 gpa) at the 4-6 or 6-8 leaf stage in this small plot replicated trial. The plot was inoculated with Rhizoctonia, but the disease did not develop. There were less than 2 dead beets per 100 ft of row in the untreated plots. All of the fungicide treatments improved sugarbeet emergence and some treatments improved plant emergence, plant vigor, yield and quality even though Rhizoctonia root rot symptoms were not apparent.



# Rhizoctonia: Monocut and Other Experimental Fungicides • Blumfield, MI

| Trial Quality:        | Fair           | R |
|-----------------------|----------------|---|
| Location:             | Saginaw County | C |
| Planted:              | Мау б          | S |
| Harvested:            | September 21   | S |
| <b>Previous Crop:</b> | Soybeans       | S |
| Variety:              | C-RR824        |   |
|                       |                |   |

Rhizoc Control:GoodCercospora Control:GoodSpray Dates:June 13Geasonal Rainfall:13.1 inchesGoil Info:Loam, 3.0% OM, 7.6 pH

Plot Size:6 Rows X 38 ftReps:4Row Spacing:22 inchesSeeding Rate:4.2 inchesApplication:3.5 inch T-band 10 gpaFoliar Sprays:15 gpa

| Treatment    | Rate           | Appl<br>Timing | \$/Acre | RWSA  | RWST   | T/A     | %<br>Sugar | %<br>CJP | Emerg<br>B/100 Ft | Dead<br>Beets<br>/100 Ft |
|--------------|----------------|----------------|---------|-------|--------|---------|------------|----------|-------------------|--------------------------|
| GWN-9935 DF  | 17.6 oz/a      | T-Band         | \$1,692 | 6671  | 244    | 27.3    | 17.1       | 93.5     | 157               | 0.5                      |
| Moncut 70 DF | 8.8 oz/a       | T-Band         | \$1,653 | 6515  | 239    | 27.3    | 17.0       | 92.9     | 161               | 0.0                      |
| Moncut 70 DF | 17.6 oz/a      | 4-6lf          | \$1,631 | 6429  | 238    | 27.0    | 16.7       | 93.4     | 172               | 0.3                      |
| Quadris FL   | 7.125 fl oz/a  | T-Band         | \$1,614 | 6362  | 237    | 27.0    | 16.7       | 93.2     | 168               | 0.5                      |
| Quadris FL   | 9.5 fl oz/a    | 4-6lf          |         |       |        |         |            |          |                   |                          |
| GWN-9935 DF  | 5.6 oz/a       | T-Band         | \$1,604 | 6324  | 231    | 27.3    | 16.6       | 92.6     | 157               | 0.8                      |
| GWN-9935 DF  | 11.2 oz/a      | 4-6lf          |         |       |        |         |            |          |                   |                          |
| Quadris FL   | 16.625 fl oz/a | 4-6lf          | \$1,598 | 6300  | 238    | 26.7    | 16.7       | 93.4     | 177               | 0.8                      |
| Moncut 70 DF | 11.2 oz/a      | 4-6lf          | \$1,595 | 6288  | 231    | 27.2    | 16.3       | 93.3     | 159               | 0.8                      |
| Quadris FL   | 14.25 fl oz/a  | 4-6lf          | \$1,577 | 6217  | 237    | 26.3    | 16.6       | 93.5     | 178               | 0.8                      |
| Moncut 70 DF | 5.6 oz/a       | T-Band         | \$1,575 | 6209  | 238    | 26.0    | 16.8       | 93.2     | 172               | 0.5                      |
| Moncut 70 DF | 11.2 oz/a      | 4-6lf          |         |       |        |         |            |          |                   |                          |
| GWN-9935 DF  | 11.2 oz/a      | 4-6lf          | \$1,558 | 6142  | 227    | 26.9    | 16.2       | 92.9     | 154               | 0.0                      |
| Moncut 70 DF | 17.6 oz/a      | T-Band         | \$1,551 | 6113  | 236    | 25.9    | 16.7       | 93.2     | 147               | 0.8                      |
| Moncut 70 DF | 5.6 oz/a       | T-Band         | \$1,547 | 6099  | 232    | 26.4    | 16.4       | 93.3     | 182               | 0.3                      |
| GWN-9935 DF  | 5.6 oz/a       | T-Band         | \$1,540 | 6072  | 231    | 26.4    | 16.3       | 93.2     | 158               | 0.3                      |
| Quadris FL   | 14.25 fl oz/a  | T-Band         | \$1,514 | 5969  | 245    | 24.6    | 17.1       | 93.7     | 167               | 0.3                      |
| Quadris FL   | 7.125 fl oz/a  | T-Band         | \$1,462 | 5765  | 237    | 24.6    | 16.8       | 93.1     | 151               | 0.5                      |
| Untreated    |                |                | \$1,441 | 5679  | 243    | 23.4    | 17.0       | 93.8     | 166               | 2.3                      |
| Average      |                |                | \$1,572 | 6197  | 237    | 26.3    | 16.7       | 93.3     | 164               | 0.6                      |
| LSD 5%       |                |                | 230.5   | 908.7 | ns(26) | ns(4.0) | ns(1.5)    | 0.9      | 23.8              | 1.2                      |
| CV %         |                |                | 10.3    | 10.3  | 7.6    | 10.6    | 6.2        | 0.7      | 10.2              | 144.9                    |

Bold: Results are not statistically different from top-ranking treatment in each column.

\$/Acre: Figured using a \$60 payment, gross payment unless noted as net.

#### **SUMMARY:**

Moncut is a fungicide being developed in sugarbeets by Gowan Company. Moncut compared favorably to Quadris in our 2010 trial. The plot was inoculated with Rhizoctonia but the disease did not develop. The in-furrow treatments were applied in a 3.5 inch T-band in 10 gpa. None of the in-furrow treatments hurt sugarbeet emergence. There was not enough disease in the trial to determine the fungicide effects on Rhizoctonia.

# Sugarbeet Advancement

# **Rhizoctonia Control Trial** Hrabal Farms • Breckenridge, MI

| <b>Trial Quality:</b> | Good           | Spacings:     | Rows - 30", Seeds 52,500/A       | Sample Date:       | October 5                               |
|-----------------------|----------------|---------------|----------------------------------|--------------------|-----------------------------------------|
| Location:             | Gratiot County | Fertilizer:   | 2x2 - 250# 12-12-12-3Mn5 B;      | Herbicides:        | 3x Glyphosate                           |
| Planted:              | Мау б          |               | PPI 32 gal 25-0-0-12S            | <b>Replicated:</b> | 4x                                      |
| <b>Previous Crop:</b> | Soybeans       | Tillage:      | Chisel & 1x F.C., Spring-1x F.C. | Fungicide:         | 54 DSV - Eminent                        |
| Soil Type:            | Parkhill Loam  | Harvest Date: | October 30                       |                    | 104 DSV - Headline<br>155 DSV - Eminent |

|                                       | Net     |      |      |      |         |       |        | ations<br>of Row | Dead<br>Beets/ |  |  |
|---------------------------------------|---------|------|------|------|---------|-------|--------|------------------|----------------|--|--|
| Treatment                             | \$/Acre | RWSA | RWST | T/A  | % Sugar | % CJP | 11 Day | 34 Day           |                |  |  |
| Rhizoctonia Resistant Variety HM-27RR |         |      |      |      |         |       |        |                  |                |  |  |
| In Furrow & 6-8 Leaf                  | \$1,745 | 7971 | 278  | 28.6 | 18.6    | 95.5  |        |                  | 0              |  |  |
| 6-8 Leaf                              | \$1,699 | 7730 | 277  | 27.9 | 18.4    | 95.9  | _      |                  | 1              |  |  |
| 2-4 Leaf                              | \$1,679 | 7631 | 278  | 27.5 | 18.5    | 95.8  |        |                  | 8              |  |  |
| 2-4 Leaf & 6-8 Leaf                   | \$1,645 | 7603 | 277  | 27.4 | 18.3    | 96.0  |        |                  | 0              |  |  |
| Check                                 | \$1,623 | 7338 | 270  | 27.0 | 18.1    | 95.4  | 184    | 243              | 9              |  |  |
| In Furrow                             | \$1,615 | 7326 | 280  | 26.0 | 18.5    | 96.0  | 159    | 257              | 0              |  |  |

| Rhizoctonia Suscept  | Rhizoctonia Susceptible Variety B-18RR4N |      |     |      |      |        |     |     |     |  |  |  |
|----------------------|------------------------------------------|------|-----|------|------|--------|-----|-----|-----|--|--|--|
| 6-8 Leaf             | \$1,752                                  | 7958 | 275 | 29.0 | 18.3 | 95.6   | —   | —   | 109 |  |  |  |
| In Furrow & 6-8 Leaf | \$1,730                                  | 7904 | 265 | 29.8 | 17.8 | 95.5   | —   | —   | 40  |  |  |  |
| 2-4 Leaf & 6-8 Leaf  | \$1,642                                  | 7570 | 266 | 28.5 | 17.7 | 95.7   | —   | —   | 120 |  |  |  |
| In Furrow            | \$1,548                                  | 7005 | 263 | 26.5 | 17.6 | 95.6   | 117 | 233 | 179 |  |  |  |
| 2-4 Leaf             | \$1,328                                  | 6052 | 255 | 23.8 | 17.3 | 95.1   | —   | —   | 394 |  |  |  |
| Check                | \$1,244                                  | 5607 | 245 | 22.8 | 16.7 | 94.9   | 134 | 207 | 587 |  |  |  |
| Average              | \$1,604                                  | 7308 | 269 | 27.1 | 18.0 | 95.6   | 149 | 235 | 120 |  |  |  |
| LSD 5%               | _                                        | 992  | 17  | 2.7  | 1.0  | 0.5 NS | 22  | 12  | 108 |  |  |  |
| CV %                 |                                          | 9    | 4   | 7.0  | 3.9  | 0.4    | 14  | 5   | 62  |  |  |  |

**Net \$/Acre:** Revenue per acre assuming a \$60 payment and cost of \$1.48/oz of Quadris and \$7.50 for foliar applications. **Bold:** Results are not statistically different from top-ranking treatment in each column.

| Emergence:   | Excellent      | Cerc Leafspot: | Excellent Control |
|--------------|----------------|----------------|-------------------|
| Rhizoctonia: | Heavy          | Nematodes:     | Not Detected      |
| Quadris App: | See Treatments | Weather:       | Wet Early         |

#### **COMMENTS:**

The trial was designed to test different Quadris treatments on two different varieties, a Rhizoctonia resistant variety (HM-27RR) and a susceptible variety (B-18RR4N). The field had a history of heavy Rhizoctonia pressure and had heavy pressure in 2011. The Rhizoctonia resistant variety controlled disease and yielded very well with or without Quadris applications. The best treatments on the susceptible variety yielded similar to the resistant variety. A susceptible variety left unprotected from Rhizoctonia lost about 6 tons per acre. In furrow treatments were applied at 6.2 ounces of Quadris in 6 gallons of water per acre in a 4 inch T-band (Nozzle 8002E). Foliar applications were applied in a 7 inch band at 10.5 ounces of Quadris in 10 gallons of water per acre.

Use of these varieties is subject to them being lawful to purchase, receive, distribute and plant

**Research Results 2011** 



# **Rhizoctonia Control Trial** Gene Meylan • Linwood, MI

| <b>Trial Quality:</b> | Excellent  | Spacings:     | Rows-30"                        | Sample Date:       | October 6                               |
|-----------------------|------------|---------------|---------------------------------|--------------------|-----------------------------------------|
| Location:             | Bay County | Fertilizer:   | 2x2 - 20 Gal. 18.5-15-0-2.5S w/ | Herbicides:        | 3x Glyphosate                           |
| Planted:              | May 7      |               | qt of Mn & B; S.D. 90 # N       | <b>Replicated:</b> | 4x                                      |
| <b>Previous Crop:</b> | Drybeans   | Tillage:      | Ripper, Spring 1x Triple K      | Fungicide:         | 55 DSV - Eminent                        |
| Soil Type:            | Loam       | Harvest Date: | November 7                      | -                  | 110 DSV - Headline<br>165 DSV - Eminent |

|                      | Net         |           |      |      |         | Populations<br>100 Ft of Row |        | Dead<br>Beets/ |          |
|----------------------|-------------|-----------|------|------|---------|------------------------------|--------|----------------|----------|
| Treatment            | \$/Acre     | RWSA      | RWST | T/A  | % Sugar | % CJP                        | 10 Day | 41 Day         | 1,200 Ft |
| Rhizoctonia Resista  | nt Variety  | HM-28RR   |      |      |         |                              |        |                |          |
| 2-4 Leaf & 6-8 Leaf  | \$1,482     | 6872      | 270  | 25.5 | 17.8    | 96.2                         |        |                | 0        |
| In Furrow            | \$1,455     | 6595      | 258  | 25.5 | 17.2    | 96.0                         | 191    | 216            | 3        |
| Check                | \$1,439     | 6469      | 263  | 24.6 | 17.5    | 96.0                         | 201    | 211            | 11       |
| 6-8 Leaf             | \$1,400     | 6407      | 257  | 24.8 | 17.1    | 96.1                         | _      | _              | 0        |
| In Furrow & 6-8 Leaf | \$1,386     | 6367      | 257  | 24.9 | 17.1    | 96.1                         | _      | _              | 0        |
| 2-4 Leaf             | \$1,373     | 6293      | 262  | 24.0 | 17.4    | 96.1                         | _      | _              | 1        |
| Rhizoctonia Suscep   | tible Varie | ty B-19RR | 1N   |      |         |                              |        |                |          |
| 2-4 Leaf & 6-8 Leaf  | \$1,789     | 8245      | 284  | 29.0 | 18.8    | 96.1                         |        |                | 5        |
| In Furrow            | \$1,778     | 8042      | 283  | 28.5 | 18.6    | 96.3                         | 179    | 225            | 8        |
| 2-4 Leaf             | \$1,757     | 7999      | 275  | 29.1 | 18.3    | 95.9                         |        |                | 12       |

| Check   | \$1,718 | 7725 | 273 | 28.3 | 18.2 | 95.7 | 187 | 224 | 50  |
|---------|---------|------|-----|------|------|------|-----|-----|-----|
| Average | \$1,587 | 7237 | 270 | 26.8 | 17.9 | 96.0 | 190 | 219 | 8   |
| LSD 5%  | _       | 643  | 14  | 1.9  | 0.9  | 0.4  | 19  | 13  | 14  |
| CV %    | _       | 6    | 4   | 4.8  | 3.4  | 0.3  | 10  | 6   | 125 |
|         |         |      |     |      |      |      |     |     |     |

28.6

28.6

18.5

18.3

95.9

95.8

5

1

Net \$/Acre: Revenue per acre assuming a \$60 payment and cost of \$1.48/oz of Quadris and \$7.50 for foliar applications. **Bold:** Results are not statistically different from top-ranking treatment in each column.

279

275

| Emergence:   | Excellent      | Cerc Leafspot: | Good Control |
|--------------|----------------|----------------|--------------|
| Rhizoctonia: | Low            | Nematodes:     | Yes, Heavy   |
| Quadris App: | See Treatments | Weather:       | _            |

\$1,739

\$1,724

7979

7849

#### **COMMENTS:**

In Furrow & 6-8 Leaf

6-8 Leaf

The trial was designed to test different Quadris treatments on two different varieties, a Rhizoctonia resistant variety (HM-28RR) and a susceptible variety (B-19RR1N). The field had a history of Rhizoctonia and Sugarbeet Cyst Nematode (SBCN). In 2011, the field had a low level of Rhizoctonia infection. Quadris treatments within the Rhizoctonia resistant variety (HM-28RR) and susceptible variety (B-18RR4N) were not significantly different. This would be considered a typical response with low levels of Rhizoctonia. Since the field does have SBCN, there were significantly higher yields for variety B-19RR1N, a nematode tolerant variety. In furrow treatments were applied at 8 ounces of Quadris in 5 gallons of water per acre in a 5 inch band (Nozzle 8002E). Foliar applications were applied in a 7 inch band at 10.5 ounces of Quadris with ten gallons of water per acre.

27

# Sugarbeet Rhizoctonia Control Trial Advancement Schindler Farms, LLC • Kawkawlin, MI

| <b>Trial Quality:</b> | Good       | Spacings:   | Rows-22"; Seeds-58,500     | Hav/Sample:        | Nov 6 / Oct 6                           |
|-----------------------|------------|-------------|----------------------------|--------------------|-----------------------------------------|
| Location:             | Bay County | Fertilizer: | 2x2 - 19-17-0;             | Herbicides:        | 2x Glyphosate                           |
| Planted:              | May 5      |             | S.D 126# N by 28%          | <b>Replicated:</b> | 4x                                      |
| Variety:              | B-18RR4N   | Tillage:    | Chisel; Spring 1x Triple K | -<br>Fungicide:    | 62 DSV - Inspire XT                     |
| Previous Crop:        | Corn       | Soil Type:  | Loam                       |                    | 126 DSV - Headline<br>176 DSV - Proline |

|                                               | Net     |      |       |      |         |       |        | ations<br>of Row |          |
|-----------------------------------------------|---------|------|-------|------|---------|-------|--------|------------------|----------|
| Treatment                                     | \$/Acre | RWSA | RWST  | T/A  | % Sugar | % CJP | 12 Day | 36 Day           | 1,200 Ft |
| Variety B-18RR4N                              |         |      |       |      |         |       |        |                  |          |
| In Furrow - 9 oz &<br>6-8 Leaf - 14.25 oz     | \$1,854 | 8431 | 273   | 30.9 | 18.1    | 96.0  | _      | _                | 34       |
| In Furrow - 14.25 oz &<br>6-8 Leaf - 14.25 oz | \$1,822 | 8337 | 273   | 30.5 | 18.1    | 95.9  | _      |                  | 70       |
| In Furrow - 14.25 oz                          | \$1,832 | 8257 | 272   | 30.3 | 18.2    | 95.7  | 143    | 182              | 123      |
| In Furrow - 9 oz                              | \$1,811 | 8121 | 272   | 29.9 | 18.1    | 95.7  | 146    | 192              | 110      |
| 6-8 Leaf - 19.0 oz                            | \$1,781 | 8102 | 273   | 29.7 | 18.2    | 95.7  | _      | _                | 111      |
| 2-4 Leaf & 6-8 Leaf<br>Both 14.25 oz          | \$1,709 | 7852 | 259   | 30.4 | 17.5    | 95.1  |        | _                | 97       |
| 6-8 Leaf - 14.25 oz                           | \$1,630 | 7390 | 256   | 28.9 | 17.3    | 95.3  | _      | _                | 132      |
| Check                                         | \$1,393 | 6218 | 259   | 24.0 | 17.4    | 95.3  | 154    | 166              | 281      |
| Average                                       | \$1,729 | 7839 | 267   | 29.3 | 17.9    | 95.6  | 148    | 180              | 120      |
| LSD 5%                                        |         | 1024 | 19 NS | 2.7  | 1.1 NS  | 0.7   | 17 NS  | 22               | 88       |
| CV %                                          |         | 9    | 5     | 6.3  | 4.0     | 0.5   | 7      | 7                | 50       |

**Net \$/Acre:** Revenue per acre assuming a \$60 payment and cost of \$1.48/oz of Quadris and \$7.50 for foliar applications. **Bold:** Results are not statistically different from top-ranking treatment in each column.

| Emergence:   | Good             | Cerc Leafspot: | Good Control |
|--------------|------------------|----------------|--------------|
| Rhizoctonia: | Moderate / Heavy | Nematodes:     | Yes          |
| Quadris App: | See Treatments   | Weather:       | _            |

#### **COMMENTS:**

Trial was designed to test different Quadris timings and rates. Trial was planted to a nematode resistant variety (B-18RR4N) which is also a Rhizoctonia susceptible variety. Rhizoctonia pressure was moderate and reduced yields up to 7 tons/acre. All treatments were significantly better than the check. In furrow applications were applied in a 4 inch T-band at rates of 9 and 14.25 ounces per acre. In furrow applications, either in combination with a foliar 6-8 leaf treatment or applied alone, had the highest yield. The 9 or 14 ounce rate showed no difference in efficacy or yield. Foliar applications were applied at 14.25 and 19 ounces per acre. The rates were not significantly different for yield or control, but trended to favor the higher rate.

# Sugarbeet Advancement

# **Rhizoctonia Control Trial** Wallace Hecht Farms, Inc • Richville, MI

| Trial Quality: | Good           | Spacings:   | Rows-30"; Seeds-53,000 | Hav/Sample:        | Oct 19 / Oct 12                        |
|----------------|----------------|-------------|------------------------|--------------------|----------------------------------------|
| Location:      | Tuscola County | Fertilizer: | 100# MAP; 275 Urea;    | Herbicides:        | 3x Glyphosate                          |
| Planted:       | May 5          |             | Fall - 300 # K2O       | <b>Replicated:</b> | 4x                                     |
| Variety:       | C-RR824        | Tillage:    | Moldboard; 1x Triple K | Fungicide:         | 45 DSV - Inspire XT                    |
| Previous Crop: | Drybeans       | Soil Type:  | Clay Loam              |                    | 90 DSV - Headline<br>135 DSV - Eminent |

|                                  |         |        |       |        |         | 122 020 | - Eminent                  |
|----------------------------------|---------|--------|-------|--------|---------|---------|----------------------------|
| Treatment                        | \$/Acre | RWSA   | RWST  | T/A    | % Sugar | % CJP   | Dead<br>Beets/<br>1,200 Ft |
| Variety C-RR824                  |         |        |       |        |         |         |                            |
| Check                            |         | 8732   | 284   | 30.8   | 18.9    | 95.6    | 13                         |
| Quadris + Ammonium Sulfate       | —       | 8592   | 279   | 30.9   | 18.7    | 95.4    | 18                         |
| Quadris                          | —       | 8336   | 282   | 29.6   | 18.8    | 95.6    | 14                         |
| Quadris + AMS + Roundup PowerMax | —       | 8274   | 282   | 29.3   | 18.8    | 95.7    | 5                          |
| Quadris + Elemax Fertilizer      |         | 8093   | 282   | 28.6   | 18.8    | 95.7    | 10                         |
| Average                          |         | 9405   | 202   | 20.9   | 10.0    | 05.6    | 12                         |
| Average                          |         | 8405   | 282   | 29.8   | 18.8    | 95.6    | 12                         |
| LSD 5%                           |         | 767 NS | 14 NS | 2.4 NS | 0.7 NS  | 0.6 NS  | 23 NS                      |
|                                  |         |        |       |        |         |         |                            |

6

3

5.1

2.3

0.4

123

#### \$/Acre: Not Calculated

CV %

Bold: Results are not statistically different from top-ranking treatment in each column.

| Emergence:   | Excellent      | Cerc Leafspot: | Excellent Control |
|--------------|----------------|----------------|-------------------|
| Rhizoctonia: | Low            | Nematodes:     | Not Found         |
| Quadris App: | See Treatments | Weather:       | _                 |

#### **COMMENTS:**

Other sugarbeet growing areas have reported possibly observing an increase in Rhizoctonia control when Quadris was mixed with Roundup herbicides. This trial was designed to look at the effects of additives on Rhizoctonia control when applied with Quadris. Treatments included Quadris alone, mixed with AMS, AMS plus Roundup PowerMax, and Elemax complete foliar fertilizer. No mixing, compatibility, or foliar burn issues were seen with any of the treatments. Rhizoctonia levels where very low and arrived late in the season. As would be expected with such low levels of Rhizoctonia, there was no significant difference in yield or level of disease.



# Rhizoctonia: Evaluate Foliar Applications of Quadris and Insecticides • Gayari, Owendale, MI

| Trial Quality:<br>Location: | Fair<br>Huron County | Rhizoc Control:<br>Cercospora Control: | Good<br>Good    | Plot Size:<br>Reps: | 6 Rows X 35 ft<br>3 |
|-----------------------------|----------------------|----------------------------------------|-----------------|---------------------|---------------------|
| Planted:                    | June 1               | Soil Info:                             | Loamy Sand,     | <b>Row Spacing:</b> | 22 inches           |
| Harvested:                  | October 3            |                                        | 2.3% OM, 7.6 pH | Seeding Rate:       | 4.2 inches          |
| Variety:                    | SX-1291RR            | Seasonal Rainfall:                     | 18.77 inches    | Applic:             | 15 gpa, 30 psi      |

| Treatment                          | Rate                                    | Applic | Net<br>Income<br>\$/Acre | RWSA     | RWST   | T/A     | %<br>Sugar | %<br>CJP | SB Injury<br>0-10<br>Jul 22 |
|------------------------------------|-----------------------------------------|--------|--------------------------|----------|--------|---------|------------|----------|-----------------------------|
| Quadris                            | 14.25 fl oz/a                           | 6 lf   | \$1,327                  | 5390     | 241    | 22.4    | 16.7       | 94.2     | 0.0                         |
| Quadris<br>Mustang Max             | 14.25 fl oz/a<br>4 fl oz/a              | 6 lf   | \$1,308                  | 5331     | 253    | 21.0    | 17.2       | 94.9     | 0.2                         |
| Quadris<br>Mustang Max<br>Round up | 14.25 fl oz/a<br>4 fl oz/a<br>7 fl oz/a | 6 lf   | \$1,286                  | 5265     | 240    | 21.9    | 16.6       | 94.4     | 0.2                         |
| Mustang Max                        | 4 fl oz/a                               | 6 lf   | \$1,263                  | 5112     | 232    | 22.0    | 16.2       | 93.9     | 0.1                         |
| Lorsban                            | 1 pt/a                                  |        | \$1,247                  | 5066     | 246    | 20.6    | 16.9       | 94.5     | 0.4                         |
| Quadris<br>Lorsban                 | 14.25 fl oz/a<br>1 pt/a                 | 6 lf   | \$1,179                  | 4832     | 239    | 20.2    | 16.5       | 94.5     | 0.4                         |
| Average                            |                                         |        | \$1,268                  | 5166     | 242    | 21.4    | 16.7       | 94.4     | 2.1                         |
| LSD 5%                             |                                         |        | ns(408)                  | ns(1646) | ns(12) | ns(6.3) | 0.6        | 0.8      | ns(.4)                      |
| CV %                               |                                         |        | 17.5                     | 17.5     | 2.8    | 16.2    | 2.1        | 0.5      | 106.0                       |

**Bold:** Results are not statistically different from top-ranking treatment in each column. **\$/Acre:** Figured using a \$60 payment.

#### **SUMMARY:**

Quadris tank mixtures with Mustang Max and Lorsban were evaluated in this small plot replicated trial. The treatments were applied in 15 gallons of water at 30 psi at the 6 leaf stage on July 7 and evaluated 2 weeks later. Minor leaf injury was noted with several treatments, however, the symptoms were short lived. Sugarbeet yield and quality were not influenced by the foliar sprays. Rhizoctonia was not a problem in the plot.



# Rhizoctonia: Evaluate Foliar Applications of Quadris and Insecticides • Hoard, Breckenridge, MI

| Trial Quality:        | Fair–Good      |
|-----------------------|----------------|
| Location:             | Gratiot County |
| Planted:              | May 5          |
| Harvested:            | September 16   |
| <b>Previous Crop:</b> | Soybeans       |
| Variety:              | HM-28RR        |
|                       |                |

Rhizoc Control: Good Cercospora Control: Good Soil Info: Silt Loam, 3.0% OM, 7.6 pH Trts Applied:June 15Application:15 gpa, 30 psiSeasonal Rainfall:12.2 inches

| Treatment   | Rate          | Applic | SB Injury<br>0-10<br>Jun 28 | Dead Beets<br>#/100ft<br>Sep 14 |
|-------------|---------------|--------|-----------------------------|---------------------------------|
| Untreated   |               |        | 0.0                         | 3.3                             |
| Quadris     | 14.25 fl oz/A | 8 lf   | 0.0                         | 0.3                             |
| Mustang Max | 4 fl oz/a     | 8 lf   | 0.3                         | 2.7                             |
| Quadris +   | 14.25 fl oz/A |        |                             |                                 |
| Mustang Max | 4 fl oz/a     | 8 lf   | 0.5                         | 0.7                             |
| Lorsban     | 16 fl oz/a    | 8 lf   | 0.7                         | 2.3                             |
| Quadris +   | 14.25 fl oz/A |        |                             |                                 |
| Lorsban     | 16 fl oz/A    | 8 lf   | 0.8                         | 0.7                             |
| Average     |               |        | 0.4                         | 1.7                             |
| LSD 5%      |               |        | ns(1.1)                     | 1.7                             |
| CV %        |               |        | 153                         | 56.9                            |

**Bold:** Results are not statistically different from top-ranking treatment in each column.

#### **SUMMARY:**

Minor sugarbeet leaf injury was found with Quadris + Lorsban and Quadris + Mustang Max foliar applications, however, the injury was transient. Lorsban and Mustang Max alone caused similar symptoms. There was not enough disease in the trial to evaluate for rhizoctonia. Yields were not taken.



# Rhizoctonia: Evaluate Foliar Applications of Quadris and Insecticides • Gilford, MI

| <b>Trial Quality:</b> | Good           | <b>Rhizoc Control:</b>     | Good       | Plot Size:          | 6 Rows x 38 ft |
|-----------------------|----------------|----------------------------|------------|---------------------|----------------|
| Location:             | Tuscola County | <b>Cercospora Control:</b> | Good       | Reps:               | 4              |
| Planted:              | May 18         | Soil Info:                 | Silt Loam, | <b>Application:</b> | 15 gpa, 30 psi |
| Harvested:            | September 23   |                            | 8.6% OM,   | Trt Applied:        | June 13        |
| <b>Previous Crop:</b> | Oilseed Radish |                            | 7.8 pH     | Rainfall:           | 15 inches      |
| Variety:              | B-18RR4N       |                            |            |                     |                |
| -                     |                |                            |            |                     |                |

| Treatment     | Applic | Rate          | Injury 0-10<br>Jun 20<br>6 leaf |
|---------------|--------|---------------|---------------------------------|
| Untreated     |        |               | 0                               |
| Quadris FL    | 4 lf   | 14.25 fl oz/a | 0                               |
| Quadris FL    | 4lf    | 14.25 fl oz/a | 0                               |
| Mustang Max   | 4lf    | 4 fl oz/a     |                                 |
| Quadris FL    | 4lf    | 14.25 fl oz/a | 0                               |
| Asana         | 4lf    | 9.6 fl oz/a   |                                 |
| Mustang Max   | 4lf    | 4 fl oz/a     | 0                               |
| Asana         | 4lf    | 9.6 fl oz/a   | 0                               |
| Lorsban Adv   | 4lf    | 1.33 pt/a     | 0                               |
| Stallion      | 4lf    | 11.75 fl oz/a | 0                               |
| Quadris FL    | 4lf    | 14.25 fl oz/a | 0.5                             |
| Mustang Max   | 4lf    | 4 fl oz/a     |                                 |
| Roundup       | 4lf    | 8 fl oz/a     |                                 |
| Ammonium Sulf | 4lf    | 17 lb/100 gal |                                 |
| Quadris FL    | 4lf    | 14.25 fl oz/a | 0.5                             |
| Stallion      | 4lf    | 11.75 fl oz/a |                                 |
| Quadris FL    | 4lf    | 14.25 fl oz/a | 1.5                             |
| Lorsban Adv   | 4lf    | 1.33 pt/a     |                                 |
| Average       |        |               | 0.2                             |
| LSD 5%        |        |               | 0.4                             |
| CV %          |        |               | 132.7                           |

Bold: Results are not statistically different from top-ranking treatment in each column.

#### **SUMMARY:**

Quadris was applied at the 4 leaf stage alone and in combination with Mustang Max, Lorsban Advance, Asana, and Stallion. Minor leaf speckling was noted with the Quadris + Lorsban treatment. The injury did not last throughout the season. Stallion is a pre-mix of Lorsban and a pyrethroid.



# Rhizoctonia: Evaluate Applications of Quadris & Insecticides In-Furrow (T-band) at Planting • Crumbaugh, St. Louis, MI

| Trial Quality:<br>Location: | Fair<br>Gratiot County | Soil Info:                  | Loam, 2.9% OM,<br>6.1 pH | Plot Size:<br>Reps:     | 6 Rows x 35 ft<br>6   |
|-----------------------------|------------------------|-----------------------------|--------------------------|-------------------------|-----------------------|
| Planted:<br>Harvested:      | May 7<br>Not Harvested | Nutrient Level:<br>Added N: | 100 lbs                  | T-band:<br>Row Spacing: | 10 gpa, 6502E, 25 psi |
| Previous Crop:              | Soybeans               | Variety:                    | C-RR824                  | Seeding Rate:           | 4.2 inch              |

|             |                            |             | Stand<br>B/100′ |        | 0.10           | Dead              |  |
|-------------|----------------------------|-------------|-----------------|--------|----------------|-------------------|--|
| Treatment   | At Planting<br>Applic Desc | Rate        | 28 Day          | 89 Day | 0-10<br>Injury | B/100'<br>125 Day |  |
| Quadris     | 3.5 inch T-band            | 7.1 fl oz/a | 164             | 131    | 0.0            | 3.5               |  |
| Quadris     | 3.5 inch T-band            | 7.1 fl oz/a | 161             | 143    | 0.1            | 4.0               |  |
| Mustang Max | 3.5 inch T-band            | 4 fl oz/a   |                 |        |                |                   |  |
| Mustang Max | 3.5 inch T-band            | 4 fl oz/a   | 152             | 121    | 0.0            | 11.6              |  |
| Lorsban 4E  | 3.5 inch T-band            | 1 pt/a      | 148             | 125    | 0.1            | 9.0               |  |
| Quadris     | 3.5 inch T-band            | 7.1 fl oz/a | 145             | 120    | 0.1            | 3.0               |  |
| Lorsban 4E  | 3.5 inch T-band            | 1 pt/a      |                 |        |                |                   |  |
| Untreated   |                            |             | 131             | 106    | 0.0            | 11.0              |  |
| Average     |                            |             | 150             | 124    | 0.6            | 7.0               |  |
| LSD 5%      |                            |             | 24.0            | 19.9   | 2.9            | 5.1               |  |
| CV %        |                            |             | 10.5            | 10.6   | 304.0          | 48.0              |  |

Bold: Results are not statistically different from top-ranking treatment in each column.

#### **SUMMARY:**

Quadris tank mixtures with insecticides were evaluated in this small plot replicated trial. The treatments were applied in a 3.5 inch T-band at planting in 10 gallons of water per acre. All of the Quadris treatments had improved stands compared to the untreated. Minor sugarbeet injury was noted in the Lorsban and Mustang Max tank mixes. The injury (stunting) did not last long. Lorsban and Mustang added to Quadris did not reduce the effectiveness of Quadris. The trial was not harvested because of variability in the plot.



# Rhizoctonia: Evaluate Applications of Quadris & Insecticides In-Furrow (T-band) at Planting • Stoutenburg, Sandusky, MI

| Trial Quality: | Good           | Applicat |
|----------------|----------------|----------|
| Location:      | Sanilac County | 3.5"     |
| Planted:       | May 13         | 3 mj     |
| Harvested:     | October 10     | 6502     |
| Variety:       | SX-1291RR      |          |
|                |                |          |

**plication Method:** 3.5" T-band at planting 3 mph, 25 psi, 9 gpa 6502E Nozzles Soil Info: Loam, 3.9% OM, 7.2 pH Seasonal Rainfall: 14.9 inches

| Treatment   | Rate        | Appl<br>Method | Net<br>Income<br>\$/Acre | RWSA      | RWST     | T/A     | %<br>Sugar | %<br>CJP |
|-------------|-------------|----------------|--------------------------|-----------|----------|---------|------------|----------|
| Quadris +   | 7.1 fl oz/A | T-band         | \$1,528                  | 5629      | 224      | 25.1    | 15.5       | 94.6     |
| Mustang Max | 4 fl oz/A   |                |                          |           |          |         |            |          |
| Untreated   |             |                | \$1,532                  | 5587      | 218      | 25.4    | 15.3       | 93.9     |
| Quadris     | 7.1 fl oz/A | T-band         | \$1,507                  | 5535      | 219      | 25.3    | 15.2       | 94.3     |
| Mustang Max | 4 fl oz/A   | T-band         | \$1,447                  | 5298      | 214      | 24.7    | 15.0       | 94.2     |
| Average     |             |                | \$1,503                  | 5512      | 219      | 25.1    | 15.2       | 94.2     |
| LSD 5%      |             |                | ns(175.3)                | ns(639.5) | ns(10.8) | ns(2.2) | ns(0.6)    | ns(0.7)  |
| CV %        |             |                | 9.4                      | 9.4       | 4.0      | 7.1     | 3.3        | 0.6      |

| Treatment   | Rate        | Applic<br>Method | Emergence<br>B/100'<br>24 day | Dead Beets<br>#/100ft<br>128 day |
|-------------|-------------|------------------|-------------------------------|----------------------------------|
| Quadris +   | 7.1 fl oz/A | T-band           | 132                           | 0.2                              |
| Mustang Max | 4 fl oz/A   |                  |                               |                                  |
| Untreated   |             |                  | 123                           | 0.5                              |
| Quadris     | 7.1 fl oz/A | T-band           | 130                           | 0.3                              |
| Mustang Max | 4 fl oz/A   | T-band           | 131                           | 0.7                              |
| Average     |             |                  | 128.8                         | 0.42                             |
| LSD 5%      |             |                  | ns(23.2)                      | ns(1.13)                         |
| CV %        |             |                  | 14.7                          | 220.5                            |

**Bold:** Results are not statistically different from top-ranking treatment in each column. **\$/Acre:** Figured using a \$60 payment.

#### **SUMMARY:**

Quadris + Mustang Max tank mixtures were applied in-furrow (3.5"T band) at planting in this small plot replicated trial. There was not enough disease in the field to evaluate for Rhizoctonia control. Emergence counts were not statistically different, however, the treated plots had more sugarbeets than the untreated plots. There was no injury or stand loss from Quadris or Mustang Max, whether applied alone or in combination.



# Rhizoctonia: Evaluate Applications of of Quadris + Mustang Max In-Furrow (T-band) • Crumbaugh, Breckenridge, MI Page 1 of 2

| <b>Trial Quality:</b> | Good           | Cercospora Control: Good         | Plot Size:          | 6  |
|-----------------------|----------------|----------------------------------|---------------------|----|
| Location:             | Gratiot County | Soil Info: Loam, 2.8% OM, 6.1 pH | Reps:               | 4  |
| Planted:              | May 7          | T-band Treatments:               | <b>Row Spacing:</b> | 22 |
| Harvested:            | September 14   | 3.5 inch band at planting        | Seeding Rate:       | 4. |
| <b>Previous Crop:</b> | Soybeans       | Quadris rate: 7.1 fl oz/A        | Seasonal            |    |
| -                     | ·              | Mustang rate: 4.0 fl oz/A        | Rainfall:           | 16 |

Rows x 100 ft 2 iinches I.2 iinches 16.7 iinches Kaintali:

|           | In-Furrow          |         |       |      |      |            |          |        | nd<br>00 Ft | Dead<br>Beets/   |
|-----------|--------------------|---------|-------|------|------|------------|----------|--------|-------------|------------------|
| Treatment | (T-band)<br>Applic | \$/Acre | RWSA  | RWST | T/A  | %<br>Sugar | %<br>CJP | June 2 | Sep13       | 100 Ft<br>Sep 13 |
| C-RR827   | Qua                | \$1,218 | 4110  | 233  | 17.9 | 16.4       | 93.7     | 207    | 170         | 20               |
| B-19RR1N  | Qua                | \$1,191 | 4112  | 226  | 18.1 | 16.1       | 93.0     | 217    | 184         | 24               |
| B-19RR1N  | Qua+M              | \$1,172 | 4090  | 234  | 17.2 | 16.6       | 93.1     | 227    | 173         | 33               |
| C-RR827   | Qua+M              | \$1,083 | 3630  | 227  | 16.4 | 16.0       | 93.4     | 186    | 156         | 22               |
| C-RR827   | None               | \$1,064 | 3761  | 227  | 16.1 | 16.0       | 93.6     | 183    | 135         | 44               |
| SX-1291RR | Qua                | \$1,022 | 3560  | 217  | 16.2 | 15.4       | 93.1     | 225    | 188         | 8                |
| SX-1291RR | Qua+M              | \$975   | 3352  | 209  | 16.0 | 15.0       | 93.0     | 237    | 200         | 5                |
| B-19RR1N  | None               | \$942   | 3348  | 220  | 14.7 | 15.8       | 92.7     | 207    | 158         | 46               |
| HM-28RR   | Qua                | \$934   | 3283  | 224  | 14.3 | 15.9       | 93.5     | 187    | 164         | 6                |
| HM-28RR   | Qua+M              | \$892   | 3012  | 229  | 13.4 | 16.1       | 93.6     | 166    | 139         | 3                |
| SX-1291RR | None               | \$856   | 3049  | 214  | 13.8 | 15.3       | 92.9     | 217    | 177         | 10               |
| HM-28RR   | None               | \$855   | 3004  | 222  | 13.2 | 15.8       | 93.2     | 144    | 125         | 9                |
| Average   |                    | \$1,017 | 3526  | 223  | 15.6 | 15.9       | 93.2     | 200    | 164         | 19               |
| LSD 5%    |                    | 288.6   | 978.0 | 14.9 | 4.2  | 0.8        | 0.7      | 32.9   | 34.0        | 15.0             |
| CV %      |                    | 22.7    | 22.3  | 5.3  | 21.5 | 4.2        | 0.6      | 13.2   | 16.8        | 56.2             |

Bold: Results are not statistically different from top-ranking treatment in each column.

\$/Acre: Figured using a \$60 payment, gross payment unless noted as net.



### Rhizoctonia: Evaluate Applications of of Quadris + Mustang Max In-Furrow

(T-band) • Crumbaugh, Breckenridge, MI

Page 2 of 2

### **In-Furrow Treatment Effects**

|           |         |         |        |         | ~          | ~        | Sta<br>B/10 | ind<br>00 Ft | Dead<br>Beets/   |  |
|-----------|---------|---------|--------|---------|------------|----------|-------------|--------------|------------------|--|
| Treatment | \$/Acre | RWSA    | RWST   | T/A     | %<br>Sugar | %<br>CJP | June 2      | Sep13        | 100 Ft<br>Sep 13 |  |
| Quadris   | \$1,091 | 3766    | 225    | 16.7    | 15.9       | 93.3     | 209         | 177          | 14               |  |
| Quadris + | \$1,031 | 3521    | 225    | 15.8    | 15.9       | 93.3     | 204         | 167          | 16               |  |
| Mustang M |         |         |        |         |            |          |             |              |                  |  |
| Untreated | \$929   | 3291    | 221    | 14.5    | 15.7       | 93.1     | 188         | 149          | 27               |  |
| Average   | \$1,017 | 3526    | 223    | 15.6    | 15.9       | 93.2     | 200         | 164          | 19               |  |
| LSD 5%    | .,      | ns(690) | ns(10) | ns(2.9) | ns(0.6)    | ns(0.5)  | ns(23)      | 24.1         | 10.6             |  |

### **Variety Effects**

|           |         |      |      |      | ~          | <b>~</b> ′ | Sta<br>B/10 | nd<br>00 Ft | Dead<br>Beets/   |  |
|-----------|---------|------|------|------|------------|------------|-------------|-------------|------------------|--|
| Variety   | \$/Acre | RWSA | RWST | T/A  | %<br>Sugar | %<br>CJP   | June 2      | Sep13       | 100 Ft<br>Sep 13 |  |
| C-RR827   | \$1,122 | 3834 | 229  | 16.8 | 16.1       | 93.6       | 192         | 154         | 28               |  |
| B-19RR1N  | \$1,102 | 3850 | 227  | 16.7 | 16.2       | 92.9       | 217         | 172         | 34               |  |
| SX-1291RR | \$951   | 3320 | 213  | 15.3 | 15.2       | 93.0       | 226         | 188         | 8                |  |
| HM-28RR   | \$894   | 3100 | 225  | 13.7 | 15.9       | 93.4       | 166         | 143         | 6                |  |
|           |         |      |      |      |            |            |             |             |                  |  |
| Average   | \$1,017 | 3526 | 223  | 15.6 | 15.9       | 93.2       | 200         | 164         | 19               |  |
| LSD 5%    |         | 345  | 3.4  | 1.7  | 0.2        | 0.3        | 11.5        | 12.0        | 9.3              |  |

**Bold:** Results are not statistically different from top-ranking treatment in each column. **\$/Acre:** Figured using a \$60 payment, gross payment unless noted as net.

#### **SUMMARY:**

This was a "small" (6 rows X 100 ft) replicated strip trial. Quadris and Quadris + Mustang Max applied at planting in a 3.5 inch Tband improved sugarbeet emergence and the number of harvestable beets compared to an untreated check. Yields and quality were also improved but the differences were not statistically significant. There was no difference between Quadris and Quadris + Mustang Max. All treatments were applied to 4 varieties, C-RR827, B-19RR1N, SX-1291RR and HM-28RR. C-RR827 and B-19RR1N yielded higher and had better quality than SX-1291RR and HM-28RR. SX-1291RR and HM-28RR had significantly fewer dead beets at harvest. Heavy rains following planting increased variation in the trial.

Use of these varieties is subject to them being lawful to purchase, receive, distribute and plant



### Rhizoctonia: Evaluate Quadris + Starter Fertilizer Applied at Planting in a 2"T-band • Gilford, MI

| Trial Quality:        | Fair           |
|-----------------------|----------------|
| Location:             | Tuscola County |
| Planted:              | May 18         |
| Harvested:            | September 23   |
| <b>Previous Crop:</b> | Oilseed Radish |
| Variety:              | B-18RR4N       |
|                       |                |

Rhizoc Control:GoodCercospora Control:GoodSeasonal Rainfall:6.98 inchesSoil Info:Silt Loam, 8.6% OM, 7.8 pH

Plot Size:6 Rows X 35 ftReps:6In-Furrow:10 gpa, 25 psi, 6502EBand Width:2 inch T-bandRow Spacing:22 inchesSeeding Rate:4.2 inches

| Treatment | Rate        | Appl<br>Timing | Net<br>Income<br>\$/Acre | RWSA    | RWST   | T/A     | %<br>Sugar | %<br>CJP | Vigor<br>1-10<br>Jun 20 | Emerge<br>B/100 Ft<br>Jun 11 |
|-----------|-------------|----------------|--------------------------|---------|--------|---------|------------|----------|-------------------------|------------------------------|
| Quadris   | 7.1 fl oz/a | T-band         | \$1,363                  | 4332    | 189    | 22.9    | 14.2       | 91.1     | 5.0                     | 218                          |
| 10-34-0   | 3 gal/a     | T-band         | \$1,351                  | 4295    | 192    | 22.2    | 14.6       | 90.9     | 5.4                     | 215                          |
| Quadris   | 7.1 fl oz/a | T-band         | \$1,295                  | 4148    | 185    | 22.5    | 14.2       | 90.3     | 5.5                     | 213                          |
| 10-34-0   | 3 gal/a     |                |                          |         |        |         |            |          |                         |                              |
| Quadris   | 7.1 fl oz/a | T-band         | \$1,286                  | 4138    | 192    | 21.6    | 14.6       | 90.7     | 6.0                     | 210                          |
| Alpine    | 3 gal/a     |                |                          |         |        |         |            |          |                         |                              |
| Alpine    | 3 gal/a     | T-band         | \$1,292                  | 4124    | 188    | 22.0    | 14.3       | 90.8     | 5.0                     | 211                          |
| Untreated |             |                | \$1,307                  | 4123    | 189    | 21.8    | 14.4       | 90.8     | 4.5                     | 183                          |
| Average   |             |                | \$1,316                  | 4193    | 189    | 22.2    | 14.4       | 90.8     | 5.2                     | 209                          |
| LSD 5%    |             |                | ns(233)                  | ns(736) | ns(12) | ns(4.0) | ns(0.7)    | ns(0.9)  | 0.9                     | 33.1                         |
| CV %      |             |                | 11.6                     | 11.6    | 4.1    | 11.9    | 3.1        | 0.7      | 11.7                    | 10.5                         |

**Bold:** Results are not statistically different from top-ranking treatment in each column. **\$/Acre:** Figured using a \$60 payment.

#### **SUMMARY:**

Quadris was applied at planting in a 2 inch T-band alone and in combination with starter fertilizers. There was not enough disease to obtain Rhizoctonia counts or ratings. Quadris alone or in combination with starter fertilizers at 3 gal/A had higher stand counts than the untreated check plots. There did not appear to be any seedling injury from the starter fertilizers. The plot was planted late and harvested early and sugar levels were very low.



### Rhizoctonia: Evaluate Quadris + Starter Fertilizer Applied at Planting in a 2"T-band • Knoerr, Bay City, MI

| Trial Quality:        | Good         | <b>Rhizoc Control:</b>     | Good        | Plot Size:          | 6 Rows X 38 ft           |
|-----------------------|--------------|----------------------------|-------------|---------------------|--------------------------|
| Location:             | Bay County   | <b>Cercospora Control:</b> | Good        | Reps:               | 5                        |
| Planted:              | May 11       | Seasonal Rainfall:         | 19.2 inches | <b>Application:</b> | 2"T-band, 10 gpa, 25 psi |
| Harvested:            | November 7   | Soil Info: Sandy Clay      | Loam,       | <b>Row Spacing:</b> | 22 inches                |
| <b>Previous Crop:</b> | Wheat/Radish | 2.9% OM, 7                 | .5 pH       | Seeding Rate:       | 4.2 inches               |
|                       |              |                            |             |                     |                          |

| Treatment        | Rate        | Appl<br>Timing | Net<br>Income<br>\$/Acre | RWST  | RWSA | T/A  | %<br>Sugar | %<br>CJP | Vigor<br>1-10<br>Jun 18 | Emerge<br>B/100 Ft<br>Jun 1 |
|------------------|-------------|----------------|--------------------------|-------|------|------|------------|----------|-------------------------|-----------------------------|
| Quadris          | 7.1 fl oz/a | T-band         | \$1,630                  | 8027  | 300  | 26.8 | 20.0       | 95.2     | 5.5                     | 175                         |
| 45 lb active N/A | 45 lb ai/a  | 2X2            | \$1,589                  | 7976  | 289  | 27.6 | 19.5       | 94.9     | 6.9                     | 179                         |
| 25 lb active P/A | 25 lb ai/a  | 2X2            |                          |       |      |      |            |          |                         |                             |
| Quadris          | 7.1 fl oz/a | T-band         | \$1,540                  | 7663  | 300  | 25.6 | 20.0       | 95.3     | 5.9                     | 174                         |
| Alpine           | 3 gal/a     | T-band         |                          |       |      |      |            |          |                         |                             |
| Quadris          | 7.1 fl oz/a | T-band         | \$1,521                  | 7566  | 298  | 25.4 | 19.8       | 95.5     | 6.1                     | 184                         |
| Redline          | 3 gal/a     | T-band         |                          |       |      |      |            |          |                         |                             |
| Alpine           | 3 gal/a     | T-band         | \$1,506                  | 7448  | 288  | 25.8 | 19.7       | 94.4     | 5.8                     | 189                         |
| 10-34-0          | 3 gal/a     | T-band         | \$1,503                  | 7406  | 295  | 25.1 | 19.8       | 95.1     | 5.1                     | 191                         |
| 22-12-0          | 3 gal/a     | T-band         | \$1,465                  | 7219  | 293  | 24.7 | 19.7       | 95.0     | 4.7                     | 183                         |
| Quadris          | 7.1 fl oz/a | T-band         | \$1,419                  | 7046  | 293  | 24.1 | 19.7       | 95.0     | 5.4                     | 175                         |
| 10-34-0          | 3 gal/a     | T-band         |                          |       |      |      |            |          |                         |                             |
| Untreated        |             |                | \$1,421                  | 6957  | 294  | 23.7 | 19.8       | 94.8     | 3.6                     | 151                         |
| Redline          | 3 gal/a     | T-band         | \$1,391                  | 6856  | 288  | 23.8 | 19.4       | 95.0     | 5.5                     | 184                         |
| Average          |             |                | \$1,499                  | 7416  | 294  | 25.2 | 19.7       | 95.0     | 5.4                     | 179                         |
| LSD 5%           |             |                | 180.0                    | 881.0 | 7.4  | 2.8  | 0.4        | 0.5      | 0.7                     | 22.7                        |
| CV %             |             |                | 9.2                      | 9.2   | 2.0  | 8.5  | 1.7        | 0.4      | 10.0                    | 9.8                         |

**Bold:** Results are not statistically different from top-ranking treatment in each column. **\$/Acre:** Figured using a \$60 payment.

#### **SUMMARY:**

Quadris was applied in-furrow in a 2 inch T-band alone and in combination with starter fertilizers. There was not enough disease to obtain Rhizoctonia counts or ratings. Quadris, alone or in combination with starter fertilizers, had higher stand counts than the untreated check plots. There did not appear to be any seedling injury from the starter fertilizers.



### Seedling Diseases 2011 Determining Sugarbeet Pathogens

Page 1 of 2

### **Seedling Disease Survey in Michigan**

Linda Hanson, Tom Goodwill, and J. Mitch McGrath USDA-ARS

**Disease Survey:** Samples have been collected of diseased seedling for four years. Each year since 2008, 3-8 seedlings were sampled per field from varying numbers of fields, depending on the amount of disease observed. Results showed that many pathogens are present in MI grower fields. The most prevalent pathogen varied between years. For example, in a very wet spring, more *Aphanomyces* was observed, while in two of the four years, *Rhizoctonia* was the most commonly isolated pathogen. Three pathogens have consistently been the most commonly isolated (Table 1). Awareness of the specific seedling disease-causing organisms potentially affecting stands can allow for selection of varieties and disease management practices targeted for the particular problems.

**Table 1:** Percent of fields sampled that contained indicated organisms in each year out of the four for which survey data is available.

|          | Fields with genus (%) |      |      |        |  |  |  |  |  |  |  |
|----------|-----------------------|------|------|--------|--|--|--|--|--|--|--|
| Genus    | 2008                  | 2009 | 2010 | 2011   |  |  |  |  |  |  |  |
| Rhizoc.  | 100%*                 | 30%* | 72%* | 36%    |  |  |  |  |  |  |  |
| Aph.     | 50%                   | 73%* | 27%  | 71%    |  |  |  |  |  |  |  |
| Fusarium | 67%*                  | 47%* | 64%* | 100%*  |  |  |  |  |  |  |  |
| Pythium  | 14%                   | 40%  | 27%  | 21%    |  |  |  |  |  |  |  |
| Phoma    | 28%                   | 18%  | 9%   | 29%    |  |  |  |  |  |  |  |
| Other    | 5%                    | 18%  | 27%  | 4 spp. |  |  |  |  |  |  |  |

\* Indicates that fungus was isolated from more than half of the seedlings in one or more fields that year and was the sole fungus isolate from the majority of seedling beets in at least one field in the year.

*Rhizoctonia solani* isolates were further characterized to anastomosis group (AG). Of the *R. solani* collected, the majority of isolates (82%) were AG-2-2, traditionally associated with crown and root rot (CRR), the majority of the remaining were AG-4 (prior to 2000 reported as the primary seedling pathogen).

In greenhouse and/or laboratory tests, MI seedling isolates of *R. solani* (both AG-4 and AG-2-2), Fusarium species, *Pythium*, Aphanomyces, and *Phoma* all caused damping-off of seedlings. All could kill some beet varieties, and reduced growth or weakened others.

Other species were isolated infrequently during the survey. These included *Alternaria* spp, *Mucor*, and *Rhizopus*. All three have been reported as weak pathogens of sugar beet seedlings. In other crops, *Rhizopus* can cause pre-emergence damping-off. Stand of some varieties was reduced when *Rhizopus* was added to the soil. No strong symptoms were observed for the other genera in greenhouse tests.

continued on next page



### Seedling Diseases 2011 Determining Sugarbeet Pathogens

Page 2 of 2



Figure 1. Beet seedling samples with damping-off symptoms.



### **Date of Harvest Trial** Average of 2 Locations • Sylvester & Knoerr Farms

| Trial Quality:<br>Locations:<br>Variety: | Good<br>Tuscola / Bay Cou<br>SX-1291RR | •     | ize: 4<br>6<br>ng Rate: 4 |      | ft         |          |        |              |        |
|------------------------------------------|----------------------------------------|-------|---------------------------|------|------------|----------|--------|--------------|--------|
| Harvest Date                             | \$/Acre                                | RWSA  | RWST                      | T/A  | %<br>Sugar | %<br>CJP | B/100  | Rain<br>Inch | D<br>G |
| Oct 1                                    | \$2,092                                | 7314  | 264                       | 27.8 | 18.1       | 94.4     | 182    | 1.8          |        |
| Oct 15                                   | \$2,043                                | 8245  | 290                       | 28.5 | 19.6       | 94.9     | 179    | 0.3          |        |
| Nov 1                                    | \$2,024                                | 9013  | 273                       | 33.3 | 18.5       | 94.8     | 185    | 3.2          |        |
| Sep 15                                   | \$1,988                                | 5812  | 253                       | 23.0 | 17.4       | 94.3     | 187    | 0.5          |        |
| Sep 1                                    | \$1,637                                | 4304  | 209                       | 20.4 | 15.1       | 92.7     | 188    | 1.1          |        |
| Aug 15                                   | \$1,476                                | 3394  | 184                       | 18.4 | 13.3       | 92.9     | 182    | 2.9          |        |
| Average                                  | \$1,877                                | 6347  | 246                       | 25.2 | 17.0       | 94.0     | 183.9  |              |        |
| LSD 5%                                   |                                        | 536.8 | 9.7                       | 1.8  | 0.5        | 0.5      | ns(18) |              |        |
| CV %                                     |                                        | 7.1   | 3.3                       | 5.9  | 2.5        | 0.4      | 8.1    |              |        |

**Bold:** Results are not statistically different from top-ranking treatment in each column. **Rain and GDD:** Total rainfall and average daily GDD 14-16 days prior to harvest.

**\$/Acre:** Figured using a \$60 payment.

#### **SUMMARY:**

The \$/Acre payment was figured using the new early harvest payment system. Sugarbeets were planted at a 4.4 inch spacing with a 12-row Monosem drill. The plots were well maintained and diseases were not a problem. Nematodes were detected at a low level at the Bay City location. Sugarbeets were hand dug, hand topped, cleaned and weighed at the appropriate dates. Quality samples were processed at the MARL lab. The highest yield and income came from the November 1 harvest date, however, grower payment was the highest October 1. Three inches of rain fell prior to the November 1 harvest date and the sugar level was reduced from the mid Oct timing. Ten tons and one point of sugar were gained from mid-September to November 1. Warm weather and plentiful rainfall allowed for continued growth during the harvest season.

Daily

GDĎ

23

25

12

31

34

34

Pmt/

Ton

\$76.75

\$71.66

\$60.74

\$86.29

\$80.11 \$80.27

\$75.97



### **Date of Harvest Trial** Sylvester Farms • Reese, MI

| Trial Quality:<br>Location:<br>Planting Date: | Very Good<br>Tuscola County<br>May 5 | Silt Ioam, 2.8% OM, 7.9 pH<br>Optimum or above<br>135 lb | Plot Size:<br>Reps: | 4 Rows X 38 ft<br>6 |
|-----------------------------------------------|--------------------------------------|----------------------------------------------------------|---------------------|---------------------|
| Variety:                                      | SX-1291RR                            |                                                          |                     |                     |

| Harvest Date | \$/Acre | RWSA  | RWST | T/A  | %<br>Sugar | %<br>CJP | B/100  | Rain<br>Inch | Daily<br>GDD | Pmt/<br>Ton |
|--------------|---------|-------|------|------|------------|----------|--------|--------------|--------------|-------------|
| Sep 15       | \$2,393 | 7024  | 251  | 28.0 | 17.2       | 94.5     | 192    | 0.8          | 31           | \$85.33     |
| Oct 1        | \$2,375 | 8423  | 262  | 31.2 | 18.1       | 94.2     | 181    | 2.1          | 22           | \$76.23     |
| Oct 15       | \$2,353 | 9515  | 286  | 33.3 | 19.2       | 95.2     | 179    | 0.2          | 25           | \$70.61     |
| Nov 1        | \$2,303 | 10378 | 259  | 40.0 | 17.7       | 94.4     | 197    | 3.1          | 11           | \$57.58     |
| Sep 1        | \$2,111 | 5492  | 216  | 25.4 | 15.5       | 92.7     | 185    | 0.9          | 33           | \$82.94     |
| Aug 15       | \$1,874 | 4296  | 186  | 23.1 | 13.5       | 92.9     | 185    | 3.2          | 34           | \$81.24     |
| Average      | \$2,235 | 7521  | 243  | 30.3 | 16.9       | 94.0     | 186.6  |              |              | \$75.66     |
| LSD 5%       |         | 752.8 | 15.5 | 2.2  | 0.8        | 0.7      | ns(23) |              |              |             |
| CV %         |         | 8.4   | 5.4  | 6.2  | 3.9        | 0.8      | 10.2   |              |              |             |

Bold: Results are not statistically different from top-ranking treatment in each column.

Rain and GDD: Total rainfall and average daily GDD 14-16 days prior to harvest.

\$/Acre: Figured using a \$60 payment.

#### **SUMMARY:**

The \$/Acre payment was figured using the new early harvest payment system. Sugarbeets were planted at a 4.4 inch spacing with a 12-row Monosem drill. The plots were well maintained and no disease or other issues compromised the trial. Plots were hand dug, hand topped, cleaned and weighted at the appropriate dates. Quality samples were processed at the MARL lab. Sugarbeets yields were greatest when harvested on Nov 1, however, grower payment was highest during early delivery.



### **Date of Harvest Trial** Knoerr Farms • Bay City, MI

| Harvest Date | \$/Acre | RWSA  | RWST  | T/A  | %<br>Sugar | %<br>CJP | B/100  | Rain<br>Inch | Daily<br>GDD | Pmt/<br>Ton |
|--------------|---------|-------|-------|------|------------|----------|--------|--------------|--------------|-------------|
| Oct 1        | \$1,805 | 6205  | 265.9 | 23.4 | 18.1       | 94.7     | 183    | 1.5          | 23           | \$77.28     |
| Oct 15       | \$1,724 | 6971  | 294.2 | 23.7 | 19.9       | 94.6     | 180    | 0.3          | 25           | \$72.70     |
| Nov 1        | \$1,702 | 7648  | 287.5 | 26.6 | 19.2       | 95.3     | 173    | 3.2          | 12           | \$63.90     |
| Sep 15       | \$1,574 | 4599  | 256.3 | 18.0 | 17.7       | 94.1     | 181    | 0.2          | 31           | \$87.26     |
| Sep 1        | \$1,192 | 3116  | 201.3 | 15.4 | 14.6       | 92.7     | 191    | 1.2          | 34           | \$77.30     |
| Aug 15       | \$1,087 | 2491  | 181.5 | 13.7 | 13.2       | 92.9     | 179    | 2.6          | 34           | \$79.30     |
| Average      | \$1,514 | 5172  | 247.8 | 20.2 | 17.1       | 94.0     | 181.2  |              |              | \$76.29     |
| LSD 5%       |         | 618.1 | 12.2  | 2.2  | 0.6        | 0.6      | ns(21) |              |              |             |
| CV %         |         | 10.1  | 4.1   | 9.1  | 3.2        | 0.6      | 9.7    |              |              |             |

Bold: Results are not statistically different from top-ranking treatment in each column.

**Rain and GDD:** Total rainfall and average daily GDD 14-16 days prior to harvest.

\$/Acre: Figured using a \$60 payment.

#### **SUMMARY:**

The \$/Acre figures reflect the early season payment schedule. Sugarbeets were planted at a 4.4 inch spacing with a 12-row Monosem drill. The plots were well maintained and diseases were not a problem. Nematodes were detected at a low level which may have increased variability. Sugarbeets were hang dug, hand topped, cleaned and weighed at the appropriate dates. Quality samples were processed at the MARL lab. The Oct 1 and Oct 15 harvest dates returned the most in this trial. Based on previous trials, the most profitable harvest date is highly influenced by weather.

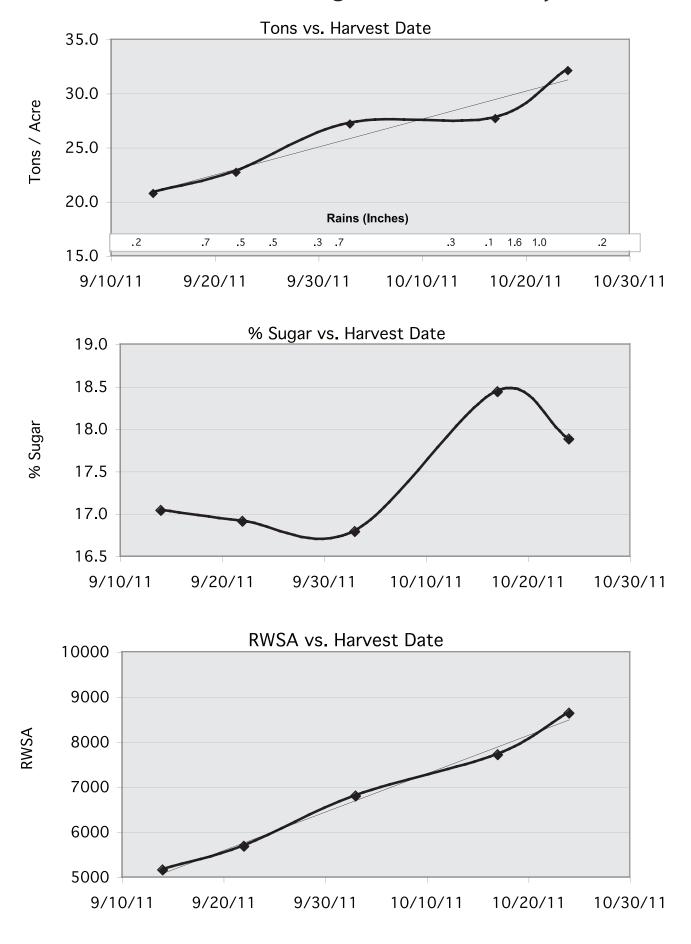
### Sugarbeet Advancement

### **Date of Harvest Trial** Gerstenberger Farms • Sandusky, MI

| Trial Quality:        | Good           | Spacings:   | Rows-28"; Seeds-60,000        | Harv/Sample:       | See Treatments      |
|-----------------------|----------------|-------------|-------------------------------|--------------------|---------------------|
| Location:             | Sanilac County | Fertilizer: | 2x2 - 24-36-22-4Mn-1B;        | Herbicides:        | 2x Glyphosate       |
| Planted:              | May 7          |             | PPI - 90# N                   | <b>Replicated:</b> | 4x                  |
| Variety:              | B-18RR4N       | Soil Type:  | Parkhill Loam                 | Fungicide:         | 69 DSV - Inspire XT |
| <b>Previous Crop:</b> | Soybeans       | Tillage:    | Chisel; Spring 1x Field Cult. | -                  | 121 DSV - Gem       |

|                 |      |      |      |            |         | Revenue  |                     |                               |         |                      |
|-----------------|------|------|------|------------|---------|----------|---------------------|-------------------------------|---------|----------------------|
| Harvest<br>Date | RWSA | RWST | T/A  | %<br>Sugar | \$/Acre | Adjust % | Early Dig<br>Charge | Net<br>Payment -<br>Base \$60 | Revenue | Diff. from<br>Oct 22 |
| 9/14/11         | 5160 | 248  | 20.8 | 17.0       | 94.4    | 153.2    | \$0.00              | \$83.98                       | \$1,747 | -\$27                |
| 9/22/11         | 5680 | 249  | 22.8 | 16.9       | 95.1    | 142.0    | \$0.00              | \$78.30                       | \$1,782 | \$8                  |
| 10/3/11         | 6796 | 250  | 27.2 | 16.8       | 95.5    | 126.6    | \$0.00              | \$69.87                       | \$1,902 | \$128                |
| 10/17/11        | 7714 | 278  | 27.7 | 18.4       | 95.9    | 107.0    | \$0.00              | \$65.81                       | \$1,824 | \$51                 |
| 10/24/11        | 8634 | 269  | 32.2 | 17.9       | 95.8    | 100.0    | \$2.74              | \$56.67                       | \$1,822 | \$49                 |
| 10/22/11        | 8329 | 273  | 30.8 | _          | _       | 100.0    | \$2.74              | \$57.64                       | \$1,774 | \$0                  |

Revenue: Revenue per acre assuming a \$60 payment and company average RWST=271.48.


**Net Payment:** Calculated by dividing RWST by company average RWST, then multiply by Adjust %, and then by \$60. **Diff. from Oct. 22:** The values for October 22 were not measured as part of the trial. These values are from the trendlines for tons and RWSA and are supplied for revenue comparison purposes due to this being considered the first day of permanent pile.

| Emergence:   | Good                                           | Cerc Leafspot: | Good Control                         |
|--------------|------------------------------------------------|----------------|--------------------------------------|
| Rhizoctonia: | Low / Moderate                                 | Nematodes:     | Not Detected                         |
| Quadris App: | In Furrow (5 oz, 4" Band)<br>& 6-8 Leaf (5 oz) | Weather:       | Very Wet Early, Very Dry Late Summer |

#### **COMMENTS:**

This field had experienced very dry conditions prior to first dig on September 14. Approximately 0.7 inches of rainfall occurred between first and second dig. A total of 3 inches of rainfall occurred between the third and final harvest. Rapid root growth occurred after moisture supplies were replenished. This study was done by opening two lands in a field, and harvesting 4 strips for each harvest date. The trendline for tonnage indicates the rate of growth was about 1.8 tons per week. The trendline for RWSA indicates a rate of growth of about 595 pounds per week. The rate of growth in this trial was much higher than a second trial done at the Saginaw Valley Research Farm and a 2010 trial done with Laracha Farms. Both of those trials showed tonnage growth rates of about 1 ton per week. When comparing revenue, keep in mind the reduction in cost to truck less tons in early delivery would econimically favor the early delivery dates. The difference in trucking cost is not accounted for in the revenue calculation.

**Research Results 2011** 



45 Research Results 2011

### Sugarbeet **Date of Harvest Trial** Advancement Saginaw Valley Research Farm

#### Page 1 of 2

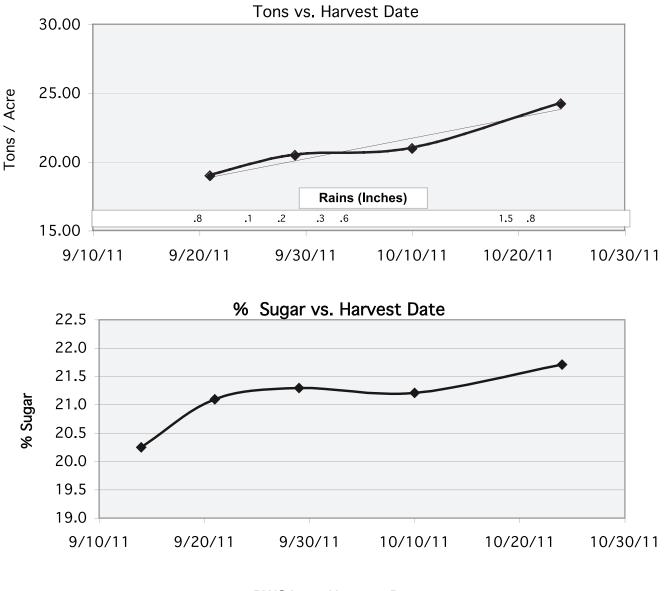
| Trial Quality: | Good           | Spacings:   | Rows-30", Seeds-46,000 | Harv/Sample:       | See Treatments                         |
|----------------|----------------|-------------|------------------------|--------------------|----------------------------------------|
| Location:      | Tuscola County | Fertilizer: | PPI 125# N by Urea     | Herbicides:        | 2x Glyphosate + Dual                   |
| Planted:       | Мау б          | Soil Type:  | Loam                   | <b>Replicated:</b> | 4x                                     |
| Variety:       | C-RR827        | Tillage:    | Moldboard;             | Fungicide:         | 42 DSV - Proline                       |
| Previous Crop: | Corn           | -           | Spring-2x S Tine       |                    | 63 DSV - Headline<br>111 DSV - Eminent |

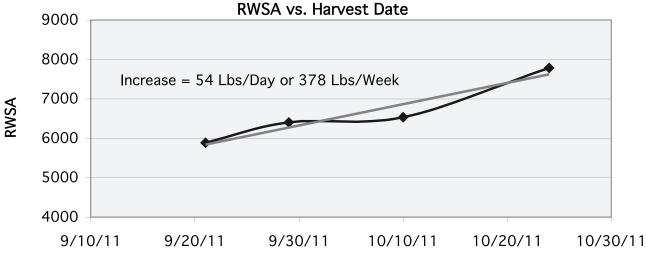
141 DSV - Headline

|                 |      |      |      |            |         | Revenue  |                     |                               |         |                      |
|-----------------|------|------|------|------------|---------|----------|---------------------|-------------------------------|---------|----------------------|
| Harvest<br>Date | RWSA | RWST | T/A  | %<br>Sugar | \$/Acre | Adjust % | Early Dig<br>Charge | Net<br>Payment -<br>Base \$60 | Revenue | Diff. from<br>Oct 22 |
| 9/21/11         | 5890 | 310  | 19.0 | 21.1       | 94.3    | 143.4%   | \$0.00              | \$98.39                       | \$1,866 | \$264                |
| 9/29/11         | 6406 | 313  | 20.5 | 21.3       | 94.2    | 132.2%   | \$0.00              | \$91.43                       | \$1,871 | \$269                |
| 10/10/11        | 6537 | 312  | 21.0 | 21.2       | 94.2    | 116.8%   | \$0.00              | \$80.50                       | \$1,688 | \$86                 |
| 10/24/11        | 7788 | 322  | 24.2 | 21.7       | 94.5    | 100.0%   | \$2.74              | \$68.32                       | \$1,655 | \$53                 |
| 10/22/11        | 7519 | 320  | 23.6 | —          | —       | 100.0%   | \$2.74              | \$68.00                       | \$1,602 | \$0                  |

**Revenue:** Revenue per acre assuming a \$60 payment and company average RWST=271.48.

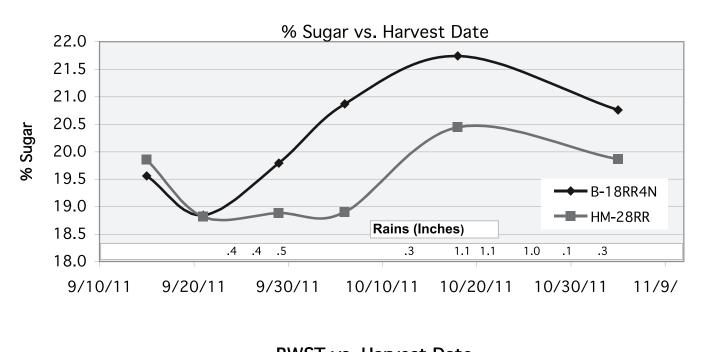
**Net Payment:** Calculated by dividing RWST by company average RWST, then multiply by Adjust %, and then by \$60. **Diff. from Oct. 22:** The values for October 22 were not measured as part of the trial. These values are from the trendlines for tons and RWSA and are supplied for revenue comparison purposes due to this being considered the first day of permanent pile.

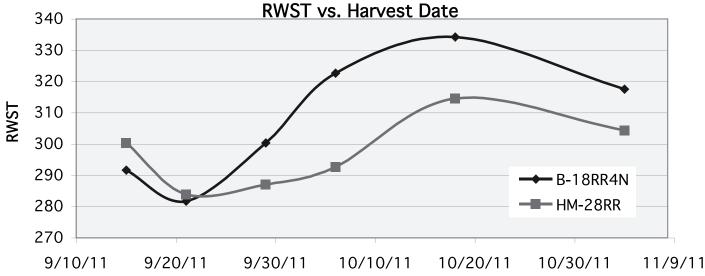

| Emergence:   | Good           | Cerc Leafspot: | Good Control |
|--------------|----------------|----------------|--------------|
| Rhizoctonia: | Low / Moderate | Nematodes:     | Not Detected |
| Quadris App: | 6-8 Leaf       | Weather:       | _            |


#### **COMMENTS:**

This study was done by opening two lands in a large block of beets, and harvesting 4 strips for each harvest date. Prior to the first harvest date, soil moisture was very low with less than 1 inch of rainfall in the previous 18 days. In between the first and second harvest date, approximately 0.7 inches of precipitation was received. From the second to the last harvest date almost 3 inches of rainfall occurred. The trendline for tonnage indicates the increase per week was 1.05 tons per acre. When comparing revenue, keep in mind the reduction in cost to truck less tons in early delivery would econimically favor the early delivery dates. The difference in trucking cost is not accounted for in the revenue calculation.

Use of these varieties is subject to them being lawful to purchase, receive, distribute and plant


### Date of Harvest Trial • Saginaw Valley Research Farm






**47** *Research Results 2011* 

#### **Date of Harvest Trial** Advancemen Sugars • Meylan Farms • Auburn, MI





#### **COMMENTS:**

Sugarbeet

This trial was done by pulling sugar samples from the Meylan variety trial on six different occasions through the harvest season. The purpose of the trial was to compare sugar content through the entire harvest season for a medium-high sugar variety (B-18RR4N) and a low sugar variety (HM-28RR). On September 15, the sugar content of both the varieties were very similar. Previous data would indicate that a high sugar variety would always be higher than a poor variety. By mid-October, sugar content peaked for both varieties. There was a difference of about 1.5% sugar and 20 pounds of sugar per ton. From October 19 until final dig, over 3 inches of rainfall occurred which lowered sugar content of both varieties.



### **Overall Summary (Average of 7 Trials)**

| Row Spacing | \$/Acre | RWSA  | RWST    | T/A  | %<br>Sugar | %<br>CJP | % Row<br>Close |
|-------------|---------|-------|---------|------|------------|----------|----------------|
| 22 inch     | \$2,055 | 7895  | 254     | 30.8 | 17.5       | 94.2     | 86.6           |
| 30 inch     | \$1,776 | 6822  | 246     | 27.2 | 16.9       | 94.1     | 73.5           |
| Average     | \$1,916 | 7358  | 250     | 29.0 | 17.2       | 94.2     | 80.1           |
| LSD 5%      | 118.9   | 457.1 | ns(8.6) | 2.1  | 0.5        | ns(0.6)  | 4.1            |
| CV %        | 2.8     | 2.8   | 1.5     | 3.2  | 1.3        | 0.3      | 1.5            |

**Bold:** Results are not statistically different from top-ranking treatment in each column. **\$/Acre:** Figured using a \$60 payment, gross payment unless noted as net.

#### **SUMMARY:**

Seven small plot replicated trials were conducted from 2009 to 2011 to compare sugarbeet row spacing (22 inch compared to 30 inch) and in-row sugarbeet populations. When averaged over all 7 trials sugarbeets grown in narrow rows (22 inch) out yielded sugarbeets grown in wide rows (30 inch) by 3.6 tons per acre. Sugar content in narrow rows was increased by 0.6 points. RWST, RWSA, canopy closure and grower income (\$/Acrecre) were also significantly higher in the narrow row plots. Recoverable sugar per acre was highest with 60,000 beet per acre in narrow rows and with 40,000 beets per acre in wide rows. It appears that narrow row plots yielded more because of 2 main reasons, 1) a quicker and more complete canopy closure which allows the crop to intercept more light and thus manufacture more sugar, and 2) the ability to benefit from better spaced high beet populations. High populations in wide row plots produces too many small beets that fall through the harvester. These results are similar to other trials conducted in Michigan by Sugarbeet Advancement, Christy Sprague and researchers at Michigan State University.

Refer to next page for additional information about sugarbeet populations.



### **Row Spacing Trials: 22" vs 30"** Average of 3 Years Page 2 of 2

### **Effect of Different Sugarbeet Populations on Narrow Rows**

| Row Spacing | Beets/<br>Acre | \$/Acre | RWSA | RWST | T/A     | %<br>Sugar | %<br>CJP | % Row<br>Close |
|-------------|----------------|---------|------|------|---------|------------|----------|----------------|
| 22          | 60000          | \$2,272 | 9152 | 277  | 32.9    | 18.8       | 94.7     | 92             |
| 22          | 40000          | \$2,155 | 8684 | 262  | 33.1    | 17.9       | 94.5     | 91             |
| 22          | 50000          | \$2,137 | 8608 | 264  | 32.7    | 18.1       | 94.3     | 93             |
| 22          | 30000          | \$2,089 | 8417 | 258  | 32.6    | 17.8       | 94.0     | 91             |
| 22          | 20000          | \$1,987 | 8007 | 249  | 32.2    | 17.4       | 93.6     | 89             |
| Average     |                | \$2,128 | 8574 | 262  | 32.7    | 18.0       | 94.2     | 91             |
| LSD 5%      |                | 93.6    | 377  | 4.6  | ns(1.7) | 0.2        | 0.4      | 4.3            |
| CV %        |                | 2.8     | 2.79 | 1.1  | 3.2     | 0.9        | 0.3      | 2.3            |

### **Effect of Different Sugarbeet Populations on Wide Rows**

| Row Spacing | Beets/<br>Acre | \$/Acre | RWSA  | RWST | T/A     | %<br>Sugar | %<br>CJP | % Row<br>Close |
|-------------|----------------|---------|-------|------|---------|------------|----------|----------------|
| 30          | 40000          | \$1,970 | 7687  | 258  | 29.7    | 17.7       | 94.5     | 79             |
| 30          | 50000          | \$1,938 | 7562  | 259  | 29.1    | 17.7       | 94.6     | 78             |
| 30          | 30000          | \$1,923 | 7502  | 253  | 29.6    | 17.4       | 94.3     | 78             |
| 30          | 20000          | \$1,829 | 7135  | 244  | 29.2    | 17.1       | 93.4     | 75             |
| Average     |                | \$1,915 | 7471  | 254  | 29      | 17         | 94       | 77             |
| LSD 5%      |                | 79.8    | 311.4 | 7.4  | ns(1.0) | 0.4        | 0.4      | ns(4.8)        |
| CV %        |                | 2.56    | 2.56  | 1.8  | 2.2     | 1.4        | 0.2      | 2.9            |

**Bold:** Results are not statistically different from top-ranking treatment in each column. **\$/Acre:** Figured using a \$60 payment, gross payment unless noted as net.



### **Row Spacing & Plant Population Trials: 22" vs 30"** Sylvester Farm, Reese, MI

#### Page 1 of 2

| Trial Quality:<br>Location:                          | Very Good<br>Tuscola County | Rhizoc Control:                                            | Good<br>2 Quadris applications                          |                   | Silt Loam, 2.6% OM, 7.6 pH<br>6 Rows X 38 ft |
|------------------------------------------------------|-----------------------------|------------------------------------------------------------|---------------------------------------------------------|-------------------|----------------------------------------------|
| Planted:<br>Harvested:<br>Previous Crop:<br>Variety: | May 9<br>October 13         | Cercospora Control:<br>Weed Control:<br>Seasonal Rainfall: | Good<br>4 fungicide applications<br>Good<br>14.5 inches | Reps:<br>Tillage: | 6<br>Stale seed bed                          |

| Row Spacing | Plants/A | \$/Acre | RWSA  | RWST | T/A  | %<br>Sugar | %<br>CJP | % Row<br>Close |
|-------------|----------|---------|-------|------|------|------------|----------|----------------|
| 22 inch     | 40,000   | \$2,083 | 9395  | 276  | 34.1 | 18.8       | 94.4     | 93             |
| 22 inch     | 60,000   | \$2,076 | 9364  | 290  | 32.3 | 19.5       | 94.9     | 92             |
| 22 inch     | 30,000   | \$2,016 | 9092  | 271  | 33.5 | 18.6       | 94.2     | 91             |
| 22 inch     | 50,000   | \$1,990 | 8974  | 282  | 31.8 | 19.1       | 94.7     | 93             |
| 30 inch     | 40,000   | \$1,908 | 8604  | 275  | 31.3 | 18.6       | 94.9     | 83             |
| 22 inch     | 20,000   | \$1,887 | 8512  | 261  | 32.6 | 18.1       | 93.8     | 87             |
| 30 inch     | 30,000   | \$1,815 | 8186  | 272  | 30.1 | 18.4       | 94.9     | 82             |
| 30 inch     | 20,000   | \$1,790 | 8073  | 263  | 30.6 | 18.1       | 94.3     | 78             |
| 30 inch     | 15,000   | \$1,631 | 7354  | 244  | 30.2 | 17.1       | 93.4     | 73             |
| Average     |          | \$1,911 | 8617  | 271  | 31.8 | 18.5       | 94.4     | 86             |
| LSD 5%      |          | 103.7   | 467.7 | 9.7  | 1.5  | 0.5        | 0.7      | 3.4            |
| CV %        |          | 4.7     | 4.7   | 3.1  | 4.1  | 2.2        | 0.6      | 3.4            |

**Bold:** Results are not statistically different from top-ranking treatment in each column. **\$/Acre:** Figured using a \$60 payment, gross payment unless noted as net.

#### **SUMMARY:**

This small plot replicated trial compared narrow row (22 inch) and wide row (30 inch) sugarbeet production. In-row sugarbeet populations from 15,000 to 60,000 were also evaluated. When averaged over all populations narrow row treatments out yielded wide row treatments by 2.4 tons per acre and increased sugar levels by 0.7 points. The narrow row plots also achieved a quicker and more complete canopy cover. Higher sugarbeet populations produced higher yields and sugar content for both row spacings.

Refer to next page for additional information about sugarbeet populations.



### **Row Spacing & Plant Population Trials: 22" vs 30"** Sylvester Farm, Reese, MI

Page 2 of 2

### **Row Spacing Effect (Average over all populations)**

| Row Spacing  | \$/Acre | RWSA  | RWST | T/A  | %<br>Sugar | %<br>CJP | % Row<br>Close |
|--------------|---------|-------|------|------|------------|----------|----------------|
| 22 inch rows | \$2,011 | 9068  | 276  | 32.9 | 18.8       | 94.4     | 91             |
| 30 inch rows | \$1,786 | 8054  | 264  | 30.5 | 18.1       | 94.4     | 79             |
| Average      | \$1,898 | 8561  | 270  | 31.7 | 18.5       | 94.4     | 85             |
| LSD 5%       | 46.3    | 208.9 | 3.5  | 0.5  | 0.2        | ns(0.3)  | 2.1            |

### Sugarbeet Population Effect (Average over both row spacings)

| Sugarbeet<br>Popluation | \$/Acre | RWSA  | RWST | T/A  | %<br>Sugar | %<br>CJP | % Row<br>Close |
|-------------------------|---------|-------|------|------|------------|----------|----------------|
| 40,000 plants/A         | \$1,995 | 8999  | 276  | 32.7 | 18.7       | 94.7     | 88             |
| 30,000 plants/A         | \$1,915 | 8639  | 272  | 31.8 | 18.5       | 94.5     | 86             |
| 20,000 plants/A         | \$1,839 | 8292  | 262  | 31.6 | 18.1       | 94.0     | 83             |
| Average                 | \$1,917 | 8644  | 270  | 32.0 | 18.4       | 94.4     | 86             |
| LSD 5%                  | 63.2    | 285.1 | 6.1  | 1.0  | 0.3        | 0.4      | 2.0            |

**Bold:** Results are not statistically different from top-ranking treatment in each column. **\$/Acre:** Figured using a \$60 payment, gross payment unless noted as net.



### **Row Spacing Trials: 22" vs 30"** Stoutenburg Farms, Sandusky, MI

| Trial Quality: | Very Good      | <b>Rhizoc Control:</b> | Good                     | Seasonal F |                       |
|----------------|----------------|------------------------|--------------------------|------------|-----------------------|
| Location:      | Sanilac County |                        | 2 Quadris applications   |            | Loam, 3.9% OM, 7.2 pH |
| Planted:       | May 13         | Cercospora Control:    | 4 fungicide applications | Plot Size: | 6 Rows X 100 ft       |
| Harvested:     | October 10     | Weed Control:          | Good                     | Reps:      | 10                    |
| Previous Crop: | Dry Beans      | weed control.          | 3 Roundup applications   | Tillage:   | Stale seed bed        |
| Variety:       | HM-27RR        |                        | o noundap applications   |            |                       |

| Row Spacing | \$/Acre | RWSA  | RWST | T/A  | %<br>Sugar | %<br>CJP | % Row<br>Close | Vigor<br>1-10 | Beets/<br>100 ft |
|-------------|---------|-------|------|------|------------|----------|----------------|---------------|------------------|
| 22 inch     | \$1,433 | 4690  | 204  | 22.9 | 14.4       | 94.1     | 80             | 7.0           | 126              |
| 30 inch     | \$1,033 | 3380  | 188  | 17.9 | 13.5       | 93.5     | 67             | 6.5           | 134              |
| Average     | \$1,233 | 4035  | 196  | 20.4 | 13.9       | 93.8     | 73             | 6.7           | 130              |
| LSD 5%      | 55.3    | 180.9 | 8.2  | 0.6  | 0.4        | ns(0.8)  | 4.6            | 0.4           | 8.2              |
| CV %        | 4.4     | 4.4   | 4.1  | 3.0  | 2.9        | 0.8      | 6.2            | 5.6           | 6.2              |

**Bold:** Results are not statistically different from top-ranking treatment in each column. **\$/Acre:** Figured using a \$60 payment, gross payment unless noted as net.

#### **SUMMARY:**

Sugarbeet emergence was not good enough to establish high sugarbeet populations so the trial was changed into a replicated strip trial with 6 row X 100 ft strips. The 30 inch row strips had slightly more beets per 100 feet than the 22 inch row strips. Sugarbeet yields were 5 tons higher in the narrow row strips and sugar levels were 0.9 points higher in the narrow row strips. There were 10 replications for each row spacing and the data is considered to be reliable.



### **Row Spacing Trials: 22" vs 30"** Row Spacing • Blumfield, MI

| <b>Trial Quality:</b> | Good           | <b>Rhizoc Control:</b> | Good                           | Seasonal Rainfall: 13.1 inches          |   |
|-----------------------|----------------|------------------------|--------------------------------|-----------------------------------------|---|
| Location:             | Saginaw County |                        | 2 Quadris applications         | <b>Soil Info:</b> Loam, 3.0% OM, 7.6 pH | ł |
| Planted:              | May 5          | Cercospora Control:    |                                | Plot Size: 6 Rows X 100 ft              |   |
| Harvested:            | September 16   |                        | 4 fungicide applications       | <b>Reps:</b> 12                         |   |
| <b>Previous Crop:</b> | Soybeans       | Weed Control:          | Good<br>3 Roundup applications | Tillage: Stale seed bed                 |   |
| Variety:              | B-17RR32       |                        | 5 houridup applications        |                                         |   |

| Row Spacing | \$/Acre | RWSA  | RWST | T/A  | %<br>Sugar | %<br>CJP | % Row<br>Close | Vigor<br>1-10 | Beets/<br>100 ft |
|-------------|---------|-------|------|------|------------|----------|----------------|---------------|------------------|
| 22 inch     | \$1,584 | 5846  | 229  | 25.6 | 16.3       | 93.0     | 82.2           | 7.4           | 131              |
| 30 inch     | \$1,169 | 4317  | 214  | 20.1 | 15.4       | 92.7     | 70.3           | 6.8           | 126              |
| Average     | \$1,377 | 5082  | 221  | 22.9 | 15.9       | 92.8     | 76.3           | 7.1           | 128              |
| LSD 5%      | 101.6   | 375.2 | 8.1  | 1.3  | 0.4        | ns(0.4)  | 1.3            | 0.4           | ns(11)           |
| CV %        | 9.8     | 9.8   | 4.9  | 7.8  | 3.7        | 0.6      | 2.3            | 7.2           | 11.3             |

**Bold:** Results are not statistically different from top-ranking treatment in each column. **\$/Acre:** Figured using a \$60 payment, gross payment unless noted as net.

#### **SUMMARY:**

Sugarbeet emergence was not good enough to establish high sugarbeet populations so the trial was changed into a replicated strip trial with 6 row X 100 ft strips. The 30 inch row strips had slightly fewer beets per 100 feet than the 22 inch row strips. Sugarbeet yields were 5.5 tons higher in the narrow row strips and sugar levels were 0.9 points higher in the narrow row strips. There were 12 replications for each row spacing and the data is considered to be reliable.



### Tachigaren 20 & 45 gm Seed Treatments • Average of 4 Locations

 Plot Size:
 2 Rows X 38 ft

 Reps:
 6

**Row Spacing:** 22 inches **Seeding Rate:** 4.4 inches

Page 1 of 3

| Treatment | Rate     | \$/Acre | RWSA    | RWST    | T/A     | %<br>Sugar | %<br>CJP | %<br>Emerge<br>First | %<br>Emerge<br>Second |
|-----------|----------|---------|---------|---------|---------|------------|----------|----------------------|-----------------------|
| Tach 45   | 45g/unit | \$1,454 | 6587    | 265.6   | 24.4    | 18.0       | 94.8     | 43                   | 59                    |
| Tach 20   | 20g/unit | \$1,445 | 6505    | 267.7   | 24.0    | 18.1       | 94.9     | 41                   | 56                    |
| Untreated |          | \$1,422 | 6384    | 268.0   | 23.6    | 18.1       | 94.8     | 42                   | 56                    |
| Average   |          | \$1,440 | 6492    | 267.1   | 24.0    | 18.1       | 94.8     | 42                   | 57                    |
| LSD 5%    |          | ns(112) | ns(451) | ns(5.1) | ns(2.1) | ns(0.2)    | ns(0.4)  | ns(3.8)              | ns(5.1)               |
| CV %      |          | 4.5     | 4.0     | 1.1     | 5.0     | 0.7        | 0.2      | 5.2                  | 5.2                   |

**Bold:** Results are not statistically different from top-ranking treatment in each column. **\$/Acre:** Figured using a \$60 payment, gross payment unless noted as net.

#### **SUMMARY:**

There is no significant difference for the treatments for all factors except Tach 45 has a higher stand at 97 days over the untreated at one location. This trial indicates no decrease or increase in stand or the production factors for 20 gram and 45 gram rates of Tachigaren at these four locations.



### Tachigaren 20 & 45 gm Seed Treatments • Two Locations

#### Page 2 of 3

### Knoerr

| Trial Quality:        | Good          |
|-----------------------|---------------|
| Location:             | Bay County    |
| Planted:              | Мау б         |
| Harvested:            | November 5    |
| <b>Previous Crop:</b> | Wheat/ Radish |

Rhizoc Control:GoodCercospora Control:GoodSeasonal Rainfall:19.2 inches

Soil Info:Sandy ClayPlot Size:2 Rows X 3Reps:9Row Spacing:22 inchesSeeding Rate:4.4 inches

Sandy Clay Loam, 2.9% OM, 7.5 pH 2 Rows X 38 ft 9 22 inches 4.4 inches

| Treatment | Rate      | \$/Acre | RWSA    | RWST    | T/A     | %<br>Sugar | %<br>CJP | % Emerge<br>June 11<br>36 Day | % Emerge<br>Aug 11<br>97 Day |
|-----------|-----------|---------|---------|---------|---------|------------|----------|-------------------------------|------------------------------|
| Tach 45   | 45 g/unit | \$1,639 | 8085    | 297     | 27.2    | 19.8       | 95.3     | 50                            | 60                           |
| Untreated |           | \$1,572 | 7756    | 293     | 26.5    | 19.7       | 95.1     | 47                            | 52                           |
| Tach 20   | 20 g/unit | \$1,560 | 7692    | 298     | 25.9    | 19.8       | 95.4     | 46                            | 56                           |
| Average   |           | \$1,590 | 7844    | 296     | 26.5    | 19.8       | 95.3     | 48                            | 56                           |
| LSD 5%    |           | ns(161) | ns(793) | ns(6.7) | ns(2.7) | ns(0.3)    | ns(0.5)  | ns(5.5)                       | 5.1                          |
| CV %      |           | 10.1    | 10.1    | 2.3     | 10.1    | 1.6        | 0.5      | 11.6                          | 9.1                          |

### Gilford

| <b>Trial Quality:</b> | Fair           | <b>Rhizoc Control:</b>     | Good     | Soil Info:          | Silt Loam, 8.6% OM, 7.8 pH |
|-----------------------|----------------|----------------------------|----------|---------------------|----------------------------|
| Location:             | Tuscola County | <b>Cercospora Control:</b> | Good     | Plot Size:          | 4 Rows X 38 ft             |
| Planted:              | May 18         | Seasonal Rainfall:         | 7 inches | Reps:               | 6                          |
| Harvested:            | September 22   |                            |          | <b>Row Spacing:</b> | 22 inches                  |
| <b>Previous Crop:</b> | Oilseed Radish |                            |          | Seeding Rate:       | 4.4 inches                 |

| Treatment | Rate      | \$/Acre | RWSA    | RWST   | T/A     | %<br>Sugar | %<br>CJP | % Emerge<br>May 24<br>6 Day | % Emerge<br>June 11<br>24 Day |
|-----------|-----------|---------|---------|--------|---------|------------|----------|-----------------------------|-------------------------------|
| Untreated |           | \$1,243 | 4278    | 204    | 20.9    | 15.0       | 91.8     | 10                          | 67                            |
| Tach 20   | 20 g/unit | \$1,207 | 4154    | 211    | 19.6    | 15.3       | 92.4     | 10                          | 64                            |
| Tach 45   | 45 g/unit | \$1,095 | 3767    | 204    | 18.4    | 15.0       | 92.1     | 8                           | 64                            |
| Average   |           | \$1,182 | 4067    | 206    | 19.6    | 15.1       | 92.1     | 9                           | 65                            |
| LSD 5%    |           | ns(228) | ns(784) | ns(17) | ns(2.9) | ns(1.2)    | ns(1.0)  | ns(5.8)                     | ns(19.3)                      |
| CV %      |           | 15.0    | 15.0    | 6.6    | 11.6    | 6.0        | 0.8      | 48.8                        | 23.1                          |

**Bold:** Results are not statistically different from top-ranking treatment in each column. **\$/Acre:** Figured using a \$60 payment, gross payment unless noted as net.



### Tachigaren 20 & 45 gm Seed Treatments · Two Locations

### Page 3 of 3

### **Bebow**

| Trial Quality: | Fair           |
|----------------|----------------|
| Location:      | Gratiot County |
| Planted:       | June 2         |
| Harvested:     | October 28     |
| Previous Crop: | Dry Beans      |

Rhizoc Control:GoodCercospora Control:GoodSeasonal Rainfall:12.85 inches

Soil Info:Sandy Clay Loam, 3.1% OM, 6.7 pHPlot Size:2 Rows X 38 ftReps:6Row Spacing:22 inchesSeeding Rate:4.4 inches

| Treatment | Rate     | \$/Acre | RWSA     | RWST   | T/A     | %<br>Sugar | %<br>CJP | % Emerge<br>June 17<br>15 Day | % Emerge<br>Aug 11<br>70 Day |
|-----------|----------|---------|----------|--------|---------|------------|----------|-------------------------------|------------------------------|
| Tach 45   | 45g/unit | \$1,744 | 8058     | 276    | 29.2    | 18.5       | 95.3     | 57                            | 61                           |
| Tach 20   | 20g/unit | \$1,719 | 7942     | 277    | 28.6    | 18.5       | 95.4     | 55                            | 59                           |
| Untreated |          | \$1,617 | 7469     | 279    | 26.7    | 18.7       | 95.4     | 59                            | 56                           |
| Average   |          | \$1,693 | 7823     | 277    | 28.2    | 18.6       | 95.4     | 57                            | 59                           |
| LSD 5%    |          | ns(402) | ns(1858) | ns(11) | ns(6.2) | ns(0.6)    | ns(0.5)  | ns(9.4)                       | ns(8.5)                      |
| CV %      |          | 18.5    | 18.5     | 3.0    | 17.1    | 2.4        | 0.4      | 12.9                          | 11.3                         |

### Bender

| <b>Trial Quality:</b> | Fair           | <b>Rhizoc Control:</b>     | Good         | Soil Info:          | Sandy Clay Loam, 2.2% OM, 7.4 pH |
|-----------------------|----------------|----------------------------|--------------|---------------------|----------------------------------|
| Location:             | Areanac County | <b>Cercospora Control:</b> | Good         | Plot Size:          | 2 Rows X 38 ft                   |
| Planted:              | May 17         | Seasonal Rainfall:         | 14.71 inches | Reps:               | 6                                |
| Harvested:            | November 4     |                            |              | <b>Row Spacing:</b> | 22 inches                        |
| Previous Crop:        | Pickles/Radish |                            |              | Seeding Rate:       | 4.4 inches                       |

| Treatment | Rate     | \$/Acre | RWSA     | RWST    | T/A     | %<br>Sugar | %<br>CJP | % Emerge<br>June 9<br>23 Day | % Emerge<br>Aug 11<br>86 Day |
|-----------|----------|---------|----------|---------|---------|------------|----------|------------------------------|------------------------------|
| Tach 45   | 45g/unit | \$1,338 | 6439     | 285     | 22.9    | 18.7       | 96.5     | 57                           | 50                           |
| Tach 20   | 20g/unit | \$1,282 | 6169     | 290     | 21.1    | 18.9       | 96.6     | 51                           | 51                           |
| Untreated |          | \$1,267 | 6098     | 291     | 20.9    | 19.0       | 96.7     | 53                           | 45                           |
| Average   |          | \$1,295 | 6235     | 289     | 21.6    | 18.9       | 96.6     | 54                           | 49                           |
| LSD 5%    |          | ns(342) | ns(1645) | ns(9.3) | ns(5.5) | ns(0.5)    | ns(0.4)  | ns(12.3)                     | ns(7.2)                      |
| CV %      |          | 19.8    | 19.8     | 2.5     | 19.1    | 2.1        | 0.3      | 17.7                         | 11.5                         |

**Bold:** Results are not statistically different from top-ranking treatment in each column. **\$/Acre:** Figured using a \$60 payment, gross payment unless noted as net.



### Seed Treatment and Priming Trials

Michigan Sugar Company has evaluated seed treatments from several seed and chemical companies. Information from these trials will not be made public because the research was paid for by the companies and we agreed to keep the data confidential. The reason we conducted these trials was because the information learned will benefit our Cooperative.

#### **Priming Trials:**

Numerous trials were conducted and it is apparent that improvements are being made by seed and priming companies. The trials were coded but we can tell that the new experimental priming treatments are superior to the commercial standard treatments.

#### **Rhizoctonia Seed Treatments:**

Several trials were conducted for different companies evaluating seed treatments for the control of Rhizoctonia. Results from these trials have been generally positive, however, these seed treatments will not be a complete solution for fields with heavy disease levels. Several seed treatments in combination with Quadris applications appear to be better than Quadris alone.

#### **Miscellaneous Trials:**

We have conducted other seed treatments and sprayable products for control of nematodes and diseases. Several of these treatments look positive but will likely need to be coupled with another method of control for badly infested fields.



### Nitrogen Rates on Late Planted Beets • Roggenbuck Farm, Harbor Beach, MI

| <b>Trial Quality:</b> | Fair         | <b>Rhizoc Control:</b>     | Good      | Soil Iı |
|-----------------------|--------------|----------------------------|-----------|---------|
| Location:             | Huron County | <b>Cercospora Control:</b> | Good      | Plot S  |
| Planted:              | June 2       | Seasonal Rainfall:         | 15 inches | Reps:   |
| Harvested:            | October 6    |                            |           | Row S   |
| <b>Previous Crop:</b> | Wheat/Clover |                            |           | Seedi   |
| •                     |              |                            |           |         |

Soil Info:Loam, 3.7% OM, 7.0 pHPlot Size:6 Rows X 76 ftReps:3Row Spacing:22 inchesSeeding Rate:4.2 inches

| Nitrogen<br>Applied & Timing | Net<br>\$/Acre | RWSA     | RWST   | T/A     | %<br>Sugar | %<br>CJP |
|------------------------------|----------------|----------|--------|---------|------------|----------|
| Untreated                    | \$1,681        | 7009     | 268    | 26.2    | 18.1       | 95.0     |
| 50 lb 2x2                    | \$1,659        | 7082     | 265    | 26.6    | 18.0       | 94.9     |
| 50 lb 2x2 + 100 lb 2-4lf     | \$1,538        | 6852     | 244    | 28.1    | 17.0       | 93.9     |
| 50 lb 2x2 + 25 lb 2-4lf      | \$1,529        | 6610     | 241    | 27.4    | 17.0       | 93.4     |
| 50 lb 2x2 + 75 lb 2-4lf      | \$1,509        | 6663     | 239    | 27.8    | 16.8       | 93.4     |
| 50 lb 2x2 + 50lb 2-4lf       | \$1,490        | 6513     | 242    | 26.9    | 16.8       | 94.1     |
| Average                      | \$1,568        | 6788     | 250    | 27.2    | 17.3       | 94.1     |
| LSD 5%                       | ns(241)        | ns(1005) | ns(18) | ns(3.2) | 0.8        | 1.2      |
| CV %                         | 8.1            | 8.1      | 3.9    | 6.5     | 2.6        | 0.7      |

**Bold:** Results are not statistically different from top-ranking treatment in each column. **\$/Acre:** Figured using a \$60 payment.

#### **SUMMARY:**

Nitrogen rates were compared on a late planted field (June 2). The previous crop was wheat seeded to clover. Sugarbeet yields improved marginally with more nitrogen, however, sugar levels were best without any nitrogen. Treatments with more than 50 lbs of N tended to have lower RWSA and grower income.



### Nitrogen Rates Following Manure Meadow Muth Farms • Frankenmuth, MI

| Trial Quality: | Excellent      | Spacings:   | Rows-30"; 47,500            | Harv/Sample:       | Oct 28 / Oct 12                            |
|----------------|----------------|-------------|-----------------------------|--------------------|--------------------------------------------|
| Location:      | Saginaw County | Fertilizer: | 2x2 - 26# N & 9# S          | Herbicides:        | 2x Glyphosate                              |
| Planted:       | May 5          | Soil Type:  | Loam                        | <b>Replicated:</b> | 3x                                         |
| Variety:       | C-RR827        | Tillage:    | DMI & 1x F.C.; Spr. 1x F.C. | Fungicide:         | 55 DSV - Proline                           |
| Previous Crop: | Silage Corn    | _           |                             |                    | 110 DSV - Headline<br>165 DSV - Inspire XT |

| <b>Treatment</b><br>Starter + Sidedress                 | Net<br>\$/Acre<br>\$1,902 | RWSA<br>10097 | RWST<br>306 | T/A<br>33.0 | %<br>Sugar<br>20.6 | %<br>CJP<br>94.7 |
|---------------------------------------------------------|---------------------------|---------------|-------------|-------------|--------------------|------------------|
| 26# N + 60 # N<br>Starter Only - No Sidedress<br>26 # N | \$1,936                   | 10022         | 322         | 31.2        | 21.3               | 95.6             |
| Starter + Sidedress<br>26# N + 30 # N                   | \$1,900                   | 9989          | 305         | 32.8        | 20.5               | 94.8             |
| Average                                                 | _                         | 10036         | 311         | 32.3        | 20.8               | 95.0             |
| LSD 5%                                                  |                           | 643 NS        | 23 NS       | 1.1         | 1.1 NS             | 1.1 NS           |
| CV %                                                    |                           | 3             | 3           | 1.6         | 2.3                | 0.5              |

Bold: Results are not statistically different from top-ranking treatment in each column.

Net \$/Acre: Revenue per acre assuming a \$60 payment and cost of \$0.60/Lb of sidedressed N and \$10 for application.

| Emergence:   | Excellent                 | Cerc Leafspot: | Good |
|--------------|---------------------------|----------------|------|
| Rhizoctonia: | Low                       | Nematodes:     | None |
| Quadris App: | In Furrow, 4" Band, 6 oz. | Weather:       |      |

#### **COMMENTS:**

In this trial, 10,000 gallons of dairy manure was fall applied after corn silage harvest. Starter fertilizer was applied as a combination of 28% nitrogen and Thiosol. The total 2x2 starter applied was 26-0-0-9S. Nitrate test taken in early June indicated available nitrogen at 90 pounds per acre with a recommendation of 20 additional pounds. Sidedress nitrogen applications were applied as 28% at 30 and 60 pounds. There was no significant difference for RWSA. There was a significant difference for tonnage for the two sidedressed treatments. Sidedress nitrogen applications tended to suppress quality. When calculating the net revenue per acre for additional nitrogen and application cost, the return was highest for starter fertilizer alone. Soil Nitrate test accurately predicted crop response.

#### MICHIGAN STATE UNIVERSITY Nitrogen Rates Following Corn Extension Saginaw Valley Research Farm • Frankenmuth, MI AgBio**Research**

#### Kurt Steinke and Andrew Chomas, Michigan State University

| Trial Quality: |                                 | Soil Type: | Clay loam; 2.8 OM; 7.7 pH; 40 ppm P; 189 ppm K |
|----------------|---------------------------------|------------|------------------------------------------------|
| Location:      | Saginaw County                  | Tillage:   | Conventional with light S-tine at sidedress    |
| Planted:       | May 4                           | N Rates:   | See below                                      |
| Harvested:     | October 4                       | Spacings:  | 4.25 inches                                    |
| Variety:       | Hilleshog 9042<br>Roundup Ready | Reps:      | 4                                              |

| Treatment<br>(Total lb N/A) | Net<br>\$/Acre | RWSA  | RWST | T/A  | %<br>Sugar | %<br>CJP | NH2   | Amino-N |
|-----------------------------|----------------|-------|------|------|------------|----------|-------|---------|
| 0 – Check                   | \$1,530        | 7309  | 299  | 24.5 | 19.9       | 95.5     | 41.3  | 2.5     |
| 40                          | \$1,876        | 9092  | 297  | 30.6 | 19.9       | 95.0     | 76.3  | 4.5     |
| 80                          | \$1,997        | 9800  | 307  | 31.9 | 20.5       | 95.1     | 106.0 | 6.3     |
| 120                         | \$1,861        | 9277  | 305  | 30.4 | 20.4       | 95.2     | 117.5 | 6.8     |
| 160                         | \$2,058        | 10352 | 301  | 34.5 | 20.1       | 95.4     | 91.0  | 5.6     |
| LSD (0.05) *                |                | 944   | NS   | 2.6  | NS         | NS       | 36.3  | 2.1     |

\* LSD, least significant difference between means within a column at ( $\alpha = 0.05$ ).

#### **SUMMARY:**

Michigan State University

Trial was conducted to more accurately determine sugarbeet nitrogen fertilizer needs and nitrogen response following corn. All treatments received 40 lbs. N/A as 28%, 20 lbs. P,O,/A, 50 lbs. K,O/A. and 2 lbs. Mn/A as starter placed 2x2 on May 4 (check plots did not receive any N). The 40 lb. N/A treatment received no supplemental N beyond the starter application. Sidedress N (urea) applications were completed on June 2 and were followed by a light cultivation to avoid N volatilization. PSNT testing done on May 4 revealed 31 lb. N available per acre 2 feet. Total nitrogen rate had a significant effect on total yield, RWSA, and the NH2 and amino-N sugar impurities. The 160 lb. N treatment yielded significantly greater tonnage as compared to all other N treatments. The 40, 80, and 120 lbs. N fertilizer treatments resulted in similar tonnage though 80 lb. N yielded greater than 120 lb. N. RWSA followed a similar pattern as yield. Sugar impurities increased up to the 120 lb N treatment but were similar between the 80 and 120 lb N treatments. The 160 lb N rate appeared to promote enough top- and root-growth to dilute both NH2 and amino-N concentrations. First year preliminary data following corn indicate that 160-190 lbs. total N (fertilizer N and soil N, in this case 160 lb N applied plus 30 lb PSNT N credit) may be required to maximize sugarbeet yield and economic return. If fertilizing at N rates less than 160-190 Ibs. total N, data show no benefit above 80-110 lbs. total N (in this case 80 lbs. N applied and 30 lb. PSNT N credit). Net economic return is based on a \$60/ton payment, an average RWST equal to the trial average, and an N price of \$0.68/lb. N.

**Research Results 2011** 

#### MICHIGAN STATE UNIVERSITY Extension

AgBio**Research** 

Michigan State University

### Nitrogen Rates Following Soybeans Saginaw Valley Research Farm • Frankenmuth, MI

#### Kurt Steinke and Andrew Chomas, Michigan State University

| <b>Trial Quality:</b> | —                               | Soil Type: | Clay loam; 2.9 OM; 7.6 pH; 31 ppm P; 204 ppm K |
|-----------------------|---------------------------------|------------|------------------------------------------------|
| Location:             | Saginaw County                  | Tillage:   | Conventional with light S-tine at sidedress    |
| Planted:              | May 4                           | N Rates:   | See below                                      |
| Harvested:            | October 4                       | Spacings:  | 4.25 inches                                    |
| Variety:              | Hilleshog 9042<br>Roundup Ready | Reps:      | 4                                              |

| Treatment<br>(Total lb N/A) | Net<br>\$/Acre | RWSA | RWST | T/A  | %<br>Sugar | %<br>CJP | NH2   | Amino-N |
|-----------------------------|----------------|------|------|------|------------|----------|-------|---------|
| 0 – Check                   | \$1,342        | 6412 | 297  | 21.6 | 19.8       | 95.6     | 61.8  | 3.8     |
| 40                          | \$1,448        | 7048 | 298  | 23.6 | 19.9       | 95.3     | 73.8  | 4.5     |
| 80                          | \$1,450        | 7184 | 283  | 25.4 | 18.9       | 95.4     | 107.0 | 6.9     |
| 120                         | \$1,518        | 7643 | 292  | 26.2 | 19.4       | 95.5     | 82.0  | 5.3     |
| 160                         | \$1,471        | 7544 | 282  | 26.8 | 19.0       | 95.0     | 108.5 | 6.8     |
| LSD (0.05)*                 | _              | 826  | 10   | 2.5  | 0.5        | NS       | 18.0  | 1.1     |

\* LSD, least significant difference between means within a column at ( $\alpha = 0.05$ ).

#### **SUMMARY:**

Trial was conducted to more accurately determine sugarbeet nitrogen fertilizer needs and nitrogen response following soybean. All treatments received 40 lbs. N/A as 28%, 20 lbs. P<sub>2</sub>O<sub>5</sub>/A, 50 lbs. K<sub>2</sub>O/A. and 2 lbs. Mn/A as starter placed 2x2 on May 4 (check plots did not receive any N). The 40 lb. N/A treatment received no supplemental N beyond the starter application. Sidedress N (urea) applications were completed on June 2 and were followed by a light cultivation to avoid N volatilization. **PSNT testing done on May 4 revealed 50 lb. N available per acre 2 feet.** Total nitrogen rate had a significant effect on total yield, % sugar, RWST, RWSA, and the NH2 and amino-N sugar impurities. The 80, 120, and 160 lb. N treatments yielded statistically similar tonnage. RWSA was maximized at the 120 lb. N treatment. Sugar impurities increased up to the 80 lb N treatment, decreased at 120 lbs. N, and again increased at 160 lbs. N. The 120 lb N rate minimized sugar impurities by supporting sufficient top- and root-growth to result in the greatest net economic return. First year preliminary data following soybean indicate that 120-170 lbs. total N (fertilizer N and soil N, in this case 120 lb N applied plus 50 lb PSNT N credit) may be required to maximize sugarbeet yield, quality, and economic return. If fertilizing at N rates less than 120-170 lbs. total N, data show no benefit above 90 lbs. total N (in this case, 40 lbs. N from starter and 50 lb. PSNT N credit). Net economic return is based on a \$60/ton payment, an average RWST equal to the trial average, and an N price of \$0.68/lb. N.

#### MICHIGAN STATE UNIVERSITY Extension Michigan State University AgBioResearch

### Nitrogen Source and Rate Effects on Sugarbeets Saginaw Valley Research Farm • Frankenmuth, MI

#### Kurt Steinke and Andrew Chomas, Michigan State University

| n K |
|-----|
|     |
|     |
|     |
|     |
|     |

| Treatment<br>(Total lb N/A) | Sidedress<br>(2-4 lf)<br>Lb. N/A | RWSA | RWST | T/A  | %<br>Sugar | %<br>CJP | NH2   | Amino-N |
|-----------------------------|----------------------------------|------|------|------|------------|----------|-------|---------|
| 80 <sup>1</sup>             | 40 - Urea                        | 9800 | 307  | 31.9 | 20.5       | 95.1     | 106.0 | 6.27    |
| 80                          | 40 - AS                          | 8595 | 301  | 28.6 | 20.1       | 95.2     | 89.3  | 5.30    |
| 80                          | 40 - ASN                         | 9640 | 306  | 31.5 | 20.5       | 95.2     | 74.0  | 4.34    |
| 80                          | 40 - ESN                         | 9102 | 301  | 30.2 | 20.0       | 95.5     | 68.8  | 4.20    |
| 120                         | 80 - Urea                        | 9277 | 305  | 30.4 | 20.4       | 95.3     | 117.5 | 6.80    |
| 120                         | 80 - AS                          | 9969 | 295  | 33.8 | 19.8       | 94.9     | 93.3  | 5.43    |
| 120                         | 80 - ASN                         | 9732 | 304  | 32.0 | 20.3       | 95.4     | 84.8  | 5.03    |
| 120                         | 80 - ESN                         | 9643 | 297  | 32.5 | 19.9       | 95.1     | 86.0  | 5.26    |
| LSD 2                       | _                                | NS   | NS   | NS   | NS         | NS       | NS    | NS      |

<sup>1</sup> All plots received 40 lbs. N/A as starter.

<sup>2</sup> LSD, least significant difference between means within a column at ( $\alpha = 0.05$ ).

#### **SUMMARY:**

Trial was conducted to determine the effects of urea, ammonium sulfate (AS), ammonium sulfate-nitrate (ASN), and ESN (Environmentally Smart Nitrogen) as N sources for sugarbeet production. All treatments received 40 lbs. N/A as 28%, 20 lbs. P<sub>2</sub>O<sub>5</sub>/A, 50 lbs. K<sub>2</sub>O/A. and 2 lbs. Mn/A as starter placed 2x2 on May 4. Sidedress N applications of urea, AS, ASN, or ESN were completed on June 2 and were followed by a light cultivation to avoid N volatilization. The 40 and 80 lb. AS sidedress applications provided 46 and 91 lbs sulfate-S, respectively. The 40 and 80 lb. ASN sidedress applications provided 22 and 43 lbs. sulfate-S, respectively. **PSNT testing done on May 4 revealed 31 lb. N available per acre 2 feet.** Nitrogen source and rate had no significant effects on yield or sugar parameters in this study. Data begins to show that at higher N rates, alternative N sources such as AS, ASN, or ESN may impart greater influence upon yield and RWSA. At lower N rates, data show that urea may optimize both yield and RWSA. Poor spring weather conditions may have influenced N source results. Additional work will continue in 2012 to determine N source and rate influences on sugarbeet production.

#### MICHIGAN STATE UNIVERSITY Extension Michigan State University AgBioResearch

### Environmentally Smart Nitrogen (ESN) as N Source Saginaw Valley Research Farm • Frankenmuth, MI

#### Kurt Steinke and Andrew Chomas, Michigan State University

| Location:      | Saginaw County                  | Soil Type: | Clay loam; 2.8 OM; 7.7 pH; 40 ppm P; 189 ppm K |
|----------------|---------------------------------|------------|------------------------------------------------|
| Planted:       | May 4                           | Tillage:   | Conventional with light S-tine at sidedress    |
| Harvested:     | October 4                       | N Rates:   | See below                                      |
| Previous Crop: | Corn                            | Spacings:  | 4.25 inches                                    |
| Variety:       | Hilleshog 9042<br>Roundup Ready | Reps:      | 4                                              |

| Treatment<br>(Total Ib N/A) | Sidedress<br>(2-4 lf)<br>Lb. N/A | RWSA  | RWST | T/A  | %<br>Sugar | %<br>CJP | NH2   | Amino-N |
|-----------------------------|----------------------------------|-------|------|------|------------|----------|-------|---------|
| 80 <sup>1</sup>             | 40 - Urea                        | 9800  | 307  | 31.9 | 20.5       | 95.1     | 106.0 | 6.27    |
| 120                         | 80 - Urea                        | 9277  | 305  | 30.4 | 20.4       | 95.2     | 117.5 | 6.80    |
| 160                         | 120 - Urea                       | 10352 | 301  | 34.4 | 20.1       | 95.4     | 91.0  | 5.61    |
| 80                          | 40 - ESN                         | 9102  | 301  | 30.2 | 20.0       | 95.5     | 68.8  | 4.20    |
| 120                         | 80 -ESN                          | 9643  | 297  | 32.5 | 19.9       | 95.1     | 86.0  | 5.26    |
| 160                         | 120 - ESN                        | 8833  | 288  | 30.6 | 19.5       | 94.7     | 102.0 | 6.17    |
| LSD 2<br>(0.05)             | _                                | NS    | 11.2 | NS   | 0.6        | NS       | NS    | NS      |

<sup>1</sup> All plots received 40 lbs. N/A as starter.

<sup>2</sup> LSD, least significant difference between means within a column at ( $\alpha = 0.05$ ).

#### **SUMMARY:**

Trial was conducted to determine the effects of ESN (Environmentally Smart Nitrogen) as an N source for sugarbeet production. ESN is one example of a polymer-coated urea product that functions as a slow-release N fertilizer by metering the N release through the polymer coating. All treatments received 40 lbs. N/A as 28%, 20 lbs. P<sub>2</sub>O<sub>5</sub>/A, 50 lbs. K<sub>2</sub>O/A. and 2 lbs. Mn/A as starter placed 2x2 on May 4. Sidedress N applications of urea or ESN were completed on June 2 and were followed by a light cultivation to avoid N volatilization. **PSNT testing done on May 4 revealed 31 lb. N available per acre 2 feet.** ESN and urea had similar yields, RWSA, CJP, and sugar impurity measurements. At the high N rate, ESN did appear to have a negative effect upon % sugar and RWST as compared to the high rate of urea. Overall, 2011 performance indicates no significant ESN advantage as compared to urea. However due to poor spring conditions, the moderately later planting date may have been delayed enough to mismatch the N-release from ESN with the peak time of sugarbeet plant N uptake. Work will continue to determine the timing and suitability of ESN as an N source for sugarbeet production.



Dr. Laura L. Van Eerd, Jessica Turnbull and Mike Zink University of Guelph • Ridgetown Campus Page 1 of 2

### PRELIMINARY REPORT: Developing nitrogen decision-making tools to optimize recoverable white sugar per ton in sugarbeet production Ontario 2010-2012

Trial quality:GoodWeather2010: early planting and a 'typical' season<br/>2011: late planting and wet season

#### **SUMMARY:**

Managing nitrogen fertilizer is critical to optimizing RWST. It would be advantageous to have tools available to predict N fertilizer requirements and RWST yield potential. Research trials at 7 sites and survey sites at 40 grower fields were established in 2010 and 2011 to determine if SPAD<sup>®</sup> chlorophyll meter can be developed to predict 1) N fertilizer need at the time of sidedress application and 2) RWST yield potential at the time of sidedress N application and at harvest. In 2010, there were significant positive correlations between SPAD<sup>®</sup> readings taken at either the time of sidedress or at harvest and sugarbeet yield, % sugar and RWST, suggesting that the tool would be useful for growers. In 2011, the SPAD<sup>®</sup> readings were significantly correlated to sugarbeet yield, % sugar and RWST at the time of sidedress but not at harvest. Perhaps the lack of relationship in 2011 at harvest was likely due to the late, spring and wet growing season. Further analysis of survey/grower fields and of SPAD<sup>®</sup> readings taken throughout the 2011 growing season is needed.

**Objective:** To field test the SPAD chlorophyll meter as a tool to predict 1) the need for N fertilizer or 2) RWST yield- potential.

**Methods:** Research trials were established in 6 farmer fields. Each site had 4 replications and consisted of 3 treatments, 1) a zero N control, and 2) typical grower practices –specific for each grower and 3) starter N only. SPAD<sup>®</sup> readings were taken at the time of sidedress N application (late May – early June) and at harvest. Root yield, % sugar and RWST were taken at harvest.

**Results:** In 2010, results show significant correlations between SPAD<sup>®</sup> readings and sugarbeet yield, sugar content, and RWST when sampled at sidedress and at harvest (Figure 1) in the zero N treatment at research sites. This indicates that the SPAD<sup>®</sup> meter may be useful as a prediction tool. In 2011, the SPAD<sup>®</sup> may be more useful at sidedress than at harvest at predicting yield, % sugar and RWST (Figure 2). It is likely that the less than ideal growing season in 2011 was a contributing factor as to why the SPAD<sup>®</sup> did not work at harvest in 2011 but did work in 2010.

**Further analysis:** Analysis is underway for 2011 data collected from 40 grower fields. Each field was randomly sampled in 6 locations/ areas and had 2 to 3 sampling dates for SPAD<sup>®</sup> readings, soil and tissue samples. When soil and tissue nitrogen analysis are completed we can fully evaluate how applicable the SPAD<sup>®</sup> meter may be for sugarbeet growers.

**Funding:** by Agriculture and Agri-Food Canada through the Agricultural Adaptation Council through the Farm Innovation Program, Ontario Sugarbeet Growers Association, Michigan Sugar Company and Ontario Ministry of Agriculture, Food and Rural Affairs.

continued on next page

Page 2 of 2

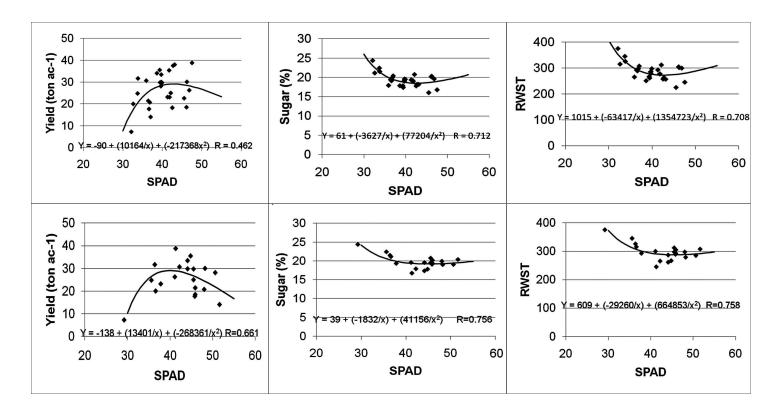



Figure 1: In 2010, correlation between SPAD<sup>®</sup> meter values taken *at sidedress* (top) or *at harvest* (bottom) and sugarbeet root yield, percent sugar and RWST. Data from at least 5 research trials with 4 reps in the zero N treatment. R values ≥0.444 were significant at p=0.05.

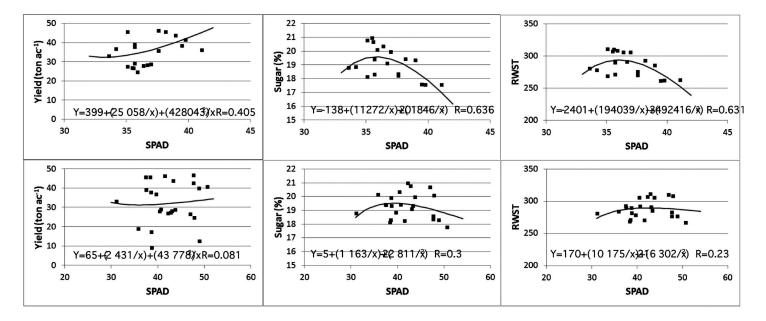



Figure 2: In 2011, correlation between SPAD<sup>®</sup> meter values taken *at sidedress* (top) or *at harvest* (bottom) and sugarbeet root yield, percent sugar and RWST. Data from at least 5 research trials with 4 reps in the zero N treatment. R values ≥0.444 were significant at p=0.05.



## Sugarbeet Foliar Nitrogen Advancement Richmond Brothers Farms LLC • Pigeon, MI

| <b>Trial Quality:</b> | Excellent    | Spacings:   | Rows-22"                                 | Harv/Sample:       | Nov. 12 / Oct. 13                 |
|-----------------------|--------------|-------------|------------------------------------------|--------------------|-----------------------------------|
| Location:             | Huron County | Fertilizer: | 2x2 - (Lbs.) 50-40-0-8S-                 | Herbicides:        | 4x Glyphosate                     |
| Planted:              | May 11       | Soil Type:  | .27Mn28B; S.D 110# N<br>Loam             | <b>Replicated:</b> | бх                                |
| Variety:              | HM-133RR     |             |                                          | Fungicide:         | 47 DSV - Proline                  |
| Previous Crop:        | Corn         | Tillage:    | Dominator; Wheat<br>Cover, Stale Seedbed |                    | 95 DSV - Gem<br>143 DSV - Proline |

| Treatment | \$/Acre | RWSA   | RWST   | T/A    | %<br>Sugar | %<br>CJP |
|-----------|---------|--------|--------|--------|------------|----------|
| CoRoN     |         | 9581   | 291    | 33.0   | 19.7       | 94.9     |
| Check     | _       | 9671   | 296    | 32.8   | 19.9       | 95.0     |
| Average   |         | 9626   | 294    | 32.9   | 19.8       | 94.9     |
| LSD 5%    | _       | 491 NS | 4.6 NS | 1.1 NS | 0.4 NS     | 0.9 NS   |
| CV %      |         | 3      | 1      | 1.9    | 1.3        | 0.6      |

Bold: Results are not statistically different from top-ranking treatment in each column. \$/Acre: Not calculated.

| Emergence:   | Excellent                                                      | Cerc Leafspot: | Excellent Control |
|--------------|----------------------------------------------------------------|----------------|-------------------|
| Rhizoctonia: | Low                                                            | Nematodes:     | None Detected     |
| Quadris App: | In Furrow (3" Band 5.4 oz), &<br>6-8 Leaf (14.2 oz w/ Mustang) | Weather:       | —                 |

#### **COMMENTS:**

Trial was conducted to evaluate if yield enhancement would occur if foliar nitrogen was applied to beets even if no visual deficiency symptoms were seen. The product used was CoRoN 25-0-0 controlled release foliar fertilizer. A rate of 2 gallons of CoRoN in 12 gallons of water was applied on 6/29/11 in an 11 inch band. No foliar injury, growth enhancement or color difference was seen. No significant difference in yield or quality was measured.

#### MICHIGAN STATE UNIVERSITY Extension Michigan State University AgBioResearch

### Foliar Slow-Release Nitrogen Saginaw Valley Research Farm • Frankenmuth, MI

#### Kurt Steinke and Andrew Chomas, Michigan State University

| Location:             | Saginaw County                  | Soil Type: | Clay loam; 2.8 OM; 7.7 pH; 40 ppm P; 189 ppm K |
|-----------------------|---------------------------------|------------|------------------------------------------------|
| Planted:              | May 4                           | Tillage:   | Conventional with light S-tine at sidedress    |
| Harvested:            | October 4                       | N Rates:   | See below                                      |
| <b>Previous Crop:</b> | Corn                            | Spacings:  | 4.25 inches                                    |
| Variety:              | Hilleshog 9042<br>Boundun Boody | Reps:      | 4                                              |
|                       | Roundup Ready                   |            |                                                |

| Treatment<br>(Total lb N/A) | Sidedress<br>(2-4 lf)<br>Lb. N/A | Foliar N<br>(lb. N/A) | RWSA | RWST | T/A  | %<br>Sugar | %<br>CJP | NH2   | Amino-N |
|-----------------------------|----------------------------------|-----------------------|------|------|------|------------|----------|-------|---------|
| 80 <sup>1</sup>             | 40                               | 0                     | 9800 | 307  | 31.9 | 20.5       | 95.1     | 106.0 | 6.3     |
| 120                         | 80                               | 0                     | 9277 | 305  | 30.4 | 20.4       | 95.2     | 117.5 | 6.8     |
| 80                          | 30                               | 10 <sup>3</sup>       | 9223 | 303  | 30.3 | 20.2       | 95.3     | 76.8  | 4.7     |
| 80                          | 20                               | 20 <sup>4</sup>       | 8613 | 301  | 28.6 | 20.1       | 95.4     | 62.8  | 3.8     |
| 120                         | 70                               | 10 <sup>3</sup>       | 9420 | 299  | 31.6 | 20.0       | 95.2     | 77.8  | 4.7     |
| 120                         | 60                               | 20 <sup>4</sup>       | 9792 | 303  | 32.3 | 20.4       | 94.9     | 102.3 | 6.0     |
| LSD 2                       | _                                |                       | NS   | NS   | NS   | NS         | NS       | 41.1  | 2.5     |

<sup>1</sup> All plots received 40 lbs. N/A as starter.

<sup>2</sup> LSD, least significant difference between means within a column at ( $\alpha = 0.05$ ).

<sup>3</sup> 3 applications at 1 gallon per acre on June 15, June 27, and July 13 for a total of 10 lb. N.

<sup>4</sup> 3 applications at 2 gallon per acre on June 15, June 27, and July 13 for a total of 20 lb. N.

#### **SUMMARY:**

Trial was conducted 1) to investigate the effects of N-Demand (30-0-0; 60% slow-release N, 40% urea) as a foliar slow-release in-season nitrogen application and 2) to determine whether any benefit existed to reducing sidedress N applications by 10-20% only to supplement this N through foliar mid-summer N applications. All treatments received 40 lbs. N/A as 28%, 20 lbs. P<sub>2</sub>O<sub>5</sub>/A, 50 lbs. K<sub>2</sub>O/A. and 2 lbs. Mn/A as starter placed 2x2 on May 4. **PSNT testing done on May 4 revealed 31 lb. N available per acre 2 feet.** Other than a slight decrease in NH2 content, foliar applications of N-Demand did not significantly impact yield, RWSA, RWST, % sugar, and % CJP. At the lower total N rate of 80 lbs., foliar N applications appeared to negatively effect sugarbeet performance as compared to the conventional 80 lb. N treatment. At the higher N rate of 120 lbs., foliar N supplementation appeared to begin to show a positive albeit non-significant effect on RWSA and yield. All treatments did produce significantly greater yield and RWSA than the untreated control. Work will continue in 2012.



### Sugarbeet Foliar Nutrients **Richmond Brothers Farms LLC • Pigeon, MI**

| Trial Quality: | Excellent    | Spacings:   | Rows-22"                                 | Harv/Sample:       | Nov. 12 / Oct. 13                 |
|----------------|--------------|-------------|------------------------------------------|--------------------|-----------------------------------|
| Location:      | Huron County | Fertilizer: | 2x2 - (Lbs) 50-40-0-8S-                  | Herbicides:        | 4x Glyphosate                     |
| Planted:       | May 11       |             | .27Mn28B; S.D 120# N                     | <b>Replicated:</b> | бх                                |
| Variety:       | HM-133RR     | Soil Type:  | Loam                                     | Fungicide:         | 47 DSV - Proline                  |
| Previous Crop: | Corn         | Tillage:    | Dominator; Wheat<br>Cover, Stale Seedbed | -                  | 95 DSV - Gem<br>143 DSV - Proline |

180 DSV - Gem

| Treatment         | \$/Acre | RWSA   | RWST | T/A    | %<br>Sugar | %<br>CJP |
|-------------------|---------|--------|------|--------|------------|----------|
| Check             | —       | 9899   | 295  | 33.6   | 19.7       | 95.3     |
| Manganese + Boron | _       | 9782   | 291  | 33.6   | 19.4       | 95.4     |
| Elemax            | _       | 9649   | 292  | 33.1   | 19.5       | 95.2     |
| Manganese         | _       | 9604   | 286  | 33.5   | 19.2       | 95.3     |
| Boron             | —       | 9437   | 289  | 32.6   | 19.4       | 95.2     |
| Average           | _       | 9674   | 291  | 33.3   | 19.4       | 95.3     |
| LSD 5%            | _       | 515 NS | 9 NS | 1.3 NS | 0.5 NS     | 0.4 NS   |
| CV %              | _       | 4      | 2    | 3.3    | 2.1        | 0.4      |

**Bold:** Results are not statistically different from top-ranking treatment in each column. \$/Acre: Not calculated.

| Emergence:   | Excellent                                                      | Cerc Leafspot: | Excellent Control |
|--------------|----------------------------------------------------------------|----------------|-------------------|
| Rhizoctonia: | Low                                                            | Nematodes:     | None Detected     |
| Quadris App: | In Furrow (3" Band 5.4 oz), &<br>6-8 Leaf (14.2 oz w/ Mustang) | Weather:       | —                 |

#### **COMMENTS:**

Trial was conducted to evaluate the additive effects that foliar fertilizer has on crop yield and quality when already combined with a good fertility program. The field has a history of manure. Three different products were applied separately or in combination. Each treatment was applied twice at the recommended rates. The first application was applied in 7 inch band at the 6 leaf stage on 6/14/11. The second application was applied two weeks later in a 11 inch band on 6/29/11. Products applied were Ele-Max 11-8-5 Nutrient concentrate, Brandt Liquid Boron 10% B and Techmangam 19S-32Mn. All products were applied with 12 gallons of water and had no foliage burn. No significant visual, yield or quality differences occurred.

Use of these varieties is subject to them being lawful to purchase, receive, distribute and plant



### Advantage & Upplause Foliar Nutrient Trial Roggenbuck Farm • Harbor Beach, MI

| Trial Quality:<br>Location:  | Good<br>Huron County      | Rhizoc Control:     | Good<br>2 Quadris applications | Soil Info:<br>Plot Size:      | Loam, 3.7% OM, 7.0 pH<br>6 Rows X 150 ft |
|------------------------------|---------------------------|---------------------|--------------------------------|-------------------------------|------------------------------------------|
| Planted:                     | June 2                    | Cercospora Control: | 2. Constated a construction of | Reps:                         | 8                                        |
| Harvested:<br>Previous Crop: | October 7<br>Wheat/Clover | Spray Dates:        | July 5 and July 14             | Row Spacing:<br>Seeding Rate: |                                          |
| rienous crop.                |                           | Seasonal Rainfall:  | 13.1 inches                    | Security nate.                |                                          |

| Treatment | Rate      | Applic             | \$/Acre | RWSA    | RWST    | T/A     | %<br>Sugar | %<br>CJP | Vigor<br>1-10 | Stand<br>B/100ft |
|-----------|-----------|--------------------|---------|---------|---------|---------|------------|----------|---------------|------------------|
| Upplause  | 2qt/a     | 6 leaf and 12 leaf | \$1,633 | 6576    | 244.3   | 27.0    | 17.1       | 93.5     | 7.9           | 204              |
| Quadris   | 14fl oz/a | 6 leaf             |         |         |         |         |            |          |               |                  |
| Urea      | 10lb/a    | 6 leaf             |         |         |         |         |            |          |               |                  |
| Roundup   | 22fl oz/a | 12 leaf            |         |         |         |         |            |          |               |                  |
| Upplause  | 1qt/a     | 6 leaf and 12 leaf | \$1,623 | 6539    | 242.1   | 27.0    | 17.0       | 93.5     | 8.4           | 206              |
| Quadris   | 14fl oz/a | 6 leaf             |         |         |         |         |            |          |               |                  |
| Urea      | 10lb/a    | 6 leaf             |         |         |         |         |            |          |               |                  |
| Roundup   | 22fl oz/a | 12 leaf            |         |         |         |         |            |          |               |                  |
| Advantage | 4qt/a     | 6 leaf and 12 leaf | \$1,619 | 6519    | 241.0   | 27.1    | 17.0       | 93.2     | 8.3           | 205              |
| Quadris   | 14fl oz/a | 6 leaf             |         |         |         |         |            |          |               |                  |
| Urea      | 10lb/a    | 6 leaf             |         |         |         |         |            |          |               |                  |
| Roundup   | 22fl oz/a | 12 leaf            |         |         |         |         |            |          |               |                  |
| Untreated |           |                    | \$1,582 | 6373    | 241.1   | 26.4    | 17.0       | 93.2     | 8.0           | 198              |
| Upplause  | 4qt/a     | 6 leaf and 12 leaf | \$1,570 | 6323    | 241.5   | 26.2    | 17.0       | 93.2     | 8.2           | 201              |
| Quadris   | 14fl oz/a | 6 leaf             |         |         |         |         |            |          |               |                  |
| Urea      | 10lb/a    | 6 leaf             |         |         |         |         |            |          |               |                  |
| Roundup   | 22fl oz/a | 12 leaf            |         |         |         |         |            |          |               |                  |
| Advantage | 2qt/a     | 6 leaf and 12 leaf | \$1,552 | 6251    | 242.4   | 25.8    | 17.1       | 93.3     | 8.2           | 210              |
| Quadris   | 14fl oz/a | 6 leaf             |         |         |         |         |            |          |               |                  |
| Urea      | 10lb/a    | 6 leaf             |         |         |         |         |            |          |               |                  |
| Roundup   | 22fl oz/a | 12 leaf            |         |         |         |         |            |          |               |                  |
| Advantage | 1qt/a     | 6 leaf and 12 leaf | \$1,549 | 6240    | 239.4   | 26.1    | 16.9       | 93.3     | 8.1           | 195              |
| Quadris   | 14fl oz/a | 6 leaf             |         |         |         |         |            |          |               |                  |
| Urea      | 10lb/a    | 6 leaf             |         |         |         |         |            |          |               |                  |
| Roundup   | 22fl oz/a | 12 leaf            |         |         |         |         |            |          |               |                  |
| Average   |           | \$1,590            | 6403    | 241.7   | 26.5    | 17.0    | 93.3       | 8.1      | 203           |                  |
| LSD 5%    |           | ns(83)             | ns(335) | ns(8.0) | ns(1.6) | ns(0.4) | ns(0.6)    | 0.3      | ns(19)        |                  |
| CV %      |           |                    | 5.2     | 5.2     | 3.3     | 5.8     | 2.2        | 0.6      | 4.1           | 6.2              |

Bold: Results are not statistically different from top-ranking treatment in each column.

\$/Acre: Figured using a \$60 payment, gross payment unless noted as net.

#### **SUMMARY:**

Advantage (4.1% N and trace elements) and Upplause (10% N and trace elements) are products which claim to improve yield and quality to a greater extent than the fertilizer values. In this trial, there did not appear to be an advantage to applying either product.

## Sugarbeet Starter Fertilizer Advancement Richmond Brothers Farms LLC • Pigeon, MI

| <b>Trial Quality:</b> | Good                                                | Spacings:   | Rows-22"                                              | Harv/Sample:       | Nov. 12 / Oct. 13                                  |
|-----------------------|-----------------------------------------------------|-------------|-------------------------------------------------------|--------------------|----------------------------------------------------|
| Location:             | Huron County                                        | Fertilizer: | 2x2 - See Treatments; S.D.                            | Herbicides:        | 4x Glyphosate                                      |
| Planted:              | May 7                                               |             | rates adjusted for 130# total N                       | <b>Replicated:</b> | 3x                                                 |
| Variety:              | C-RR827                                             | Soil Type:  | Loam                                                  | Fungicide:         | 47 DSV - Proline                                   |
| Previous Crop:        | Wheat, Alfalfa<br>Cover, Followed<br>by Wheat Cover | Tillage:    | Dominator & 1x F.C.;<br>Wheat Cover; Stale<br>Seedbed |                    | 95 DSV - Gem<br>143 DSV - Proline<br>180 DSV - Gem |

|                  |         |        |        |        |         |        | Popul<br>100 Ft | ations<br>of Row |
|------------------|---------|--------|--------|--------|---------|--------|-----------------|------------------|
| Treatment        | \$/Acre | RWSA   | RWST   | T/A    | % Sugar | % CJP  | 10 Day          | 41 Day           |
| 40# N & 42# P2O5 |         | 11854  | 306    | 38.8   | 20.3    | 95.6   |                 | 183              |
| 63# N & 0# P2O5  | —       | 11681  | 308    | 38.0   | 20.5    | 95.5   | —               | 185              |
| 63# N & 42# P2O5 | _       | 11638  | 304    | 38.3   | 20.2    | 95.3   | —               | 182              |
| 20# N & 42# P2O5 | _       | 11549  | 305    | 37.9   | 20.2    | 95.6   | —               | 171              |
|                  |         |        |        |        |         |        |                 |                  |
| Average          | —       | 11681  | 305    | 38.2   | 20.3    | 95.5   | —               | 180              |
| LSD 5%           | _       | 765 NS | 5.4 NS | 2.4 NS | 0.3 NS  | 0.4 NS | —               | 19 NS            |
| CV %             |         | 3      | 1      | 3.2    | 1.1     | 0.4    |                 | 5                |

**Bold:** Results are not statistically different from top-ranking treatment in each column. **\$/Acre:** Not calculated.

| Emergence:   | Excellent                                                      | Cerc Leafspot: | Excellent Control |
|--------------|----------------------------------------------------------------|----------------|-------------------|
| Rhizoctonia: | Low                                                            | Nematodes:     | None Detected     |
| Quadris App: | In Furrow (3" Band 5.4 oz), &<br>6-8 Leaf (14.2 oz w/ Mustang) | Weather:       | —                 |

### **COMMENTS:**

Trial was established to look at the effects of different nitrogen rates and phosphorous in starter fertilizer. Nitrogen rates in the 2x2 starter were 20, 40, and 63 pounds per acre. Phosphorous was included in some treatments at a rate of 42 pounds of P2O5. All treatments received the same amount of total nitrogen (130 Lbs.) adjusted by side-dress application. A slight visual difference in coloration was seen early in the season for the lowest starter nitrogen rate. Trial was stale seedbed planted into a wheat cover crop. Nutrient levels of soil test were considered high. Trial yielded no significant difference from any treatment. In 30 inch rows, a 60 pound starter nitrogen rate could be a concern in lighter textured fields.



## **Beet Lime Trials** Helmreich Farm • Bay City, MI

Trial Quality:GoodLocation:Bay CountyRow Spacing:30 inches

**Application Details:** Lime applied fall of 2010 2, 4 and 6 tons/acre **Replicated Strip Trial:** 

Plot Size:6 Rows X 1/4-MileRep:3

| Treatment    | Tons/Acre | RWSA    | RWST     | T/A     | %<br>Sugar | %<br>CJP | Cerc<br>0-9 | Rhizoc<br>100 ft | Aph 0-5 |
|--------------|-----------|---------|----------|---------|------------|----------|-------------|------------------|---------|
| Factory Lime | 6         | 5073    | 303      | 16.8    | 20.0       | 96.0     | 3.3         | 6.0              | 1.8     |
| Factory Lime | 4         | 4970    | 302      | 16.5    | 19.8       | 96.2     | 3.3         | 6.0              | 1.9     |
| Factory Lime | 2         | 4791    | 303      | 15.8    | 19.9       | 95.8     | 3.4         | 6.5              | 2.3     |
| Untreated    | 0         | 4734    | 308      | 16.9    | 20.2       | 96.1     | 3.4         | 6.7              | 2.6     |
| Average      |           | 4892    | 304      | 16.5    | 20.0       | 96.0     | 3.3         | 6.3              | 2.2     |
| LSD 5%       |           | ns(765) | ns(21.2) | ns(4.9) | ns(0.9)    | ns(1.4)  | ns(0.5)     | 0.5              | 0.2     |
| CV %         |           | 4.9     | 2.2      | 9.4     | 0.3        | 0.5      | 4.4         | 2.4              | 3.4     |

Bold: Results are not statistically different from top-ranking treatment in each column.

Cercospora & Rhizoctonia: Lower number is better

Agronomist Trial: Greg Clark

### **SUMMARY:**

Lime was applied at rates of 2, 4 and 6 tons/acre in the fall of 2010 and sugarbeets were planted in 2011. There were significantly fewer dead beets from Rhizoctonia and improved Aphanomyces rating with lime applications at 4 and 6 tons per acre. There were no significant differences with respect to sugarbeet yield and quality.

## Sugarbeet Zone Till vs. Chisel Plow Trial Advancement Clay Crumbaugh • Breckenridge, MI

| <b>Trial Quality:</b> | Excellent      | Spacings:   | Rows-30"; Seeds-57,000   | Harv/Sample:       | Nov. 6 / Oct. 5                         |
|-----------------------|----------------|-------------|--------------------------|--------------------|-----------------------------------------|
| Location:             | Gratiot County | Fertilizer: | 2x2 - 15-9-9-15S7Mn4B;   | Herb/Pesticide:    | 3x Gly., 1x Lorsban                     |
| Planted:              | May 4          |             | Pre Broadcast 18 Gal 28% | <b>Replicated:</b> | 3x                                      |
| Variety:              | HM-28RR        | Soil Type:  | Loam                     | Fungicide:         | 55 DSV - Eminent                        |
| Previous Crop:        | Soybeans       | Tillage:    | See Treatments           | -                  | 110 DSV - Headline<br>165 DSV - Agritin |

|                                                                         | Net            |         |       |        | <u>~</u>   | 0(       | Popul<br>100 Ft | ations<br>of Row | Dead               |
|-------------------------------------------------------------------------|----------------|---------|-------|--------|------------|----------|-----------------|------------------|--------------------|
| Treatment                                                               | Net<br>\$/Acre | RWSA    | RWST  | T/A    | %<br>Sugar | %<br>CJP | 10 Day          | 41 Day           | Beets /<br>1200 Ft |
| Fall: Zone Till<br>Spring: Stale Seedbed                                | \$1,630        | 7509    | 271   | 27.7   | 18.1       | 95.7     | _               | 238              | 3                  |
| Fall: Disc Chisel fol-<br>lowed by Field Cult.<br>Spring: Stale Seedbed | \$1,668        | 7719    | 275   | 28.1   | 18.4       | 95.6     | _               | 234              | 4                  |
| Average                                                                 | \$1,649        | 7614    | 273   | 27.9   | 18.2       | 95.7     |                 | 236              | 4                  |
| LSD 5%                                                                  |                | 1219 NS | 11 NS | 2.0 NS | 0.8 NS     | 0.4 NS   |                 | 36 NS            | 3 NS               |
| CV %                                                                    |                | 5       | 2     | 2.1    | 1.9        | 0.2      | —               | 10               | 62                 |

**Bold:** Results are not statistically different from top-ranking treatment in each column.

Net \$/Acre: Revenue per acre assuming a \$60 payment and cost of \$18 for chisel plow, \$12 for field cult, and \$22 for zone tillage.

| Emergence:   | Excellent                                | Cerc Leafspot: | Good Control  |
|--------------|------------------------------------------|----------------|---------------|
| Rhizoctonia: | Very Low                                 | Nematodes:     | Not Confirmed |
| Quadris App: | In Furrow ( 4" Band, 5 oz)<br>& 6-8 Leaf | Weather:       | _             |

### **COMMENTS:**

The trial was setup with GPS guidance to perform the tillage and planting in 30 row blocks. Entire blocks were harvested using truck weights. No significant differences were measured in yield or quality. The same trial was performed in 2009 and also showed no significant differences. The Brillion zone tillage tool had a shank depth of 16 inches and was conducted in the fall after soybean harvest. All planting was done with no spring tillage into a stale seedbed. The grower estimates his cost for the zone tillage system at \$22 dollars per acre. The cost for the disc chisel system were \$18 for the chisel and \$12 for a leveling cultivator pass.

**Research Results 2011** 

### MICHIGAN STATE UNIVERSITY Extension Michigan State University

AgBio**Research** 

## Fall Tillage Systems Comparison for Maximum Yield & Quality East Lansing Agronomy Farm

### Christy Sprague and Gary Powell, Michigan State University

| Location: | East Lansing                    | Soil Type: | Loam; 3.2 OM; 7.4 pH                      |
|-----------|---------------------------------|------------|-------------------------------------------|
| Planted:  | May 5                           | Tillage:   | Fall - Nov. 9, 2010; Spring - May 5, 2011 |
| Variety:  | Hilleshog 9042<br>Roundup Ready | Spacings:  | 4.25 inches                               |
|           |                                 | Reps:      | 4                                         |

|                                   |                           |                   | RBEET                       |              |
|-----------------------------------|---------------------------|-------------------|-----------------------------|--------------|
| Tillage system                    | Harvest stand<br>#/100 ft | Yield<br>Ton/Acre | RWST <sup>2</sup><br>lb/ton | RWSA<br>Ib/A |
| Fall chisel<br>Spring soil finish | 214 a <sup>1</sup>        | 45.7 a            | 283 bc                      | 12939 a      |
| Fall disk<br>Spring soil finish   | 185 b                     | 40.0 a            | 293 a                       | 11737 a      |
| No-tillage                        | 168 b                     | 37.6 a            | 280 c                       | 10501 a      |
| Fall strip-tillage                | 168 b                     | 36.9 a            | 290 ab                      | 10700 a      |

<sup>1</sup> Means within a column with different letters are significantly different from each other.

<sup>2</sup> Abbreviations: RWST = recoverable white sugar per ton; RWSA = recoverable white sugar per acre

### **SUMMARY:**

Planting sugarbeet after corn is a common rotation for many Michigan growers. However, management of corn stubble can be an issue. Strip-tillage has become more popular for sugarbeet growers in the western United States. We conducted research from 2008 to 2010 comparing spring strip-tillage, no-tillage, and conventional tillage systems with various cover crops. From this research we determined that spring strip-tillage may not be the best option for Michigan growers. However, fall strip-tillage may have a place in Michigan sugarbeet production. With this in mind we wanted to conduct a preliminary research trial that examined sugarbeet production under four different tillage systems. The treatments were: 1) fall chisel plow followed by a soil finisher in the spring, 2) fall disking followed by a soil finisher in the spring, 3) no-tillage, and 4) fall strip-tillage with a Twin Diamond Strip Cat tillage implement. All plots were kept weed-free and managed similarly with applications of Roundup PowerMax (22 fl oz/A) + ammonium sulfate (17 lb/100 gal). At harvest there were some differences in sugarbeet yield or recoverable white sugar per acre. All tillage systems provided statistically similar yields. This preliminary research shows that some of these other tillage systems including strip-tillage and no-tillage following corn may be additional options of sugarbeet production. However, more in-depth research needs to be conducted under more environments and soil types to see where these systems may fit.

## Sugarbeet Clover Cover Crop Trial Advancement Gene Meylan • Linwood, MI

| Trial Quality: | Fair              | Spacings:   | Rows - 30"                   | Harv/Sample:       | Oct. 24 / Oct. 7                        |
|----------------|-------------------|-------------|------------------------------|--------------------|-----------------------------------------|
| Location:      | Bay County        | Fertilizer: | 2x2 - 20 Gal. 18.5-15-0-2.5S | Herbicides:        | 3x Glyphosate                           |
| Planted:       | May 15            |             | w/ qt of Mn & B; S.D. 90 # N | <b>Replicated:</b> | 4x                                      |
| Variety:       | SX-1291RR         | Soil Type:  | Loam                         | Fungicide:         | 55 DSV - Eminent                        |
| Previous Crop: | Wheat with Clover | Tillage:    | Ripper, Spring 1x Triple K   |                    | 110 DSV - Headline<br>165 DSV - Eminent |

| Treatment | \$/Acre | RWSA   | RWST | T/A    | %<br>Sugar | %<br>CJP |
|-----------|---------|--------|------|--------|------------|----------|
| Check     | —       | 6143   | 276  | 22.3   | 18.4       | 95.7     |
| Clover    | _       | 6118   | 269  | 22.8   | 18.0       | 95.5     |
| Average   | _       | 6131   | 273  | 22.5   | 18.2       | 95.6     |
| LSD 5%    | —       | 428 NS | 3    | 1.8 NS | 0.4 NS     | 0.8 NS   |
| CV %      |         | 3      | 1    | 3.6    | 1.1        | 0.4      |

**Bold:** Results are not statistically different from top-ranking treatment in each column. **\$/Acre:** Not calculated.

| Emergence:   | Poor      | Cerc Leafspot: | Good Control  |
|--------------|-----------|----------------|---------------|
| Rhizoctonia: | Low       | Nematodes:     | Not Confirmed |
| Quadris App: | In Furrow | Weather:       | _             |

### **COMMENTS:**

Clover was frost seeded in wheat in the spring of 2010. The clover was killed and tilled in early September because of weed contamination. Clover would normally be destroyed late October or early November. Sugarbeets were planted in the spring of 2011. Because of early tillage, some of the nitrogen benefits from clover may have been lost. Sugarbeets were relatively thin due to crusting/emergence issues. No significant differences were found in tons or RWSA. There was a significant difference found for RWST. This is possibly due to some nitrogen being available from the clover and lowering quality. The applied nitrogen rates were the same for both treatments.

**Research Results 2011** 

### MICHIGAN STATE UNIVERSITY Extension Michigan State University AgBioResearch State January Agronomy Farm

### George W. Bird, Professor, Michigan State University

Page 1 of 2

Beet cyst nematodes (BCN) have been a significant problem in Michigan sugar beet production for more than 60 years. Currently, BCN is managed through:

- Crop rotation,
- BCN trap crops,
- Cover crops for enhancement of soil quality and
- BCN resistant varieties.

It appears that the next innovation in BCN management will be seed treatments. Michigan agriculture is familiar with seed treatments for control of soil-borne disease fungi and insects. Seed treatment for nematode control is relatively new. In 2012, Avicta-treated seed will be available in Michigan for control of corn nematodes. Votivo-treated seed will be available for control of the soybean cyst nematode.

There is currently considerably interest in the development of seed treatments for BCN. Research on this was conducted in 2011 in Pigeon, Michigan and under greenhouse conditions at Michigan State University. Seed treatments for nematode control can be can be used with nematode susceptible or nematode resistant varieties. In sugar beet systems for BCN control, it is my opinion that the seed treatments under development will initially be used on BCN resistant varieties and designed for an additional two to four tons per acre yield increase.

There are three types of seed treatments under development:

- Chemical,
- Biological and
- Plant Health Regulators

Avicta is an example of a chemical seed treatment that works as a nematicide. Votivo and Pasteuria are examples of current and future seed treatment products that are living organism. In both of these cases they are bacteria. They infect and decompose the nematode. Harpin proteins, however, represent a very type of seed treatment. They work as plant health regulators and induce natural defense mechanisms.

The following two photographs were taken from a MSU 2011 BCN seed treatment project. Figure A. shows a 30-day old sugar beet root system grown from a treated seed in the presence of BCN. Note the strong root lateral root development, one egg and one second-stage juvenile. Figure B. is a 30-day-old sugar beet root system grown under the same conditions in the absence of the seed treatment. Note the almost mature BCN females and lack of strong lateral root development.

continued on next page

### Seed Treatments for Beet Cyst Nematode Control

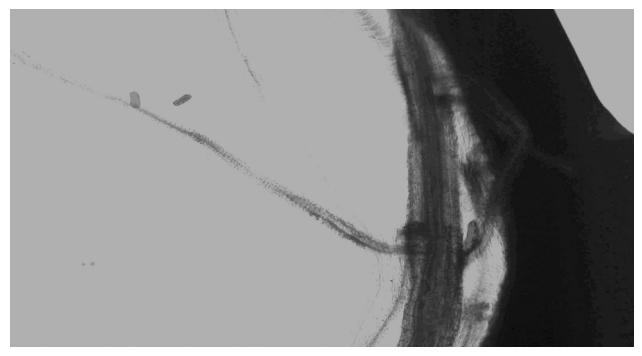



Figure A: 30-day old sugar beet root system grown from treated seed in the presence of BCN.

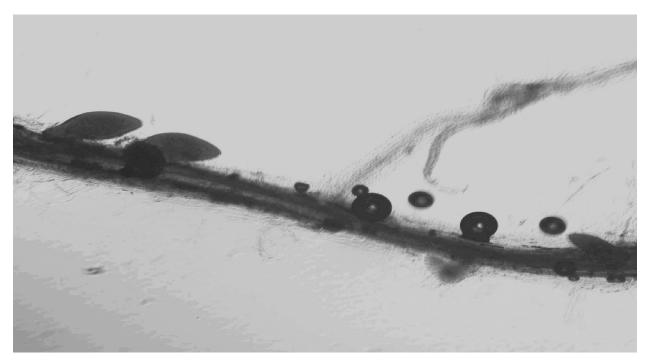



Figure B: 30-day-old sugar beet root system grown under the same conditions in the absence of the seed treatment.



## **Evaluation of Nematode Tolerant Varieties**

### Heavy Rhizoctonia Area • Steve Hoard • Breckenridge, MI

| <b>Trial Quality:</b> | Very Good      | <b>Rhizoc Control:</b>     | Variety dependent        | Soil Info:          | Sandy Loam, 3.1% OM, 7.0 pH |
|-----------------------|----------------|----------------------------|--------------------------|---------------------|-----------------------------|
| Location:             | Gratiot County | <b>Cercospora Control:</b> | Good                     | Plot Size:          | 6 Rows X 100 ft             |
| Planted:              | May 3          |                            | 3 fungicide applications | Reps:               | 6                           |
| Harvested:            | September 14   | Seasonal Rainfall:         | 13.7 inches              | <b>Row Spacing:</b> | 22 inches                   |
|                       |                |                            |                          | Seeding Rate:       | 4 inches                    |

|          |         |       |      |      | %     | %       | Emergence<br>Beets/100 Ft |          | Dead<br>Beets/   |
|----------|---------|-------|------|------|-------|---------|---------------------------|----------|------------------|
| Variety  | \$/Acre | RWSA  | RWST | T/A  | Sugar | CJP     | Jun 21                    | Sep 13   | 100 Ft<br>Sep 13 |
| B-18RR4N | \$1,229 | 4565  | 230  | 20.0 | 16.1  | 93.8    | 200                       | 135      | 60               |
| HM-28RR  | \$877   | 3258  | 216  | 14.9 | 15.3  | 93.4    | 126                       | 114      | 11               |
| Average  | \$1,053 | 3911  | 223  | 17.4 | 15.7  | 93.6    | 163                       | 125      | 35               |
| LSD 5%   | 64.6    | 240.2 | 7.1  | 0.3  | 0.5   | ns(0.5) | 8.7                       | ns(28.8) | 25.7             |
| CV %     | 3.3     | 3.3   | 2.1  | 1.0  | 2.0   | 0.3     | 3.6                       | 15.6     | 48.9             |

### **SUMMARY:**

The nematode tolerant variety (B-18RR4N) achieved a much higher stand (200 compared to 135 B/100') than HM-28RR. Fewer HM-28RR beets died during the season, however, the nematode variety produced a significantly higher yield and quality.

### Moderate Disease Area • Blumfield, MI

Trial Quality:GoodLocation:Saginaw CountyPlanted:May 6Harvested:September 21Previous Crop:Soybeans

Rhizoc Control:GoodCercospora Control:GoodSeasonal Rainfall:14.2 inches

 Soil Info:
 Loam, 3.0% OM, 7.6 pH

 Plot Size:
 6 Rows X 38 ft

 Reps:
 7

 Row Spacing:
 22 inches

 Seeding Rate:
 4.2 inches

| Variety  | \$/Acre | RWSA    | RWST   | T/A     | %<br>Sugar | %<br>CJP | Stand<br>Beets/<br>100 Ft<br>Sep 14 | Dead<br>Beets/<br>100 Ft<br>Sep 14 |
|----------|---------|---------|--------|---------|------------|----------|-------------------------------------|------------------------------------|
| B-19RR1N | \$1,277 | 5333    | 255    | 21.0    | 17.6       | 93.9     | 175                                 | 0.7                                |
| HM-28RR  | \$1,211 | 5056    | 246    | 20.6    | 17.4       | 93.3     | 183                                 | 0.4                                |
| Average  | \$1,244 | 5195    | 250    | 20.8    | 17.5       | 93.6     | 179                                 | 0.6                                |
| LSD 5%   | ns(117) | ns(487) | ns(10) | ns(2.0) | ns(0.6)    | 0.6      | ns(43)                              | ns(0.9)                            |
| CV %     | 7.2     | 7.2     | 3.2    | 7.5     | 2.7        | 0.5      | 18.4                                | 117.7                              |

### **SUMMARY:**

A nematode tolerant variety (B-19RR1N) was compared to a disease tolerant variety (HM-28RR) in a small plot replicated trial. Emergence, yield and quality were similar for both varieties. Cercospora and Rhizoctonia were well controlled.

**Bold:** Results are not statistically different from top-ranking treatment in each column. **\$/Acre:** Figured using a \$60 payment, gross payment unless noted as net.

Use of these varieties is subject to them being lawful to purchase, receive, distribute and plant

#### USDA Agricultural Research Service New Nematode Germplasm Releases for Michigan

### Mitch McGrath, USDA-ARS, East Lansing, MI

Sugar beet cyst nematode is an old but recently (re)appreciated problem in Michigan, particularly in areas where beet has been grown longer than others. Few complete control measures are available and genetic resistance appears to be an option for minimizing losses due to nematode damage. Working with scientists and company researchers, the ARS germplasm enhancement program has developed sugar beet populations that maintain yield under more severe instances of sugar beet cyst nematode infestation in Michigan grower's fields and in severely infested fields in a nematode nursery in Brawley, CA. These germplasm resources are being released to the sugar beet seed companies for incorporation into hybrid varieties, at their discretion.

Base materials were derived from a broad-based intercross of 60 Beta vulgaris spp. maritima (e.g. wild beet) lines crossed with sugar beet (C51; Dr. Bob Lewellen, USDA-ARS retired, Salinas, CA) in the late 1990's. These plants were classified as resistant or susceptible based on total number of cysts counted on roots and in the surrounding soil. "Population 3" was derived from germplasm release C927-4, and was found to be a family segregating with wide range in nematode counts (5 – 248 cysts per plant). "Population 5" was derived from germplasm release CN921-306 and was segregating for families with relatively narrow range in nematode counts (5 - 86 cysts per plant). Both populations were used as the donor nematode resistance source for the new Great Lakes areas growing region germplasm releases.

The donor nematode germplasm was allowed to inter-pollinate over three to five cycles of selection with current breeding populations maintained by USDA-ARS East Lansing. The East Lansing populations used were a wide mix of traditional source materials, for example, those used in the development of hybrids such as US H20, as well as advanced smooth-root germplasm, with an eye to selection for higher sugar content and root yield. From these inter-pollinations, selection for good root yield and root conformation was practiced under nematode pressure at four locations in Michigan over the past seven years, and evaluation of resistance was done under severe nematode pressure in Brawley, CA. At both locations, the selected materials for release were among the top 10% of entry performance. Seed was produced from these selections in East Lansing, and the breeding cycle was repeated.

| Accession ID | Lineage                                                    | Female Parent        | Pollen Parent                      | Nema<br>RWSA | Nema<br>RWST | Nema<br>Tons/A | Nema<br>Sugar % |
|--------------|------------------------------------------------------------|----------------------|------------------------------------|--------------|--------------|----------------|-----------------|
| EL-A027017   | Bay City sln x 08-5E<br>(nematode                          | 09B098-GH5A-xx       | IC w/ 2010 5A :<br>Nema Yld Mixer  | 4332.3       | 183.6        | 23.7           | 13.4            |
| EL-A027143   | 06 bay city sln's 8                                        | 09B538-xx            | IC w/ 2010 5E /<br>Nema salt mixer | 3655.2       | 166.6        | 22.2           | 12.5            |
| EL-A027007   | (Salinas nematode x<br>07-5E/24A)x08-5E<br>(some SF mixed) | 09B090-GH31D-xx      | IC w/ 2010 31D /<br>nema SR        | 4063.3       | 197.4        | 20.6           | 14.2            |
| EL-A027010   | low water x nema                                           | 09B097-xx            | IC w/ 2010 31D /<br>nema SR        | 4140.5       | 202.1        | 20.5           | 14.1            |
| EL-A027152   | (Low water / HS elites)<br>x early nema selns              | 10 GH-5B<br>combined | IC w/ 2010 5B :<br>Good Nema       | 3731.2       | 184.7        | 20.2           | 13.1            |
| EL-A024983   | (95HS2/sel) x 07-5E                                        | 08B028-xx            | OP w/ 09 31C<br>nema               | 3904.1       | 195.1        | 20.0           | 13.8            |
| EL-A027142   | M1-3                                                       | 09B539-xx            | IC w/ 2010 5E /<br>Nema salt mixer | 3307.7       | 168.8        | 19.6           | 12.6            |

In 2011, seven of these new releases were evaluated at the Yoder trial with the help of Michigan Sugar Company. These are presented in the table, and the performance of these germplasms is similar to the current commercial nematode resistance hybrids as evaluated at the Vader nematode variety trial. It is hoped that the seed companies will use this germplasm as a source of genetic resistance to sugar beet cyst nematodes in Michigan.

# Sugarbeet Oilseed Radish & Crowfoot Advancement Bernia Family Farms • Akron, MI

## **Frost Seeded Oilseed Radish in the Spring Prior to Drybeans**

Trial was performed to determine if spring oilseed radish, prior to drybeans, is a potential cover/trap crop option. The oilseed radish was frost seeded in mid March at approximately 28# per acre. The radish emerged fairly evenly, but was thinner than optimum for a trap crop, even though it was planted at a fairly heavy rate. The radish was allowed to grow until around the 20th of May and killed with glyphosate. The radish grew to about 12-18 inches and began to flower. It looked different than late summer seedings in that it did not gain a lot of biomass. Population and biomass may have increased if the radish was drilled. Black beans were planted in June and were yield checked to see if the radish affected the yield by removing moisture or nutrients. There is concern that leaving the radish too long will reduce available moisture. No yield difference was found. The trial had 3 replications.

| Treatment                           | Black Bean Yield in<br>Hundred Weight |
|-------------------------------------|---------------------------------------|
| Oilseed Radish<br>prior to Drybeans | 28.47                                 |
| No Radish<br>prior to Drybeans      | 28.06                                 |
| LSD 5%                              | 3.68                                  |
| CV %                                | 4                                     |

### **Planter Closing Wheels - Crowfoot vs Normal J.D. Wheel**

Data is from emergence counts from 12 replications in a single field. The field emerged well, with no issues from crusting. The crowfoot closing wheels, from Schlagel Manufacturing, had a significantly lower emergence at the 80% confidence level. This is likely due to the crowfoot wheels changing seed depth and causing seeds to be to shallow or to deep. The intent of this style of wheel is to improve emergence in crusting situations, so these counts do not show the best scenario to check their potential benefit.

| Treatment              | 15 Day Emergence<br>100 Ft of Row |
|------------------------|-----------------------------------|
| Normal Closing Wheel   | 182                               |
| Crowfoot Closing Wheel | 190                               |
| LSD 5%                 | 10 NS                             |
| CV %                   | 6                                 |

### MICHIGAN STATE UNIVERSITY Extension Michigan State University AgBioResearch AgBioResearch

### Christy Sprague and Gary Powell, Michigan State University

| Location:  | Saginaw County                                 | Herbicides: | See Treatments  | Tillage:  | Conventional |
|------------|------------------------------------------------|-------------|-----------------|-----------|--------------|
| Planted:   | May 4                                          | Soil Type:  |                 | Spacings: | 4.25 inches  |
| Varieties: | ACH 963 (conventional);<br>Hilleshog 9042 (RR) |             | 2.8 OM; 7.9 pH; | Reps:     | 4            |

| Table 1. Sugarbeet injury, weed control, sugarbeet<br>yield and recoverable white sugar per acre (RWSA) |                              | WEED CO                 | ONTROL (AT H              | ARVEST)      | SUGARBEET |      |
|---------------------------------------------------------------------------------------------------------|------------------------------|-------------------------|---------------------------|--------------|-----------|------|
| Herbicide Treatments <sup>1</sup>                                                                       | <b>Injury</b> <sup>2</sup>   | Common<br>lambsquarters | Pennsylvania<br>smartweed | Pigweed spp. | Yield     | RWSA |
| ACH 963 (Conventional variety)                                                                          | <u>         %           </u> |                         | -— % control —            |              | ton/A     | lb/A |
| Nortron (PRE) fb. Betamix + UpBeet +<br>Stinger (Std. split applied 2X)                                 | 28                           | 98                      | 84                        | 99           | 14.1      | 3646 |
| Betamix + UpBeet + Stinger<br>(Std. split applied 2X)                                                   | 23                           | 86                      | 70                        | 93           | 13.3      | 3534 |
| H9042 (Roundup Ready variety)                                                                           |                              |                         |                           |              |           |      |
| Nortron (PRE) fb. Betamix + UpBeet +<br>Stinger (Std. split applied 2X)                                 | 30                           | 98                      | 90                        | 97           | 18.8      | 5113 |
| Betamix + UpBeet + Stinger<br>(Std. split applied 2X)                                                   | 26                           | 96                      | 78                        | 99           | 20.8      | 5985 |
| Nortron (PRE) fb. Roundup PowerMax                                                                      | 9                            | 97                      | 99                        | 99           | 21.5      | 6150 |
| Roundup (applied 2X)                                                                                    | 0                            | 98                      | 98                        | 99           | 21.0      | 6045 |
| Roundup fb. UpBeet + Roundup                                                                            | 0                            | 99                      | 99                        | 99           | 21.7      | 6122 |
| Roundup fb. Stinger + Roundup                                                                           | 0                            | 99                      | 99                        | 99           | 20.5      | 5733 |
| Roundup fb. Outlook + Roundup                                                                           | 0                            | 99                      | 99                        | 99           | 20.8      | 6073 |
| Roundup fb. Warrant + Roundup                                                                           | 0                            | 99                      | 99                        | 99           | 21.3      | 6164 |
| Roundup fb. Dual Magnum + Roundup                                                                       | 0                            | 99                      | 99                        | 99           | 21.2      | 5919 |
| Roundup fb. Sequence                                                                                    | 0                            | 99                      | 99                        | 99           | 20.7      | 5742 |
| LSD <sub>(0.05)</sub> <sup>3</sup>                                                                      | 4                            | 8                       | 12                        | 5            | 4         | 1133 |

<sup>1</sup> Herbicide treatments follow recommended rates, timings, and adjuvant choices as recommended in the MSU Weed Control Guide for Field Crops.

<sup>2</sup> Injury was evaluated June 14

<sup>3</sup> Means within a column greater than least significant difference (LSD) value are different from each other

### **SUMMARY:**

This trial was conducted to compare conventional weed control systems using a conventional variety and a Roundup Ready variety with current and future weed control systems in Roundup Ready sugarbeet. Overall using the conventional weed control systems of a standard-split program with or without Nortron applied preemergence resulted in significant sugarbeet injury, regardless of variety. Weed control with these systems were also not as consistent as the glyphosate (Roundup)-based programs and many times resulted in significantly less control of Pennsylvania smartweed. Yield and RWSA was lower with the conventional sugarbeet variety, probably due to the differences in yield potential between the two varieties. Weed control with the different glyphosate-based programs was excellent and there were no significant differences in yield or RWSA.

### MICHIGAN STATE UNIVERSITY Extension Michigan State University AgBioResearch AgBioResearch

### Christy Sprague and Gary Powell, Michigan State University

| Location:  | Saginaw County    | Herbicides: | See Treatments  | Tillage:  | Conventional |
|------------|-------------------|-------------|-----------------|-----------|--------------|
| Planted:   | May 4             | Soil Type:  | Clay loam;      | Spacings: | 4.25 inches  |
| Varieties: | Hilleshog 9042 RR |             | 2.8 OM; 7.9 pH; | Reps:     | 4            |

| Table 1. Sugarbeet injury and weed control from the various Upbeet and glyphosate combinations |                     | WEED CONTROL            |                           |                         |                           |  |  |
|------------------------------------------------------------------------------------------------|---------------------|-------------------------|---------------------------|-------------------------|---------------------------|--|--|
|                                                                                                |                     | 7 0                     | DAT                       | 14 DAT                  |                           |  |  |
| Herbicide Treatments <sup>1</sup>                                                              | Injury <sup>2</sup> | Common<br>lambsquarters | Pennsylvania<br>smartweed | Common<br>lambsquarters | Pennsylvania<br>smartweed |  |  |
|                                                                                                | %                   | ——— % со                | ntrol ———                 | ——— % co                | ontrol ———                |  |  |
| TIMING (2-INCH WEEDS)                                                                          |                     |                         |                           |                         |                           |  |  |
| Roundup PowerMax (11 fl oz) + AMS <sup>1</sup>                                                 | 0                   | 88                      | 90                        | 93                      | 96                        |  |  |
| + UpBeet (0.5 oz) + Destiny HC (1 pt)                                                          | 15                  | 96                      | 96                        | 97                      | 98                        |  |  |
| + UpBeet (1 oz) + Destiny HC (1 pt)                                                            | 20                  | 90                      | 90                        | 90                      | 99                        |  |  |
| LSD <sub>(0.05)</sub> <sup>3</sup>                                                             | 6                   | 7                       | n.s.                      | 4                       | n.s.                      |  |  |
| TIMING (6-INCH WEEDS)                                                                          |                     |                         |                           |                         |                           |  |  |
| Roundup PowerMax (11 fl oz) + AMS                                                              | 0                   | 74                      | 33                        | 99                      | 86                        |  |  |
| + UpBeet (0.5 oz) + Destiny HC (1 pt)                                                          | 0                   | 73                      | 28                        | 99                      | 88                        |  |  |
| + UpBeet (1 oz) + Destiny HC (1 pt)                                                            | 0                   | 81                      | 49                        | 99                      | 95                        |  |  |
| LSD <sub>(0.05)</sub> <sup>3</sup>                                                             | n.s.                | n.s.                    | 14                        | n.s.                    | 7                         |  |  |

<sup>1</sup> A reduced rate of Roundup PowerMax (11 fl oz) + ammonium sulfate (AMS) 17 lb/100 gal was included in all treatments.

<sup>2</sup> Sugarbeet injury was evaluated 7 days after treatment (DAT) and weed control was evaluated 7 and 14 DAT

<sup>3</sup> Means within a column greater than least significant difference (LSD) value are different from each other; n.s. indicates that treatments were not different from each other.

### **SUMMARY:**

The goal of this trial was to determine if there is a benefit to tank-mixing UpBeet with glyphosate for weed control in Roundup Ready sugarbeet. Table 1 contains a subset of treatments from a larger trial. The treatments above are comparing a reduced rate (11 fl oz/A) of Roundup PowerMax alone and in combination with two rates of UpBeet. The reduced rate of Roundup was used to help determine if UpBeet was contributing to weed control. The full rate of Roundup was also examined with these tank-mixtures, but there were very few differences in weed control. Destiny HC, a methylated seed oil, was included with all UpBeet treatments. The two application timings were 2- and 6-inch weeds; data is presented separately for the two timings. The addition of UpBeet at 0.5 oz and 1 oz caused significant sugarbeet injury compared with glyphosate alone at the earlier application timing (4-leaf beets); however by 14 DAT injury was not apparent. At the later application timing (8- to 10- leaf beets) there was no signs of sugarbeet injury. The addition of UpBeet may slightly improve control of common lambsquarters and Pennsylvania smartweed. However, by later evaluation times there were not any differences in control between glyphosate alone and when UpBeet was included. Overall there may be some initial benefits in the speed of control, but in our research we have not observed a benefit to the inclusion of UpBeet. However, if certain species become more difficult to control results may be different.

Use of these varieties is subject to them being lawful to purchase, receive, distribute and plant

Research Results 2011

#### MICHIGAN STATE UNIVERSITY Extension Michigan State University AgBioResearch Saginaw Valley Research Farm • Frankenmuth, MI

### Christy Sprague and Gary Powell, Michigan State University

| Location:  | Saginaw County    | Herbicides: | See Treatments  | Tillage:  | Conventional |
|------------|-------------------|-------------|-----------------|-----------|--------------|
| Planted:   | May 4             | Soil Type:  | Clay loam;      | Spacings: | 4.25 inches  |
| Varieties: | Hilleshog 9042 RR |             | 2.8 OM; 7.9 pH; | Reps:     | 4            |

| Table 1. Sugarbeet injury, weed control, sugarbeet<br>yield and recoverable white sugar per acre (RWSA) |                     | WEED CO                 | SUGARBEET                 |              |       |      |
|---------------------------------------------------------------------------------------------------------|---------------------|-------------------------|---------------------------|--------------|-------|------|
| Herbicide Treatments <sup>1</sup><br>(application timing beet stage)                                    | Injury <sup>2</sup> | Common<br>lambsquarters | Pennsylvania<br>smartweed | Pigweed spp. | Yield | RWSA |
| H9042 (Roundup Ready variety)                                                                           | <u> </u>            |                         | -— % control —            |              | ton/A | lb/A |
| Roundup PMax + AMS <sup>2</sup> (2-, 6-lf)                                                              | 0                   | 92                      | 97                        | 93           | 21.5  | 6077 |
| Betamix (2 pt) + Roundup + AMS (2-lf)<br>Roundup + AMS (6-lf)                                           | 9                   | 98                      | 97                        | 99           | 21.3  | 6205 |
| Betamix (3 pt) + Roundup + AMS (2-lf)<br>Roundup + AMS (6-lf)                                           | 16                  | 97                      | 99                        | 96           | 19.1  | 5425 |
| Betamix (3 pt) + Roundup + AMS (2-lf)<br>Betamix (3 pt) + Roundup + AMS (6-lf)                          | 26                  | 97                      | 99                        | 95           | 17.5  | 4665 |
| Roundup + AMS (2-lf)<br>Betamix (2 pt) + Roundup + AMS (6-lf)                                           | 9                   | 99                      | 96                        | 95           | 21.5  | 6160 |
| Roundup + AMS (2-lf)<br>Betamix (3 pt) + Roundup + AMS (6-lf)                                           | 21                  | 98                      | 98                        | 98           | 19.4  | 5491 |
| Roundup + AMS (2-lf)<br>Betamix (4.5 pt) + Roundup + AMS (6-lf)                                         | 31                  | 99                      | 99                        | 99           | 20.9  | 6006 |
| Roundup + AMS (2-lf)<br>Betamix (6 pt) + Roundup + AMS (6-lf)                                           | 35                  | 95                      | 99                        | 99           | 18.3  | 5162 |
| LSD <sub>(0.05)</sub> <sup>3</sup>                                                                      | 5                   | 5                       | 3                         | 5            | 3.3   | 1041 |

Roundup PowerMax (22 fl oz) + ammonium sulfate (AMS) 17 lb/100 gal was included in all treatments.

<sup>2</sup> Injury was evaluated 7 days after the 6-leaf application timing, DAT

<sup>3</sup> Means within a column greater than least significant difference (LSD) value are different from each other.

#### **SUMMARY:**

The inclusion of additional herbicides with glyphosate may improve control of certain weeds. However, many herbicides that are labeled for sugarbeet tend to cause sugarbeet injury and may reduce yield and recoverable white sugar (RWSA). The goal of this trial was to examine various rates and application timings of Betamix in a typical glyphosate (Roundup)-based weed control program. Overall the addition of UpBeet caused significant sugarbeet injury. Injury was greatest when Betamix was applied at 3 pints per acre or higher. Sugarbeet injury persisted up to 20 DAT for the higher application rates and when Betamix was applied twice. There were no improvements in weed control when Betamix was added to glyphosate at the early evaluations. All treatments provided 99% control of common lambsquarters, Pennsylvania smartweed, and pigweed. At harvest there were some statistical improvements in common lambsquarters and pigweed control, but overall weed control was greater than 90% from two applications of glyphosate. Yield and RWSA was lower when Betamix at 3 pint per acre was applied twice. RWSA was also lower than the highest yielding treatment when Betamix was applied at 6 pint per acre in the second application. If Betamix is to be included with glyphosate for weed control in Roundup Ready sugarbeet, it should be applied at 2 pints per acre or less and at the later application timing.

**Research Results 2011** 

# MICHIGAN STATE

AgBio**Research** 

Michigan State University

### Weed Control and Crop Tolerance with Warrant, A Potential New Herbicide for Sugarbeet Saginaw Valley Research Farm • Frankenmuth, MI

### Christy Sprague and Gary Powell, Michigan State University

| Location:  | Saginaw County    | Herbicides: | See Treatments  | Tillage:  | Conventional |
|------------|-------------------|-------------|-----------------|-----------|--------------|
| Planted:   | May 4             | Soil Type:  |                 | Spacings: | 4.25 inches  |
| Varieties: | Hilleshog 9042 RR |             | 2.8 OM; 7.9 pH; | Reps:     | 4            |

| Table 1. Sugarbeet injury, weed control, sugarbeet<br>yield and recoverable white sugar per acre (RWSA) |                     | WEED C                  | SUGARBEET                 |              |       |      |
|---------------------------------------------------------------------------------------------------------|---------------------|-------------------------|---------------------------|--------------|-------|------|
| Herbicide Treatments <sup>1</sup><br>(application timing beet stage)                                    | Injury <sup>2</sup> | Common<br>lambsquarters | Pennsylvania<br>smartweed | Pigweed spp. | Yield | RWSA |
| H9042 (Roundup Ready variety)                                                                           | %                   |                         | -— % control —            |              | ton/A | lb/A |
| Roundup PMax + AMS <sup>3</sup> (2-, 6-lf)                                                              | 0                   | 99                      | 99                        | 98           | 21.6  | 6049 |
| Warrant + Roundup + AMS (2-lf)<br>Roundup + AMS (6-lf)                                                  | 4                   | 99                      | 99                        | 99           | 21.4  | 5780 |
| Outlook + Roundup + AMS (2-lf)<br>Roundup + AMS (6-lf)                                                  | 11                  | 99                      | 99                        | 99           | 22.6  | 6209 |
| Dual + Roundup + AMS (2-lf)<br>Roundup + AMS (6-lf)                                                     | 11                  | 97                      | 99                        | 99           | 20.6  | 5530 |
| Roundup + AMS (2-lf)<br>Warrant + Roundup + AMS (6-lf)                                                  | 5                   | 99                      | 99                        | 99           | 21.7  | 5961 |
| Roundup + AMS (2-lf)<br>Outlook + Roundup + AMS (6-lf)                                                  | 6                   | 99                      | 99                        | 99           | 22.2  | 6250 |
| Roundup + AMS (2-lf)<br>Dual + Roundup + AMS (6-lf)                                                     | 5                   | 99                      | 99                        | 99           | 20.9  | 5898 |
| Nortron (PRE) fb. Betamix + UpBeet<br>+ Stinger (Std. split applied 2X)                                 | 31                  | 96                      | 99                        | 99           | 18.6  | 4864 |
| LSD <sub>(0.05)</sub> <sup>4</sup>                                                                      | 8                   | 3                       | n.s.                      | n.s.         | 3     | 912  |

Herbicide rates: Roundup PowerMax (22 fl oz), Warrant (3 pt), Outlook (16 fl oz), Dual Magnum (1.33 pt), AMS (17 lb/100 gal), Nortron (3 pt), Betamix (3 pt), UpBeet (0.5 oz), Stinger (4 fl oz)

Injury was evaluated 7 days after the second standard split application.

<sup>3</sup> Abbreviations: AMS = ammonium sulfate; RWSA = recoverable white sugar per acre.

<sup>4</sup> Means within a column greater than least significant difference (LSD) value are different from each other; n.s. indicates that treatments were not different from each other.

### **SUMMARY:**

Warrant is a new encapsulated acetochlor product that is being examined as a potential tank-mix partner with Roundup (glyphosate) in Roundup Ready sugarbeet. This trial compares crop tolerance, weed control and sugarbeet yield of two different application timings of Warrant with the current standards of Dual Magnum and Outlook. A conventional weed control treatment (standard-split herbicide program) was also included as a comparison. There was significant sugarbeet injury from the standard-split herbicide program and this injury resulted in a 20% reduction in RWSA compared two-applications of Roundup PowerMax. Sugarbeet tolerated applications of Warrant, Outlook, and Dual Magnum that were tank-mixed with Roundup at either 2- or 6-leaf sugarbeet, with only some injury from applications of Dual Magnum and Outlook at the 2-leaf stage, but this injury was not statistically different from Warrant at this timing. At harvest all herbicide treatments provided excellent control of common lambsquarters, Pennsylvania smartweed, and pigweed.

Use of these varieties is subject to them being lawful to purchase, receive, distribute and plant

#### **Tolerance of Replanted Sugarbeet to Warrant** MICHIGAN STATE UNIVERSITY Extension Michigan State University Saginaw Valley Research Farm • Frankenmuth, MI AaBio**Research**

### Christy Sprague and Gary Powell, Michigan State University

| Location:  | Saginaw County    | Herbicides: | See Treatments  | Tillage:  | Conventional |
|------------|-------------------|-------------|-----------------|-----------|--------------|
| Planted:   | May 4             | Soil Type:  | Clay loam;      | Spacings: | 4.25 inches  |
| Varieties: | Hilleshog 9042 RR |             | 2.8 OM; 7.9 pH; | Reps:     | 4            |

| Table 1. Injury and stand counts for sugarbeet planted in to herbicide residues at various weeks after application |        |                         |        |         |        |         |        |         |        |         |        |         |
|--------------------------------------------------------------------------------------------------------------------|--------|-------------------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|
|                                                                                                                    | WEE    | <b>K-0</b> <sup>2</sup> | WE     | EK-1    | WE     | EK-2    | WE     | EK-3    | WE     | EK-4    | WE     | EK-5    |
| Herbicides <sup>1</sup>                                                                                            | Injury | Stand                   | Injury | Stand   | Injury | Stand   | Injury | Stand   | Injury | Stand   | Injury | Stand   |
|                                                                                                                    | %      | #/100ft                 | %      | #/100ft | %      | #/100ft | %      | #/100ft | %      | #/100ft | %      | #/100ft |
| No herbicide                                                                                                       | 0      | 225                     | 0      | 212     | 0      | 171     | 0      | 162     | 0      | 162     | 0      | 207     |
| Warrant (3 pt)                                                                                                     | 11     | 214                     | 23     | 161     | 11     | 132     | 16     | 133     | 7      | 143     | 0      | 209     |
| Warrant (6 pt)                                                                                                     | 23     | 205                     | 41     | 130     | 31     | 110     | 44     | 98      | 13     | 113     | 4      | 205     |
| Dual Magnum                                                                                                        | 15     | 211                     | 25     | 167     | 13     | 135     | 20     | 123     | 2      | 160     | 0      | 209     |

31 Herbicides were applied on May 4 into a weed-free seed bed; the application rate of Dual magnum was 1.33 pt/A.

2 Sugarbeet were planted weekly for 6 weeks, including the day of application.

7

19

4

LSD(0.05)3

3 Means within a column greater than least significant difference (LSD) value are different from each other; n.s. indicates that treatments were not different from each other..

8

25

6

20

4

20

n.s.

3371 D

n.s.

| Table 2. Main effects of herbicide and planting date for sugarbeet yield and recoverable white sugar per acre |                       |                      |               |                     |        |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------|-----------------------|----------------------|---------------|---------------------|--------|--|--|--|--|
| MAIN EFFECT <sup>1</sup> YIELD         RWSA         MAIN EFFECT <sup>1</sup> YIELD         RWSA               |                       |                      |               |                     |        |  |  |  |  |
| HERBICIDES                                                                                                    | ton/A                 | lb/A                 | PLANTING DATE | ton/A               | lb/A   |  |  |  |  |
| No herbicide                                                                                                  | 18.1 A <sup>2</sup>   | 4669 A               | Week-0        | 20.9 A <sup>2</sup> | 5631 A |  |  |  |  |
| Warrant (3 pt)                                                                                                | 18.4 A                | 4615 AB              | Week-1        | 19.4 A              | 5086 B |  |  |  |  |
| Warrant (6 pt)                                                                                                | 15.2 B                | 3690 C               | Week-2        | 16.7 B              | 4155 C |  |  |  |  |
| Dual Magnum                                                                                                   | 17.3 A                | 4299 B               | Week-3        | 17.4 B              | 4193 C |  |  |  |  |
| Main effects of herbic                                                                                        | ide data are averaged | over planting dates. | Week-4        | 14.8 C              | 3474 D |  |  |  |  |

Week-5

Main effects of herbicide data are averaged over planting dates; and planting dates are averaged over herbicides 2

Means within a column with different letters are significantly different from each other.

**SUMMARY:** Warrant is a new encapsulated acetochlor product that is being examined as a potential tank-mix partner with Roundup (glyphosate) in Roundup Ready sugarbeet. Preemergence applications of Warrant have been shown to cause significant sugarbeet injury and in some cases reductions in yield. If sugarbeet needs to be replanted after a lay-by application of Warrant sugarbeet injury, reductions in stand, and potential reductions of yield may be a concern. This study was conducted to determine the time interval needed between Warrant applications and replanting sugarbeet. Four different treatments a no herbicide control, Warrant at 1X (3 pt) and 2X (6 pt) the suggested labeled rate, and Dual Magnum a similar herbicide to Warrant currently labeled for use in sugarbeet were examined. Injury to sugarbeet and reductions and stand were similar between the 1X rate of Warrant and Dual Magnum. If sugarbeet were planted into either of these treatments prior to the 4 week after application planting, sugarbeet stand was significantly lower than the no herbicide treatment. For the 2X Warrant application rate sugarbeet stand was lower until the 5 week planting. Overall the 2X rate of Warrant caused significant reductions in yield and RWSA. This research needs to be repeated to provide more information to growers on safe replanting intervals.

Use of these varieties is subject to them being lawful to purchase, receive, distribute and plant

14.5 C

#### MICHIGAN STATE UNIVERSITY Extension Michigan State University AgBioResearch Sugarbeet Tolerance After Valor Desiccation Applications to Dry Bean – 2 Year Summary MSU Agronomy Farm • East Lansing, MI

### Christy Sprague and Gary Powell, Michigan State University

| Location:  | Ingham County            | <b>Desiccant Herbicides</b> |                                                                        |
|------------|--------------------------|-----------------------------|------------------------------------------------------------------------|
| Planted:   | May 5, 2009; May 5, 2011 | Application Dates:          | September 30, 2010                                                     |
| Varieties: | Hilleshog 9042 RR        | Soil Type:                  | 2009 – Loam; 3.2 OM; pH 6.7;<br>2011 – Sandy clay loam; 1.3 OM; pH 6.7 |
| Spacings:  | 4.25 inches              |                             |                                                                        |

| Table 1. Dry bean desiccation herbicide effects on sugarbeet planted 7 months after desiccant |                   |         |        |        |  |        |            |        |        |  |  |  |
|-----------------------------------------------------------------------------------------------|-------------------|---------|--------|--------|--|--------|------------|--------|--------|--|--|--|
| CONVENTIONAL TILLAGE                                                                          |                   |         |        |        |  |        | NO TILLAGE |        |        |  |  |  |
| DESICCANTS <sup>1</sup> Injury Stand Yield RWSA                                               |                   |         |        |        |  | Injury | Stand      | Yield  | RWSA   |  |  |  |
|                                                                                               | %                 | #/100ft | ton/A  | lb/A   |  | %      | #/100ft    | ton/A  | lb/A   |  |  |  |
| Valor (2 oz)                                                                                  | 21 b <sup>2</sup> | 123 b   | 26.2 a | 6413 a |  | 70 a   | 46 b       | 13.8 b | 3102 b |  |  |  |
| Valor (3 oz)                                                                                  | 43 a              | 85 c    | 21.5 a | 5209 a |  | 90 b   | 17 c       | 8.6 c  | 1735 c |  |  |  |
| Roundup PowerMax                                                                              | 0 c               | 162 a   | 27.7 a | 7062 a |  | 0 c    | 121 a      | 21.6 a | 5280 a |  |  |  |
| Gramoxone Inteon                                                                              | 0 c               | 164 a   | 26.9 a | 6793 a |  | 2 c    | 106 a      | 19.6 a | 4858 a |  |  |  |

<sup>1</sup> Herbicide rates: Roundup PowerMax (22 fl oz) and Gramoxone Inteon (2 pt).

<sup>2</sup> Means within a column with different letters are significantly different from each other.

#### **SUMMARY:**

The registration of Valor as a dry bean desiccant and the recent changes to shorten the rotational restriction intervals for sugarbeet have caused concerns about the actual crop safety from these applications prior to planting sugarbeet. The current crop rotation restrictions for sugarbeet for the 2 oz per acre rate of Valor are 4 months for sugarbeet that is tilled prior to planting and 8 months for no-till sugarbeet. At the 3 oz per acre rate of Valor the rotation intervals are 5 months for sugarbeet tilled prior to planting and 10 months for no-till sugarbeet. We conducted research two separate years to determine what effects desiccation treatments have on sugarbeet planted the spring after desiccation. Valor at 2 oz/A and 3 oz/A (maximum labeled desiccation rate), Roundup PowerMax at 22 fl oz/A, and Gramoxone Inteon at 2 pt/A were the four desiccation treatments examined. These treatments were applied in mid-September of 2008 and 2010. Intervals between desiccant applications and sugarbeet planting were 7 month and 16 days in 2009 and 7 month and 5 days in 2011. There was not a significant year by treatment interaction, so sugarbeet data are combined over the two years. In both conventional tillage and no-tillage sugarbeet Valor applied at 2 and 3 oz/A caused significant injury and reduced stand compared with either the Roundup PowerMax or Gramoxone treatments. Differences in injury and sugarbeet stand between the treatments were greatest in the no-till sugarbeet plots, with the higher rate of Valor causing as much as 86% stand loss. In the conventional tillage plots sugarbeet stand at harvest was 25 and 50% lower when Valor was applied at the 2 and 3 oz/A rates, respectively, compared with either Roundup PowerMax or Gramoxone. Reductions in stand in the conventional tillage treatments were not reflected in yield or RWSA. In no-till sugarbeet, which was 1 and 3 months short of meeting the rotation interval yield and RWSA were significant reduced compared with Roundup PowerMax or Gramoxone. Our current recommendation if growers are using Valor as a desiccation treatment is to use a 1.5 oz/A rate. Additionally if a grower intends to plant sugarbeet after this application, tillage is essential and even with tillage there is a high probability that sugarbeet stand may be reduced.

**Research Results 2011** 

### Nitrogen and Weed Control Timing Influences on Roundup Ready Sugarbeet Quality & Yield (2010 & 2011) MICHIGAN STATE UNIVERSITY Extension Saginaw Valley Research Farm & Agronomy Farm AgBio**Research**

### Alicia Spangler and Christy Sprague, Michigan State University

| Location:  | Saginaw County and Ingham County                                  | Herbicides:     | Roundup PowerMax (22 fl oz/A) + AMS                                                                    |
|------------|-------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------|
| Planted:   | May 19, 2010; May 5, 2011 (EL)<br>March 31, 2010; May 4, 2011 (S) | Soil Type:      | Clay Loam, 3.4/3.2 OM, pH 6.1/6.8 (EL, '11/'12)<br>Clay/Clay Loam, 3.0/2.6 OM, pH 7.3/7.8 (S, '10/'11) |
| Varieties: | Hilleshog 9042 RR                                                 | Weed Removal    | <1, 3, 6, and 12-inch weeds                                                                            |
| Spacings:  | 4.25 inches                                                       | Timing:         |                                                                                                        |
| Reps:      | 4                                                                 | Nitrogen Rates: | 0, 60, 90, 120 and 60:60 lbs N/A                                                                       |

|                           | EAST LANSING*       |        | 2010 S/ | AGINAW  | 2011 SAGINAW |        |  |
|---------------------------|---------------------|--------|---------|---------|--------------|--------|--|
| WEED REMOVAL <sup>1</sup> | YIELD RWSA          |        | YIELD   | RWSA    | YIELD        | RWSA   |  |
|                           | tons/A              | lbs/A  | tons/A  | lbs/A   | tons/A       | lbs/A  |  |
| <1 inch                   | 15.3 a <sup>2</sup> | 3967 a | 28.7 a  | 7354 a  | 18.7 a       | 5180 a |  |
| 3 inches                  | 14.0 b              | 3638 b | 24.7 b  | 6212 b  | 18.9 a       | 5364 a |  |
| 6 inches                  | 14.1 b              | 3630 b | 24.7 b  | 6232 b  | 20.4 a       | 5744 a |  |
| 12 inches                 | 14.0 b              | 3568 b | 22.7 с  | 5874 bc | 18.7 a       | 5200 a |  |

\* Combined over 2010 and 2011.

Michigan State University

<sup>1</sup>Weeds were controlled at these weed heights using Roundup PowerMax (22 fl oz/A) + AMS (17 lb/100 gal).

<sup>2</sup> Means within a column with different letters are significantly different from each other.

| Table 2. Effect of nitrogen on sugarbeet yield and quality averaged across weed removal timings |                     |               |         |         |              |        |  |  |  |
|-------------------------------------------------------------------------------------------------|---------------------|---------------|---------|---------|--------------|--------|--|--|--|
|                                                                                                 | EAST LA             | EAST LANSING* |         | AGINAW  | 2011 SAGINAW |        |  |  |  |
| NITROGEN RATE <sup>1</sup>                                                                      | YIELD               | RWSA          | YIELD   | RWSA    | YIELD        | RWSA   |  |  |  |
|                                                                                                 | tons/A              | lbs/A         | tons/A  | lbs/A   | tons/A       | lbs/A  |  |  |  |
| 0 lb/A                                                                                          | 13.5 b <sup>2</sup> | 3596 a        | 22.2 c  | 5841 b  | 14.1 c       | 3932 c |  |  |  |
| 60 lb/A                                                                                         | 14.3 ab             | 3789 a        | 25.4 ab | 6605 a  | 18.3 b       | 5189 b |  |  |  |
| 90 lb/A                                                                                         | 14.6 a              | 3761 a        | 24.7 b  | 6308 ab | 20.2 a       | 5721 a |  |  |  |
| 120 lb/A                                                                                        | 14.7 a              | 3671 a        | 26.6 a  | 6612 a  | 21.4 a       | 6016 a |  |  |  |
| 60:60 lb/A                                                                                      | 13.8 a              | 3687 a        | 26.9 a  | 6722 a  | 21.8 a       | 6002 a |  |  |  |

\* Combined over 2010 and 2011.

<sup>1</sup>Nitrogen was applied pre-plant for all but the split application which was applied preplant and at 4-6 leaf sugarbeet.

87

<sup>2</sup>Means within a column with different letters are significantly different from each other.

### **SUMMARY:**

This trial was conducted to determine the impact of different weed removal timing and nitrogen rates on sugarbeet yield and guality. Due to similar results at the East Lansing, data were combined over 2010 and 2011. At East Lansing and Saginaw 2010 yield and RWSA was reduced if weeds were not controlled prior to 3-inch weeds and yield was reduced further if weeds were allowed to grow with sugarbeet until 12-inches tall. The main effect of nitrogen affected yield and RWSA differently for the different locations. Overall the 90 lb/A rate of higher provided the greatest yields and RWSA. However under certain conditions, maximum yields were achieved with lower nitrogen rates. This usually occurred under lower yielding environments.

Use of these varieties is subject to them being lawful to purchase, receive, distribute and plant

## Sugarbeet Seed Rate on Sandy Soil Advancement Clay Crumbaugh • Breckenridge, MI

| <b>Trial Quality:</b> | Good           | Spacings:     | Rows-30"                      | Harv/Sample:       | Nov. 6 /Oct. 6                          |
|-----------------------|----------------|---------------|-------------------------------|--------------------|-----------------------------------------|
| Location:             | Gratiot County | Fertilizer:   | 2x2 - 15-9-9-15S7Mn4B; Pre    | Herbicides:        | 3x Glyphosate                           |
| Planted:              | May 5          |               | Broadcast 18 Gal 28%          | <b>Replicated:</b> | 3x                                      |
| <b>Previous Crop:</b> | HM-28RR        | Tillage:      | Fall Zone Till; Stale Seedbed | Fungicide:         | 55 DSV - Eminent                        |
| Soil Type:            | Soybeans       | Harvest Date: | Loamy Sand & Sandy Loam       | -                  | 110 DSV - Headline<br>165 DSV - Agritin |

|                                      |         |        |       |        |         |        | Emerged Populations<br>35 day |          |
|--------------------------------------|---------|--------|-------|--------|---------|--------|-------------------------------|----------|
| Treatment                            | \$/Acre | RWSA   | RWST  | T/A    | % Sugar | % CJP  | 100 Ft                        | Per Acre |
| Middle Rate - 4.25"<br>49,200 / Acre | —       | 6548   | 282   | 23.2   | 18.8    | 95.5   | 214                           | 37,300   |
| High Rate - 3.75″<br>55,800 / Acre   | _       | 6355   | 284   | 22.7   | 18.9    | 95.6   | 237                           | 41,300   |
| Low Rate - 4.75"<br>44,000 / Acre    | —       | 6310   | 280   | 22.6   | 18.7    | 95.5   | 176                           | 30,700   |
| Average                              |         | 6404   | 282   | 22.9   | 18.8    | 95.6   | 209                           |          |
| LSD 5%                               |         | 595 NS | 12 NS | 1.9 NS | 0.6 NS  | 0.3 NS | 205                           |          |
| CV %                                 |         | 2      | 2     | 1.9    | 1.5     | 0.1    | 4                             |          |

\$/Acre: Not Calculated.

Bold: Results are not statistically different from top-ranking treatment in each column.

| Emergence:   | Excellent                                | Cerc Leafspot: | Good Control  |
|--------------|------------------------------------------|----------------|---------------|
| Rhizoctonia: | Low                                      | Nematodes:     | Not Confirmed |
| Quadris App: | In Furrow ( 4" Band, 5 oz)<br>& 6-8 Leaf | Weather:       | _             |

### **COMMENTS:**

Research was conducted to look at the effects of plant population on yield and quality on light textured soil. Research done in other sugarbeet growing areas suggested that higher seeding rates in light soils improved yields. This trial was set-up with GPS guidance in 12-row planter strips. Entire strips were harvested using truck weights. All planting was done with no spring tillage into a stale seedbed. Fall tillage was done after soybean harvest with a Brillion zone tillage tool that had a shank depth of 16 inches. No significant differences were seen or measured in yield and quality.



## **Seed Carryover Research 2011** 2010 Seed Planted in 2011 • Average of 3 Locations

### **By Storage Location**

|                  |           | Average |        |                 |
|------------------|-----------|---------|--------|-----------------|
| Storage Location | Sylvester | Trost   | Bender | Average<br>of 3 |
| USDA Storage     | 55.8      | 32.6    | 65.7   | 51.4            |
| SP Lab           | 53.8      | 30.4    | 61.2   | 48.5            |
| Sp Freezer       | 51.5      | 31.0    | 60.9   | 47.8            |
| SP Shop          | 48.8      | 29.9    | 61.4   | 46.7            |
| SVRF Shop        | 42.9      | 22.1    | 44.6   | 36.5            |
| Average          | 50.6      | 29.2    | 58.7   | 46.2            |
| LSD 5%           | 5.2       | 3.1     | 4.4    | 5.5             |
| CV %             | 14.6      | 12.5    | 11.3   | 6.6             |

Bold: Results are not statistically different from top-ranking treatment in each column.

### **By Variety**

|           |           | Avorano |        |                 |
|-----------|-----------|---------|--------|-----------------|
| Variety   | Sylvester | Trost   | Bender | Average<br>of 3 |
| HM-27RR   | 57.3      | 35.7    | 68.4   | 53.8            |
| SX-1260RR | 51.7      | 30.5    | 60.1   | 47.4            |
| B-18RR26  | 42.6      | 21.3    | 47.7   | 37.2            |
| Average   | 50.6      | 29.2    | 58.7   | 46.2            |
| LSD 5%    | 3.9       | 2.8     | 3.5    | 5.5             |
| CV %      | 14.6      | 12.5    | 11.3   | 6.6             |

Bold: Results are not statistically different from top-ranking treatment in each column.

### **SUMMARY:**

Emergence is a concern when grower seed is carried over from one year to the next. The main conclusion from this trial is that the unheated SVRF Shop had significantly lower emergence. The USDA storage is temperature and humidity controlled. The most practical seed storage location is a heated room. The SP Shop is kept around 62°F and the Lab about 70°F. The HM-27RR emerged significantly better and B-18RR26 was significantly less.

Page 1 of 2



## Seed Carryover Research 2010 Seed Planted in 2011 • Average of 3 Locations

Page 2 of 2

| Trial Quality: Good    | Plot Size: | 2 Rows X 38 ft | Reps: | 6               |
|------------------------|------------|----------------|-------|-----------------|
| Location               |            |                |       |                 |
| Variety                | Bender     | Sylvester      | Trost | Average<br>of 3 |
| USDA Storage           | 71.8       | 55.4           | 48.0  | 58.4            |
| SX-1260RR              |            |                |       |                 |
| SVRF Shop              | 66.6       | 62.3           | 44.2  | 57.7            |
| HM-27RR                |            |                |       |                 |
| SP Freezer             | 71.4       | 53.8           | 47.9  | 57.7            |
| HM-27RR                |            |                |       |                 |
| USDA Storage           | 68.0       | 58.6           | 46.4  | 57.7            |
| HM-27RR                |            |                |       |                 |
| SP Lab                 | 66.3       | 61.4           | 45.1  | 57.6            |
| HM-27RR                |            |                |       |                 |
| SP Freezer             | 64.7       | 55.3           | 45.9  | 55.3            |
| SX-1260RR              |            |                |       |                 |
| SP Shop                | 69.9       | 50.5           | 45.3  | 55.3            |
| HM-27RR                |            |                |       |                 |
| SP Lab                 | 65.3       | 54.6           | 39.2  | 53.0            |
| SX-1260RR              |            |                |       |                 |
| SP Shop                | 61.5       | 55.1           | 39.4  | 52.0            |
| SX-1260RR              |            |                |       |                 |
| USDA Storage           | 57.3       | 53.3           | 33.8  | 48.1            |
| B-18RR26               |            |                |       |                 |
| SP Lab                 | 52.0       | 45.5           | 28.4  | 42.0            |
| B-18RR26               |            |                |       |                 |
| SP Shop                | 52.7       | 40.8           | 27.8  | 40.5            |
| B-18RR26               | 46.5       | 45.0           | 20.2  | (0.2            |
| SP Freezer             | 46.5       | 45.2           | 29.2  | 40.3            |
| B-18RR26               | 27.1       | 20.2           | 22.2  | 22.0            |
| SVRF Shop<br>SX-1260RR | 37.1       | 38.2           | 23.3  | 32.9            |
| SVRF Shop              | 30.0       | 28.2           | 16.8  | 25.0            |
| B-18RR26               | 30.0       | 28.2           | 10.8  | 25.0            |
|                        |            |                |       |                 |
| Average                | 58.7       | 50.6           | 37.4  | 48.9            |
| LSD 5%                 | 7.7        | 8.6            | 5.5   | 5.5             |
| CV %                   | 11.3       | 14.6           | 12.5  | 6.6             |

Bold: Results are not statistically different from top-ranking treatment in each column.

Use of these varieties is subject to them being lawful to purchase, receive, distribute and plant



## Seed Carryover Research 2009 Seed Planted in 2011 • Average of 2 Locations

### **By Storage Location**

|                  | % Eme     |       |                 |  |
|------------------|-----------|-------|-----------------|--|
| Storage Location | Sylvester | Trost | Average<br>of 2 |  |
| USDA Storage     | 59.2      | 49.0  | 54.1            |  |
| Sp Freezer       | 59.2      | 48.0  | 53.6            |  |
| SP Lab           | 53.6      | 43.1  | 48.4            |  |
| Sp Shop          | 51.9      | 41.9  | 46.9            |  |
| SVRF Shop        | 45.8      | 34.0  | 39.9            |  |
| Average          | 53.9      | 43.2  | 48.6            |  |
| Average          | 55.9      | 43.2  | 40.0            |  |
| LSD 5%           | 5.2       | 3.7   | 9.6             |  |
| CV %             | 12.1      | 14.2  | 9.3             |  |

Bold: Results are not statistically different from top-ranking treatment in each column.

### **By Variety**

|           | % Eme     |       |                 |  |
|-----------|-----------|-------|-----------------|--|
| Variety   | Sylvester | Trost | Average<br>of 2 |  |
| HM-27RR   | 62.3      | 46.6  | 54.4            |  |
| SX-1260RR | 56.8      | 46.9  | 51.8            |  |
| HM-50RR   | 57.5      | 43.4  | 50.5            |  |
| B-17RR32  | 39.2      | 35.9  | 37.5            |  |
| Average   | 53.9      | 43.2  | 48.6            |  |
| LSD 5%    | 3.4       | 3.2   | 9.6             |  |
| CV %      | 12.1      | 14.2  | 9.3             |  |

Bold: Results are not statistically different from top-ranking treatment in each column.

### **SUMMARY:**

Emergence is a concern when grower seed is carried over from one year to the next. This trial indicated that the best storage is in a temperature and humidity controlled room or a freezer. The unheated SVRF shop was significantly worse than all other treatments. The freezer is probably not practical leaving a heated room as the next best. The SP Shop is kept around 62°F and the Lab about 70°F. Emergence of B-17RR32 was significantly less.

Use of these varieties is subject to them being lawful to purchase, receive, distribute and plant

Page 1 of 2



## Seed Carryover Research 2011 2009 Seed Planted in 2011 • Average of 2 Locations

Trial Quality: Good

Plot Size: 2 Rows X 38 ft

**Reps:** 6

### Page 2 of 2

| Location     | % Emergence |       | <b>A</b>        | Average Location |           | % Emergence |                     |  |
|--------------|-------------|-------|-----------------|------------------|-----------|-------------|---------------------|--|
| Variety      | Sylvester   | Trost | Average<br>of 2 | Variety          | Sylvester | Trost       | Average<br>ost of 2 |  |
| SP Freezer   | 61.7        | 56.0  | 58.8            | SP Freezer       | 54.8      | 45.2        | 50.0                |  |
| SX-1260RR    |             |       |                 | B-17RR32         |           |             |                     |  |
| USDA Storage | 61.1        | 52.8  | 57.0            | SVRF Shop        | 57.1      | 41.9        | 49.5                |  |
| SX-1260RR    |             |       |                 | HM-50RR          |           |             |                     |  |
| USDA Storage | 64.3        | 47.9  | 56.1            | SP Shop          | 54.1      | 42.7        | 48.4                |  |
| HM-27RR      |             |       |                 | HM-50RR          |           |             |                     |  |
| SP Lab       | 62.0        | 48.5  | 55.2            | USDA Storage     | 47.1      | 49.7        | 48.4                |  |
| SX-1260RR    |             |       |                 | B-17RR32         |           |             |                     |  |
| USDA Storage | 64.5        | 45.6  | 55.1            | SP Lab           | 53.5      | 41.9        | 47.7                |  |
| HM-50RR      |             |       |                 | HM-50RR          |           |             |                     |  |
| SP Lab       | 61.3        | 48.3  | 54.8            | SP Lab           | 37.7      | 33.9        | 35.8                |  |
| HM-27RR      |             |       |                 | B-17RR32         |           |             |                     |  |
| SVRF Shop    | 63.6        | 45.5  | 54.6            | SVRF Shop        | 40.8      | 30.0        | 35.4                |  |
| HM-27RR      |             |       |                 | SX-1260RR        |           |             |                     |  |
| SP Freezer   | 62.1        | 45.6  | 53.9            | SP Shop          | 34.9      | 32.2        | 33.6                |  |
| HM-27RR      |             |       |                 | B-17RR32         |           |             |                     |  |
| SP Shop      | 60.1        | 45.6  | 52.9            | SVRF Shop        | 21.5      | 18.5        | 20.0                |  |
| HM-27RR      |             |       |                 | B-17RR32         |           |             |                     |  |
| SP Shop      | 58.3        | 47.1  | 52.7            | Average          | 53.9      | 43.2        | 48.6                |  |
| SX-1260RR    |             |       |                 |                  |           |             |                     |  |
| SP Freezer   | 58.3        | 45.0  | 51.6            | LSD 5%           | 7.6       | 7.1         | 9.6                 |  |
| HM-50RR      |             |       |                 | CV %             | 12.1      | 14.2        | 9.3                 |  |

Bold: Results are not statistically different from top-ranking treatment in each column.

## Air Bag Down Pressure Richmond Brothers Farms LLC, Pigeon, MI Sugarbeet

| Trial Quality:GoodSpacings:Rows - 22"Location:Huron CountyFertilizer:2x2 - (Lbs.) 63-42-0-85-<br>.27Mn28B; S.D68# NPlanted:May 7Soil Type:LoamSoil Type:Wheat, Alfalfa<br>Cover, Followed by<br>Wheat CoverTillage:Dominator & 1x F.C.; Wheat<br>Cover; Stale Seedbed |       | 1       | Harv/Sample<br>Herbicides:<br>Replicated:<br>Fungicide: | <ul> <li>Nov. 12 / C</li> <li>4x Glyphos</li> <li>4x</li> <li>47 DSV - P</li> <li>95 DSV - G</li> <li>143 DSV -</li> <li>180 DSV -</li> </ul> | sate<br>roline<br>em<br>Proline |         |        |        |                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------|--------|--------|------------------|
|                                                                                                                                                                                                                                                                       |       |         |                                                         |                                                                                                                                               |                                 |         |        |        | ations<br>of Row |
| Treatment                                                                                                                                                                                                                                                             |       | \$/Acre | RWSA                                                    | RWST                                                                                                                                          | T/A                             | % Sugar | % CJP  | 16 Day | 31 Day           |
| Medium<br>70 psi Air Press                                                                                                                                                                                                                                            | sure  | \$2,085 | 10916                                                   | 311                                                                                                                                           | 35.1                            | 20.7    | 95.5   | 127    | 129              |
| Heavy<br>120 psi Air Pres                                                                                                                                                                                                                                             | ssure | \$2,031 | 10640                                                   | 319                                                                                                                                           | 33.4                            | 21.0    | 95.7   | 158    | 163              |
| Light<br>20 psi Air Press                                                                                                                                                                                                                                             | sure  | \$1,786 | 9343                                                    | 314                                                                                                                                           | 29.9                            | 20.7    | 95.6   | 115    | 116              |
| LSD 5%                                                                                                                                                                                                                                                                |       |         | 982                                                     | 11 NS                                                                                                                                         | 2.7                             | 0.8 NS  | 0.5 NS | 52 NS  | 50 NS            |
|                                                                                                                                                                                                                                                                       |       |         |                                                         |                                                                                                                                               |                                 |         |        |        |                  |
| CV %                                                                                                                                                                                                                                                                  |       |         | 6                                                       | 2                                                                                                                                             | 4.8                             | 2.1     | 0.3    | 23     | 21               |

|                                     |         |         |      |        |         |        | Popul<br>100 Ft | lations<br>of Row |  |
|-------------------------------------|---------|---------|------|--------|---------|--------|-----------------|-------------------|--|
| Treatment                           | \$/Acre | RWSA    | RWST | T/A    | % Sugar | % CJP  | 16 Day          | 31 Day            |  |
| Medium<br>65 psi Air Pressure       | \$2,066 | 10684   | 315  | 33.9   | 20.8    | 95.8   | 164             | 162               |  |
| Medium/Heavy<br>90 psi Air Pressure | \$2,013 | 10407   | 306  | 34.1   | 20.2    | 95.2   | 166             | 169               |  |
| LSD 5%                              |         | 1929 NS | 9    | 6.2 NS | 0.9 NS  | 1.1 NS | 24 NS           | 20 NS             |  |
| CV %                                |         | 8       | 1    | 8.1    | 2.0     | 0.5    | 6               | 5                 |  |

\$/Acre: Gross dollars per acre assuming a \$60 payment.

Bold: Results are not statistically different from top-ranking treatment in each column.

### **COMMENTS:**

Planting sugarbeets into a stale seedbed has become increasingly popular with the adoption of Roundup Ready sugarbeets. Because a stale seedbed can vary in compactness between fields and soil types, particular attention needs to be paid to planting depth and seed to soil contact. In this stale seedbed trial, soil was very dense and somewhat compact. The trial used a 24 row White planter with air bag down pressure and a Precision 20/20 monitor. On the first pass across the field, three different down pressures were used by changing row unit air bag pressure in 8 row segments of the planter. Since the Heavy air pressure in the first pass seemed to be overly aggressive, in the second pass the Heavy air pressure was reduced. On the second pass, there was an error with the Light pressure so only two pressures were used. In each pass, the 8 row segment air pressure was changed for four replications. The two tables above, represent the two different passes. Trial indicates that down pressure to maintain the proper planting depth should be closely monitored. The lightest down pressure had the poorest emergence and reduced yields because seeding depth and seed to soil contact was poorer. The Heavy pressure in the first pass did not significantly yield different than the Medium rate, but it appears the yield maybe starting to be impacted. This maybe due to Heavy down pressure from the planter introducing shallow compaction. The monitor was reading unit ground pressures of about 200-350 psi for the Heavy, 125-180 psi for the Medium, and 25-40 psi for the Light.

Use of these varieties is subject to them being lawful to purchase, receive, distribute and plant

93

## Sugarbeet Seed Plate Pressure Advancement Richmond Brothers Farms LLC, Pigeon, MI

| <b>Trial Quality:</b>     | Good                                     | Sp               | acings:   | Rows - 22"                                         |                                                |         | Harv/Sample                | e: Nov. 12 / C                       | )ct. 13          |
|---------------------------|------------------------------------------|------------------|-----------|----------------------------------------------------|------------------------------------------------|---------|----------------------------|--------------------------------------|------------------|
| Location:                 | Huron Cou                                | inty <b>Fe</b> i | rtilizer: | ```                                                | 2x2 - (Lbs.) 63-42-0-8S-<br>.27Mn28B; S.D68# N |         | Herbicides:<br>Replicated: | 4x Glyphos                           |                  |
| Planted:                  | May 7                                    |                  |           |                                                    |                                                |         |                            | Randomize                            | ed Trial 3x      |
| Previous Crop:            | C-RR827                                  |                  | il Type:  | Loam                                               | Loam                                           |         |                            | 47 DSV - P                           |                  |
| Soil Type:                | Wheat, Alfa<br>Cover, Follo<br>Wheat Cov | owed by          | age:      | Dominator & 1x F.C.; Wheat<br>Cover; Stale Seedbed |                                                |         |                            | 95 DSV - G<br>143 DSV -<br>180 DSV - | Proline          |
|                           |                                          |                  |           |                                                    |                                                |         |                            |                                      | ations<br>of Row |
| Treatment                 |                                          | \$/Acre          | RWSA      | RWST                                               | T/A                                            | % Sugar | % CJP                      | 16 Day                               | 31 Day           |
| High Pressure<br>6 psi    |                                          | _                | 11485     | 322                                                | 35.6                                           | 21.2    | 96.0                       | 201                                  | 203              |
| Normal Pressu<br>3 psi    | re                                       | _                | 11281     | 320                                                | 35.2                                           | 21.2    | 95.4                       | 158                                  | 163              |
| Light Pressure<br>0.5 psi |                                          |                  | 10449     | 312                                                | 33.5                                           | 20.8    | 95.1                       | 125                                  | 134              |

| LSD 5% | — | 1829 NS | 16 NS | 5.3 NS | 0.9 NS | 0.4 | 46 |  |
|--------|---|---------|-------|--------|--------|-----|----|--|
| CV %   | — | 8       | 2     | 7.6    | 2.1    | 0.2 | 14 |  |
|        |   |         |       |        |        |     |    |  |

318

34.8

21.1

11072

Bold: Results are not statistically different from top-ranking treatment in each column.

| Emergence:   | Dependent on Treatments                                        | Cerc Leafspot: | Excellent Control |
|--------------|----------------------------------------------------------------|----------------|-------------------|
| Rhizoctonia: | Low                                                            | Nematodes:     | None Detected     |
| Quadris App: | In Furrow (3" Band 5.4 oz),<br>& 6-8 Leaf (14.2 oz w/ Mustang) | Weather:       | —                 |

### **COMMENTS:**

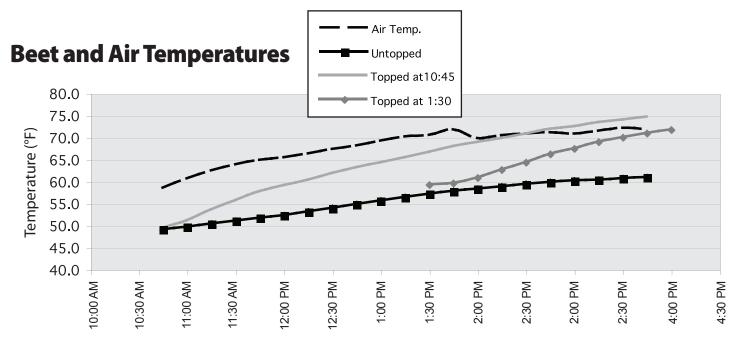
AVERAGE

Recommended plate pressure will vary between seed sizes. This study was initiated to look at the effects of seed population and spacing when seed plate pressure is too high or too low. The trial was planted with a White planter with normal plates and a Precision 20/20 monitor. The best pressure in this trial for the seed size was 3 psi. The air pressure on the plates was adjusted from 0.5 - 6 psi to force skips and doubles. The seed monitor and stand counts indicated that under light plate pressure, planting population dropped by 18% and skips ranged from 6 to 15%. Inadequate pressure will cause seed to fall off the plate. Under too high of pressure, stands increased by 20% and doubles were between 15-20%. Proper plant spacing is important to minimize competition between plants and improve topping.

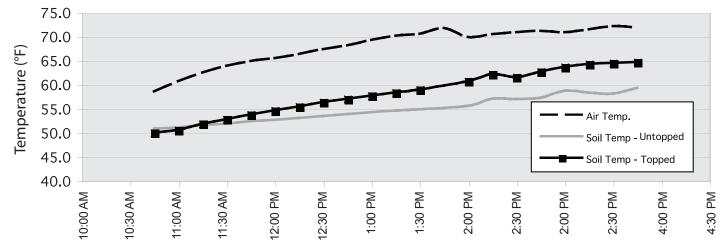
Use of these varieties is subject to them being lawful to purchase, receive, distribute and plant

95.5

161


167

39


12



This trial was conducted to compare how fast topped and untopped sugarbeets warm during the day. The trial was initiated during early season delivery on October 4, 2011. Two different topping times were compared (10:45 & 1:30) to untopped beets. Digital temperature probes were inserted 2 inches into the beet crowns and 2 inches into the soil. Temperature readings were taken every 15 minutes. The day was bright & sunny with initial air temperature at 10:45 a.m. about 57 degrees and peaked at 1:45 p.m. at 72 degrees. Sugarbeets that were not topped, gained temperature slowly compared to sugarbeets that were defoliated. Defoliated beets actually increased temperature faster than the air temperature, indicating radiant energy (sun) was also heating the crowns. By 2:30 p.m., the 2 inch beet temperature was higher than ambient air temperature. At the end of the day, the 10:45 defoliated beets were about 13.5 degrees warmer than non defoliated. Both the 10:45 and 1:30 topped beets increased the 2 inch beet temperature at a rate of 5 degrees per hour compared to about 2.4 degrees per hour for untopped beets. Since sugarbeet respiration doubles every 15 degrees it is recommended that defoliation not be more than 30 minutes before harvest.









## **ProAct Foliar Spray Trial** Schindler Farms, LLC • KawKawlin, MI

| Trial Quality:        | Good       | Spacings:   | Rows-22"; Seeds-58,500     | Harv/Sample:       | Nov. 6 / Oct. 6                         |
|-----------------------|------------|-------------|----------------------------|--------------------|-----------------------------------------|
| Location:             | Bay County | Fertilizer: | 2x2 - 19-17-0;             | Herbicides:        | 2x                                      |
| Planted:              | May 5      |             | S.D 126# N by 28%          | <b>Replicated:</b> | 4x                                      |
| <b>Previous Crop:</b> | B-18RR4N   | Soil Type:  | Loam                       | Fungicide:         | 62 DSV - Inspire XT                     |
| Soil Type:            | Corn       | Tillage:    | Chisel; Spring 1x Triple K | 5                  | 126 DSV - Headline<br>176 DSV - Proline |

| Treatment                                      | \$/Acre | RWSA    | RWST  | T/A    | % Sugar | % CJP  | Dead Beets<br>/ 1200 Ft |
|------------------------------------------------|---------|---------|-------|--------|---------|--------|-------------------------|
| ProAct Foliar Spray -<br>1x at 4 Leaf          | —       | 7862    | 255   | 30.7   | 17.3    | 95.1   | 101                     |
| Check                                          | _       | 7852    | 259   | 30.4   | 17.5    | 95.1   | 97                      |
| ProAct Foliar Spray -<br>2x at 4 Leaf & 8 Leaf | —       | 7539    | 264   | 28.6   | 17.8    | 95.1   | 106                     |
| AVERAGE                                        | _       | 7751    | 259   | 29.9   | 17.5    | 95.1   | 101                     |
| LSD 5%                                         |         | 1112 NS | 17 NS | 2.9 NS | 0.9 NS  | 1.0 NS | 106 NS                  |
| CV %                                           |         | 8       | 4     | 5.7    | 3.1     | 0.6    | 61                      |

#### \$/Acre: Not calculated.

Bold: Results are not statistically different from top-ranking treatment in each column.

| Emergence:   | Good                   | Cerc Leafspot: | Good |
|--------------|------------------------|----------------|------|
| Rhizoctonia: | Moderate               | Nematodes:     | Yes  |
| Quadris App: | 2x Foliar at 2-4 & 6-8 | Weather:       | _    |

#### **COMMENTS:**

Trial was established to evaluate the effects of a Harpin Protien sold under the trade name ProAct. This protein, when applied to plants, is thought to bolster the plants immunity to fight off attacks from disease and nematodes. This trial had a moderate amount of Rhizoctonia and Sugarbeet Cyst nematodes. The variety used in this trial was B-18RR4N, which is a nematode tolerant but Rhizoctonia susceptible variety. All treatments including the check had two applications of Quadris applied at the 2-4 and 6-8 leaf stage. ProAct was applied at 1 ounce per acre with Quadris. The single application of ProAct was at the 2-4 leaf stage. The double application was applied at the 2-4 and 6-8 leaf stage. No significant effects were seen on yield or disease resistance.

### Rhizomania and Sugarbeet Cyst Nematode Survey of Ontario Sugarbeet UNIVERSITY FGUELPH ELPHNematode Survey or SurveyProduction Region, 2006-2011 Page 1 of 2

### **Principal Researcher:**

Janice LeBoeuf, Vegetable Crop Specialist - Ontario Ministry of Agriculture, Food and Rural Affairs, Ridgetown, ON Collaborators:

Cheryl Trueman, Christian Krupke, Ron Pitblado, Ridgetown Campus - University of Guelph; Tom Welacky, Agriculture & Agri-Food Canada

### Background

Rhizomania, caused by Beet Necrotic Yellow Vein Virus (BNYVV) and vectored by the fungus Polymyxa betae Keskin, was first identified in North America in 1983 in California. It has since spread to all of the U.S. sugarbeet growing regions, most recently the Great Lakes growing region, where it was positively identified in some Michigan counties in the fall of 2002. The disease was already widespread at that time.

Rhizomania is regarded as one of the most destructive of sugarbeet diseases. It can severely reduce tonnage and sucrose levels. The soil fungus that transmits the BNYVV is found in all sugarbeet growing regions of the world, and the virus has now spread to most areas as well. The disease is very infectious; a small amount of soil can start an infection which will eventually spread throughout a field. Once present, it cannot be eradicated, so it is important that management practices be used to slow its spread and reduce its impact. The disease can be present in a field for many years before symptoms are evident. In the meantime, it can be spread by normal farming operations.

Sugarbeet cyst nematode (SBCN) is another destructive soil-borne pest of sugarbeets. SBCN has not been reported on sugarbeets in Ontario since the crop was reintroduced to the province in 1996 after about a 30 year absence. According to Michigan information, a population of 100-200 SBCN eggs per 100 cm3 of soil can reduce the yield of susceptible sugarbeets. It is important to know if this nematode is present in the Ontario growing areas, so that growers can make appropriate management decisions.

We sampled sugarbeet fields across the Ontario growing area in 2006-2011 to determine if these pests were present, and if so, how widely distributed. With early detection, growers will be able to implement management practices to reduce or delay the impacts of rhizomania and sugarbeet cyst nematode in the region.

Sugarbeets are produced on about 10,000 acres in Ontario.

### **Project Objectives**

- Determine if the rhizomania disease complex and/or sugarbeet cyst nematode are present in Ontario by sampling a representative number of sugarbeet fields each season.
- If rhizomania and/or sugarbeet cyst nematode are found, prepare educational materials and presentations for growers and crop consultants on preventing the spread of these pests and on managing the pests.

### Method

In 2006, fields that were in sugarbeets for the third time (since 1996) were sampled, along with a random sampling of fields that were in sugarbeets for the first or second time, for a total of 95 fields. In 2007 - 2011 only fields that were in sugarbeets for at least the third time were sampled: 81 fields in 2007, 47 fields in 2008, 59 fields in 2009, 50 fields in 2010; and 48 fields in 2011.

The protocol to collect and test soil for the BNYV virus was provided by Dr. W. Wintermantel, USDA-ARS (personal communication). Soil sampling took place from June through September. Soil samples were used to grow rhizomania-susceptible sugarbeet seedlings in pots in the greenhouse facilities at Ridgetown Campus. Seedlings from each pot were washed and roots were tested for Beet Necrotic Yellow Vein Virus (Agdia Inc.).

The remaining sugarbeet seedlings from the rhizomania screening were washed and examined by Agriculture & Agri-Food Canada for evidence of SBCN. Examinations were made between 30 and 60 days after planting in 2006 and at about 60 days after planting in 2007-2011. Sugarbeet root samples were also taken from each field included in the survey. The roots were examined by OMAFRA for nematode cysts, except in 2011 when a refrigerator problem caused the roots to deteriorate prior to examination.

The project also included provision to sample fields with symptoms that might indicate the presence of rhizomania or SBCN, but there were no reports of suspicious symptoms in any of the project years. continued on next page

**Research Results 2011** 97

### **Rhizomania and Sugarbeet Cyst Nematode Survey** of Ontario Sugarbeet Production Region, 2006-2011

### **Results and Summary**

A total of 380 fields were screened over five years. All of the tested samples were negative for Beet Necrotic Yellow Vein virus, the virus that causes Rhizomania.

No evidence of sugarbeet cyst nematode was found on sugarbeet root samples or on sugarbeet seedlings grown in soil from the sampled fields.

To date, sugarbeet rhizomania or sugarbeet cyst nematode have not been detected in the Ontario sugarbeet growing region.

### Acknowledgements



#### **Sponsoring Organization:**

Ontario Sugarbeet Growers' Association



2010-2011 Funding from the Agricultural Biosecurity Program The Agricultural Biosecurity Program (ABP) flows out of the Canada-Ontario bilateral agreement to implement Growing Forward, a Federal-Provincial-Territorial initiative. The ABP is part of the Best Practices Suite of programs for

Growing Forward in Ontario.

The ABP is aimed at supporting Ontario's agricultural sectors including service and supply sectors, to address their specific biosecurity needs through education, training, studies, and applied pilot projects that impact at the farm level. The focus is on initiatives that enable the sector to protect the agricultural resource base from disease, pests, and pathogens, and reduce the associated biological and economic risks.

#### Previous years' funding:

(🕅) Ontario

Agricultural Adaptation Council

#### **Project partners:**



Ridgetown Campus – University of Guelph provided greenhouse and lab facilities, equipment, and staff expertise and time.



Michigan Sugar Company provided field locations, technical advice, and access to grower fields.



(V)

Tom Welacky, Greenhouse & Processing Crops Research Centre, Agriculture & Agri-Food Agriculture and Agriculture et Agri-Food Canada Agroalimentaire Canada Canada provided technical advice and screened sugarbeet seedlings for SBCN.

Ontario omafra summer help was provided by OMAFRA, under the Summer Experience Program. OMAFRA Agriculture Ministry of Agriculture Development Branch provided office equipment and space, staff time for supervision and co-ordination, and Food & Rural Affairs sampling equipment.

Janice LeBoeuf, Vegetable Crop Specialist Ontario Ministry of Agriculture, Food and Rural Affairs Box 400, 120 Main St. E. Ridgetown, ON NOP 2C0 (519) 674-1699 janice.leboeuf@ontario.ca http://www.omafra.gov.on.ca/english/crops/hort/vegetable.html

### MICHIGAN STATE UNIVERSITY Extension Michigan State University AgBioResearch

### Randolph Beaudry (MSU) and James Stewart and Lee Hubbell (Michigan Sugar)

### Page 1 of 2

The sugar industry has suffered unacceptable postharvest losses in beet root sugar yield. In some years, the losses have been extreme, e.g., more than \$25M was estimated to be lost in 2004. This year (2011) we saw an unusually warm fall and early winter that lead to the premature processing of some field piles of sugar beets.

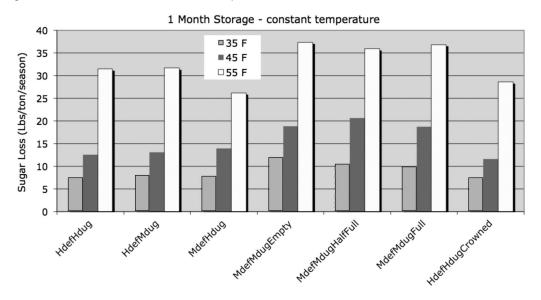
Under ideal conditions (38 °F), we have found that respiratory activity resulted in a loss of 0.09 to 0.27 pounds of sugar per ton per day, which translates to approximately 3 to 9% of the total sugar lost over the length of a 100-day campaign. At a slightly higher temperature (50 °F), the losses ranged from 0.2 to 0.57 pounds per ton per day or 6 to 18% of the initial sugar present. At the excessively high temperature of 68°F, the losses were estimated to be between 0.37 and 1.37 pounds of sugar per ton per day or 12 to 49% of the sugar lost over the length of the campaign. It is important to recognize the rate of respiration and sugar loss doubles for every 10 to 15°F increase. Interestingly, the rate of sugar loss for a given temperature is calculated to increase as the season progresses as sprouts and decay utilize the stored reserves of the sugar beets. We found that the rate of metabolic activity was slightly more than twice as high at the end of the storage period compared to the fall immediately after harvest.

After five months holding at 38 °F, very few of the roots had appreciable sprouting or decay. This was in contrast to those roots we obtained from the piling grounds, which had considerable shoot growth and decay. Using a remote infrared temperature sensor, we measured the temperature of beet roots on the face of storage piles being disassembled for sugar extraction. We found internal pile temperatures of 50 °F despite air temperatures in the 20's in mid February. In 2007, we held roots at a constant 50 °F and obtained levels of sprout growth and decay similar to those we found in the piles at the conclusion of the 2005, 2006, and 2007 campaign seasons.

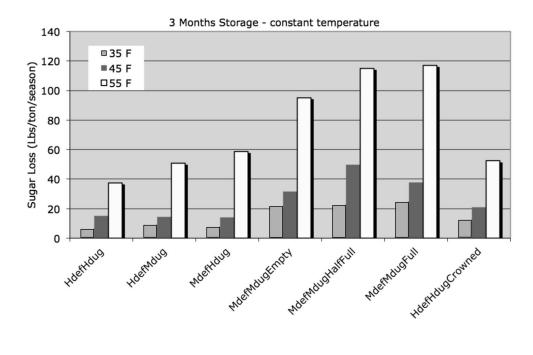
More recently, in 2010, we conducted a study in conjunction with Michigan Sugar in which we evaluated the effect of seven harvesting and handling treatments and three storage temperatures on the respiratory sugar loss and quality loss for beet roots. The treatments included:

- 1. Hand defoliation, hand digging (HdefHdug)
- 2. Hand defoliation, machine digging (HdefMdug)
- 3. Machine defoliation (topping), hand digging (MdefHdug)
- 4. Machine defoliation, machine digging, delivered to empty truck (MdefMdugEmpty)
- 5. Machine defoliation, machine digging, delivered to half-full truck (MdefMdugHalfFull)
- 6. Machine defoliation, machine digging, delivered to full truck (MdefMdugFull)
- 7. Machine defoliation, machine digging, crowned (HdefHdugCrowned)

In addition, beets were stored continuously at 35 °F (optimal), 45 °F (common pile temperature), and 55 °F (abusive/hotspot temperature). After one month storage, the major effect was that of temperature, leading to a rate of sugar loss that averaged 8, 13, and 30 lbs per ton per day for 35, 45, and 55 °F, respectively (Figure 1). The method of defoliation had little effect. However, allowing the roots to traverse the machine harvester and be delivered to the beet truck resulted in a 25 to 30% increase in respiratory sugar loss.


After 3 months of storage, temperature was still the primary influence on respiratory sugar loss, again causing about a four- or five-fold increase in sugar loss as the temperature increased from the optimal storage temperature of 35 °F to 55 °F (Figure 2). However, by three months the impact of handling was much more pronounced. There was about a 2.5-fold higher rate of respiratory losses for the roots permitted to be cleaned, elevated and dumped into the beet truck, compared to those harvested by either hand or machine. Rates of sugar loss as high as 115 lbs per ton per season were recorded. A similar effect on beet quality was seen (data not shown).

Collectively the data are consistent with the previous 5 years work and continue to support the need for development of a modified, less damaging handling techniques to improve storage. Modest gains in reducing damage could yield millions of dollars in savings to the sugar beet industry.


continued on next page

### Rhizomania and Sugarbeet Cyst Nematode Survey of Ontario Sugarbeet Production Region, 2006-2011

**Figure 1.** Rate of respiratory sugar loss as a function of handling regimen and storage temperature (see text for meaning of abbreviations) for sugar beet roots stored 1 month at the temperatures indicated.



**Figure 2.** Rate of respiratory sugar loss as a function of handling regimen and storage temperature (see text for meaning of abbreviations) for sugar beet roots stored 3 months at the temperatures indicated.



### **PRESENTED IN PARTNERSHIP**









### **EDUCATION**

Publications, meetings, seminars, web resources, clinics, reporting sessions.



**Michigan Sugar Company** 2600 South Euclid Avenue Bay City, Michigan 48706

#### **RETURN SERVICE REQUESTED**





**BROUGHT TO YOU BY THESE PARTNERS:** 



MICHIGAN STATE