Obliquebanded Leafroller A Contaminate Pest of Tart and Sweet Cherries in Michigan

E.M Lizotte, N.L. Rothwell, J. Wise, K. Powers

Description

Adult

* Varies in color, from
light tan to dark brown
* Female is larger and
darker in color
* Wingspan 17-30 mm
(Bell-shaped wings)

* Active at dusk

Larvae

*Dark brown/black head capsule

- * Head capsule is flattened
- * Green/yellow bodies, some

with brown pigmentation

* Range from 20 – 30 mm long

Life Cycle

- Overwinter as young larvae under tree bark
- In spring, overwintering larvae feed on buds and leaves
- As leaves expand, larvae web and roll leaves where they remain concealed except when feeding
- Pupation occurs inside the rolled leaf
 - Lasts 10 to 12 days
- Moths emerge from mid-June to mid-July and mate
- Eggs are laid on leaves shortly after mating

- Eggs incubate 10 to 12 days
- Larvae emerge 350-400GDD base 42 after adult biofix
- Female can lay up to 900 eggs in her 7-8 day oviposition period
- New larvae quickly find feeding sites
 - Crawl to new site
 - Travel on silk strands in wind
- Two generations per year
 - 1st peak adult flight is mid
 June to early July
 - 2nd peak adult flight is mid to late August

		MICHIGAN STATE UNIVERSITY Weather-based pest, natu and production managem	iral re ient to	sour ools	rces				
-		Todia for: Field crope Fruit Troce Turtgrase Vegetables Landacabe & Nursery More w	eration						
Region: East Central Station: East Lensing (MSUMort) Kodel: Obliquebanded Leafroßer Select Date: Oct 14 2011 Execute East Lansing (MSUMort) Obliqueba		About the obliquebanded leafroller model on Enviro-weather More information on obliquebanded leafroller at IPM Resources About the model: Using a base of 42 F, degree days are accumulated beginning March 1. First generation • 900 DD –first adult emergence (biofix 1)* • 1150 DD – peak adult flight • 1250 DD – birst egg hatch • 1300 DD – peak egg hatch, typical treatment time with conventional insecticides. Second generation	AustAined Catch)						
Day Date Max	- I	 2,000 DD first eggs laid by 2nd generation adults 2,000 DD first eggs laid by 2nd generation adults 	4 1/20	0/25	w/ad	10/3	10/4	10/6	10/
Sun 10/9 81.4	48	 2,450 DD - peak egg hatch, typical treatment time with conventional insecticides Conventional insecticide strays are timed 400 degree days base 42 F after bloft, 1 and bloft 	204	174	145	137	117	87	45
Mon 19/10 77.2	47.9	2. BT and Spintor insecticide sprays are almed at 450 DD 42 after bloftx 1. Application of the	225	194	165	157	132	107	66
Tue 10/11 79	46.5	Insecticide "Confirm" is timed at 350 DD 42 after biofix 1	245	215	186	178	159	128	87
Wed 10/12 70.1	47.8	Using the model:	263	232	200	195	176	145	104
Thu 10/13 64.1	50.7	 Check traps weekly Locate the Disfu Date (first date of sustained catch) on the ton row (in this avanual, 705) 	278	248	219	211	191	161	119
Todani's data:		 Follow that column down to determine the Base 42F Degree Days (DD) that have 	1-						
2011 Temperatury		accumulated between the biofix date and the date listed at the left side of that row (in this example, 380 DD between 7/4 and 7/16)	oustained Catch)						
Day Date Max			4 9/26	9/28	9/30	30/7	10/4	10/6	10/
Fri 10/14 Actual (12:40-12	2:45AMJ: 58 Actual (Egg nation begins 400-450 DD (Base 42) after blotix. At this point, apply insedicide spray for summer generation OBLR, followed by applications on two week intervals. Fall generation: follow same steps as for summer generation. 	291	261	232	224	205	174	133

0/8 10/10 10/13

10

α

0

17

33

0

21

41

59

74

10/10 10/1:

- Note that forecast data is provided (where available) to help with planning in the near-term
 - Control is recommended at 350-450 DD (check product) from the biofix date.
- · Repeat for additional blocks with a different blofix date

References

- · Howitt, Angus, 1993, Common Tree Fruit Pests, NCR 63, Michigan State University
- More information on obligoebanded leatrofler at IPM Resources.

Based on biology in apple

- Relatively similar flight patterns in apple and cherry
- Larger populations and longer emergence in cherry
- More detectable peak of second generation in cherry—a function of population size?

Monitoring Adults

• Because of wide host range, pheromone traps are difficult to use

• Traps tend to catch a lot of moths making them less useful for decision-making

Interpreting moth captures in apple

- A consistent catch of 20-plus moths/trap for 2-3 wk usually indicates a problem
- Very low catch of <20 moths/flight period generally means non-problematic density
- Use traps to set biofix (www.enviroweather.msu.edu)

Scouting for Larvae

- Monitor orchard for overwintering larvae
 - At early petal fall, look at 20 clusters/tree in five trees for each orchard
 - Apply insecticide if observe 2 + larvae or feeding sites/tree
- Use pheromone traps to determine when summer adults emerge
 - After emergence, scout 10 fruit clusters and 10 terminals on 5 trees per orchard, weekly
- Threshold: 3 larvae per tree

Damage in Apple

- Overwintering larvae feed on buds, leaves, and flowers
- Also feed on developing fruit causing deformed and scarred fruit
 - Many will fall in June drop
- Summer larvae feed on skin and flesh of apple just below surface

Damage in Cherry

- Not as well documented in cherry
 - Problematic in sweet and tart cherry
- Overwintering larvae feed on buds, leaves, and flowers
- Summer larvae web leaves together

- Summer larval generation often coincides with harvest
 - Larvae in tanks!

Rationale for Increase in OBLR in Cherry

- No known increase in OBLR in apple
- Current hypothesis of larvae in tanks in 2010-11
 - OP's are still backbone of cherry insecticide programs
 - Because of OP resistance in codling moth, apples do not rely on OP's
 - OBLR resistance to OP's +
 OP use = larvae in cherry tanks at harvest

- New Lepidopteran materials in apple
 - Growers have moved away from OP's, and as a result, OBLR populations are kept in check
- In cherry, Lepidopteran insecticide is a additional spray
 - Added 1-2 sprays/season
 - Increased \$

• 2010

- Extremely warm year with adequate moisture
 - Hastened development of OBLR generation
 - Excellent 'growing' conditions for insects
- More overlap in generations and more larger larvae
 - Larvae were present for much of summer
 - Lots of larvae visible floating in tanks

• 2011

- Cool and wet start
- Warm and dry during harvest
- Based on 2010 tank
 contamination, many
 sprayed at petal fall
 - Summer generation larvae were too small to see/scout for near tart cherry harvest
 - Small larvae don't float in tanks
 - Made it through to the processor where they were detected in fruit

Additional Information from 2011

- Petal fall spray did not eliminate OBLR summer generation larvae at harvest
 - Particularly, if populations were large
 - May need to spray at petal fall and 7-10 days preharvest until population size has decreased in high pressure sites
 - Particularly in years of late harvest
 - Particularly if leaving fruit to hang for juice market

Control Options

- Need to think about control differently for apple and cherry
 - Damaged fruit vs. contaminated product
 - Mode of action
 - Rate of activity
 - Age of larva (smaller larvae are easier to kill than large)
 - PHI
 - OP resistance issues apply to both crops

Control Strategies Employed in 2011

- Many cherry growers added additional spray to insect management program
- Two timings for control:
 - At petal fall/shuck split, target small overwintering larvae
 - Near harvest, target summer generation larvae
- Preliminary efficacy trials show adequate control with newer products
- Targeting the summer larval generation is difficult
 - Unable to scout effectively
 - Managing PHI and timing insecticide applications
- Some growers reported well-timed sprays of new materials, but control was not adequate
- Delegate, Belt, Altacor, Entrust* and Bt's* are labeled

Conclusions

- OBLR is emerging new contaminant pest of tart and sweet cherries
 - OP resistance is likely cause of increases in OBLR population
 - Cherry growers will need to add additional
 Lepidopteran material for OBLR control
 - Potentially at petal fall *and* pre-harvest
 - Need to control OBLR early to minimize webbing leaves/cherries together
 - American brown rot
- New materials are effective
 - Costly
 - Need to be well-timed

Future Research

- Better understanding of OBLR biology and behavior in cherry
- Improved monitoring techniques for spring and summer larval generations
 - Perhaps tweak the current model to reflect differences between apple and cherry
- Need to understand relationship between OBLR and American brown rot
- Continued efficacy work

PRC 1/24/2012

3 credits - 1c or Commercial core or Private Core Credits

Seminar code: 22804A03

Certified crop advisor sign in sheet in the back of the room