Do High Density Apple Planting Systems Make Sense?

Stephen A. Hoying, Terence L. Robinson
and
Alison M. DeMarree
Department of Horticulture and LOFT
What is an Orchard System?

An orchard system is a comprehensive program (a strategy and a recipe) for the establishment of trees in an orchard.

Barritt 2003
PROFIT GENERATORS

• PRODUCT PRICE
 – FRUIT QUALITY
 • VARIETY – Honeycrisp
 • FRUIT SIZE – Gala
 • FRUIT COLOR - McIntosh
 • FRUIT CONDITION – Empire
 • MARKET CONDITIONS – Macoun

• YIELD

• Precocity - TIME TO FIRST BEARING
• TIME TO MATURE YIELD
THE ORCHARD SYSTEMS PUZZLE

- ROOTSTOCK
- MANAGEMENT SKILLS
- VARIETY
- SPACING
- SITE
- TREE TRAINING
- SUPPORT SYSTEM
The Critical components of an Orchard System are those that are necessary to make the orchard Profitable!

A successful System will:

• Produces high yields of high quality fruit.
• Early return on capital (rapid production)
• Economizes on labor input
• Economizes on materials input?
Key Questions

- Does High Density really make economic sense?
- What Density and what system of pruning and training are best?
- How important is the Planting System?
- Does Tree Density or Training System Influence Fruit Quality?
- What other systems factors most strongly influence profitability?
There has been a steady evolution in planting systems.

- **1960’s**: 40 trees/acre
- **1980’s**: 200 trees/acre
- **1980’s**: Overgrown tops and shade

- **600 trees/acre**
- **Pedestrian Orchards**
There has been a steady evolution in planting systems.

Triple Row Slender Spindle/M.9

Pedestrian Orchards-1980’s

- Moderate yields and moderate light interception
- Higher yields but poor fruit quality in the center row and poor weed control

Geneva Y-trellis/M.26

- High yields and high light interception
Late 1980’s and early 1990’s- Tall Orchards (again)

USA-Vertical Axis - 500 trees/acre
Mid 1990’s - Super High Density (2,200 tree/acre)

Super Spindle/M.9

V- Super Spindle/M.9
List of Planting Systems Trials

• Apple
 – Geneva (various planting dates)
 – Crist and Dressel – 1987 HV
 – Trapani and Clark - 1989 HV
 – LynOaken and Cahoon – 1989 WNY – Lake Ont.
 – Morgan and Lagoner - 1993&4 WNY – Lake Ont.
 – Dressel and Van de Walle – 2005 HV & WNY
 – Everett – 2006 Champlain V
 – Chiaro – 2007 HV
 – HVL – 2010 HV
The Purpose of these Trials:

- A comparison of planting densities & systems, canopy architecture
- Develop an understanding of economic impact of various factors on profitability and cash flow
Trapani/Clark Systems Trials

<table>
<thead>
<tr>
<th>System</th>
<th>Spacing</th>
<th>Density (trees/a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical Axis/Mark</td>
<td>7X14</td>
<td>444</td>
</tr>
<tr>
<td>Vertical Axis/M.9/MM.111</td>
<td>7X14</td>
<td>444</td>
</tr>
<tr>
<td>Vertical Axis/M.26</td>
<td>8X16</td>
<td>340</td>
</tr>
<tr>
<td>Vertical Axis/M.7</td>
<td>8X16</td>
<td>340</td>
</tr>
<tr>
<td>Central Leader/Mark</td>
<td>10X18</td>
<td>242</td>
</tr>
<tr>
<td>Central Leader/M.9/MM.111</td>
<td>10X18</td>
<td>242</td>
</tr>
<tr>
<td>Central Leader/M.26</td>
<td>12X20</td>
<td>182</td>
</tr>
<tr>
<td>Central Leader/M.7</td>
<td>12X20</td>
<td>182</td>
</tr>
<tr>
<td>System</td>
<td>Density</td>
<td>Type</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>4-Wire Vertical Trellis</td>
<td>605 T/A</td>
<td>Vertical</td>
</tr>
<tr>
<td>Slender Spindle</td>
<td>605 T/A</td>
<td>Vertical</td>
</tr>
<tr>
<td>Y-Trellis</td>
<td>605 T/A</td>
<td>V-shaped</td>
</tr>
<tr>
<td>Triple Row (6X6X12)</td>
<td>908 T/A</td>
<td>Vertical</td>
</tr>
<tr>
<td>V-Slender Spindle (4X12)</td>
<td>908 T/A</td>
<td>V-shaped</td>
</tr>
</tbody>
</table>
Planting Systems

V Slender Sp

Triple Row

Slender Spindle

4 Wire Trellis

Y Trellis
Orchard Dale Planting Systems Trial

(Planted 1993)

<table>
<thead>
<tr>
<th>System</th>
<th>Trees/Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slender Spindle/M.9</td>
<td>640</td>
</tr>
<tr>
<td>Vertical Axis/M.26</td>
<td>726</td>
</tr>
<tr>
<td>Vertical Axis/M.9</td>
<td>907</td>
</tr>
<tr>
<td>V-Slender Spindle/M.9</td>
<td>907</td>
</tr>
<tr>
<td>Y-Trellis /M.9</td>
<td>907</td>
</tr>
<tr>
<td>V-Trellis /M.9</td>
<td>907</td>
</tr>
<tr>
<td>Super Spindle/M.9</td>
<td>2420</td>
</tr>
</tbody>
</table>
Vertical Axis

Orchard Dale
2 Year Old Gala/M.9 trained to Super Spindle
The Geneva Planting Systems Trial 1997

<table>
<thead>
<tr>
<th>System</th>
<th>trees/acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slender Pyramid/M.7</td>
<td>242</td>
</tr>
<tr>
<td>Slender Pyramid/M.26</td>
<td>340</td>
</tr>
<tr>
<td>Vertical Axis/M.9</td>
<td>414</td>
</tr>
<tr>
<td>Vertical Axis/M.9</td>
<td>518</td>
</tr>
<tr>
<td>High Density Vertical Axis/M.9</td>
<td>670</td>
</tr>
<tr>
<td>High Density Vertical Axis/M.9</td>
<td>908</td>
</tr>
<tr>
<td>Tall Spindle/M.9</td>
<td>1320</td>
</tr>
<tr>
<td>Super Spindle</td>
<td>2178</td>
</tr>
</tbody>
</table>
NYSAES

Super Spindle

Spindle
2.0 X 10 ft
10 ft tall

Tall Spindle

3.0 X 11 ft
11 ft tall
Which Planting System Was Best?

- Slender Spindle Types
- Multiple Row Systems
- Vertical Trellis
- Y or V Trellis Types
- Vertical Axe Types
Planting Systems Analysis

• Establishment Costs
• Overhead Costs
• Growing Costs
• Total Yield
• Packout

• including deductions for:
 • Marketing orders
 • Storage and packing charges
 • Sales Commissions
Table 3. Spreadsheet to determine Potential Profit for Vertical Axis system @ 622 trees/acre.

<table>
<thead>
<tr>
<th>Year</th>
<th>Yield kg/tree</th>
<th>Income</th>
<th>Harvest</th>
<th>Labor</th>
<th>Machinery</th>
<th>Materials</th>
<th>Growing</th>
<th>Fixed</th>
<th>Harvest</th>
<th>Total Costs per Acre</th>
<th>Net Cash Flow</th>
<th>Annual N.P.V.</th>
<th>N.P.V. of Profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land</td>
<td>1,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$1,000</td>
<td>(1,000)</td>
<td>(1,000)</td>
<td>($1,000)</td>
</tr>
<tr>
<td>Preplant</td>
<td>111</td>
<td>845</td>
<td>339</td>
<td>1,295</td>
<td>537</td>
<td>0</td>
<td>$7,512</td>
<td>537</td>
<td>0</td>
<td>(7,512)</td>
<td>(7,154)</td>
<td>($9,986)</td>
<td>($11,275)</td>
</tr>
<tr>
<td>Planting</td>
<td>0.0</td>
<td>0.0</td>
<td>$0</td>
<td>790</td>
<td>658</td>
<td>5,527</td>
<td>6,975</td>
<td>537</td>
<td>0</td>
<td>$7,154</td>
<td>(991)</td>
<td>(856)</td>
<td>($12,130)</td>
</tr>
<tr>
<td>2</td>
<td>0.5 16.3</td>
<td>$90</td>
<td>448</td>
<td>205</td>
<td>302</td>
<td>955</td>
<td>537</td>
<td>537</td>
<td>18</td>
<td>$1,510</td>
<td>(1,420)</td>
<td>(1,288)</td>
<td>($12,620)</td>
</tr>
<tr>
<td>3</td>
<td>5.9 192.2</td>
<td>$1,057</td>
<td>537</td>
<td>205</td>
<td>555</td>
<td>1,298</td>
<td>537</td>
<td>537</td>
<td>213</td>
<td>$2,477</td>
<td>(991)</td>
<td>(856)</td>
<td>($12,620)</td>
</tr>
<tr>
<td>4</td>
<td>10.5 342.1</td>
<td>$1,882</td>
<td>794</td>
<td>205</td>
<td>562</td>
<td>1,560</td>
<td>537</td>
<td>537</td>
<td>380</td>
<td>$2,349</td>
<td>(596)</td>
<td>(490)</td>
<td>($12,144)</td>
</tr>
<tr>
<td>5</td>
<td>16.5 537.6</td>
<td>$2,957</td>
<td>621</td>
<td>205</td>
<td>389</td>
<td>1,216</td>
<td>537</td>
<td>597</td>
<td>597</td>
<td>$2,456</td>
<td>1,127</td>
<td>841</td>
<td>($11,303)</td>
</tr>
<tr>
<td>6</td>
<td>20.0 651.6</td>
<td>$3,584</td>
<td>615</td>
<td>205</td>
<td>376</td>
<td>1,196</td>
<td>537</td>
<td>724</td>
<td>724</td>
<td>$2,984</td>
<td>1,469</td>
<td>1,000</td>
<td>($5,754)</td>
</tr>
<tr>
<td>7</td>
<td>24.0 781.9</td>
<td>$4,301</td>
<td>620</td>
<td>205</td>
<td>501</td>
<td>1,327</td>
<td>537</td>
<td>868</td>
<td>868</td>
<td>$2,983</td>
<td>1,569</td>
<td>1,115</td>
<td>($10,188)</td>
</tr>
<tr>
<td>8</td>
<td>28.0 912.3</td>
<td>$5,017</td>
<td>611</td>
<td>205</td>
<td>564</td>
<td>1,380</td>
<td>537</td>
<td>1,013</td>
<td>1,013</td>
<td>$2,983</td>
<td>2,087</td>
<td>1,413</td>
<td>($8,776)</td>
</tr>
<tr>
<td>9</td>
<td>30.0 977.4</td>
<td>$5,376</td>
<td>617</td>
<td>205</td>
<td>521</td>
<td>1,344</td>
<td>537</td>
<td>1,085</td>
<td>1,085</td>
<td>$2,983</td>
<td>2,410</td>
<td>1,553</td>
<td>($7,222)</td>
</tr>
<tr>
<td>10</td>
<td>30.0 977.4</td>
<td>$5,376</td>
<td>620</td>
<td>205</td>
<td>536</td>
<td>1,361</td>
<td>537</td>
<td>1,085</td>
<td>1,085</td>
<td>$2,983</td>
<td>2,392</td>
<td>1,469</td>
<td>($5,754)</td>
</tr>
<tr>
<td>11</td>
<td>30.0 977.4</td>
<td>$5,376</td>
<td>620</td>
<td>205</td>
<td>536</td>
<td>1,361</td>
<td>537</td>
<td>1,085</td>
<td>1,085</td>
<td>$2,983</td>
<td>2,392</td>
<td>1,332</td>
<td>($3,023)</td>
</tr>
<tr>
<td>12</td>
<td>30.0 977.4</td>
<td>$5,376</td>
<td>620</td>
<td>205</td>
<td>536</td>
<td>1,361</td>
<td>537</td>
<td>1,085</td>
<td>1,085</td>
<td>$2,983</td>
<td>2,392</td>
<td>1,269</td>
<td>($1,754)</td>
</tr>
<tr>
<td>13</td>
<td>30.0 977.4</td>
<td>$5,376</td>
<td>620</td>
<td>205</td>
<td>536</td>
<td>1,361</td>
<td>537</td>
<td>1,085</td>
<td>1,085</td>
<td>$2,983</td>
<td>2,392</td>
<td>1,208</td>
<td>($546)</td>
</tr>
<tr>
<td>14</td>
<td>30.0 977.4</td>
<td>$5,376</td>
<td>620</td>
<td>205</td>
<td>536</td>
<td>1,361</td>
<td>537</td>
<td>1,085</td>
<td>1,085</td>
<td>$2,983</td>
<td>2,392</td>
<td>1,151</td>
<td>$605</td>
</tr>
<tr>
<td>15</td>
<td>30.0 977.4</td>
<td>$5,376</td>
<td>620</td>
<td>205</td>
<td>536</td>
<td>1,361</td>
<td>537</td>
<td>1,085</td>
<td>1,085</td>
<td>$2,983</td>
<td>2,392</td>
<td>1,066</td>
<td>$1,701</td>
</tr>
<tr>
<td>16</td>
<td>30.0 977.4</td>
<td>$5,376</td>
<td>620</td>
<td>205</td>
<td>536</td>
<td>1,361</td>
<td>537</td>
<td>1,085</td>
<td>1,085</td>
<td>$2,983</td>
<td>2,392</td>
<td>994</td>
<td>$3,738</td>
</tr>
<tr>
<td>17</td>
<td>30.0 977.4</td>
<td>$5,376</td>
<td>620</td>
<td>205</td>
<td>536</td>
<td>1,361</td>
<td>537</td>
<td>1,085</td>
<td>1,085</td>
<td>$2,983</td>
<td>2,392</td>
<td>947</td>
<td>$4,685</td>
</tr>
<tr>
<td>18</td>
<td>30.0 977.4</td>
<td>$5,376</td>
<td>620</td>
<td>205</td>
<td>536</td>
<td>1,361</td>
<td>537</td>
<td>1,085</td>
<td>1,085</td>
<td>$2,983</td>
<td>2,392</td>
<td>902</td>
<td>$5,587</td>
</tr>
<tr>
<td>19</td>
<td>30.0 977.4</td>
<td>$5,376</td>
<td>620</td>
<td>205</td>
<td>536</td>
<td>1,361</td>
<td>537</td>
<td>1,085</td>
<td>1,085</td>
<td>$2,983</td>
<td>2,392</td>
<td>856</td>
<td>$5,964</td>
</tr>
</tbody>
</table>

Internal Rate of Return: 8.74%
About the Analysis:

• Discounted Cash Flow = Time Value of $$
 – A dollar received today is worth more than a dollar received some time in the future
 – Internal Rate of Return
 – Net Present Value
 • If the NPV of accumulated profit reaches zero – it is a worth doing
Warning:

• We hope you see the forest from the trees
 – Overall concepts versus individual costs used in the example
 – Costs representative of Western NY fruit farms in transition from low density to higher density orchards
 – You can plug your own costs in later!
 – Analysis: Excel workbook template
Horticultural Results

- Tree density had a highly significant positive effect on yield. The cumulative yield of the highest tree density was 3X greater than the lowest density.
- Tree density had a highly significant effect on final trunk cross-sectional area. The highest planting density produced trees about 1/3 the size of the lowest planting density.
Horticultural Results - Yield

The cumulative yield of the highest tree density was 3X greater than the lowest density.
Effect of Tree Density on Tree Size

- The highest planting density produced trees about 1/3 the size of the lowest planting density.
Economic Study used average yields and estimated cash flows over 20 years

Yield Curves for 5 systems

20 Year Cash Flows
When profitability was calculated per unit land area with traditional fruit prices, profitability over 20 years increased with increasing tree density up to a density of 1,000 trees/acre (2,500 trees/ha).

When profitability was calculated per $10,000 invested then the optimum tree densities was about 850 trees/acre (2,100 trees/ha).
Annual Yield of 5 Systems

- Central Leader (340 tr/ac)
- Vertical Axis (622 tr/ac)
- Vertical Axis (908 tr/ac)
- Tall Spindle (1340 tr/ac)
- Super Spindle (2178 tr/ac)
Net Present Value ($)

Year

NPV for 5 Systems

- Central Leader (340 tr/ac)
- Vertical Axis (622 tr/ac)
- Vertical Axis (908 tr/ac)
- Tall Spindle (1340 tr/ac)
- Super Spindle (2178 tr/ac)
The Necessity of Being an Efficient Producer

- Fruit yield had a large effect on profitability. If yields were reduced by 10% then the low density Slender Pyramid system was barely profitable. If yields were reduced 20% then only the Slender Vertical Axis system was profitable.
- Reducing yield level reduced the optimum density slightly from 1,100 to 1,000 trees/acre.
- 10% yield reduction then the low density Slender Pyramid system was barely profitable.
- 20% yield reduction only the Slender Vertical Axis system was profitable.
- Reducing yield level barely reduced the optimum density. (100 trees/Acre)
Figure 7. Effect of land cost on profitability (Net Present Value after 20 years) of 5 orchard systems with different tree densities.
Effect of Fruit Price (Variety)

- Low prices ($4.50/bu) All systems are not profitable except the Slender Vertical Axis (900 trees/acre).

- Very High Prices ($10.00/bu) then profitability was greatest at the highest tree density (2178 trees/acre- Super Spindle).

- High fruit prices ($6.50) then profitability was high for all systems but peaked for Tall Spindle.
Effect of Fruit Price (Variety)

- Fruit price had the greatest effect on profitability.
- If fruit prices were low ($4.50/bu) then all systems were not profitable except the Slender Vertical Axis.
- If fruit prices were very high ($10.00/bu) such as with a new club variety then profitability was greatest at the highest tree density (2178 trees/acre - Super Spindle).
- At very high fruit prices profitability was extremely high for all systems.
Effect of Fruit Price on Profitability

- $5.50/bu Fruit Price
- $4.50/bu Fruit Price
- $6.50/bu Fruit Price

Net Present Value ($) vs. Trees Density (Trees/Acre)
• Low tree prices ($2.00/tree) the optimum density was above 2,000 trees/acre (Super Spindle).

• High tree prices ($8.00) the optimum density was between 950 trees/acre (Vertical Axis)

• At high planting densities tree price had a very large impact on profitability while at low tree densities tree price had only a small effect on profitability.
Tree price had a large influence on profitability and the optimum tree density. With low tree prices the optimum density was above 2,000 trees/acre (5,000 trees/ha) while with high tree prices the optimum density was between 950 trees/acre (2,300 tree/ha).

At high planting densities tree price had a very large impact on profitability while at low tree densities tree price had only a small effect on profitability.
Figure 9. Effect of tree price on profitability (Net Present Value after 20 years) of 5 orchard systems with different tree densities.
Profitability over 20 years increases with increasing tree density up to a density of 1,000 trees/acre (2,500 trees/ha).
Economic Considerations

• With high fruit prices optimum density is high >1,500 trees/acre.
• With moderate fruit prices optimum density is 1,000 trees/acre.
• With low fruit prices all systems are not profitable.
• Regardless of land cost or interest rate the optimum density is ~1,000 trees/acre.
Conclusions

1. All Planting Systems were profitable!
2. The Higher Density planting systems reached full production more quickly than lower densities.
3. Higher density orchards did not ultimately produce a higher yield per acre.
4. Quality was difficult to maintain on multiple row systems but not single row systems
Conclusions

• From the Processing Systems Trials:
 • The higher density systems produce much higher yields than the low density systems with all varieties.
 • The highest yielding varieties had 1.5 to 2 times the yield of the lowest yielding variety.
 • Better soils give significantly greater yield.
 • With peeler prices the breakeven year is likely to be much later (year 18-20) than with fresh fruit prices (year 10-13).
Economic Considerations

• Long term profitability is maximized by planting high tree densities.

• Optimum density depends on fruit price, tree price, land cost and establishment costs.
 • For Slender Pyramid, Vertical Axis, and Slender Axis the best quality trees are the most profitable even if the cost is high.
 • For Tall Spindle moderate tree prices are essential for profitability.
 • For Super Spindle low tree prices are essential for profitability.

• At the very high planting densities the cost per tree has a large impact on profitability.

• The greater the investment in a new orchard the greater the risk, thus higher tree densities usually bring higher risk.
Economic Considerations

- We believe the best combination of high profitability without excessive risk is achieved by:
 - The Tall Spindle (3-4' X 11 X 12') for fresh fruit blocks. This gives a tree density range of 907-1320 trees/acre.
 - The Vertical Axis (5-6' X 14') for low priced apple or processing blocks. This gives a tree density range of 518-622 trees/acre.
Our Systems Trials have shown the most successful plantings have:

1. Planting densities of 800 – 1000 tree/acre
2. Size controlling and precocious Rootstocks - preferably an appropriate clone of M.9, B.9 or a Geneva stock (G.11, G935, G.41).
3. Are planted in Single rows
4. Use high quality large feathered nursery stock.
Our Systems Trials have shown the most successful plantings use:

5. Trees are supported to 10 feet in height
6. Are minimally pruned and appropriately trained.
7. Are managed for a balance of growth and fruiting.
8. Pest are managed for minimal effect on trees and fruit.
Vertical Axis vs. Tall Spindle Similarities?

- Early Fruiting and Yields
- High Quality Fruit
- High Mature Yields
- Labor Efficiency
Vertical Axis vs. Tall Spindle Differences?

- Density/Spacing
 - VA - High
 - TS – Higher

- Nursery Tree required
 - VA - Better
 - TS – Best

- Training/Pruning
 - VA - Pinching
 - TS - Tying/Weighting

- Support System
 - VA – Post/Wire/Stakes
 - TS – Post/Wire/Support

- Rootstock?
 - VA – Full Dwarf?
 - TS – Full Dwarf
Components – Vertical Axis Density

• High Density
 – 500-700 trees/acre arranged in single rows.
 – Between row spacing of 12-14 feet
 – In-row tree spacing of 5-7 feet
 – Tree height of 11-12 feet with a narrow canopy width along the axis of only 3-5 feet
Components – Tall Spindle Density

- Higher density
 - 1000 – 1500 trees per acre.
 - The optimum average spacing for Tall Spindle is 3 X 11 ft
 - Maximum of 12 feet between rows.
 - The maximum in-row spacing is 4 feet
 - Proper selection of density for any system depends on consideration of the vigor of the variety and rootstock and the soil strength
Components – VA
Rootstock

- Best with vigorous clones of full dwarf rootstocks, M.9 Nic29, or B.9
- Dwarf Geneva rootstocks especially where fireblight is a problem (G.11, G.41, G.935)
- M.26 for very weak varieties
Essential Components – TS Rootstock

- Full dwarfing rootstocks –
 - The most successful Tall Spindle orchards established to date have been on M.9 and B.9. Precocious dwarfing stocks are important since early cropping is essential.
 - The yield efficiency and precocity of the Geneva rootstock series justifies their use especially where fireblight is a concern. Geneva 41, and G.11, are appropriate rootstocks for the Tall Spindle.
 - More vigorous rootstocks especially G.935 should only be used with the weakest growing varieties such as Spur Delicious and Honeycrisp.
Components – VA Nursery Stock

- Excellent feathered nursery tree
 - Trees with scaffolds provide bearing surface for early production.

 - Some transplant shock caused by a high top to root ration helps keep trees within this tight spacing. It also contributes to significant early fruit bud differentiation the year of planting.

 - Early bearing is essential to help pay for increased tree numbers and establishment costs.
Essential Component – TS Nursery Stock

• Highly feathered nursery trees
 – Nursery trees ideally have from 10-15 feathers per tree.
 – Trees with scaffolds provide bearing surface for production in the second leaf.
 – Transplant shock caused by a high top to root ration helps keep trees within this tight spacing. It also contributes to significant fruit bud differentiation the year of planting.
 – Early bearing is essential to help pay for increased tree numbers and establishment costs.
Essential Components – TS Yield

- Early Fruiting
 - Fruiting in the second and third leaf is essential to keep a low tree vigor level and provide income from early fruit sales.
 - Crops in the early years must also be carefully managed to prevent biennial bearing.
 - Aggressive pest management practices are essential starting in the second year since marketable crops are expected and necessary for optimum profitability.
 - This is the only system we have ever tested that achieved a cumulative production over 1000 bushels in the 1st five years, resulting in approximately a 40% increase in crop value compared to the Slender Vertical Axis and Sol Axis planting systems.
Gala, G.11, 2nd leaf
2007
Essential Components – VA Support Systems

- Full Support System
- 10 ft in height
- High Wire with individual tree stakes
Essential Components – TS Support System

- Full Support System
- 10 ft in height
- Tall inline support posts (12 ft) and multiple wires. Training wires or stakes ideal
Components – VA
Pruning and Training

• Tip leader and side branches at planting to provide balance between the top and root and to encourage growth.

• Select leader

• Pinch new shoots along top ½ of the leader 1-3 times
Essential Components – TS
Pruning and Training

- Minimal pruning at planting
 - The Tall Spindle system is planted in place! Very little growth needed to fill the available space, therefore very little pruning is needed.

- Pruning is limited to only the removal of a few larger branches along the leader. Generally, those that are more than ½ the diameter of the leader at the insertion point are removed

- An important objectives is to actually cause some transplant shock..
Essential Components – TS
Pruning and Training

• Branch devigoration
 • 1st leaf
 • Upright scaffold branches are devigorated by bending below the horizontal through bending.
 • Use branch weights, rubber bands, or tying
 • Branch bending maintains vigor, keeps trees within allotted space, and encourages the production of fruit buds for the following growing season.
Combination of Tree weights and fruit
Components – VA
Pruning and Training

• Permanent bottom tier scaffolds
• Renewable above bottom tier
• Proper top management essential
Essential Components – TS
Pruning and Training

• Limb renewal
 • ALL scaffolds are renewed by complete removal as they become too large for the available space and become out of balance within the tree.

 • Renewal cuts are made using the standard method of using a “bevel cut” which encourages new shoots to form as replacement fruiting limbs.

 • There are no permanent limbs within the tree.
Leader Replacement