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Simple Summary: The increasing implementation of technological advances originally developed
for video gaming (PlayStation, Xbox) is helping to progress livestock production so that it is both
more efficient and more focused on the welfare of the animals. Such advances are necessary to ensure
that innovations can emerge from applications using cameras, microphones and sensors to enhance
the farmers’ eyes, ears and nose in everyday farming. This technology for remote monitoring of
livestock, termed precision livestock farming, is the ability to automatically track individual livestock
in real time. The goal of this review is to apprise swine veterinarians and their clientele on precision
livestock farming with a general introduction to the technology available, a review of research and
commercially available technology and the implications and opportunities for swine practitioners
and farmers. Drawing from pig welfare criteria in the Common Swine Industry Audit, this review
explains how these applications can be used to improve swine welfare within current pork production
stakeholder expectations. Swine veterinarians and specialists, by virtue of their animal advocacy
role, interpretation of benchmarking data, and stewardship in regulatory and commodity programs,
can play a broader role in facilitating the transfer of precision livestock farming and technology to
their clients.

Abstract: The burgeoning research and applications of technological advances are launching
the development of precision livestock farming. Through sensors (cameras, microphones and
accelerometers), images, sounds and movements are combined with algorithms to non-invasively
monitor animals to detect their welfare and predict productivity. In turn, this remote monitoring
of livestock can provide quantitative and early alerts to situations of poor welfare requiring the
stockperson’s attention. While swine practitioners’ skills include translation of pig data entry into
pig health and well-being indices, many do not yet have enough familiarity to advise their clients on
the adoption of precision livestock farming practices. This review, intended for swine veterinarians
and specialists, (1) includes an introduction to algorithms and machine learning, (2) summarizes
current literature on relevant sensors and sensor network systems, and drawing from industry pig
welfare audit criteria, (3) explains how these applications can be used to improve swine welfare
and meet current pork production stakeholder expectations. Swine practitioners, by virtue of their
animal and client advocacy roles, interpretation of benchmarking data, and stewardship in regulatory
and traceability programs, can play a broader role as advisors in the transfer of precision livestock
farming technology, and its implications to their clients.
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1. Introduction

By 2050, the global human population is projected to be over 9 billion, consuming 50–60%
more food [1] compared to the present consumption patterns. Notwithstanding inequalities, globally,
the population is becoming richer and will tend to choose livestock products, preferring meat, milk and
eggs over staple tubers and grains [2]. Without modifying our current consumption practices, there will
be significant increase in food insecurity globally. Godfray and Garnett write that one solution to this
security issue is sustainable intensification with the following framework: (1) a need for increased
production of food, (2) that food must come from existing agricultural land, and (3) a broad range of
tools and production methods to be considered [2]. Within this framework, livestock intensification
will increase animal density and lower the stockperson per animal ratio [3]. As such, animal welfare
may be one potential trade-off in favor of sustainable intensification. Broom [4] wrote that people
consider that they have obligations to animals they use, whether for companionship, transportation
or food production, and expect care of individual animals. While economists infer meat production
will increase, there are societal expectations that animals used for meat will be treated humanely
and individually.

To address consumer and public concerns of how pigs are currently raised in commercial
production, Pork Quality Assurance R© Plus (PQA Plus R©) introduced the Common Swine Industry
Audit—Pork Checkoff, a third party on-farm auditing program to provide pork chain stakeholders
with a consistent, reliable, and verifiable system of on-farm swine welfare and food safety [5].
Under Common Swine Industry Audit (CSIA) welfare assessment, twenty-seven audit criteria are
divided into critical failure criteria, animal and resource-based measures, and pre-harvest food
safety. Critical failure criteria include observation of animal abuse or compromised animals that
are not euthanized in a timely manner [5]. If these criteria are found to be unacceptable by the
auditor, the site will automatically fail the audit (Common Swine Industry Audit—Update 2019) with
potential loss of market for the farmer. Animal measures of well-being include recorded assurances
that pigs are assessed daily to identify and treat compromised pigs such as low body condition,
severe lameness, tail-biting lesions, rectal and uterine prolapses, umbilical hernias, open wounds
and scratches. Current training for farmers, assessors, and CSIA auditors includes visual subjective
scales for scoring body condition and lameness. PQA Plus R© and the CSIA use a simple diagram
on a scale of 1 to 5, with 1 = emaciated, and 5 = very fat, to subjectively identify body condition.
While most evaluators can consistently discern a 1 and 5 score, scores 2, 3 and 4 are less consistent [6].
Pigs demonstrating the most severe lameness (i.e., score 4 = not weight bearing on the affected limb(s)
when either standing or walking) are identified and scored during the audit. In general, on-farm
lameness evaluation is inconsistent among assessors [7]. Compounding this complexity, the current
stockperson to sow ratio in commercial farrowing units is approximately 1:300 [8], requiring the
stockperson to make subjective health assessments in large groups of animals in a short period of
time. With increasing herd size and decreasing workforce availability, precision livestock farming can
combine sensors and complex data to provide a simple score that is meaningful and understood by all
farm workers, ensuring optimal health, productivity, and pig welfare [3].

While there are publications which address precision livestock and welfare [9–15], the aim of
this review is to provide pig practitioners a general description of the tools and applications of
precision livestock farming for pigs, so they can apply this basic knowledge in collaboration with
engineers and technology developers in consultation with their clientele. For this review, the term
swine “practitioner” encompasses professionals, such as veterinarians, animal scientists and geneticists,
who have expert knowledge of both pigs and their producer clientele. The review covers terminology
and an introduction of algorithms and machine learning, and describes research and examples
of commercial applications in remote animal recognition and monitoring. Using Common Swine
Industry Audit criteria, it discusses welfare challenges faced by the swine sector and describes
how precision livestock farming can improve pig welfare and productivity. Finally, discussed are
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the opportunities for swine practitioners as welfare experts and consultants to apply and integrate
precision livestock farming.

2. Precision Livestock Farming: An Overview

“Monitoring animals within groups is challenging, even for the best herdsmen” NPB—Animal
Science Committee” [16]. Precision livestock farming implies automated remote detection and
monitoring of identified individuals for animal health and welfare using real-time analysis of images,
sounds, tracking data, weight and body condition, and biological metrics in livestock [15,17,18].
With that, there is the capacity for early detection of illness or physiological status at the farm level.
While not a new science [19], the information, applications, and availability of precision livestock
farming has greatly increased due to computer science expertise and inexpensive sensors off-labelled
from the video gaming industry (Xbox, PlayStation R©, etc.) combined with the growing computer
capacity for capturing and processing data [13,15,20].

2.1. Sensors and Animal Recognition

In order to better understand how current technology may impact the world of precision livestock
farming, a basic understanding of remote monitoring sensors, the process of algorithm development
and machine learning is required.

Remote sensors such as cameras, microphones, thermometers and accelerometers monitor or
capture information such as images, sound, heat or motion from groups or individual animals.
The data from the sensors, stored in external drives or sent directly to a processing node (analogous
to transferring photos from a digital camera to a computer) are then processed by algorithms.
An algorithm is a formula, or step-by-step set of operations, used to solve a specific problem or
class of problems. A programming algorithm is a computer procedure that tells a computer precisely
what steps to take to solve a problem utilizing inputs to determine the outputs. Programmers initiate
the process by writing the algorithm that instructs the computer how to perform the specific operations
necessary to solve a problem. An algorithm’s value to farmers is dependent on its ability to transform
the sensor data or “feature variable” to a biological outcome. Examples of feature variables include
percentage of time pigs are lying down to determine the biological outcome “lameness” or the number
of coughs to detect the biological outcome “respiratory disease”. Machine learning is a family of
computational methods that allows an algorithm to program itself using large sets of examples.
Because the computer “learns” from these example sets of existing data, a system can become highly
adept at processing and analyzing large data sets to track variables and produce estimates at a rate that
would not be possible for humans or traditional statistical methods [21]. Taken together, data from
remote monitoring sensors is combined with individual animal identification, referenced observations
and production data, and then integrated in algorithms to provide credible information and alerts
regarding pig welfare, health and productivity [22–25].

2.1.1. Cameras (2D and 3D)—Behavior and Physiology

Image analysis translates the acquired images into indices of distribution (animal location
and proximity) and activity (animal position and movement) [26]. Imaging in pigs has been used
to estimate pig weight [27–29], aggressive behavior [30], walking patterns [31], sow posture and
behavior during lactation [32]. Image analysis research using two-dimensional (2D) cameras, provided
digital information such that researchers were able to monitor and estimate pig growth rates
within 1 kg [33,34]. However, 2D camera sensors require adequate ambient lighting and contrasting
background—such as a white pig on dark cement. Three-dimensional depth-based sensors (3D camera)
such as Microsoft Kinect (Microsoft, Redmond, Washington) and Intel R© RealSenseTM (Intel, Portland,
Oregon) cameras are equipped with a high-definition camera, an infrared illuminator and time-of
flight (ToF) depth sensor that produces color. Infrared is of particular importance during low lighting
or observing nocturnal behavior [27,35] and depth sensors are important to determine the proximity
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of the animal to the camera [36]. ToF depth technology sends a pulse of infrared light from an LED
multiple times a second, and then records the delay between the pulse and its return to each pixel [13].
Figure 1 shows an example of a depth image with red being furthest and blue being closest within
the image. This is useful when capturing the variations of depth to construct a “topological map”
of a pig for 3D geometry calculation. Depth-based cameras are advantageous due to their low cost
(less than $180 USD), ability to handle large data sets [37], low power requirements and ability to adapt
to variable light and background conditions [38]. Current 3D cameras require a retrofitted cover to
protect the sensors from environmental assaults such as ammonia, moisture, dust and insects.

Figure 1. Depth camera sample image containing a sow.

2.1.2. Microphones—Sound

Relatively simple microphones convert noises into electrical signals that may be processed in
computers with the intent of detecting, classifying, and localizing specific acoustic events such as
indications of stress or illness [39]. For example, high frequency calls of pigs have been linked
to stressful situations [40] and “coughs” could be linked to respiratory diseases and thus to their
welfare [41]. Therefore, with the implementation of sensor technology, microphones and vocalizations
could become an automatic daily measure.

2.1.3. Thermistors and Infrared Imaging—Temperature

Temperature monitors using a contact measuring media typically utilize thermistors embedded
in a data logger or ear tag sensor. The sensor has direct contact with the tissue to take temperature
measurements and provide temperature accuracies to 0.1 ◦C [42]. Infrared technology does not require
any contact with the animal, allowing remote measuring. The physical basis of infrared technology
is that any object that has a temperature above absolute zero (0 ◦K) emits infrared radiation and the
temperature of the object determines the wavelength of radiation emitted. The conversion of radiant
heat into a computer-generated color image is done with a process called thermal imaging. Infrared
cameras measure physiological and pathological processes related to changes in body temperature [43]
as a non-invasive, instantaneous method [42,44]. Peripheral temperature readings depend on core
temperature, environmental conditions and the peripheral blood system regulation. In higher ambient
temperatures, thermoregulation directs increased blood flow to the skin tissue resulting in higher
surface temperatures [42]. In older pigs, fat insulates the body core—at low ambient temperature,
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skin temperatures are lower. Surface areas such as the tissue behind the ear, or mammary tissue are
devoid of hair or insulation, and reflect better an adult pigs’ core body temperature [42]. Whereas,
due to their lack of body fat and insulation, the skin temperature of newborn piglets is a “thermal
window” to their core temperature [45].

2.1.4. Accelerometers—Motion Tracking

Among the most promising technologies for monitoring livestock behavior are wearable
sensors containing accelerometers. An accelerometer is an electromechanical device used to measure
accelerating forces. Forces can be static (e.g., pig is lying down) like the continual force of gravity
or acceleration due to movement (e.g., pig is walking). Movement generates a stress on microscopic
crystals housed within the accelerometer and creates voltage. The sensors interpret the amount of
voltage to determine velocity of the movement and orientation. A tri-axial accelerometer accumulates
three-dimensional information (x, y and z axis) and measures the earth’s gravitational pull by
determining the angle at which the device (e.g., ear tag, neck collar) is tilted in addition to measuring
acceleration forces.

2.2. Livestock Identification

As large-scale pig production continues to grow, a prerequisite for the linkage of animal data
to precision livestock farming systems is through animal identification systems that are automated
and affordable for the farmer [20]. Individual identification methods, either currently used in the
swine industry or research, include radio frequency identification, optical character recognition,
and facial recognition.

2.2.1. Radio Frequency Identification (RFID)

A well-established technology for swine identification, health purposes and management on pig
farms is the RFID chip [46–49]. The device is primarily implanted in ear tags; it stores information
such as animal and farm records. The radio wave (low, high or ultra-high frequency) is the medium
of communication between the transponder circuit within the tag and an RFID reader to wirelessly
read and write data. The working principle of such a device is that when an RFID tag comes within
range of an RFID reader, it receives a signal. Furthermore, a second radio frequency signal is induced,
carrying data that travels to the reader [48]. These data can be stored and analyzed later, or the RFID
chips can be used immediately to identify individual animals.

Low frequency (LF)—RFID is a valuable component of groups housing electronic sow feeders;
these small feeder enclosures fit one sow at a time and dispense a specific limited diet to the sow while
also collecting identification data and feeding frequency via RFID [50]. Infrequent visits of certain sows
could raise an alert to producers so that health issues or undesirable social behaviors may be addressed
early in their progression [51]. Nevertheless, LF-RFID has two major disadvantages: a low read range
(<1 m), and the inability to identify more than one animal [52] within range. In order to track multiple
animals at a greater range (3 to 10 m), researchers have investigated the commercial feasibility of
Ultra-High Frequency (UHF) readers [49,53]. While promising, the UHF-RFID transponder ear tags
are sensitive to interference from ear tissue, leading to false registrations [49,54], thus requiring further
research to adapt the technology for consistent use in pig identification. Other drawbacks to RFID
include loss or attrition of tags, pain and stress of the animal during tagging and required removal
from the animal prior to slaughter processing.

2.2.2. Optical Character Recognition

A low-cost identification system, optical character recognition, is the recognition of printed,
stamped, or written text characters (e.g., license plates, barcodes, QR codes) by a computer. In pig
production, optical recognition includes characters on ear tags or painted symbols and numbers
(Figure 2). Optical character recognition is performed with a digital camera and data is developed
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with machine learning to provide remote identification [36]. Depending on the clarity and color of the
markings, there is the capacity to identify large permutations of animals and, with the exception of
optical character recognition on tags, the identification may not need to be removed from pigs prior to
slaughter [55]. When the characters are painted, visual identification patterns can fade within a day
and when pigs lie close to or on one another, pattern recognition is occluded [56].

Figure 2. Painted numbers and ear tag for optical character recognition on a sow.

2.2.3. Facial Recognition

An example of marker-less individual pig identification is facial recognition, initially developed
for human identification, monitoring, and surveillance purposes [57]. Using methods known to
efficiently recognize human faces, Wada [58] examined frontal photos from 10 pigs and achieved 77.0%
recognition from the full face and 97.9% when the reading was focused on the eye region. Hansen [47]
used digital photos taken from a camera mounted on a water drinker and developed a program that
differentiated 10 pigs (Figure 3) [47], with 96.7% accuracy. Hansen’s algorithm recognized pigs from
three regions: the snout and wrinkles above the snout, prevalent marking at the top of the head,
and the eye regions. This technology is promising due to the speed of recognition (620 images/sec)
and the application of human recognition algorithms for pig faces.

Figure 3. Set of images used for facial recognition training.
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2.3. Hardware and Software Comparison Summary

As a holistic summary, Table 1 illustrates possible features and fallbacks of sensor devices and
specific examples of applied applications.

Table 1. A comparison between various sensors and their applications.

Hardware Comparisons
Sensor Device and
Manufacturer
examples

Features Fallbacks Applications

Cameras

2D (RGB)
— Lorax
— eYenamic R©

3D (RGBD)
— Microsoft Kinect R©

— Intel Realsense R©

— eYegrow R©

— Useful for fine positional
and color variational data

— High precision and lots of data

— Remote sensing (non-invasive)

— Fast readings (usually 15–60fps)

— Individual or group can be analyzed

— Requires filtering to obtain
useful information

— Performance is dependent
on lighting conditions

— May require protective
covers against
environmental elements

— Optical character recognition

— Feature extraction

— Motion detection

— Topology extraction

— Animal distribution and activity

Thermometers

Infrared Imaging (IR)
— FLIR R©

— FLUKE R©

— TESTO 875 R©

— Useful for biological process
observation and night vision

— High performance in low
visibility settings

— Remote sensing (non-invasive)

— Fast readings (usually 15–60fps)

— Expensive
(Mid hundreds to several
thousands per unit)

— Environmental factors affect
readings

— Remote temperature sensing

— Low light imaging

— Physiological responses
(individualized and group)

Thermistors
— Integrated in

wearable sensors

— Useful for temperature
fluctuations

— Inexpensive

— Slow to sense changes

— Not an off the shelf system

— Contact temperature sensing

— Physiological responses

Microphones

— Soundtalks R©

— PCM Monitor R©

— Useful for sound/frequency
fluctuations

—Immediate readings

— Inexpensive

— Easily corrupted by noise

— Monitoring periodic
physiological process
(in pens and/or barns)

— Auditory classification

Accelerometers

Exmples of WSN
— Remote Insights R©

— Smartbow R©

— Useful for motion tracking

— Near instantaneous readings

— Embedded into wearable sensors
used in wireless sensor
networks (WSN)

— Requires external processing to
obtain displacement and
velocity data

—Information is relative
(not absolute)

— Fragile
(can break with sow behavior)

— Motion detection/observation
(i.e., walking, nesting behavior)

—Positional state tracking
(i.e., lying, standing)

2.4. Mobile Applications, WiFi and Bluetooth

As today’s age of technology keeps expanding, the current networking infrastructure limitations
for the farm industry poses challenges. As most farms are in rural regions, WiFi and mobile services
are not within, or do not supply, sufficient networking abilities for newly connected technologies [59].

Note that not all precision livestock farming devices will require internet connectivity. Sensors can
be used in isolation where encrypted data can be collected from various sites within the farm system,
compiled, and sent to a local computational system for processing to filter unnecessary data. Then, the
utilization of mobile applications such as smartphones and tablets can be used for convenient display
of results or alerts via WiFi or Bluetooth.
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2.5. Precision Livestock Farming Technology Design and Implementation

The development of a new technology for precision livestock farming requires a deep
understanding of the specific task to identify what type of sensor best suits those needs.
There are various ways in which to design and implement such new devices. Along with the
supporting infrastructure that is required, several example implementations can be found in Table 1.
Single sensor designs are easier to integrate and develop, but are restricted within sensor capabilities.
Implementations which include multiple sensor types come with an added benefit of higher accuracy
and robustness, but at the cost of the design complexity of sensor fusion to create a joint signal
for processing.

Validation of data and how to identify the accuracy or precision of such measurement or prediction
requires background knowledge in statistics and probability [60]. In a practical setting, human
observations can be taken from well-trained (experts) individuals and can be compared to device
results to quickly assess performance. For fine accuracy, statistical methodologies such as least squares
and maximum likelihood estimation can be performed on the data to evaluate accuracy. Standard
engineering design processes such as preliminary hazard analysis, design failure mode and affect
analysis, and design reviews should be utilized [61] especially within farm settings where possible
hazards are not accounted for, resulting in performance loss. Having close communication with farms
and being able to test and prototype designs will help identify what design constraints are necessary
for a successful device.

3. Welfare Challenges in the Swine Industry

Consumers expect their animal-derived food to be produced with respect for the welfare of
the animals. Subsequently, a number of standards and measures have been developed to assure the
public that livestock have received proper treatment [62]. Under the Common Swine Industry Audit,
all stages of pig production are assessed using animal-based measures [5]. In the next section, this paper
will focus on a general description of individual and group pig welfare challenges such as lameness,
body condition, prolapse, pig comfort, antagonistic behavior and recognition of illness.

3.1. Lameness

Lameness, a condition that inhibits or modifies the gait of an animal, is a clinical sign associated
with a range of conditions such as claw lesions, trauma, osteochondrosis, fractures, skin lesions and
arthritis [63,64]. Within-herd prevalence of lameness is high (ranging between 8–16%) [64] and results
in economic losses from unplanned culling of sows [65]. Sows removed for lameness had 1.4 fewer
litters than the average sow [66]. Moreover, the association of lameness with pain [67,68] diminishes
optimal welfare in pigs.

The CSIA identified lameness as a significant welfare issue in commercial production and severely
lame pigs are a parameter of critical failure criteria [5]. Pairis-Garcia and Moeller wrote “. . . application
of objective methodologies to assess lameness consistently on farm and identify mildly and moderately
lame populations of pigs are also needed to improve pig welfare prior to the condition ending in
severe lameness”.

3.2. Body Condition

Body condition scoring (BCS) is defined as the physical assessment of body composition to
evaluate quality of diet [69]. There is particular value in retrieving predictive indicators of body
condition due to the correlations with lameness and shoulder sores [70,71]. Studies in dairy cattle
proposed temporal relationships between low body condition and lameness where cattle with BCS
<2 were at greatest risk of lameness, and cows that suffer a greater decrease in BCS, had a higher
probability of becoming lame and a lower probability of recovering in the next 15 days [72]. Survey data
showed that sows culled from the breeding herd for BCS and lameness had less (p < 0.01) back fat.
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Furthermore, thin sows, as measured by body weight and low back-fat depth, are more likely to be
culled from the herd [73]. A quantitative caliper to measure the angularity of sows was developed on
the premise that as a sow loses muscle and fat, her back becomes more angular [6]. Effective reading of
the caliper requires sows to have limited movement and that human placement of the caliper, centered
over the spine and at the last rib, is achieved.

3.3. Prolapse Syndrome

The incidence rate in sow uterine, vaginal and rectal prolapses has been increasing across the
industry from an average of 1.0% in 2013 to 3.0% in 2016 [8]. Welfare requirements include immediate
euthanasia of pigs; a uterine or vaginal prolapse results in both sow mortality and loss of unborn
piglets. As prolapses, based on organ protrusion, are easily identifiable by the stockperson, the score
is quantitative and therefore there is a reasonable speculation that, with enough imaging, machine
learning may detect causal variables such as sow phenotype or posture.

3.4. Welfare at the Group Level

At the group level, ill and injured individuals represent a vulnerable population with unique
needs and preferences [74]. During CSIA audits, animal-based measures include daily observations
to monitor pig comfort and detect abnormal behavior or clinical indications of disease, injury or
pain [5]. Millman notes that sickness behavior includes altered behavioral responses such as shivering,
huddling and resting, changes in social interaction, reduced feeding and drinking [74]. Cook measured
spatial distribution of piglets post-vaccination, noting more periods of huddling associated with
a febrile response [75]. Assessment of pigs unaware of human presence, assists in observing their
current behavior patterns. Pig comfort, is indicated by thermal comfort behavior of pigs as too cold,
comfortable, or too warm based on lying position and posture within the pen [5].

Negative pig-directed behaviors include oral events such as ear, flank and tail biting. Tail biting
causes wounding as well as partial or full amputation of the tail [76]. Tail biting has many contributing
factors including a stressful environment and excessively aggressive social feeding behavior [76,77].
Slaughter surveys of pigs with bitten tails showed an increased risk of lower weights, respiratory
lesions, locomotory problems, abscesses and arthritis [78]. Further consideration of tail biting includes
timely euthanasia requirements of pigs with open sores (e.g., tail and flank biting) that are unlikely to
recover from treatment after two days.

Monitoring and controlling some behavioral responses to population indicators of illness could
improve individual pig welfare and animal-based measure outcomes. While sound detection is not
an animal-based measure in the CSIA, coughing, a frequent symptom of respiratory illness within
a population, could be used to substantiate treatment regimens and reduce individual pig morbidity.

4. Summary of Remote Monitoring Technology Applications for Swine

In the next section, this paper will focus on a general description of individual and group pig
welfare challenges such as lameness, body condition, prolapse, pig comfort, antagonistic behavior and
recognition of illness and corresponding research and remote monitoring applications within precision
livestock farming.

4.1. Lameness and Mobility

Lame sows can be expected to behave differently due to physically reduced locomotion, pain
or general discomfort and sickness behavior [64]. In groups, sows with non-resolved lameness were
observed to move and stand less, lie down more, and were in contact with the wall more than healthy
control sows [79]. These differences in behavior could be interpreted as signs of pain or as a way of
seeking shelter and isolation from the group. Unfortunately, with less employees overseeing more
animals, lameness is often undetected until it is moderate to severe and, if in late gestation, economics
encourages lame sow retention through lactation.
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Techniques to automatically score lameness include pressure mat or force plate systems, imaging
and accelerometers. Force plates [80] (Matscan R© and SowSIS (Tekscan, South Boston, MA; Institute
for Agricultural and Fisheries Research, Melle, Belgium)) and pressure-sensing mats (GAITFour R©

(CIR Systems, Inc., Havertown, PA, USA)) are reliable technologies that can identify abnormal or
asymmetric gates in lame pigs [81]. Force plates have been used to measure pressure distribution of
claws [82], weight distribution on all four legs of sows [83], and leg loading and weight shifting [84].
The GaitFour R©, an electronic pressure mat and software assesses lameness through measures including
maximum pressure, stride length, stance time, stride time, and activated sensor count per foot in both
sows [85] and weaned pigs [81]. Pressure mat or force plate measures provide referenced standards
for lameness [85]; they have been incorporated into electronic sow feeders and breeding or gestation
crates, but they require specific and complex installations in a swine barn [86].

Lameness has been classified through other variables such as reduced walking speed, shorter
or uneven strides, and swaying from side to side [87]. These visual features can be detected through
motion tracking and topological analysis of these animals. Based on the success of image analysis in
dairy cattle to predict lameness [88,89], it is likely that an objective lameness detection system using
imaging will be developed for sows. In our research, using motion tracking between frames from
consecutive images of a video, a lateral motion path is calculated and compared to the actual forward
movement of each sow (unpublished data).

Research has demonstrated efficacy of accelerometers attached to the leg of sows to detect
posture and stepping behavior, standing duration, latency to lie down after feeding, and step
frequency when feeding [84,87,90] and from pre-parturient nesting activity, detected the onset of
farrowing [91,92]). As sows would chew on devices fitted elsewhere, data sampled from ear tags seems
to be the most sustainable and commercially suitable method [91]. Applying ear tag accelerometers to
sows, researchers determined that while the ear is the most decoupled body part of the locomotory
system, a prediction of lameness was demonstrated when comparing variables’ high activity (distance
walked) and rest phases (lying down). High activity (distance) was lower in lame sows and detected
14 days prior to signs of moderate lameness [86,92]. Another study [93] supported the sensitivity
of accelerometers to detect static behavior such as time that an animal spends lying down (94.3%),
but found other behavior variables such as time spent standing (66.9%) and time walking (68.4%) were
lower in accuracy.

4.2. Pen Level Activity Monitoring—Nursery and Grower Pigs

Applications to improve welfare and automate pig monitoring include video images to measure
pen level activity [94,95] such as antagonistic behaviors, chasing, tail and flank biting, fighting,
head-to-head knocks between pigs [30,96–99]. Sensor data differentiates lying patterns of pigs
(thermal comfort behavior) [100,101], standing pigs from moving pigs [38], and lateral from sternal
recumbency [102]. Depth imaging tracking has shown promise to monitor pig location, eating, drinking
and aggression interactions between pigs [55,99]. Currently, it is difficult to use sensor tracking for
individual pig movement in a large group, due to the nature of pigs to pile and lie close.

One approach to pen monitoring was the use of 3D cameras and machine learning to detect
pig activity and provide an automatic warning of tail biting “outbreaks”. As tail docking is banned
in the EU, researchers monitored the non-docked tail posture of pigs [103]. This study noted that
the proportion of pigs with low tail posture was highest one week prior to outbreak and a greater
proportion of injured pigs were associated with low tail posture.

4.2.1. Infrared Thermography

Various studies have shown that infrared thermography is a means to non-invasively detect
dissipation of heat in individual animals or specific regions of the body for the purpose of
rapidly detecting diseases such as mastitis [44,104], locomotion disorders [105–107], and respiratory
disease [108] in bovine. Skin measurement sites for pigs using infrared thermography, with the highest
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correlation to body temperature, are the ear base, eyes and udder [42]. Infrared thermography has
been used to determine individual illness in groups of piglets. Vaccination is known to initiate high
skin temperatures and huddling responses were observed up to 20 hours post vaccination in a group
of piglets [109].

4.2.2. Sound Detection

Sound recordings can be used with an algorithm for vocal analysis to detect heat stress [110]
and high frequency “screams” of pain [25] as a consequence of tail biting or fighting. Algorithms
also distinguished between infectious productive coughs and non-infectious, non-productive coughs
(ammonia or dust) from differences in the acoustic variables [111,112]. A commercially available sound
detection package, Soundtalks R© (Leuven, Belgium) recognizes sounds in a localized area, enabling
treatment for respiratory disease and ventilation changes at a pen level, rather than the entire barn [41].
Sound detection can be inhibited if the barn is noisy or there are insufficient microphones. The ability
to consistently distinguish between stress-related and normal vocalizations would be beneficial as
pigs, in a way, would be able to “speak for themselves” about their welfare.

4.2.3. Live Weight, Body Condition and Physiology

Live weight, shape, growth and body composition are crucial factors in the management of swine
production because individual pig weight and growth affects the herd in factors such as barn flow and
space allowance, and audit parameters [27,113]. An animal-based measure of CSIA includes a spatial
(mass) allowance such that 90% of pigs can lie down at once in group pens and that sows can lie down
fully in stalls. Studies have shown promise and commercialization in the area of extracting the 3D
shape of pigs for automatic mass and weight estimations [35,114–116].

4.2.4. Wireless Sensor Networks

Wireless sensor networks (WSNs) often consist of a sensor(s), node and base station (Figure 4).
Generally, low-cost and low-power, multifunctional sensors such as a thermistor, accelerometer
and battery are clustered in one node. For pig production, the sensors, such as accelerometers,
are encapsulated within an ear tag (node) which holds the sensor package for communication. The node
sends information to the base station which provides connectivity to the server or might perform
computational tasks [117].

Figure 4. Wireless sensor network structure.

An example of a commercial WSN is “Remote Insights—Wireless Asset Management System”
(Remote Insights, Minneapolis, MN). According to the patent, accelerometer and temperature gauge
sensors housed in the node are sealed to prevent entry of moisture or dust. The ear tag node (beacon),
communicates its unique identification to a gateway or base station via cellular, satellite, WiFi or
Ethernet [118] and includes immediate visual communication with the farmer using diodes that emit
alerts or behavior patterns such as locomotion disorders [119].
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5. Precision Livestock Farming—Practitioner and Consultant

Paraphrasing Ramirez and Karriker [120], a successful swine practitioner is one who solves
problems, creates opportunities and promotes the financial success of their clients. Swine veterinarians
have worked closely with farmers to shift disease management practices and have long promoted
the value of swine management software and analytics programs (e.g., PigCHAMP, PIGKnows,
MetaFarms) to provide key production indices (e.g., pig mortality, pigs produced, market weights
and feed conversion) in herd or batch reports [121,122]. Data entries provided by the farms include
descriptive information (e.g., farrowing dates, number of piglets born) and diagnostic information
(e.g., reason for death, response to treatment) [123].

Alternatively, using sensors to digitize physiological variables, animals are monitored constantly
and make generated data predictive and prescriptive [124]. This data can be utilized to predict
trends and behavior patterns and support decision-making [125] without information bias [59].
One consideration is a method for detection of lameness (yes/no) post analgesic treatment [126].
Consequently, pig welfare can be improved if farmers can specifically evaluate the economic outcomes
of mitigation practices.

5.1. A Technical Role of Swine Practitioners

Animal welfare is both an ethical driver with economic consequences and an economic driver
that carries moral weight [9]. The most obvious way in which welfare and economic efficiency go hand
in hand is through reduction in mortality and morbidity. The most humane act to welfare problems
such as perforated hernias, uterine prolapse, pigs that are severely injured or unable to stand or walk,
and without likelihood of response to treatment, is timely euthanasia. Attributing variables to these
problems could realistically be associated with animal phenotype, pen activity or posture and early
detection could improve both profits and welfare.

Practitioners not only determine disease occurrence and risk factors but also the prevalence and
the value of diagnostic results within complex farms and systems [74]. Moreover, while not specifically
trained in applied ethology, swine practitioners, through their training and multiple on-farm visits,
recognize normal from abnormal physiology and risk factors of poor welfare. The goal of precision
livestock farming technology is to provide detection and subsequently early indicators of problems
that identify individual animals or specific groups, that need attention. Swine practitioners and their
clientele must be confident that the alerts are both highly sensitive and specific to assure detection and
avoid unnecessary alerts [14,127], and as pig health experts, can assist engineers and programmers in
deciding on the correct observations, based on biological relevance and validation [128].

5.2. Robustness of Sensors

Some are concerned about whether sensors will tolerate on-farm environment assaults such
ammonia, dust, moisture, weather conditions or high pressure washing. While off-the-shelf 2D cameras
and microphone sensors, used in the security industry, may supply hardware for imagining and sound,
the development of newer sensors and their applications will need to be tested within farm conditions.
In commercial barns, lighting fluctuations, backgrounds sounds, controlling for pests, or ambient
weather conditions might prevent the system from recognizing the subject and accurately determining
its features. Open-access development between farmers and developers is a possibility to expose
developers to the environment and constraints in which this technology must operate. Practitioners
can act as the liaison, allowing the developer to enter the farm, under some agreements, to identify the
design constraints that the sensors must satisfy to be robust.

6. Limitations and Opportunities

Many of the prior-mentioned applications in research could evolve into commercial products
that improve profits for pig producers [15]. Therefore, the adoption of precision livestock farming
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by farmers will require input from trusted allies to disseminate knowledge and to provide guidance
on issues such as business and proprietary relationships with sensor developers, and pertaining to
stakeholder traceability.

6.1. Data Rights, Transparency and Traceability

Further improvements to animal welfare are needed as consumers demand more transparency
of where their meat comes from [129], initiating farm-to-fork concepts and farm assurance programs
such as PQA Plus R©. In addition to this, Blockchain—an incorruptible electronic ledger that can track
each transaction of a food item’s journey through the food chain—would increase the transparency
of production practices and documentation by farms and data driven management—a pervading
issue in (pig) production and among stakeholders [130]. Pharmaceutical companies, regulatory
bodies and policy makers will also realize the benefits of improved data collection for global health
surveillance [131].

Sensor driven automated data collection, when integrated with suppliers, captures and records
multiple attributes for each animal, age, pedigree, growth rates, health, feed conversion rates, meat
quality and close-out or kill-out percentage [124]. This data can drive producer profit strategies
of shipping or culling animals at optimal time points and minimize the cost and management of
therapeutic drug use [59]. An example of an integrated precision livestock farming framework is the
IOF2020 [123]. A European Union funded project using sensors is collecting and linking real-time farm
data of individual animals/animal groups to data from slaughter plants with the intent to provide
farmers with feedback on their management strategies and help to optimize animal well-being and
production profits.

Still, continued discussion and policy development to protect data is warranted. While most
captured data is not considered sensitive (e.g., a single image of a sow demonstrating nesting behavior),
there may be some sensitivity, especially in aggregate. For example, nesting behavior of many sows
could be misconstrued as a stress behavior and may initiate privacy concerns and misuse of information
outside its context. Adams-Progar et al., [132] provides a summary of security and privacy issues in
the chapter “Internet of Cows”.

To enable the benefits of increased transparency and information sharing along the value
chain, Shepherd [124] suggests a framework that will create a responsible model to meet the needs
of proper data privacy and standardize technology infrastructure to ensure privacy, encryption,
security and management. Data rights of farmers used in the development of sensors can be
a difficult topic to handle and at minimum should include binding agreements in which farmers
and technology developers agree to terms and conditions. Zhou [133] provides a thorough review
on risks and solutions to security and privacy pertaining to data. Practitioners can assist their clients
and stakeholders to establish industry standards for responsible storage and use of data to avoid
infringements of personal data rights. Shepherd provides a thorough discussion of privacy standards
in digital agriculture [124].

6.2. Stakeholder Advocacy and Collaboration

Working with veterinary, animal science, and producer associations and regulatory agencies,
practitioners retain a balanced view of available and emerging resources. Innately there is an obligation
of professionals to learn, introduce and/or supervise new technologies [134]. During 2018 annual
meetings, both the American Association of Swine Veterinarians (AASV) (aasv.org) and the American
Society for Animal Science (ASAS) (asas.org) offered workshops on precision livestock farming.

In spite of an early emphasis of this technology in Europe and while twenty percent of Dutch dairy
farmers have sensors for estrus detection, other sensors are not widely adopted [124]. Farmers may be
skeptical to implement precision livestock farming for several reasons. Based on experiences from the
human wearable sensor market, it is reported that only 5% of that technology is formally scientifically
validated [135]. Another reason livestock farmers may be slow to apply precision livestock farming
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techniques, is because of prior experience with costs associated with purchasing and maintaining new
equipment and computer systems, as well as a challenging and time-consuming learning curve for
personnel [11]. One more hesitation, and perhaps the largest technical challenge may include lack of
broadband internet access in rural areas. Remote capture and transfer of data often requires internet
or cellular access. Recently, Microsoft has announced the Airband Initiative to eliminate the US rural
broadband gap by 2022 [136]. Nevertheless, it will take time to address connectivity issues.

6.3. Emerging Technological Integration

Two areas of emerging technological advances, albeit requiring considerably more developmental
research, could be integrated with precision livestock farming devices. The development of 5G
communication combined with Massive Multiple Input Multiple Output (Massive MIMO) could assist
in wireless sensor networks’ infrastructure (e.g., reducing the number of required wireless network
receivers) and making more efficient devices with low power requirements [137]. Another emerging
technology is a potential integration with doplar radar technology to provide remote sensing for both
respiration and heart rate [138]. These technologies could provide more efficient ways of capturing
swine physiology and well-being while reducing network complexity.

6.4. Opportunities

Industry opportunities of precision livestock farming include (1) Workforce development:
An automated, objective method to monitor and collect data can simplify labor requirements,
reduce the inefficiencies of recurring tasks, save time and attract a different genre of stockperson.
Precision livestock farming practices may change the way we work, allocating resources of time
and energy to the development of predictive treatment regimes and protocols, (2) Animal welfare:
a non-invasive, automated system will improve pig welfare and attention via “individual animal
approach”. These techniques can convert farms to research facilities that provide real-time outcomes.
An example includes measuring pig aggression [139,140] in the presence of environmental enrichment,
(3) Consumer acceptance and enhancement of consumer image of the swine industry: The public
expects producers to provide individual attention with good human-animal interaction. While we
presume that large commercial producers will become early adopters of technology, precision livestock
farming can be farm-size neutral. For example, HerdDogg (herddogg.com, Ashland, Oregon) provides
yearly remote health and behavior monitoring services for as few as twenty-five pasture-raised animals.
Smaller producers often have an opportunity for niche and direct access to consumers, and the story
of the individual animal.

Automation of livestock production raises an ethical concern about machine learning replacing
human care [141]. Others argue that based on an individual or per animal approach, it will improve
connection between producers and pigs [125]. One of the simplest problems, however, is that it is
not always clear what data should be collected and why it is relevant. Practitioners collaborating
with engineers and technology developers will create products suitable for on-farm use and positive
impacts on the welfare of the animals.

7. Conclusions

While the world population is expected to reach more than 9 billion in 2050, the World
Bank predicts that the increases in demand for meat must be sustained by 90 per cent of existing
farmland [142]—intensification is inevitable. By collecting and analyzing vast quantities of data that
no person would be able to complete on their own, precision livestock farming can provide producers
with information about the welfare of the whole herd as well as individual animals. The continued
development of precision livestock farming and the possibilities for interconnection in the pork value
chain, ultimately links consumers and farmers. Consumers will make decisions based on farm practices,
and farms can make decisions based on consumer practices [124]. The role of the swine practitioner
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can be somewhere in the connection, helping to navigate precision livestock farming toward prosperity
for all—the farmer, the stockperson and the pig.
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