USDA TART CHERRY ORCHARD MANAGEMENT (RAMP I) FOUR-YEAR SUMMARY FOR UTAH: “MONITORING AND MANAGEMENT ALTERNATIVES FOR CHERRY FRUIT FLY AND PLUM CURCULIO”

Diane Alston, Entomologist, Utah State University
2008 NW MI Orchard and Vineyard Show, Traverse City, MI

RAMP Objectives:

1. Develop alternative insect management options for on-farm use (reduce dependency on organophosphate insecticides)
2. Evaluate monitoring and trapping systems
3. Optimize management strategies, tactics, and tools
4. Impacts on ecosystem quality and non-target effects
5. Extension and outreach

Develop alternative insect management options for on-farm use (reduce dependency on OP insecticides)

A. Western cherry fruit fly
 i. Imidacloprid (Provado®)
 ii. Spinosad formulated as a bait (GF-120®)

Efficacy of new insecticides

<table>
<thead>
<tr>
<th>Year</th>
<th>Orch #</th>
<th>Treatment*</th>
<th># CFF larvae^</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>1</td>
<td>Guthion</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Provado</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td>3</td>
<td>Guthion</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Provado</td>
<td>2.4 a</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>GF-120</td>
<td>0.8 b</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Guthion</td>
<td>0.0002</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Guthion</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Provado/Guthion</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Provado/Imidan</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Provado/GF-120</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Provado/GF-120</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>GF-120</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Provado/GF-120</td>
<td>0.0002</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Provado/GF-120</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Provado/GF-120</td>
<td>0</td>
</tr>
</tbody>
</table>

*Total of 2-6 applications per season; ^Cumulative # CFF larvae per 100 fruit (2,000-5,000 fruit sampled per orchard)

Efficacy of new insecticides

Commercial orchard trials

<table>
<thead>
<tr>
<th>Year</th>
<th>Orch #</th>
<th>Treatment*</th>
<th># CFF larvae^</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>1</td>
<td>Guthion</td>
<td>1.1 b</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>GF-120</td>
<td>0.3 c</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Guthion</td>
<td>1.3 b</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>GF-120</td>
<td>0.1 x</td>
</tr>
<tr>
<td>2005</td>
<td>5</td>
<td>Guthion</td>
<td>1.9 b</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>GF-120</td>
<td>0.8 b</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>GF-120+AA</td>
<td>1.4 b</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>GF-120+YY</td>
<td>0.5 b</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>GF-120+CC</td>
<td>0.9 b</td>
</tr>
<tr>
<td>2006</td>
<td>10</td>
<td>Provado/GF-120</td>
<td>0.0002</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Provado/GF-120</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>GF-120</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Provado/GF-120</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Provado/GF-120</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Provado/GF-120</td>
<td>0</td>
</tr>
</tbody>
</table>

Insecticide efficacy summary

- Spinosad (GF-120 and Success) and imidacloprid (Provado) offer greater flexibility in REIs and PHIIs than OP insecticides
- GF-120 offers an alternative application method
- The two products differ in pest target stage
 - Provado: larvicide (ovicide), & adulticide
 - Spinosad: adulticide
- GF-120 cannot protect fruit against migrating females that contain mature eggs
 - Prevented fruit injury for orchards ≤ 20 cumulative CFF on traps
- Important to rotate applications of neonicotinoid (Provado) with other insecticide classes
 - Stimulation of spider mites
Develop alternative insect management options for on-farm use (reduce dependency on OP insecticides)

- **B. Plum curculio**
 - i. Influence of temperature and concentration on the performance of two entomopathogenic nematodes (EPNs)
 - Laboratory – Wax worm larvae
 - ii. Influence of EPN species and concentration on mortality of plum curculia (PC) life stages
 - Laboratory – PC Colony
 - iii. Suppression of PC by EPNs in home yard fruit trees in northern Utah
 - Field – Brigham City, UT

<table>
<thead>
<tr>
<th>Source</th>
<th>Mean mortality of G. mellonella (%) ± SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td></td>
</tr>
<tr>
<td>10 °C</td>
<td>14.3 ± 2.3 a</td>
</tr>
<tr>
<td>20 °C</td>
<td>3.2 ± 0.3 b</td>
</tr>
<tr>
<td>30 °C</td>
<td>3.9 ± 0.5 b</td>
</tr>
</tbody>
</table>

Nematode Species

- *H. bacteriophora* | 8.0 ± 2.2 a
- *S. feltiae* | 5.3 ± 0.7 a

Nematode concentration

- 20 IJs / larva | 6.7 ± 1.6 a
- 50 IJs / larva | 6.5 ± 1.8 a

Mean number of days required to kill 50% of wax worm last-instar larvae by EPNs

<table>
<thead>
<tr>
<th>Source</th>
<th>Total cumulative nematode reproduction (± SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td></td>
</tr>
<tr>
<td>10 °C</td>
<td>11,150.8 ± 1,720.8 b</td>
</tr>
<tr>
<td>20 °C</td>
<td>143,002.6 ± 1,071.3 a</td>
</tr>
<tr>
<td>30 °C</td>
<td>113,541.2 ± 1,388.3 a</td>
</tr>
</tbody>
</table>

Nematode Species

- *H. bacteriophora* | 173,943.5 ± 1,340.3 a
- *S. feltiae* | 65,187.6 ± 5,680.8 b

Susceptibility of PC life stages to EPNs

EPN virulence to PC

- *Heterorhabditis*-infected larvae
- *Steinernema*-infected larvae

Mean maximum corrected percent mortality of wax worm larvae caused by EPNs

<table>
<thead>
<tr>
<th>Source</th>
<th>Mean mortality of G. mellonella (%) ± SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td></td>
</tr>
<tr>
<td>10 °C</td>
<td>72.8 ± 20.0</td>
</tr>
<tr>
<td>20 °C</td>
<td>99.9 ± 1.1</td>
</tr>
<tr>
<td>30 °C</td>
<td>78.2 ± 9.8</td>
</tr>
</tbody>
</table>

Nematode Concentration

- 20 IJs / larva | 100.0 ± 0.0 |
- 50 IJs / larva | 93.9 ± 6.1 |

<table>
<thead>
<tr>
<th>Source</th>
<th>Mean mortality of G. mellonella (%) ± SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td></td>
</tr>
<tr>
<td>10 °C</td>
<td>72.8 ± 20.0</td>
</tr>
<tr>
<td>20 °C</td>
<td>99.9 ± 1.1</td>
</tr>
<tr>
<td>30 °C</td>
<td>78.2 ± 9.8</td>
</tr>
</tbody>
</table>

Nematode Species

- *H. bacteriophora* | 100.0 ± 0.0 |
- *S. feltiae* | 93.9 ± 6.1 |

Hb* = *H. bacteriophora* and Sf* = *S. feltiae
Field suppression of PC with EPNs

- EPNs applied with backpack sprayer
- Trunk screen traps monitored PC adults

Recycling (self-perpetuation) of EPNs in the field

05/20/2005 (Before EPN applications)
06/02/2006 (1 wks. before EPN applications)
07/19/2006 (At final EPN application)
08/24/06 (1 mo. after EPN applications)
10/11/06 (3 mo. after EPN applications)

Evaluate monitoring and trapping systems

- A. Western cherry fruit fly
 - Trap placement / position
 - Trap density
 - Adult attractants
 - Traps
 - GF-120 droplets
 - Insecticide effects on adult dispersal

Summary Points on Trap Density and Placement

- Higher trap density increased adult trap catch
 - 3 traps per acre > 1 trap per acre > 4 traps per orchard
- Adult catch on border vs. interior traps varied
 - More adults caught on border than interior traps in some years and orchards
 - Varied with primary source of fruit fly population
 - In one study, greater proportion on border traps were males
 - Males may disperse differently than females
 - Percentage of adults caught was greater in orchards with traps on both borders and within interiors
 - First catch was an average of 2.4 days earlier
 - Adults were caught earlier in orchards with higher fruit fly densities

Adult attractants on traps

- Most lymph of GF-120 adults on traps
 - Mostly green
 - Yellow and rose
 - Mostly red
 - Post-harvest

Insecticide effects on adult dispersal

- Significant Effect:
 - Mature Ovaries: GF-120>Standard
 - Females: 30-34% of Adults
 - Mature Ovaries: 12-20% of Adults

*For 16 traps in each treatment of 8 cherry orchards from late May to mid Aug, 2004 & 2005
Optimize management strategies, tactics, and tools

- **Western cherry fruit fly**
 - Provado
 - Larvicide (within fruit), adulticide (moderate)
 - Minimize application number, rotate with non-neonicotinoids (avoid mite stimulation)
 - GF-120 (& other spinosad formulations)
 - Suppress CFF when adult numbers ≤ 20 cumulative per trap
 - Good adulticide, no non-target effects, alternative application method
- **Plum curculio**
 - EPNs for population suppression
 - Not stand-alone control; 2-3 years of use substantially reduced PC densities, target summer generation
 - A fit with diverse, multi-pronged IPM strategies
 - Potential for recycling (self-perpetuation)

Extension and Outreach

- **2004-07**
 - 13 meetings & field days
 - Over 640 face-to-face contacts
- **Utah Pests web page**
 - www.utahpests.usu.edu
 - Pest advisory service
 - Orchard spray timing advisories
 - Photo gallery (pests & natural enemies)
 - Research reports, slideshows, other resources
 - Extension publications / fact sheets

Tree Fruit IPM Advisory

Example of weekly Tree Fruit IPM Advisory

Western Cherry Fruit Fly

- **Description:**
 - Adult: small, brown, and active in spring
 - Larva: creamy white, oval, and compact

- **Hosts:**
 - Various deciduous trees

- **Control:**
 - Cultural methods
 - Chemical control

Plum Curculio

- **Description:**
 - Adult: small, brown, and active in spring
 - Larva: creamy white, oval, and compact

- **Hosts:**
 - Various deciduous trees

- **Control:**
 - Cultural methods
 - Chemical control

Prussian Woolly Bear

- **Description:**
 - Adult: small, brown, and active in spring
 - Larva: creamy white, oval, and compact

- **Hosts:**
 - Various deciduous trees

- **Control:**
 - Cultural methods
 - Chemical control
Research publication
on neonicotinoid and spinosad efficacy on cherry fruit fly

Acknowledgements

- Research assistance: Sadie Enright, Helen Darrow, Doug Anderson, Guy Banner, Britney Hunter, Tyrell Simkins, Adam Thompson, Paul Bingham, Camille Rowley, John Woertendyke, & others
- Graduate student: Hong-Geun Kim
- Funding:
 - USDA CSREES IPM RAMP Tart Cherry Grant
 - Utah State Horticultural Association
 - Agricultural Chemical Industry